WO2020130410A1 - 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법 - Google Patents

구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법 Download PDF

Info

Publication number
WO2020130410A1
WO2020130410A1 PCT/KR2019/016749 KR2019016749W WO2020130410A1 WO 2020130410 A1 WO2020130410 A1 WO 2020130410A1 KR 2019016749 W KR2019016749 W KR 2019016749W WO 2020130410 A1 WO2020130410 A1 WO 2020130410A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
change
ball
slope
amount
Prior art date
Application number
PCT/KR2019/016749
Other languages
English (en)
French (fr)
Inventor
곽기석
박재현
정문경
서승환
고영훈
곽봉군
Original Assignee
한국건설기술연구원
유니넷텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 유니넷텍 주식회사 filed Critical 한국건설기술연구원
Priority to JP2020562068A priority Critical patent/JP6988009B2/ja
Priority to US16/979,791 priority patent/US11802765B2/en
Priority to EP19898568.1A priority patent/EP3726182B1/en
Publication of WO2020130410A1 publication Critical patent/WO2020130410A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets
    • G01C2009/107Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets spheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Definitions

  • the present invention relates to the construction field, and more particularly, to a structure for measuring a slope change amount of a structure capable of measuring a slope change amount of a structure for a certain period of time and a method of measuring a slope change amount of a structure using the same.
  • Sensors of various principles are applied to measure the horizontality, verticality, and inclination of an object (including a Cesar rule, a structure).
  • Analog levels have been used for a long time, and electronic or digital measuring instruments have also been developed to measure the inclination with digitized numbers and graphics.
  • the conventional tilt sensors are fixedly installed on an object, they are mainly used for measuring the tilt at the time of measurement.
  • the temperature compensation is performed by itself using the built-in temperature sensor, but there is a limitation that it is difficult to correct for the temperature sensor, voltage characteristic, and sensor durability characteristics.
  • the current tilt sensor needs to be corrected and initialized according to drift due to temperature, time, and circuit fluctuation (voltage), and there must be a deviation according to the correction value to measure the amount of gradient change that varies over a long period of time ( ⁇ decades). There is a problem that cannot be.
  • the present invention has been derived to solve the problems of the above-described conventional slope measuring device, the object of the present invention is to measure the slope change amount of a structure that can accurately measure the amount of change in the structure over a period of time and the structure using the same It is to provide a method for measuring the amount of gradient change.
  • Another object of the present invention is to provide a device for measuring a slope change amount of a structure and a method for measuring a slope change amount of a structure using the same, which can accurately measure a slope change amount of a structure without being affected by the surrounding environment.
  • Another object of the present invention is to provide a device for measuring a slope change amount of a structure having a small size and easy to move and install, and a method for measuring a slope change amount of a structure using the same.
  • Another object of the present invention is to provide a device for measuring a slope change amount of a structure equipped with a system capable of collecting a change amount of slope in real time and a method for measuring a slope change amount of a structure using the same.
  • Another object of the present invention is to provide a device for measuring a change in slope of a structure and a method for measuring a change in slope of a structure using the same so as to check the overall slope of the structure using a plurality of measuring devices.
  • an apparatus for measuring a change in inclination of a structure comprising: a bottom body 100 formed of a spherical surface having a predetermined radius of curvature; A ball 200 mounted on an upper surface of the bottom body 100 and moving according to gravity; And a camera 300 for photographing the bottom body 100 on which the ball 200 is located.
  • An apparatus for measuring a change in tilt of a structure is provided.
  • it may be a device for measuring the amount of gradient change of a structure further comprising; a transmitting and receiving unit 400 that transmits the image information (a) generated by the camera 300 to the server 10.
  • it may be a device for measuring the amount of tilt change of a structure, characterized in that it further comprises; an illumination device 600 for providing light to the interior space 510.
  • the camera 300, the transmitting and receiving unit 400 and the control unit 700 for controlling the lighting device 600 may be a device for measuring the amount of change in the slope of the structure further comprising.
  • it may be a device for measuring the amount of tilt change of a structure, characterized in that it further comprises; a ball storage portion 520 for limiting the behavior of the ball 200 in the inner space 510.
  • the floor body 100 may be a device for measuring the amount of change in a slope of a structure, characterized in that it is located on the bottom surface of the interior space 510 and the camera 300 is located on the top surface of the interior space 510. .
  • the floor body 100 and the camera 300 may be a device for measuring a change in tilt of a structure, characterized in that formed in the same space.
  • the ball storage unit 520 may be a partition wall 521 shielding the bottom surface and the upper surface, and the partition wall 521 may be a device for measuring the amount of gradient change of a structure, characterized in that it is formed of a transparent body.
  • the floor 100 in which the ball 200 is located by the camera 300 A first step (S100) of photographing and generating first image information a1 of the ball 200; And generating the second image information a2 of the ball 200 by photographing the bottom body 100 on which the ball 200 is located by the camera 300 after the first step S100.
  • a second step (S200); is provided a method for measuring the amount of change in the slope of the structure comprising a.
  • control unit 700 further comprises a third step (S300) of deriving a gradient change value using the first image information (a1) and the second image information (a2); It may be a method of measuring the amount of change in the slope of.
  • the third step (S300) derives the first position value (b1) of the ball 200 from the first image information (a1) and the ball (200) from the second image information (a2).
  • a change value deriving step (S320) of deriving the gradient change value using the first position value (b1), the second position value (b2), and the curvature radius It may be a method of measuring the amount of change.
  • a computer-readable recording medium in which a program for executing a method for measuring a change in tilt of a structure is recorded.
  • the size of the measuring device can be miniaturized, and the measuring device can be easily moved and installed.
  • 1 and 2 is a view showing a conventional tilt measurement equipment.
  • FIG. 3 is a block diagram of an apparatus for measuring a gradient change amount according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an apparatus for measuring a slope change amount according to another embodiment of the present invention.
  • FIG. 5 is a view showing first image information acquired by a camera according to an embodiment of the present invention.
  • FIG. 6 is a view showing second image information acquired by a camera according to an embodiment of the present invention.
  • FIG. 7 and 8 is a view showing a method for measuring the amount of change in the slope of the entire structure using the apparatus for measuring the amount of gradient change according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of an apparatus for measuring a slope change amount according to an embodiment of the present invention.
  • FIG. 10 is a view showing a measurement baseline formed in a partition wall according to another embodiment of the present invention.
  • first and second used hereinafter are only identification symbols for distinguishing the same or corresponding components, and the same or corresponding components are limited by terms such as first and second. no.
  • the combination does not mean only a case in which a physical contact is directly made between the respective components in a contact relationship between the components, and different components are interposed between the respective components, so that the components are in different components. Use it as a comprehensive concept until each contact is made.
  • the present invention relates to a device for measuring a change in slope of a structure and a method for measuring a change in slope of a structure using the same.
  • structure in the present invention is only to present one type to which the measurement equipment can be applied, and defines that all objects that are the objects of tilt measurement are included in the scope of the structure.
  • the existing slope (inclination) measurement method has a limitation in that it is impossible to know the temporal changes of facilities and structures after construction because the slope of the measurement point is measured even when the sensor is fixedly installed on the measurement object.
  • the present invention provides an image recognition based tilt change measurement method and a sensor for real-time measurement of a relative change in tilt after comparing with a time point installed in structures and facilities. The following important problems must be solved to measure the relative change in slope after comparing with the installed time point, which is the most important for determining the stability of structures and facilities.
  • the tilt sensor value of the object to be measured has a problem that is affected by the fixing method and the error of the bracket or anchor bolt. In other words, if the accuracy and flatness of the mechanism for fixing the sensor in the measurement object are not guaranteed, the measured value does not represent the actual slope of the measurement object.
  • the sensor's initial value storage button cannot be pressed may occur.
  • the relative slope change amount can be measured in comparison with the time when it is installed in the safety judgment of structures and facilities, the reliability of safety management of structures and facilities can be significantly improved. It is important to measure the gradient and the amount of gradient change together, but so far, it has not been provided due to the lack of the above solution. In other words, the following problems are solved to implement a method and a sensor for measuring the amount of slope change in real time to measure the relative amount of change of the slope in comparison with the time of installation in structures and facilities.
  • the measurement value does not represent the actual tilt of the measurement object unless the accuracy of the mechanism for fixing the sensor at the measurement object is guaranteed.
  • Measuring while constructing the absolute slope of the reference points of the measurement object uses a measuring instrument instead of a fixed sensor.
  • the fixed installation of the tilt sensor solves the above problem by configuring the inclination change after installation to measure the amount of gradient change compared to the initial set tilt value along with the absolute tilt value as the main purpose is to measure in real time.
  • a permanent storage memory means (other than flash memory) in the sensor circuit is used as a means to store the measured values at the time when the facility is installed in the sensor itself.
  • a processor for controlling the memory means.
  • the processor is configured to read the measured value from the tilt measurement means and output the amount of gradient change compared to the initial gradient measured value stored together with the measured value to the outside.
  • the current measurement value is initialized with an external communication line (or wireless communication) to solve the problem that the sensor's initial value storage button cannot be pressed. It is configured to send a command to save the data to the processor.
  • the sensor housing should basically include a button to save the initial values.
  • the slope measurement method should be applied.
  • the core method of an inclinometer that measures the position of a commercially available pendulum is the principle of a servo accelerometer, where one pendulum is placed in the magnetic field of the position sensor, which is tilted in the direction of gravitational action when subjected to gravity. Since it has the gravity and electromagnetic force to be changed in the opposite direction, it is converted into a slope by measuring the current value when the equilibrium becomes unmovable.
  • the basic principle of the MEMS-type acceleration sensor is also measuring the acceleration and inclination by measuring the capacitance value between the cantilever tip and the electrode. Since these methods basically convert the analog measurement value to a slope, there is a problem in that temperature and environmental compensation and initial zero adjustment must be performed frequently. Therefore, there is a need for a method of digitally measuring the position of the pendulum so as not to affect the temperature and the environment.
  • the digital absolute inclination measurement method for calculating the inclination by measuring the position of the light or a specific pattern toward the center of the earth installed in the pendulum with an image sensor may be improved and applied. When the above method is applied, the environmental impact can be eliminated because the slope is measured in digital coordinate values rather than analog values.
  • the structure and facilities need to be installed, so even if a sensing method that is not affected by environmental changes is applied, the size is limited. Since the structure and facilities must be fixed to the bracket or anchor bolt, the size of the enclosure is also limited. In general, the sizes of sensors fixed to structures and facilities are sold in and around 50 mm in diameter and 40 mm in thickness. If necessary, an auxiliary plate is used to engage the facility and structure fixing means. To meet this, the digital absolute inclination measurement method and sensor that freely vibrate inside the sphere that can be implemented with a thin structure and measure the position of the ball toward the center of the earth are applied.
  • a method of measuring the position of the ball can be presented because the ball moves toward the center of the earth.
  • a semi-circular sphere cannot be used, and it can be manufactured in a form that uses a part of the sphere, making it thin.
  • the ball vibrating based on the central axis of the hemispherical surface is very sensitive to external shock, vibration, and seismic waves, so it can be used as a measurement sensor (shock sensor, vibration sensor, earthquake sensor, etc.) in the field.
  • the apparatus for measuring the amount of gradient change includes a bottom body 100 formed of a spherical surface having a predetermined radius of curvature, a ball 200 mounted on the top surface of the bottom body 100 and moved according to gravity, and the ball 200 is located It may include a camera 300 for photographing the bottom body (100) (Fig. 3).
  • the bottom body 100, the ball 200, and the camera 300 are accommodated in the inner space 510 of the housing 500 in which the inner space 510 is formed (FIG. 3).
  • it may further include a shooting button 800 for controlling the driving of the camera 300.
  • the position of the ball 200 is also changed by gravity, so a change in the inclination of the structure can be measured by deriving the position change value of the ball 200.
  • the fixed installation of the tilt sensor on structures and facilities mainly measures the gradient that changes after installation, so it is possible to measure both the absolute slope value and the slope change compared to the initial set slope value, so that the reliability of structural safety judgment It has the effect of increasing.
  • a permanent storage memory means for storing measured values at the time when the facilities are installed in the sensor itself and a processor (CPU) for controlling the memory means
  • the freely vibrating ball 100 is used in the bottom body 100 formed of a spherical surface, the device can be miniaturized, the measurement range can be enlarged, and the precision can be easily controlled, so that the tilt of a telephone pole, etc. It can also be used for precise measurement of.
  • a display means when included, it can also be applied to a machine tool, etc., which must always be accurately leveled.
  • the apparatus for measuring a change in tilt of a structure may further include an illumination device 600 that provides light to the interior space 510.
  • the ball storage portion 520 to limit the behavior of the ball 200 in the inner space 510 may be further included (Fig. 3). As the ball 200 flows in the inner space 510, the lighting device 600 or the camera 300 may be damaged. In the present invention, the behavior of the ball 200 can be restricted at the time of movement of the device, etc. It includes a ball storage unit 520 as a configuration.
  • the bottom body 100 and the camera 300 are formed in the same space, and the ball storage unit 520 may be a storage container 522 formed on the side of the interior space 510.
  • the ball storage unit 520 when the bottom body 100 is located on the bottom surface of the interior space 510, and the camera 300 is located on the top surface of the interior space 510, the ball storage unit 520 is in contact with the bottom surface. It may be formed of a partition wall 521 that shields the upper surface. In this case, it is preferable that the partition wall 521 is formed of a transparent body, so that the camera 300 can photograph the bottom body 100 (FIG. 4 ).
  • the partition wall 521 may have a measurement reference line 523 capable of grasping the position of the ball 200 (FIG. 10).
  • the apparatus for measuring a change in tilt of a structure may further include a transmitting and receiving unit 400 that transmits the image information (a) generated by the camera 300 to the server 10.
  • the camera 300, the transmitting and receiving unit 400 and the control unit 700 for controlling the lighting device 600 may be further included.
  • Method for measuring the amount of change in the slope of the structure is a method for generating first image information (a1) of the ball 200 by photographing the bottom body 100 on which the ball 200 is located by the camera 300 After the first step (S100) and the first step (S100), the camera 300 photographs the bottom body 100 on which the ball 200 is positioned to generate second image information a2 of the ball 200
  • the second step (S200) and the control unit 700 include a third step (S300) of deriving a gradient change value using the first image information (a1) and the second image information (a2 ).
  • the third step S300 derives the first position value b1 of the ball 200 from the first image information a1 and the second position of the ball 200 in the second image information a2.
  • a position value derivation step (S310) for deriving the value (b2) and a change value derivation step (S320) for deriving the gradient change value using the first position value (b1), the second position value (b2), and the radius of curvature It can contain.
  • the slope change value may be derived through the following method.
  • the slope analysis method according to the position of the ball 200 freely vibrating in the bottom body 100 formed of a hemisphere is as follows.
  • the method for measuring the amount of change in the slope of a structure can be recorded in a computer readable medium by being implemented in the form of program instructions that can be executed through various computer means.
  • the computer-readable medium may include program instructions, data files, data structures, or the like alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the present invention, or may be known and usable by those skilled in computer software.
  • Examples of computer readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs, DVDs, and magnetic media such as floptical disks. Includes hardware devices specifically configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • program instructions include high-level language code that can be executed by a computer using an interpreter, etc., as well as machine language codes produced by a compiler.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operation of the present invention, and vice versa.
  • control unit 700 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

본 발명에 따르면 구조물의 기울기 변화량 측정 장치에 있어서, 소정의 곡률반경을 갖는 구면으로 형성된 바닥체(100); 상기 바닥체(100) 상면에 거치되어 중력에 따라 이동하는 볼(200); 및 상기 볼(200)이 위치된 바닥체(100)를 촬영하는 카메라(300);를 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치가 제공된다. 본 발명에 따르면 본 발명에 따르면 일정 기간 동안의 구조물의 기울기 변화량을 정확하게 측정할 수 있는 효과가 있다.

Description

구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법
본 발명은 건설 분야에 관한 것으로서, 보다 상세하게는 일정 기간 동안의 구조물의 기울기 변화량을 측정할 수 있는 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법에 관한 것이다.
물체(시서룰, 구조물 포함)의 수평도, 수직도, 경사도를 측정하기 위해 다양한 원리의 센서들이 적용하고 있다. 오래전부터 아날로그 수준기가 사용되어 왔으며, 전자식 혹은 디지털식 계측기도 개발되어 경사도를 디지털화된 숫자 및 그래픽으로 측정하고 있다.
다만, 종래의 기울기 센서들은 물체에 고정 설치하더라도 주로 측정 시점의 기울기를 측정하는 용도로 사용되고 있다.
측정값에서 센서에 내장된 온도센서를 이용하여 온도보상은 자체적으로 이루어지지만 온도 센서, 전압 특성, 센서 내구 특성 등에 대한 보정이 어렵다는 한계가 있다. 그러나 지상의 모든 시설 및 구조물의 안전성은 지구중심 대비 절대 수직도(피사의 사탑)가 아닌, 구축 시점 대비 현재 시점의 기울기 변화량 유무가 매우 중요하다.
그러나 현행 기울기 센서는 온도, 시간, 회로 변동(전압)에 따른 드리프트에 따른 보정 및 초기화가 필요하며, 보정 값에 따른 편차가 존재할 수밖에 없어 장시간 흐름(~수십 년)에 걸쳐서 달라지는 기울기 변화량을 측정할 수 없는 문제가 있다.
본 발명은 상술된 종래의 기울기 측정 장치의 문제점을 해결하기 위해 도출된 것으로서, 본 발명의 목적은 일정 기간 동안의 구조물의 기울기 변화량을 정확하게 측정할 수 있는 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법을 제공하는 것에 있다.
본 발명의 다른 목적은 주변 환경의 영향을 받지 않고 구조물의 기울기 변화량을 정확하게 측정하는 것이 가능한 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법을 제공하는 것에 있다.
본 발명의 또 다른 목적은 크기가 작고 이동 및 설치가 용이한 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법을 제공하는 것에 있다.
본 발명의 또 다른 목적은 기울기 변화량을 실시간으로 수집할 수 있는 시스템을 갖춘 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법을 제공하는 것에 있다.
본 발명의 또 다른 목적은 복수개의 측정장치를 이용하여 구조물의 전체적인 기울기 양상을 확인할 수 있도록 한 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법을 제공하는 것에 있다.
본 발명의 일 측면에 따르면 구조물의 기울기 변화량 측정 장치에 있어서, 소정의 곡률반경을 갖는 구면으로 형성된 바닥체(100); 상기 바닥체(100) 상면에 거치되어 중력에 따라 이동하는 볼(200); 및 상기 볼(200)이 위치된 바닥체(100)를 촬영하는 카메라(300);를 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치가 제공된다.
이 경우 상기 카메라(300)에 의해 생성된 영상정보(a)를 서버(10)로 송신하는 송수신부(400);를 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 바닥체(100), 상기 볼(200) 및 상기 카메라(300)를 수납하는 내부공간(510)이 형성된 하우징(500);을 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 내부공간(510)에 빛을 제공하는 조명장치(600);를 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 카메라(300), 상기 송수신부(400) 및 상기 조명장치(600)를 제어하는 제어부(700);를 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 내부공간(510)에서의 상기 볼(200)의 거동을 제한하는 볼 수납부(520);를 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 바닥체(100)는 상기 내부공간(510)의 저면에 위치하고, 상기 카메라(300)는 상기 내부공간(510)의 윗면에 위치되는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 바닥체(100)와 상기 카메라(300)는 같은 공간에 형성된 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
또한, 상기 볼 수납부(520)는 상기 저면과 상기 윗면을 차폐하는 격벽(521)이며, 상기 격벽(521)은 투명체로 형성된 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치일 수 있다.
본 발명의 다른 일 측면에 따르면 구조물의 기울기 변화량 측정 장치를 이용하여 구조물의 기울기 변화량을 측정하는 방법에 있어서, 상기 카메라(300)에 의해 상기 볼(200)이 위치된 상기 바닥체(100)를 촬영하여 상기 볼(200)의 제1 영상정보(a1)을 생성하는 제1 단계(S100); 및 상기 제1 단계(S100) 이후에 상기 카메라(300)에 의해 상기 볼(200)이 위치된 상기 바닥체(100)를 촬영하여 상기 볼(200)의 제2 영상정보(a2)을 생성하는 제2 단계(S200);를 포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법이 제공된다.
이 경우 상기 제어부(700)가 상기 제1 영상정보(a1) 및 상기 제2 영상정보(a2)를 이용하여 기울기 변화값을 도출하는 제3 단계(S300);를 더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법일 수 있다 .
또한, 상기 제3 단계(S300)는 상기 제1 영상정보(a1)에서 상기 볼(200)의 제1 위치값(b1)을 도출함과 아울러 상기 제2 영상정보(a2)에서 상기 볼(200)의 제2 위치값(b2)을 도출하는 위치값 도출단계(S310); 및 상기 제1 위치값(b1), 상기 제2 위치값(b2) 및 상기 곡률반경을 이용하여 상기 기울기 변화값을 도출하는 변화값 도출단계(S320);를 포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법일 수 있다.
본 발명의 또 다른 일 측면에 따르면 따른 구조물의 기울기 변화량을 측정하는 방법을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체가 제공된다.
본 발명에 따르면 일정 기간 동안의 구조물의 기울기 변화량을 정확하게 측정할 수 있는 효과가 있다.
본 발명에 따르면 주변 환경의 영향을 받지 않고 구조물의 기울기 변화량을 정확하게 측정하는 것이 가능한 효과가 있다.
본 발명에 따르면 측정 장치의 크기를 소형화할 수 있고 측정 장치의 이동 및 설치가 용이한 효과가 있다.
본 발명에 따르면 기울기 변화량을 실시간으로 수집할 수 있는 효과가 있다.
본 발명에 따르면 복수개의 측정장치를 이용하여 구조물의 전체적인 기울기 양상을 확인할 수 있는 효과가 있다.
도 1 및 도 2는 종래의 기울기 측정 장비를 나타낸 도면.
도 3은 본 발명의 일 실시예에 따른 기울기 변화량 측정 장치의 구성도.
도 4는 본 발명의 다른 일 실시예에 따른 기울기 변화량 측정 장치의 구성도.
도 5는 본 발명의 일 실시예에 따른 카메라에 의해 취득된 제1 영상정보를 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 카메라에 의해 취득된 제2 영상정보를 나타낸 도면.
도 7 및 도 8은 본 발명의 일 실시예에 따른 기울기 변화량 측정 장치를 이용하여 구조물 전체의 기울기 변화량을 측정하는 방법을 나타낸 도면.
도 9는 본 발명의 일 실시예에 따른 기울기 변화량 측정 장치의 구성도.
도 10은 본 발명의 다른 일 실시예에 따른 격벽에 형성된 측정기준선을 나타낸 도면.
본 발명에 따른 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부된 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 이하 사용되는 제1, 제2 등과 같은 용어는 동일 또는 상응하는 구성 요소들을 구별하기 위한 식별 기호에 불과하며, 동일 또는 상응하는 구성 요소들이 제1, 제2 등의 용어에 의하여 한정되는 것은 아니다.
또한, 결합이라 함은, 각 구성 요소 간의 접촉 관계에 있어, 각 구성 요소 간에 물리적으로 직접 접촉되는 경우만을 뜻하는 것이 아니라, 다른 구성이 각 구성 요소 사이에 개재되어, 그 다른 구성에 구성 요소가 각각 접촉되어 있는 경우까지 포괄하는 개념으로 사용하도록 한다.
본 발명은 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법 장비에 관한 것이다.
본 발명에서의 구조물의 용어는 측장 장비가 적용될 수 있는 일 유형을 제시한 것에 불과하고, 기울기 측정의 대상이 되는 모든 사물을 구조물의 범위에 포함되는 것으로 정의한다.
기존 기울기(경사도) 측정 방식은 센서를 측정 대상에 고정 설치하더라도 측정 시점의 기울기를 측정하므로, 시공이후 시설 및 구조물의 경시적 변화를 알 수 없다는 한계가 있다. 본 발명은 구조 및 시설물에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 실시간 계측하는 영상인식 기반의 기울기 변화량 측정 방법 및 센서를 제공하는데 있다. 구조 및 시설물의 안정성 판단에 가장 중요한 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 다음과 같은 중요 문제점을 해결하여야 한다.
첫째, 기울기센서를 설치 장소의 브라켓 혹은 앵커 볼트 등에 고정할 경우, 측정하고자 하는 대상의 기울기센서 값은 고정 방식과 브라켓 혹은 앵커 볼트의 오차에 의해 영향을 받게 되는 문제점이 있다. 즉, 측정 대상에서 센서를 고정하는 기구의 정확도와 평면도를 보장하지 않으면 측정값은 측정 대상의 실제 기울기를 나타내지 않는다.
둘째, 구조 및 시설물에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 센서 자체에 시설물을 설치한 시점의 측정값을 저장하는 수단이 필요하다. 즉, 기울기를 측정 할 때 저장된 초기 측정값과 비교하여 기울기 변화량도 함께 표시해줘야 한다. 이와 함께, 토목 구조 및 시설물의 경우 구축 완료 후에는 고정 설치한 센서에 접근하기가 어려워, 센서의 초기값 저장 버튼을 누를 수 없는 문제가 발생할 수 있다.
셋째, 구조 및 시설물의 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 기울기 센서의 측정값이 변화하는 환경 요소(온도, 공급전압, 장기간 사용에 따른 센서 특성 변화)에 영향을 받지 않아야 한다. 기존 정전용량 혹은 전류량과 같은 아날로그 값을 측정하는 센서 방식은 환경 요소의 영향을 받고, 아날로그 값의 특성상 시간에 따른 드리프트가 발생하는 경향이 있다. 이를 보정하기 위해 온도센서를 추가하여 온도에 따른 기울기 보정을 하지만, 온도 센서도 제품별 편차가 있으며 시간에 따라 특성들이 변하지만 이를 보정할 수단이 없다는 문제점이 있다.
넷째, 구조 및 시설물의 설치해야 하므로 환경 변화에 영향 받지 않는 센싱 방식을 적용하더라도 크기에 제한을 받는다. 구조 및 시설물의 브라켓 혹은 앵커 볼트 등에 고정시켜야 하므로 센서 함체의 최소 크기도 제한이 있다. 기울기 센서를 내장하는 함체를 작게 만들 경우 고정시키기 어렵다는 문제가 있다.
구조 및 시설물의 안전성 판단에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정할 수 있다면, 구조 및 시설물 안전 관리의 신뢰성을 획기적으로 높여줄 수 있다. 기울기와 기울기 변화량을 함께 측정함은 중요하지만, 현재까지 상기 해결 수단 부족으로 제공되지 못하고 있다. 즉 구조 및 시설물에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 실시간 계측하는 기울기 변화량 측정 방법 및 센서를 구현하기 위해 제반 문제점들을 다음과 같이 해결한다.
첫째, 기울기센서를 설치 장소의 브라켓 혹은 앵커 볼트 등에 고정하므로, 측정 대상에서 센서를 고정하는 기구의 정확성을 보장하지 않으면 측정값은 측정 대상의 실제 기울기를 나타내지 않는다는 문제점이다. 측정 대상의 기준점들의 절대 기울기를 시공하면서 측정하는 것은 고정식 센서 대신 계측기를 사용한다. 기울기 센서를 고정 설치하는 것은 설치 이후 변화하는 기울기를 실시간 측정함이 주목적인 만큼 절대 기울기 값과 함께 초기 설정된 기울기 값 대비 기울기 변화량도 함께 측정하도록 구성하여 상기 문제점을 해결한다.
둘째, 구조 및 시설물에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 센서 자체에 시설물을 설치한 시점의 측정값을 저장하는 수단으로 센서 회로 내에 영구저장 메모리수단(플래쉬 메모리 외)을 포함한다. 메모리 수단을 제어하기 위한 프로세서(CPU)를 포함한다. 프로세서(CPU)는 기울기 측정수단으로부터 측정값을 읽어, 측정값과 함께 저장된 초기 기울기 측정값과 비교한 기울기 변화량을 외부에 출력하도록 구성한다. 토목 구조 및 시설물의 경우 구축 완료 후에는 고정 설치한 센서에 접근하기가 어려워 센서의 초기값 저장 버튼을 누를 수 없는 문제를 해결하기 위해, 외부 통신선(혹은 무선통신)으로 현재 측정값을 초기 측정값으로 저장하라는 명령(command)을 프로세서에 전달하도록 구성한다. 센서 함체에는 기본적으로 초기값 저장 버튼을 포함하여야 한다.
셋째, 구조 및 시설물의 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 기울기 센서의 측정값이 변화하는 환경 요소(온도, 공급전압, 장기간 사용에 따른 센서 특성 변화)에 영향을 받지 않는 기울기 측정방식을 적용하여야 한다. 상용화된 진자의 위치를 측정하는 경사계의 핵심 방식은 서보가속계 원리로써 위치감지기의 자기장 내에 한 개의 진자가 놓여있고 이는 중력의 작용을 받으면 중력 작용 방향으로 기울어지게 되고 이로 인하여 전류가 변화시키면 진자는 처음의 변하려는 중력과 전자기력을 반대 방향으로 가지게 되므로 평형이 이루어져 움직이지 않게 될 때 전류값을 측정하여 기울기로 변환한다. MEMS형 가속도 센서의 기본 원리도 외팔보 끝단과 전극 사이의 정전용량 값을 측정하여 가속도와 경사도를 측정하고 있다. 이러한 방식들은 기본적으로 아날로그 측정값을 기울기로 변환하므로, 온도 및 환경 보상과 초기 영점 조정을 수시로 해줘야 한다는 문제점이 있다. 그러므로 진자의 위치를 온도와 환경의 영향이 없도록 디지털 방식으로 측정하는 방법이 필요하게 된다. 대안으로, 진자에 설치된 지구 중심을 향하는 빛 혹은 특정 패턴의 위치를 이미지센서로 측정하여 경사도를 계산하는 디지털 절대 경사도 측정 방법을 개량하여 적용할 수 있다. 상기 방식을 적용하면 기울기를 아날로그 값이 아닌 디지털 좌표 값으로 측정하므로 환경 영향을 제거할 수 있다.
넷째, 구조 및 시설물의 설치해야 하므로 환경 변화에 영향 받지 않는 센싱 방식을 적용하더라도 크기에 제한이 있다. 구조 및 시설물의 브라켓 혹은 앵커 볼트 등에 고정시켜야 하므로 함체의 크기도 제한이 있다. 일반적으로 구조 및 시설물에 고정하는 센서들의 크기는 직경 50mm, 두께 40mm 내외로 판매되고 있다. 필요시 시설 및 구조물 고정 수단과 결합하기 위해 보조 판(Plate)를 사용한다. 이를 충족시키기 위해 얇은 구조로 구현 가능한 구 내부에서 자유진동하며 지구 중심을 향하는 볼의 위치를 측정하는 디지털 절대 경사도 측정 방법 및 센서를 개량 적용한다. 즉, 반구 내면에서 자유 진동하는 볼(쇠구슬 포함)을 설치하여, 볼이 지구 중심을 향해 이동하므로 볼의 위치(중심 좌표 혹은 원 외곽)를 측정하는 방법이 제시될 수 있다. 이 경우 기울기는 반달 형태의 구 중심으로 부터 볼이 X축, Y축 방향으로 이동 거리와 반달 형태 구의 곡률 반경을 이용하여 계산된다. 이미지센서(카메라센서) 픽셀 크기가 1um(1/5 인치급 5M 이미지센서의 픽셀 크기는 1.12um) 이라고 하고, 곡률 반경 길이가 50mm라고 하면 측정 정밀도는 arctan (1um/50mm) = 0.0001도 까지 측정 가능하다. 케이스 크기 제한으로 구의 곡률 반경이 커지면 반원 크기의 구를 사용할 수 없고 구의 일부분을 사용하는 형태로 제작할 수 있어 박형으로 만들어 진다. 반구면의 중심축을 기준으로 진동하는 볼은 외부 충격, 진동, 지진파 등에도 매우 민감하게 움직이므로, 해당 분야 계측 센서(충격센서, 진동센서, 지진센서 등)로도 활용될 수 있다.
이하 첨부된 도면을 참조하여 본 발명의 일 실싱예에 따른 구조물의 기울기 변화량 측정 장치에 대해 설명한다.
본 발명에 따른 기울기 변화량 측정 장치는 소정의 곡률반경을 갖는 구면으로 형성된 바닥체(100), 바닥체(100) 상면에 거치되어 중력에 따라 이동하는 볼(200) 및 볼(200)이 위치된 바닥체(100)를 촬영하는 카메라(300)를 포함할 수 있다(도 3).
바닥체(100), 볼(200) 및 카메라(300)는 내부공간(510)이 형성된 하우징(500)의 내부공간(510)에 수납된다(도 3).
또한 카메라(300)의 구동을 제어하는 촬영버튼(800)을 더 포함할 수 있다.
구조물의 기울기가 변화되는 경우 볼(200)의 위치 역시 중력에 의해 변화되므로 볼(200)의 위치 변화값을 도출하여 구조물의 기울기 변화량을 측정할 수 있다.
구면으로 형성된 바닥체(100)에서 자유 진동하는 볼(200)의 중심은 언제나 중력 방향을 향하므로 볼(200) 위치를 카메라(300)를 이용해 촬영함으로써 2축 방향의 기울기를 동시에 측정하는 것이 가능하다. 이러한 구성을 취하는 경우 이하와 같은 장점이 있다.
첫째, 구조 및 시설물에 기울기센서를 고정 설치하는 것은, 설치 이후 변화하는 기울기를 측정함이 주목적인 만큼, 절대 기울기 값과 초기 설정된 기울기 값 대비 기울기 변화량도 함께 측정할 수 있어, 구조물 안전 판단의 신뢰도를 높이는 효과가 있다.
둘째, 구조 및 시설물에 설치한 시점과 비교하여 이후의 상대적 기울기 변화량을 측정하기 위해서는 센서 자체에 시설물을 설치한 시점의 측정값을 저장하는 영구저장 메모리수단 및 메모리 수단을 제어하기 위한 프로세서(CPU)를 포함하여 구성함으로써 별도의 데이터로거(Data Logger) 장비가 필요치 않아 계측 시스템 구축비용을 절감하는 효과가 있다.
셋째, 외부 통신선(혹은 무선통신)으로 현재 측정값을 초기 측정값으로 저장하라는 명령(command)를 센서 회로의 프로세서에 전달하도록 구성함으로써 토목 구조 및 시설물 구축 완료 후에는 고정 설치한 센서에 접근할 수 없는 문제점을 해결한다.
넷째, 아날로그 값이 아닌 디지털 값으로 기울기를 직접 측정함으로써 근본적으로 온도, 시간, 공급 전력에 따른 드리프트가 없어, 측정값이 항시 정확하고 안정적이므로 건축 및 토목 분야와 같이 외부 환경 변동 폭이 큰 분야와 교정이 어려운 위치에 센서를 설치하는 구조물 안전진단 분야에도 적용할 수 있는 효과가 있다.
다섯째, 구면으로 형성된 바닥체(100)에서 자유 진동하는 볼(100)을 사용하므로 기기를 소형화할 수 있고, 측정 범위를 크게 할 수 있고, 정밀도의 조절을 용하게 수행할 수 있어 전신주 등의 기울기를 정밀하게 측정하는 용도로도 사용될 수 있다.
또한, 디스플레이 수단이 포함될 경우 정밀하게 수평을 항시 유지해야 하는 공작기계 등에도 적용될 수 있다.
여섯째, 반구 내부에서 자유진동하는 플라스틱 볼을 사용할 수 있으므로, 외부 전자파 영향이 최소화되어 송전탑과 같이 강한 전자파가 발생하는 분야에도 적용할 수 있다.
본 발명의 일 실시예에 따른 구조물의 기울기 변화량 측정 장치는 내부공간(510)에 빛을 제공하는 조명장치(600)를 더 포함할 수 있다.
또한, 내부공간(510)에서의 볼(200)의 거동을 제한하는 볼 수납부(520)를 더 포함할 수 있다(도 3). 내부공간(510)에서 볼(200)이 유동됨에 따라 조명장치(600)나 카메라(300)가 파손될 수 있으므로, 본 발명에서는 장치의 이동 등의 시기에 볼(200)의 거동을 제한할 수 있는 볼 수납부(520)를 구성으로 포함한다.
본 발명의 일 실시예에 따르면 바닥체(100)와 카메라(300)는 같은 공간에 형성되며, 볼 수납부(520)는 내부공간(510)의 측면에 형성된 수납통(522)일 수 있다.
이 경우 카메라(300)와 바닥체(100) 사이의 별도의 사물이 없기 때문에 고화질의 촬영 이미지를 획득하는 것이 가능하다.
본 발명의 다른 일 실시예에 따르면 바닥체(100)는 내부공간(510)의 저면에 위치하고, 카메라(300)는 내부공간(510)의 윗면에 위치되는 경우 볼 수납부(520)는 저면과 윗면을 차폐하는 격벽(521)으로 형성될 수 있다. 이 경우 격벽(521)은 투명체로 형성되어, 카메라(300)가 바닥체(100)를 촬영할 수 있도록 하는 것이 바람직하다(도 4).
이 경우 격벽(521)에는 볼(200)의 위치를 파악할 수 있는 측정기준선(523)이 도시될 수 있다(도 10).
본 발명의 일 실시예에 따른 구조물의 기울기 변화량 측정 장치는 카메라(300)에 의해 생성된 영상정보(a)를 서버(10)로 송신하는 송수신부(400)를 더 포함할 수 있다.
또한 카메라(300), 송수신부(400) 및 조명장치(600)를 제어하는 제어부(700)를 더 포함할 수 있다.
이 경우 볼(200)의 위치가 이동 되었는지 여부를 실시간 또는 기 설정된 기간마다 카메라(300)에 의해 획득된 영상정보(a)를 자동적으로 서버(10)로 송신함으로써 확인하는 것이 가능하다.
이하 본 발명의 일 실시예에 따른 구조물의 기울기 변화량 측정 장치를 이용하여 구조물의 기울기 변화량을 측정하는 방법에 대해 설명한다.
본 발명에 따른 구조물의 기울기 변화량을 측정하는 방법은 카메라(300)에 의해 볼(200)이 위치된 바닥체(100)를 촬영하여 볼(200)의 제1 영상정보(a1)을 생성하는 제1 단계(S100), 제1 단계(S100) 이후에 카메라(300)에 의해 볼(200)이 위치된 바닥체(100)를 촬영하여 볼(200)의 제2 영상정보(a2)을 생성하는 제2 단계(S200) 및 제어부(700)가 제1 영상정보(a1) 및 제2 영상정보(a2)를 이용하여 기울기 변화값을 도출하는 제3 단계(S300)를 포함한다.
이 경우 제3 단계(S300)는 제1 영상정보(a1)에서 볼(200)의 제1 위치값(b1)을 도출함과 아울러 제2 영상정보(a2)에서 볼(200)의 제2 위치값(b2)을 도출하는 위치값 도출단계(S310) 및 제1 위치값(b1), 제2 위치값(b2) 및 곡률반경을 이용하여 기울기 변화값을 도출하는 변화값 도출단계(S320)를 포함할 수 있다.
변화값 도출단계(S320)에서 기울기 변화값은 이하의 방법을 통해 도출될 수 있다.
반구면으로 형성된 바닥체(100)에서 자유 진동하는 볼(200)의 위치에 따른 기울기 해석 방법은 이하와 같다.
반구면의 바닥체(100)에서 자유 진동하는 볼(200)의 위치를 카메라센서로 측정하여 기울기를 계산하기 위해서는 2가지 분야에 때한 이론적 해석이 필요하다. ① 반구면 좌표계(월드 좌표계) 상의 볼의 위치에 대응하여 카메라 좌표로 변환해야 하며, ② 반구면에서 자유 진동하는 볼의 위치에 따른 h-투영면(바닥면으로부터 높이 h)의 법선 벡터를 계산하여야 한다.
본 발명의 일 실시예에 따른 구조물의 기울기 변화량을 측정하는 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.
상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.
프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.
본 발명은 구조물의 기울기를 측정하기 위한 구체적인 구성이 제시되어 있어 산업상 이용가능성이 있다.
100 : 바닥체
200 : 볼
300 : 카메라
400 : 송수신부
500 : 하우징
600 : 조명장치
700 : 제어부

Claims (9)

  1. 구조물의 기울기 변화량 측정 장치에 있어서,
    소정의 곡률반경을 갖는 구면으로 형성된 바닥체(100);
    상기 바닥체(100) 상면에 거치되어 중력에 따라 이동하는 볼(200); 및
    상기 볼(200)이 위치된 바닥체(100)를 촬영하는 카메라(300);를 포함하되,
    상기 바닥체(100), 상기 볼(200) 및 상기 카메라(300)를 수납하는 내부공간(510)이 형성된 하우징(500);을 더 포함하고,
    상기 내부공간(510)에서의 상기 볼(200)의 거동을 제한하는 볼 수납부(520);를 더 포함하되,
    상기 바닥체(100)는 상기 내부공간(510)의 저면에 위치하고,
    상기 카메라(300)는 상기 내부공간(510)의 윗면에 위치되며,
    상기 볼 수납부(520)는 상기 저면과 상기 윗면을 차폐하는 격벽(521)이며,
    상기 격벽(521)은 투명체로 형성된 판상 부재인 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치.
  2. 제1항에 있어서,
    상기 카메라(300)에 의해 생성된 영상정보(a)를 서버(10)로 송신하는 송수신부(400);를
    더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치.
  3. 제1항에 있어서,
    상기 격벽(521)에는 상기 볼(200)의 위치를 특정하기 위한 측정기준선(523)이 표시된 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치.
  4. 제1항에 있어서,
    상기 내부공간(510)에 빛을 제공하는 조명장치(600);를
    더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치.
  5. 제4항에 있어서,
    상기 카메라(300), 상기 송수신부(400) 및 상기 조명장치(600)를 제어하는 제어부(700);를
    더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량 측정 장치.
  6. 제5항의 구조물의 기울기 변화량 측정 장치를 이용하여 구조물의 기울기 변화량을 측정하는 방법에 있어서,
    상기 카메라(300)에 의해 상기 볼(200)이 위치된 상기 바닥체(100)를 촬영하여 상기 볼(200)의 제1 영상정보(a1)을 생성하는 제1 단계(S100); 및
    상기 제1 단계(S100) 이후에 상기 카메라(300)에 의해 상기 볼(200)이 위치된 상기 바닥체(100)를 촬영하여 상기 볼(200)의 제2 영상정보(a2)을 생성하는 제2 단계(S200);를
    포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법.
  7. 제6항에 있어서,
    상기 제어부(700)가 상기 제1 영상정보(a1) 및 상기 제2 영상정보(a2)를 이용하여 기울기 변화값을 도출하는 제3 단계(S300);를
    더 포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법.
  8. 제7항에 있어서,
    상기 제3 단계(S300)는
    상기 제1 영상정보(a1)에서 상기 볼(200)의 제1 위치값(b1)을 도출함과 아울러 상기 제2 영상정보(a2)에서 상기 볼(200)의 제2 위치값(b2)을 도출하는 위치값 도출단계(S310); 및
    상기 제1 위치값(b1), 상기 제2 위치값(b2) 및 상기 곡률반경을 이용하여 상기 기울기 변화값을 도출하는 변화값 도출단계(S320);를
    포함하는 것을 특징으로 하는 구조물의 기울기 변화량을 측정하는 방법.
  9. 제8항에 따른 구조물의 기울기 변화량을 측정하는 방법을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체.
PCT/KR2019/016749 2018-12-21 2019-11-29 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법 WO2020130410A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020562068A JP6988009B2 (ja) 2018-12-21 2019-11-29 構造物の勾配変化量測定装置及びそれを用いた構造物の勾配変化量を測定する方法
US16/979,791 US11802765B2 (en) 2018-12-21 2019-11-29 Apparatus for measuring slope change amount of structure and method for measuring slope change amount of structure using same
EP19898568.1A EP3726182B1 (en) 2018-12-21 2019-11-29 Device for measuring amount of gradient variation of structure and method for measuring amount of gradient variation of structure by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180167787A KR102057072B1 (ko) 2018-12-21 2018-12-21 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법
KR10-2018-0167787 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020130410A1 true WO2020130410A1 (ko) 2020-06-25

Family

ID=69368190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016749 WO2020130410A1 (ko) 2018-12-21 2019-11-29 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법

Country Status (5)

Country Link
US (1) US11802765B2 (ko)
EP (1) EP3726182B1 (ko)
JP (1) JP6988009B2 (ko)
KR (1) KR102057072B1 (ko)
WO (1) WO2020130410A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115326017B (zh) * 2022-08-09 2024-06-28 华夏中然生态科技集团有限公司 一种医院装配式污水站用施工装置
KR102554246B1 (ko) * 2022-11-04 2023-07-11 한국건설기술연구원 2축 볼 유동부를 구비한 기울기 변화량 측정 장치
EP4390307A1 (en) * 2022-12-21 2024-06-26 FORCE Technology Inclination measuring system and land or sea-based tower structure comprising inclination measuring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317171A (ja) * 2005-05-10 2006-11-24 Pulstec Industrial Co Ltd 傾斜センサ
JP2011069798A (ja) * 2009-09-28 2011-04-07 Waseda Univ 傾斜角度測定器
KR20140142844A (ko) * 2013-06-05 2014-12-15 오진우 골프장 그린의 경사 측정기구
KR101595791B1 (ko) * 2014-04-03 2016-02-19 한국지질자원연구원 융합 알고리즘을 이용하여 센싱신호를 융합하는 센싱장치, 융합 방법, 및 복합 멤스 센서 경사계
KR20160144047A (ko) * 2015-06-08 2016-12-16 자이로캠주식회사 구 내부에서 자유 진동하며 지구 중심을 향하는 볼의 위치를 이미지센서 혹은 포토디텍터로 측정하여 경사도를 측정하는 디지털 절대 경사도 측정 방법 및 센서

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9106217U1 (de) * 1991-05-21 1991-09-26 Nokia Unterhaltungselektronik (Deutschland) GmbH, 7530 Pforzheim Kugelschalter zur signalmäßigen Kennzeichnung von auswählbaren Neigungsrichtungen einer Basisebene
JPH0666563A (ja) 1992-08-17 1994-03-08 Fuji Photo Optical Co Ltd 水準器
US5373153A (en) * 1993-01-04 1994-12-13 Motorola, Inc. Optoelectronic tilt detector having tapered floors extending in same direction
JP2000275041A (ja) 1999-03-24 2000-10-06 Keiichi Yamagata 水準器
US6571483B1 (en) * 2000-04-14 2003-06-03 Gateway, Inc. Orientation sensor
JP3649665B2 (ja) * 2000-10-25 2005-05-18 シャープ株式会社 光傾斜センサ
US6705019B2 (en) * 2001-02-08 2004-03-16 George Mauro Goniometer
JP2002372416A (ja) 2001-04-09 2002-12-26 Nagano Fujitsu Component Kk センサユニット
US6490802B1 (en) * 2001-05-02 2002-12-10 Randy L. Schutt Orientation sensor
US7891111B2 (en) * 2002-01-30 2011-02-22 Mauro George Edward Goniometer
TWI262296B (en) * 2005-01-12 2006-09-21 Mitac Int Corp Electrical product and tilting control device thereof
JP2007178391A (ja) * 2005-12-28 2007-07-12 Citizen Miyota Co Ltd 傾斜角検出装置
DE102006016523A1 (de) * 2006-04-07 2007-10-11 Osram Opto Semiconductors Gmbh Kippsensor
US7612877B2 (en) * 2007-08-31 2009-11-03 Mony Industrial Co., Ltd. Inclined detector
JP5199824B2 (ja) * 2008-10-24 2013-05-15 ローム株式会社 傾斜センサおよびその製造方法
JP2010177021A (ja) * 2009-01-29 2010-08-12 Rohm Co Ltd 傾斜センサ
TW201111754A (en) * 2009-09-28 2011-04-01 Everlight Electronics Co Ltd Tilt sensor
US8806769B2 (en) * 2011-11-02 2014-08-19 Hoon Kiang Tan Bullseye indicator and method
CN108469251B (zh) * 2018-01-22 2020-07-07 北京邮电大学 一种基于图像识别的球形倾角传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317171A (ja) * 2005-05-10 2006-11-24 Pulstec Industrial Co Ltd 傾斜センサ
JP2011069798A (ja) * 2009-09-28 2011-04-07 Waseda Univ 傾斜角度測定器
KR20140142844A (ko) * 2013-06-05 2014-12-15 오진우 골프장 그린의 경사 측정기구
KR101595791B1 (ko) * 2014-04-03 2016-02-19 한국지질자원연구원 융합 알고리즘을 이용하여 센싱신호를 융합하는 센싱장치, 융합 방법, 및 복합 멤스 센서 경사계
KR20160144047A (ko) * 2015-06-08 2016-12-16 자이로캠주식회사 구 내부에서 자유 진동하며 지구 중심을 향하는 볼의 위치를 이미지센서 혹은 포토디텍터로 측정하여 경사도를 측정하는 디지털 절대 경사도 측정 방법 및 센서

Also Published As

Publication number Publication date
EP3726182A4 (en) 2021-08-25
EP3726182B1 (en) 2022-12-21
JP2021512337A (ja) 2021-05-13
JP6988009B2 (ja) 2022-01-05
KR102057072B1 (ko) 2020-01-22
US11802765B2 (en) 2023-10-31
EP3726182A1 (en) 2020-10-21
US20210302160A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020130410A1 (ko) 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법
WO2019112158A1 (ko) 관절센서를 이용한 센서 오차 보정장치, 보정방법
KR100702055B1 (ko) 디지털 수평 측정기구
CN103743378B (zh) 一种管道检测器姿态检测系统
CN109779614B (zh) 一种三轴光纤陀螺测斜仪
IL222257A (en) Determining the azimuth relative to the north geographically
JP2018066715A (ja) 鉛直度測定装置
CN104655154B (zh) 一种高精度陀螺仪悬挂系统静平衡测试装置及方法
US6058760A (en) Apparatus and method for sensing angular displacement
CN109681189A (zh) 一种井径扇区固井质量及轨迹一体化测量仪
WO2021075828A1 (ko) 레이저를 이용한 거리측정장치 및 거리측정방법
KR101458025B1 (ko) 정적 구조물의 동특성 계측장비 및 이에 사용되는 센서 모듈
CN205317213U (zh) 一种面向房地一体的不动产单元实地调查测量装置
KR102209753B1 (ko) 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법
CN113984036A (zh) 一种便携式三轴光纤陀螺测姿系统及其控制方法
KR102434412B1 (ko) 최대정지마찰력 제거부가 구비된 구조물의 기울기 변화량 측정 장치 및 이를 이용한 구조물의 기울기 변화량을 측정하는 방법
RU2336496C1 (ru) Блок бесплатформенной системы ориентации и включающая его система визуализации и регистрации движения подвижных объектов
KR102359174B1 (ko) 일체형 지진 가속도 계측 장치
KR102554246B1 (ko) 2축 볼 유동부를 구비한 기울기 변화량 측정 장치
GB1576631A (en) North reference unit
CN112902954A (zh) 塔架晃动传感器和塔架晃动角度测量方法
WO2020209468A1 (ko) 지진 및 위험지역 구조물을 위한 스마트 재난방지 시스템
WO2022260343A1 (ko) 그린 경사도 계산 장치 및 그린 경사도 계산 장치의 동작 방법
RU2162203C1 (ru) Бесплатформенный инерциальный измерительный блок
CN111307072B (zh) 测量平台系统和测量系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019898568

Country of ref document: EP

Effective date: 20200716

ENP Entry into the national phase

Ref document number: 2020562068

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE