WO2020130102A1 - 自己免疫疾患の改善用組成物 - Google Patents

自己免疫疾患の改善用組成物 Download PDF

Info

Publication number
WO2020130102A1
WO2020130102A1 PCT/JP2019/049939 JP2019049939W WO2020130102A1 WO 2020130102 A1 WO2020130102 A1 WO 2020130102A1 JP 2019049939 W JP2019049939 W JP 2019049939W WO 2020130102 A1 WO2020130102 A1 WO 2020130102A1
Authority
WO
WIPO (PCT)
Prior art keywords
administration group
group
baff
mangiferin
mangostin
Prior art date
Application number
PCT/JP2019/049939
Other languages
English (en)
French (fr)
Inventor
升三 西田
正寛 椿
朋也 武田
元三 田邉
森川 敏生
Original Assignee
学校法人近畿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人近畿大学 filed Critical 学校法人近畿大学
Priority to JP2020561525A priority Critical patent/JP7479695B2/ja
Publication of WO2020130102A1 publication Critical patent/WO2020130102A1/ja
Priority to JP2024027267A priority patent/JP2024051068A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention is a compound that inhibits NF- ⁇ B-inducible kinase (also known as NIK-MAP3K14) useful for treating and/or preventing autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus (SLE), Sjogren's syndrome and the like.
  • NF- ⁇ B-inducible kinase also known as NIK-MAP3K14
  • the present invention also relates to a composition, a pharmaceutical composition, and a processed food for preventing/treating an autoimmune disease associated with B cell activation and an autoimmune disease due to BAFF overexpression, which uses the compound.
  • NF- ⁇ B Nuclear factor kappa B
  • This NF- ⁇ B has five members: (1) NF- ⁇ Bp65 (p65), (2) RelB, (3) c-Rel, (4) NF- ⁇ B1 (both precursor p105 and truncated p50). Present in) and (5) NF- ⁇ B2, which is present in both precursor p100 and truncated p52.
  • NF- ⁇ B1 truncated p50; NF- ⁇ Bp50
  • NF- ⁇ B2 truncated p52; NF- ⁇ Bp52
  • RelB a heterodimer
  • activation of these NF- ⁇ B heterodimers is a signal transduction pathway that is strictly controlled by consecutive events including phosphorylation and proteolysis, and is classified into two pathways, classical and nonclassical.
  • NIK is a serine/threonine kinase that plays a role in both classical and non-classical pathways.
  • NIK is essential in the non-classical signal transduction pathway, and phosphorylates IKK ⁇ to partially decompose NF- ⁇ Bp100 and release NF- ⁇ Bp52.
  • RelB phosphorylates IKK ⁇ to partially decompose NF- ⁇ Bp100 and release NF- ⁇ Bp52.
  • NF- ⁇ Bp52 translocates into the nucleus and expresses a gene.
  • the classical pathway activates the IKK ⁇ , IKK ⁇ and IKK ⁇ complex to form a heterodimer of p65 and NF- ⁇ Bp50. Translocation of this heterodimer into the nucleus regulates gene expression.
  • NIK is important for activation of the signal transduction pathway by these ligands. Because of its important role, NIK expression is tightly regulated.
  • NIK is degraded by the interaction of TNF receptor-related factor (TRAF), which is a ubiquitin ligase, with NIK, so the amount of NIK protein in cells is small.
  • TNF receptor-related factor TRAF
  • BAFF is produced and secreted from T cells, monocytes/macrophages, dendritic cells, etc., and is known to control B cell differentiation, activation, survival, etc. through three types of receptors on B cells. (Moore, et al., Science. 1999, 285, 260-263: Non-Patent Document 2).
  • BAFF receptors BAFF-R (BAFF-Receptor), TACI (Transmembrane activator and calcium modulator and cyclophilin ligand interactor), and BMCA (Bcella permuta) are known.
  • BAFF-R and BMCA are mainly expressed in B cells, and TACI is expressed in B cells and activated T cells.
  • the interaction of BAFF and BAFF-R activates the NIK-mediated signaling pathway essential for B cell formation and maintenance, which in turn synthesizes immunoglobulins in response to entry by foreign substances.
  • autoimmune disease refers to SLE, rheumatoid arthritis, Sjogren's syndrome, sarcoidosis, polymyositis, dermatomyositis, mixed connective tissue disease, multiple sclerosis, eosinophilic polyangiitis granulomatosis, Polyangiitis granulomatosis, Behcet's disease, microscopic polyangiitis, macroangiitis (Takayasu's vasculitis, giant cell arteritis), cryoglobulin vasculitis, primary hypothyroidism including Graves' disease, autoimmune Pancreatitis, myasthenia gravis, idiopathic thrombocytopenic purpura, autoimmune hepatitis, ulcerative colitis, Crohn's disease, pemphigus, thrombotic thrombocytopenic
  • BAFF overexpression has been confirmed in the body without exception, and it has been reported that the BAFF expression level increases with the progress of the disease state.
  • Increased BAFF activates intracellular NIK.
  • NIK activation promotes nuclear translocation of NF- ⁇ B, promotes antibody production, and progresses in autoimmune disease. Therefore, it is important to inhibit BAFF-induced NIK activation or reduce the expression level or secretion amount of BAFF in order to treat patients with these diseases.
  • the treatment includes not only the recovery of the medical condition but also the effect of suppressing or delaying the progress of the medical condition.
  • mice overexpressing BAFF show SLE-like symptoms such as an increase in peripheral blood B cells, hypertrophy of lymph nodes and spleen, increase in blood IgG concentration, and antinuclear antibody production.
  • SLE-like symptoms such as an increase in peripheral blood B cells, hypertrophy of lymph nodes and spleen, increase in blood IgG concentration, and antinuclear antibody production.
  • NF- ⁇ B2 non-classical pathway is important for dsDNA autoantibody production, B cell survival/proliferation/differentiation, and inhibition of this pathway leads to autoantibody production, B cell survival/proliferation/differentiation. It has also been shown to suppress (Enzler, et al., Immunity, 2006, 25, 403-415: Non-Patent Document 14).
  • Non-patent Document 28 Non-patent document 28
  • Krystufkova, et al., Ann Rheum Dis., 2009, 68, 836-843 Non-patent document 29, and Kaneko, et al., Mod Rheumatol., 2014, 24, 310. -315: Non-Patent Document 30).
  • BAFF levels are higher in psoriasis patients than in healthy adults, and their expression levels have been shown to correlate with the pathophysiology of psoriasis (Eldin, et al., J. Microbiol. Res. Rev., 2013, 1, 1. 1-11: Non-Patent Document 31).
  • Tumor necrosis factor ⁇ is secreted along with inflammatory reaction in rheumatoid arthritis and inflammatory bowel disease.
  • TNF ⁇ stimulation promotes nuclear translocation of NF- ⁇ Bp52 and RelB heterodimers via activation of the non-classical NF- ⁇ B pathway and induces inflammation.
  • TNF ⁇ promotes the degradation of TRAF, thereby increasing the amount of NIK in the cytoplasm and activating NIK (Bhattacharya et al. J Biol. Chem. 2010, 285, 39511-39522: Non-Patent Document 36).
  • an autoimmune disease is caused by overexpression of BAFF, activation of NIK activates NF- ⁇ B, and as a result, production of antibodies against the tissues or organs of the body itself. It can be said that the disease is already scientific common sense. Therefore, BAFF overexpression, NIK and excessive activation of non-classical NF- ⁇ B signal transduction are not found in drugs that can inhibit NIK activation by BAFF and suppress the non-classical NF- ⁇ B signal transduction pathway. It has a therapeutic effect on recognized autoimmune diseases.
  • NF- ⁇ B regulates the expression of many genes involved in inflammation, and that NF- ⁇ B signaling is chronic in many inflammatory diseases such as inflammatory bowel disease and sepsis. Were found to be active.
  • compounds capable of inhibiting NIK and thereby attenuating the non-classical NF- ⁇ B signaling pathway are useful in diseases and disorders in which over-activation of non-classical NF- ⁇ B signaling is observed. It has a therapeutic effect.
  • Patent Document 1 discloses an antibody that specifically binds to NF- ⁇ B inducible kinase (NIK)/MAP3K14 or a specific portion thereof. This antibody is said to act as an immunomodulatory molecule.
  • NIK NF- ⁇ B inducible kinase
  • Patent Document 2 discloses 3-(1H-pyrazol-4-yl)-1H-pyrrolo[2 as a NIK inhibitor useful for the treatment of diseases such as cancer, inflammatory diseases, metabolic disorders and autoimmune diseases. ,3-c]Pyridine derivatives are disclosed.
  • Patent Document 3 discloses a substance represented by the general formula (10) as a therapeutic drug for a disease caused by immune dysfunction.
  • R represents hydrogen or a lower alkoxy group
  • A represents oxygen or a sulfonyl group
  • Patent Document 4 describes that mangiferin has an anti-inflammatory effect on rheumatism and the like.
  • Lin W Jin L, Chen H, Wu Q, Fei Y, Zheng W, Wang Q, Li P, Li Y, Zhang W, Zhao Y, Zeng X, Zhang F. : Arthritis Res Ther. 2014, 16, R118. Hamzaoui K, Human H, Ben Difallah I, Kamouun M, Hamzaoui A. : Clin Exp Rheumatol. 2008, 26 (Suppl 50), S64-S71. Lin JD, Wang YH, Fang WF, Hsiao CJ, Changnaadorj A, Lin YF, Tang KT, Cheng CW. : Clin Chim Acta. 2016, 462, 96-102.
  • an antibody preparation is mainly used as a drug that suppresses cytokines expressed by immune cells, but the administration route is intravenous administration except for mangiferin in Patent Document 4, which imposes a burden on the patient. It is heavy. Therefore, it is an object of the present invention to provide a therapeutic agent and an improving composition agent that inhibit NIK by oral administration and improve autoimmune diseases.
  • the present inventors searched for a compound that inhibits NIK to solve the above problems, found that a certain substance having a xanthone skeleton has an NIK inhibitory action, and actually developed rheumatoid arthritis mice. Was confirmed to be completely cured, and the present invention was completed.
  • composition for improving autoimmune diseases comprises a substance represented by the following formula (1), noractiliol, 1,3,5,6-tetrahydroxyxanthone, xanthohydrol, ⁇ -mangostin, It is characterized by containing at least one compound selected from ⁇ -mangostin.
  • composition for improving an autoimmune disease can improve an autoimmune disease, and can dramatically cure inflammation or deformity of a joint of a mouse having rheumatoid arthritis. Further, the administration is effective orally, and in the case of human application, the burden on the patient is very light.
  • autoimmune diseases are believed to develop when autoreactive B cells that recognize self antigens due to excessive BAFF survival, proliferation, differentiation into plasma cells, and antibody production. That is, autoimmune diseases have the same cause of onset, and it is considered that many autoimmune diseases other than the above-mentioned autoimmune diseases have the same cause. Therefore, it is considered that the composition for improving autoimmune diseases according to the present invention has an improving effect not only on rheumatoid arthritis shown in Examples but also on all autoimmune diseases accompanied by BAFF overexpression.
  • FIG. 3 is a photograph showing the condition of the forelimbs of the mouse that developed rheumatoid arthritis in FIG. 2 and the condition of the forelimbs of the mice to which each reagent was administered.
  • FIG. 3 is a graph showing anti-collagen antibody measured by collecting mouse serum on day 50 in FIG. 2.
  • FIG. 6 is a graph in which each reagent was administered to a mouse that developed systemic lupus erythematosus after immunization with NP-KLH, and after 11 weeks, mouse serum was collected and anti-dsDNA antibody that is an autoantibody was measured. It is a graph which measured each anti-dsDNA antibody which is an autoantibody after administering each reagent to the mouse which spontaneously develops Sjogren's syndrome and collecting mouse serum after 20 weeks.
  • FIG. 6 is a graph showing the time course of ear swelling in the case where imamomid was applied to the auricle of a mouse and noraciriol was applied and orally administered to a mouse that developed psoriasis.
  • FIG. 3 is a graph showing the time course of severity when imoglyphide was applied to the dorsal skin of mice, and noraciriol was applied and orally administered to mice that developed psoriasis.
  • FIG. 9 is a photograph showing the condition of the skin on the back of the mouse on day 6 when psoriasis was developed in FIG. 8. This is a panel in which each reagent was added to pre-B cells collected from mice, and then CD138 expression (differentiation into plasma cells) of cells subjected to BAFF stimulation was measured using flow cytometry. This is a panel in which each reagent was added to pre-B cells collected from mice, and then CD138 expression (differentiation into plasma cells) of cells subjected to BAFF stimulation was measured using flow cytometry.
  • each reagent was added to pre-B cells collected from a mouse, and then the BAFF-stimulated cells were subjected to measurement of IgM and IgD expression (differentiation into mature B cells) using flow cytometry.
  • each reagent was added to pre-B cells collected from a mouse, and then the BAFF-stimulated cells were subjected to measurement of IgM and IgD expression (differentiation into mature B cells) using flow cytometry.
  • composition for improving autoimmune diseases will be described below. It should be noted that the following description is an exemplification of one embodiment and one example of the present invention, and the present invention is not limited to the following description. The following embodiments can be modified without departing from the spirit of the present invention.
  • composition for improving autoimmune diseases is a substance represented by the formula (1) having a xanthone skeleton, noratiriol, 1,3,5,6-tetrahydroxyxanthone, xanthhydrol, ⁇ - It contains at least one compound selected from mangosteen and ⁇ -mangostin as an active ingredient.
  • Formula (1) is 1,2',3',4',6-penta-O-propionyl mangiferin, and is hereinafter referred to as "KPP-08-008a”.
  • Mangiferin is shown in Formula (3).
  • the formula (2) is 1,3,6,7-tetrahydroxyxanthone and is hereinafter referred to as “norachiriol”.
  • KPP-08-008a is a compound in which a propionyl group is ether-bonded to a part of the hydroxy groups of mangiferin (see the formula (2)).
  • This compound exhibits superior NIK and IKK activity inhibition to mangiferin and a high prophylactic effect against autoimmune diseases, as shown in the following examples.
  • Noraciliol (CAS number 3542-72-1) is a part of xanthone (CAS number: 90-47-1) to which a hydroxy group is added, and has a xanthone skeleton like KPP-08-008a. And, like KPP-08-008a, it shows more NIK and IKK activity inhibition than mangiferin, and shows a high preventive effect against autoimmune diseases.
  • 1,3,5,6-tetrahydroxyxanthone (CAS number: 5084-31-1: (4) formula), xanthydrol (CAS number: 90-46-0: (5) formula), ⁇ - Mangostin (CAS number: 6147-11-1: (6) formula) and ⁇ -mangostin (CAS number: 31271-07-5: (7) formula) are also compounds having a xanthone skeleton, such as noraciliol and KPP-. Similar to 08-008a, it exhibits more NIK and IKK activity inhibition than mangiferin, and shows a high preventive effect against autoimmune diseases.
  • composition for improving autoimmune diseases according to the present invention contains at least one or more of the above compounds as an active ingredient. It may also contain other pharmaceutically acceptable components. Moreover, the composition for improving autoimmune diseases according to the present invention may contain a plurality of these compounds.
  • the composition for improving autoimmune disease according to the present invention can be provided as an agent for treating autoimmune disease (may be referred to as a pharmaceutical composition).
  • a pharmaceutical composition the composition according to the present invention can exert its effect not only by intravenous, subcutaneous, or intramuscular injection but also by oral administration. Therefore, it can be provided as an internal preparation.
  • the powdery composition for improving autoimmune diseases can be provided by being formulated into capsules, granules, powders, tablets and the like.
  • additives such as binders, lubricants, disintegrating agents, coloring agents, flavoring agents, preservatives, antioxidants and stabilizers are added, and capsules, granules, powders and tablets are added. It can be produced by a conventional method.
  • the pharmaceutical composition according to the present invention may be formulated into an external preparation such as a liquid agent, an ointment, a cream, a gelling agent, a patch, and an aerosol for parenteral administration.
  • an external preparation water, a lower alcohol, a solubilizing agent, a surfactant, an emulsion stabilizer, a gelling agent, an adhesive, and other necessary base components can be added.
  • additives such as a vasodilator, an adrenocortical hormone, a keratolytic agent, a moisturizer, a bactericide, an antioxidant, a refreshing agent, a fragrance, and a pigment may be appropriately mixed.
  • the composition for improving autoimmune diseases according to the present invention can be provided as a processed food. That is, even if the composition for improving autoimmune diseases according to the present invention is ingested as a processed food, the composition has the same effect as the composition for improving autoimmune diseases according to the present invention.
  • processed food for example, candy, gum, jelly, biscuits, cookies, rice crackers, bread, noodles, fish meat/meat paste products, tea, soft drinks, coffee drinks, milk drinks, whey drinks, lactic acid bacteria drinks, yogurt, ice.
  • food with health claims such as specified health foods and foods with nutritional functions stipulated by the Ministry of Health, Labor and Welfare's system for foods with health claims are also included.
  • Foods (supplements), feeds, food additives, etc. are also included in processed foods.
  • the processed food according to the present invention can be prepared by adding the composition for improving autoimmune diseases to the raw materials of these processed foods.
  • materials containing these substances should be used in the first place. The case is excluded from the processed food according to the present invention.
  • the processed food containing these substances in excess of the content of these substances contained in the material is the processed food according to the present invention.
  • the composition for improving autoimmune diseases according to the present invention will be described based on Examples.
  • the diseases targeted by the composition for improving autoimmune diseases according to the present invention include SLE, rheumatoid arthritis, Sjogren's syndrome, sarcoidosis, polymyositis, dermatomyositis, mixed connective tissue disease, multiple sclerosis, and favorable diseases.
  • BAFF is overexpressed, and diseases that can be judged as autoimmune diseases can be targeted.
  • a disease in which B cells can be determined to be activated may be targeted.
  • the expression of BAFF overexpression herein means that the BAFF concentration is increased in healthy adults.
  • B cells are activated if the amount of autoantibodies is higher than that in healthy adults.
  • KPP-08-008a is a two-step process in which 1,3,2',3',4',6,6',7-octa-O-propionyl mangiferin, which is a raw material, is synthesized and further synthesized based on it. Got with.
  • Example 2 Synthesis of noraciriol> Noraciliol was synthesized according to the method of Non-Patent Document 37.
  • this compound (V) is treated with tetrabutylammonium hydroxide to obtain 1,3,6,7-tetramethoxyxanthone (Compound VI), and then demethylation is carried out to obtain noratyliol (Compound I). Obtained in a yield of 39%.
  • FIG. 1 is referred to.
  • Example 3 Assay test for anti-inflammatory effect of compound having xanthone skeleton on collagen-induced arthritis (CIA)> 0.1 mL of a 6-week-old male DBA/1J mouse (Shimizu experimental material) was administered with an equal amount mixture of Freund's Complete Ajuvant and Bovinr type 2 collagen (the starting day of the test). After 21 days, DBA/1J mice were again injected with 0.1 mL of the above mixture to perform secondary immunization.
  • CIA collagen-induced arthritis
  • the group that was only immunized with collagen was the control group, the group that was administered mangiferin was the mangiferin administration group, the group that was administered KPP-08-008a was the KPP-08-008a administration group, and the group that was administered noraciriol was the noraciliol administration group, 1 , 3,5,6-Tetrahydroxyxanthone was administered to the group, tetrahydroxyxanthone was administered, xanthydol was administered to xanthydrol, ⁇ -mangostin was administered to ⁇ -mangostin, and ⁇ -mangostin was administered. Those obtained are referred to as a ⁇ -mangostin administration group. Each group consisted of 5 animals.
  • the horizontal axis shows the number of days elapsed after the primary immunization, and the vertical axis shows the score of inflammation.
  • White circles indicate a control group (denoted as "vehicle”).
  • the black squares indicate the mangiferin administration group (displayed as "100 mg/kg mangiferin”).
  • the black diamond marks indicate the KPP-08-008a administration group (indicated as "10 mg/kg KPP-08-008a”).
  • the black triangles indicate the noraciliol administration group (indicated as "10 mg/kg norathyriol").
  • the crosses indicate the tetrahydroxyxanthone administration group (indicated as "20 mg/kg 1,3,5,6-tetrahydroxyxanthone").
  • Black circles indicate the xanthohydrol administration group (displayed as “10 mg/kg xanthydolol”).
  • the plus sign indicates the ⁇ -mangostin administration group (displayed as “10 mg/kg ⁇ -mangostin”).
  • a horizontal bar indicates a ⁇ -mangostin administration group (displayed as “10 mg/kg ⁇ -mangostin”).
  • "*" was shown for those that were significantly different (P ⁇ 0.01) from the control group.
  • inflammation was significantly suppressed in the KPP-08-008a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group, compared to the control group. Further, from the graph, these administration groups showed the same effect with a smaller dose than the mangiferin administration group.
  • FIG. 3 shows a photograph of a mouse leg 50 days after the primary immunization.
  • 3(a) is a control group
  • FIG. 3(b) is a mangiferin administration group
  • FIG. 3(c) is a KPP-08-008a administration group
  • FIG. 3(d) is a noraciliol administration group
  • FIG. 3(e) is a tetra group.
  • FIG. 3(f) is the xanthhydrol administration group
  • FIG. 3(g) is the ⁇ -mangostin administration group
  • FIG. 3(h) is the front foot of one mouse in the ⁇ -mangostin administration group ( (Left and right) shows the photograph.
  • the KPP-08-008a-administered group, the noratiriol-administered group, the tetrahydroxyxanthone-administered group, the xanthohydrol-administered group, the ⁇ -mangostin-administered group and the ⁇ -mangostin-administered group were lower in dose than the mangiferin-administered group. It was found to significantly suppress inflammation.
  • Example 4 Anti-collagen antibody production inhibitory effect> Serum was collected from the mouse 50 days after the primary immunization of Example 3, and the amount of produced anti-collagen antibody was measured by enzyme-linked immunosorbent assay (ELISA). This measurement was performed using a mouse anti-collagen antibody ELISA kit (CRC).
  • ELISA enzyme-linked immunosorbent assay
  • the results are shown in Figure 4.
  • the horizontal axis represents the sample group, and the vertical axis represents the absorbance (OD) reflecting the amount of produced anti-collagen antibody.
  • the anti-collagen antibody was 1.170 (OD) in the control group, whereas the mangiferin administration group, the KPP-08-008a administration group, the noratiriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangosteen In the administration group and the ⁇ -mangostin administration group, 0.590 (OD), 0.271 (OD), 0.236 (OD), 0.390 (OD), 0.599 (OD), 0.450 (OD). OD) and 0.456 (OD).
  • Example 5 Anti-dsDNA antibody production inhibitory effect in systemic lupus erythematosus model mouse> A mixture of 100 ⁇ g of NP-KLH (4-Hydroxy-3-nitrophenylacetyl-Keyhole Limpet Hemocyanin: 4-hydroxy-3-nitrophenylacetyl-keyhole limpet hemocyanin) and 250 ⁇ g of aluminum hydroxide was added to a 12-week-old female NZB/. It was administered to WF1 mice (Shimizu experimental material).
  • NP-KLH 4-Hydroxy-3-nitrophenylacetyl-Keyhole Limpet Hemocyanin: 4-hydroxy-3-nitrophenylacetyl-keyhole limpet hemocyanin
  • mice One week after the administration of the mixture, 100 mg/kg of mangiferin, 10 mg/kg of KPP-08-008a, 10 mg/kg of noratiliol, 20 mg/kg of 1,3,5,6-tetrahydroxyxanthone, 10 mg/kg of xanthydolol, ⁇ - Mangostin (10 mg/kg) and ⁇ -mangostin (10 mg/kg) were orally administered to the mice every day for 11 weeks. Serum was collected from the mice after administration for 11 weeks, and the amount of anti-dsDNA antibody produced was measured by enzyme-linked immunosorbent assay (ELISA). This measurement was performed using a mouse anti-dsDNA antibody ELISA kit (FUJIFILMWAKO).
  • ELISA enzyme-linked immunosorbent assay
  • the results are shown in Figure 5.
  • the horizontal axis represents the sample group, and the vertical axis represents the anti-dsDNA antibody production amount (mU/mL).
  • the anti-dsDNA antibody was 3506 mU/mL
  • the doses were 1379 mU/mL, 1064 mU/mL, 1096 mU/mL, 2214 mU/mL, 1850 mU/mL, 1071 mU/mL, and 452 mU/mL, respectively.
  • control group developed systemic lupus erythematosus
  • KPP-08-008a administration group the noraciriol administration group, the tetrahydroxyxanthone administration group, the xanthohydrol administration group, the ⁇ -mangostin administration group, and the ⁇ -mangostin administration group showed systemic lupus erythematosus. Can be said to have suppressed the onset of.
  • Example 6 Anti-dsDNA antibody production inhibitory effect in Sjogren's syndrome model mouse> 4-week-old MRL/lpr (Shimizu experimental material) mice that spontaneously develop Sjogren's syndrome were purchased, and from the age of 5 weeks, mangiferin was 100 mg/kg, KPP-08-008a was 10 mg/kg, noraciliol was 10 mg/kg, 20 mg/kg of 1,3,5,6-tetrahydroxyxanthone, 10 mg/kg of xanthydolol, 10 mg/kg of ⁇ -mangostin, and 10 mg/kg of ⁇ -mangostin were orally administered to mice for 20 consecutive days. Serum was collected from the mice at 20 weeks and the amount of anti-dsDNA antibody production was measured by enzyme-linked immunosorbent assay (ELISA). This measurement was performed using a mouse anti-dsDNA antibody ELISA kit (FUJIFILMWAKO).
  • ELISA enzyme-linked immunosorbent assay
  • the results are shown in Figure 6.
  • the horizontal axis represents the sample group, and the vertical axis represents the anti-dsDNA antibody production amount (mU/mL).
  • the anti-dsDNA antibody was 9798 mU/mL
  • the doses were 6978 mU/mL, 3580 mU/mL, 4864 mU/mL, 5255 mU/mL, 5184 mU/mL, 7741 mU/mL and 5102 mU/mL, respectively.
  • control group developed Sjögren's syndrome
  • KPP-08-008a administration group the noratiriol administration group
  • the tetrahydroxyxanthone administration group the xanthohydrol administration group
  • the ⁇ -mangosteen administration group the ⁇ -mangostin administration group
  • Example 7 Anti-inflammatory effect in imiquimod-induced psoriasis model mouse>
  • the back hair of 6-week-old male Balb/c (Shimizu experimental material) was trimmed with a hair clipper for mice, and then a hair removal cream was applied to remove the hair from the back hair. After hair removal, 62.5 mg of 5% imiquimod cream was applied to the back skin and 12.5 mg to the right auricle.
  • 1% noraciliol ointment (1 g of ointment containing 10 mg of noraciliol) and 5% noraciliol ointment (1 g of ointment containing 50 mg of noraciliol) were applied to the auricle or back skin for 6 days.
  • 100 mg/kg of noraciliol was orally administered to mice for 6 days.
  • the swelling of the skin of the auricle was calculated with a caliper.
  • the severity of subcutaneous skin on the back was scored according to the following criteria (Psoresis Area and Severity Index (PASI)).
  • the day when the oral administration of noraciliol ointment and noraciliol was first started was set as the first day.
  • Figure 7 shows the results of ear swelling.
  • the horizontal axis represents the number of days elapsed and the vertical axis represents the swelling of the skin of the auricle.
  • White circles indicate a control group (denoted as "vehicle”).
  • the black squares indicate the 1% noraciliol ointment application group (denoted as "1% norathyriol”).
  • the black diamond marks indicate the 5% noraciliol ointment application group (indicated as "5% norathyriol”).
  • the black triangles indicate the 100 mg/kg noraciriol administration group (indicated as "100 mg/kg norathyriol”).
  • "*" was shown for those that were significantly different (P ⁇ 0.01) from the control group.
  • Figure 8 shows the results of subcutaneous severity scores on the back.
  • the horizontal axis represents the number of days elapsed and the vertical axis represents the severity score.
  • the control group open circle "-O-"
  • an increase in the severity score was observed from the 2nd day, and thereafter, the severity score increased with the passage of time.
  • the severity score increased as the control group's severity score increased, but the severity score never became 2 or more.
  • FIG. 9 shows a photograph of the dorsal skin of the mouse on the 6th day.
  • 9(a) is a control group
  • FIG. 9(b) is a 1% noraciriol ointment application group
  • FIG. 9(c) is a 5% noracyriol ointment application group
  • FIG. 9(d) is a 100 mg/kg noracyriol administration group.
  • a photograph of the back skin of one mouse is shown.
  • skin scales and redness are remarkably observed.
  • the 1% noraciliol ointment-applied group in FIG. 9(b) although some redness was observed, redness was not as great as that in the control group, and scales were not particularly observed, and a clear anti-inflammatory effect was observed. ..
  • the 1% noraciliol application group, the 5% noraciriol application group, and the 100 mg/kg noraciriol administration group significantly suppressed psoriasis-induced inflammation compared to the control group.
  • psoriasis-induced inflammation can be similarly suppressed by drugs other than noraciriol (mangiferin, KPP-08-008a, tetrahydroxyxanthone, xanthohydrol, ⁇ -mangosteen, ⁇ -mangosteen).
  • Example 8 Effect of suppressing differentiation into plasma cells> Spleens were collected from 6-week-old male DBA/1J mice, and B cells were fractionated. The fractionation was performed by labeling B cells with anti-B220 antibody and using BD-FACSAria. After collecting B cells, the cells were cultured in RPMI1640 medium for 1 day.
  • the results are shown in FIGS. 10 and 11.
  • the horizontal axis represents the CD138 expression level, and the vertical axis represents the cell number.
  • the solid line in the panel indicates control containing neither BAFF nor drug, the dotted line indicates 100 ng/mL BAFF added, and the broken line indicates 100 ng/mL BAFF+each drug added.
  • CD138 expression was significantly increased in the BAFF-added group as compared with the control group in which the drug and BAFF were not added.
  • Mangiferin administration group (FIG. 10(a)
  • KPP-08-008a administration group (FIG. 10(b)
  • noraciriol administration group (FIG. 10(c)), tetrahydroxyxanthone administration group (FIG.
  • CD138 expression was significantly increased in the xanthohydrol administration group (FIG. 11(e)), the ⁇ -mangostin administration group (FIG. 11(f)), and the ⁇ -mangostin administration group (FIG. 11(g)), compared with the BAFF addition group.
  • the amount decreased and was almost the same as control. That is, it was found that mangiferin, KPP-08-008a, noractilol, tetrahydroxyxanthone, xanthohydrol, ⁇ -mangostin, and ⁇ -mangostin suppressed BAFF-induced differentiation into plasma cells.
  • Example 9 Effect of suppressing differentiation into mature B cells> Spleens were collected from 6-week-old male DBA/1J mice, and B cells were fractionated. The fractionation was performed by labeling B cells with anti-B220 antibody and using BD-FACSAria. After collecting B cells, the cells were cultured in RPMI1640 medium for 1 day.
  • IgM negative IgD negative indicates pre-B cells
  • IgM positive IgD negative indicates immature B cells
  • IgM positive IgD positive indicates mature B cells.
  • the results are shown in FIGS. 12 and 13.
  • the horizontal axis represents the IgM expression level, and the vertical axis represents the IgD expression level.
  • the IgM-negative IgD-negative population was 98.2%
  • the IgM-positive IgD-negative population was 1.81%
  • the IgM-positive IgD-positive population was 0%.
  • the BAFF addition group FIG. 12(b)
  • the IgM-negative IgD-negative population was 10.2%
  • the IgM-positive IgD-negative population was 40.1%
  • the IgM-positive IgD-positive population was 48.6%. It can be seen that they have differentiated into mature B cells.
  • the IgM-negative IgD-negative population was 96.5%, the IgM-positive IgD-negative population was 3.51%, and the IgM-positive IgD-positive population was 0%.
  • the KPP-08-008a administration group FIG. 12(d)
  • the IgM-negative IgD-negative population was 97.4%, the IgM-positive IgD-negative population was 2.64%, and the IgM-positive IgD-positive population was 0%. there were.
  • the noraciliol administration group FIG.
  • the IgM-negative IgD-negative population was 96.9%, the IgM-positive IgD-negative population was 3.03%, and the IgM-positive IgD-positive population was 0%.
  • the IgM-negative IgD-negative population was 95.1%, the IgM-positive IgD-negative population was 4.9%, and the IgM-positive IgD-positive population was 0%. Met.
  • the xanthohydrol administration group FIG.
  • the IgM-negative IgD-negative population was 96.9%, the IgM-positive IgD-negative population was 3.08%, and the IgM-positive IgD-positive population was 0%.
  • the IgM-negative IgD-negative population was 85.3%, the IgM-positive IgD-negative population was 14.1%, and the IgM-positive IgD-positive population was 0.25%. there were.
  • the ⁇ -mangostin administration group FIG.
  • the IgM-negative IgD-negative population was 83.2%, the IgM-positive IgD-negative population was 15.9%, and the IgM-positive IgD-positive population was 0.25%. It was The ratio of mature B cells was remarkably reduced in each drug.
  • Example 10 NIK activity inhibitory effect on BA lymphocytes upon BAFF stimulation> B lymphocytes were cultured under the following conditions. The B lymphocytes collected by the above method were seeded on a 100 mm 2 dish and cultured for 48 hours, which was used as Control. In addition, B lymphocytes were seeded on a 100 mm 2 dish, 100 ng/mL BAFF was added after culturing for 47 hours, and 100 ng/mL BAFF was cultivated for 1 hour.
  • B lymphocytes were seeded on a 100 mm 2 dish, and 24 hours later, 100 ⁇ M mangiferin, 10 ⁇ M KPP-08-008a, 10 ⁇ M noraciliol, 20 ⁇ M tetrahydroxyxanthone, 10 ⁇ M xanthhydrol, 10 ⁇ M ⁇ -mangostin, 10 ⁇ M ⁇ -mangostin were added, and 23 After the lapse of time, 100 ng/mL BAFF was added, and the cells were cultured for 1 hour to prepare the cells. Both were cultured at 37° C. under 5% CO 2 .
  • Protein was extracted from the culture solution with cell lysate and used as a sample. Each sample was transferred to PVDF membrane after SDS PAGE and assayed using anti-phospho-NIK antibody, anti-NIK antibody, anti-NF- ⁇ Bp52 antibody, anti-NF- ⁇ Bp65 antibody and anti-Lamin antibody.
  • Mangiferin, KPP-08-008a, noraciliol, tetrahydroxyxanthone, xanthhydrol, ⁇ -mangostin, and ⁇ -mangostin were arranged as reagents. Although the concentration of mangiferin is 100 ⁇ M, the concentration of KPP-08-008a is 10 ⁇ M, the concentration of noraciliol is 10 ⁇ M, the concentration of tetrahydroxyxanthone is 20 ⁇ M, the concentration of xanthydrol is 10 ⁇ M, and the concentration of ⁇ -mangosteen is 10 ⁇ M. The concentration of ⁇ -mangostin is 10 ⁇ M.
  • the antibody type is shown in the vertical direction. Specifically, they are anti-phospho-NIK antibody, anti-NIK antibody, anti-NF- ⁇ Bp52 antibody, anti-NF- ⁇ Bp65 antibody and anti-Lamin antibody.
  • each band was digitized and listed below each band.
  • Band digitization was performed as follows using CS Analyzer. First, for NIK, after digitizing the bands, the ratio of each phosphorylation and total protein was calculated. Then, control (reagent and BAFF untreated) was set to 1, and the ratio to this was calculated.
  • NIK showed a clear shadow of the band even after adding each reagent.
  • the ratio of all reagents to the control decreased.
  • Mangiferin was 0.673 with respect to the control (representing the ratio. The same applies hereinafter).
  • KPP-08-008a was 0.376 with respect to the control. Therefore, it can be said that KPP-08-008a clearly suppresses the phosphorylation of NIK more than mangiferin.
  • Noracyriol was 0.893 for the control, tetrahydroxyxanthone was 0.728 for the control, and ⁇ -mangostin was 0.714 for the control.
  • NIK phosphorylation was not suppressed as much as mangiferin. ..
  • xanthohydrol was 0.409 with respect to the control, and ⁇ -mangostin was 0.208 with respect to the control, and it can be said that it suppresses the phosphorylation of NIK more than mangiferin.
  • KPP-08-008a, noraciliol, xanthohydrol, ⁇ -mangostin, and ⁇ -mangostin have a concentration one-tenth that of mangiferin, it can be said that the effect of suppressing phosphorylation is about 10 times better. Further, since tetrahydroxyxanthone has a concentration one-fifth that of mangiferin, it can be said that the phosphorylation-inhibiting effect is about five times better.
  • mangiferin was 0.930 and 1.241, respectively, compared to the control, and it can be said that mangiferin suppresses nuclear translocation to some extent.
  • KPP-08-008a was 0.634 and 1.256, respectively, with respect to the control, and suppressed the nuclear translocation of p52 as compared to mangiferin.
  • Noracyriol was 0.569 and 1.215 relative to the control. It can be said that the nuclear translocation of p52 is well suppressed.
  • Tetrahydroxyxanthone was 0.191 and 0.993 with respect to the control.
  • Xanthohydrol was 0.582 and 1.085 relative to the control.
  • ⁇ -Mangostin was 0.871 and 1.067 with respect to the control.
  • ⁇ -Mangostin was 0.472 and 0.996 with respect to the control. Both of these substances, p52 and p65, suppressed nuclear translocation from mangiferin.
  • P52 is an inflammatory signal, and it is said that when these substances translocate into the nucleus, the expression of pro-inflammatory or anti-inflammatory proteins is regulated. Therefore, suppressing the nuclear translocation of p52 is considered to make inflammation less likely to occur, and is consistent with the results of the examples shown in FIGS. 2 to 13. Further, activation of NIK/NF- ⁇ Bp52 pathway by BAFF is said to be involved in B cell differentiation, B cell activation, and autoantibody production involved in the development of autoimmune diseases. That is, inhibition of these pathways is considered to suppress B cell differentiation and autoantibody production, which is consistent with the examples shown in FIGS. 2 to 13.
  • composition for improving autoimmune diseases according to the present invention can be a pharmaceutical composition useful as a selective NIK inhibitor against autoimmune diseases caused by activation of NF- ⁇ B p52.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

自己免疫疾患を改善若しくは治療するための抗体製剤が提案されているが、投与経路は静脈内に限られ、患者の負担となっていた。また、マンギフェリンは経口摂取によって自己免疫疾患を改善する効果を有するが、効果が小さく、現実的に摂取するには、容易ではなかった。さらに、NIKなどのキナーゼを阻害する新規の薬剤が、自己免疫疾患を処置するための有効な医薬品等を開発するために、常に必要とされている。 (1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物は、経口摂取で効果を有し、マンギフェリンよりも少ない量で効果を表すことができる。

Description

自己免疫疾患の改善用組成物
 本発明は、関節リウマチ、全身性エリテマトーデス(SLE)、シェーグレン症候群等などの自己免疫疾患治療および/または予防に有用なNF-κB誘導キナーゼ(NIK-MAP3K14としても知られている)を阻害する化合物に関する。また、本発明は、当該化合物を用いたB細胞活性化を伴う自己免疫疾患およびBAFF過剰発現による自己免疫疾患等の予防・治療の組成物、医薬組成物、加工食品に関する。
 NF-κB(Nuclear factor kappa B)は、免疫応答、細胞増殖、アポトーシスおよび発癌に関与する各種遺伝子発現を調節する転写因子である。このNF-κBは5つのメンバー:(1)NF-κBp65(p65)、(2)RelB、(3)c-Rel、(4)NF-κB1(これは、前駆体p105と切断型p50の両方で存在する)および(5)NF-κB2(これは、前駆体p100と切断型p52の両方で存在する)から構成されている。
 主に、NF-κB1(切断型p50;NF-κBp50)とp65がヘテロダイマー、NF-κB2(切断型p52;NF-κBp52)とRelBがヘテロダイマーを形成する。また、これらNF-κBヘテロダイマーの活性化はリン酸化反応およびタンパク質分解を含む連続事象によって厳密に制御されるシグナル伝達経路であり、古典的および非古典的の2つの経路に分類される。
 NIKはセリン/スレオニンキナーゼであり、古典的および非古典的の両方の経路で役割を担う。NIKは、非古典的なシグナル伝達経路では必須なものであり、IKKαをリン酸化することでNF-κBp100を部分分解し、NF-κBp52を遊離させる。NF-κBp52はRelBとヘテロダイマーを形成することで、核内へと移行し、遺伝子を発現させる。さらに、古典的経路ではIKKα、IKKβおよびIKKγ複合体を活性化させることでp65とNF-κBp50のヘテロダイマーを形成する。このヘテロダイマーが核内へと移行することで、遺伝子発現を調節する。
 非古典的経路は、B細胞活性化因子(BAFF)、CD40リガンドおよびリンフォトキシンβ受容体リガンド等のリガンドのみによって活性化される。これらのリガンドによるシグナル伝達経路の活性化にNIKが重要であることが知られている。その重要な役割のために、NIKの発現は厳密に調節されている。
 通常の非刺激条件下では、ユビキチンリガーゼであるTNF受容体関連因子(TRAF)とNIKが相互作用することにより、NIKが分解されるため、細胞内におけるNIKタンパク量は少ない。
 非古典的経路がリガンドによって刺激されると、活性化された受容体により、TRAF-NIK複合体を解離させ、それによりNIK濃度が増加すると考えられている(Thu and Richmond,Cytokine Growth F.R.2010,21,213-226:非特許文献1)。
 BAFFはT細胞、単球/マクロファージ、樹状細胞等から産生・分泌され、B細胞上の3種類の受容体を介してB細胞の分化、活性化、生存等を制御することが知られている(Moore,et al., Science. 1999, 285,260-263:非特許文献2)。
 BAFFの受容体としては、BAFF-R(BAFF-Receptor)、TACI(Taransmembrane activator and calcium modulator and cyclophilin ligand interactor)およびBMCA(B cell maturation antigen)が知られている。
 BAFF-RおよびBMCAは主にB細胞に発現しており、TACIはB細胞と活性化T細胞に発現している。BAFFとBAFF-Rとの相互作用はB細胞の形成および維持に必須のNIKを介したシグナル伝達経路を活性化し、順次、外来物質による侵入に応答して免疫グロブリンを合成する。
 患者のBAFFの適切なレベルは正常レベルの免疫の維持に役立つが、低発現では免疫不全をもたらし、過剰発現では異常に高い抗体産生を生じうる。
 患者が自己免疫を示す場合、自身の身体の組織又は器官に対する抗体を生成する。本明細書で自己免疫疾患とは、SLE、関節リウマチ、シェーグレン症候群、サルコイドーシス、多発性筋炎、皮膚筋炎、混合性結合組織病、多発性硬化症、好酸球性多発性血管炎肉芽腫症、多発性血管炎肉芽腫症、ベーチェット病、顕微鏡的多発血管炎、大型血管炎(高安血管炎、巨細胞性動脈炎)、クリオグロブリン血管炎、バセドウ病含む原発性甲状腺機能低下症、自己免疫性膵炎、重症筋無力症、特発性血小板減少性紫斑病、自己免疫性肝炎、潰瘍性大腸炎、クローン病、類天疱瘡、血栓性血小板減少性紫斑病、自己免疫性溶血性貧血、IgG4関連疾患、乾癬、強皮症、原発性胆汁性胆管炎、抗リン脂質抗体症候群、ギラン・バレー症候群、慢性胃炎、慢性萎縮性胃炎、グッドパスチャー症候群、巨赤芽球性貧血、自己免疫性好中球減少症、橋本病、特発性アジソン病、1型糖尿病、慢性円板状エリテマトーデス、限局性強皮症、天疱瘡、膿疱性乾癬、尋常性乾癬、妊娠性疱疹、線状IgA水疱性皮膚症、後天性表皮水疱症、円形脱毛症、尋常性白斑、サットン後天性遠心性白斑・サットン母斑、原田病、自己免疫性視神経症、自己免疫性内耳障害、特発性無精子症、習慣性流産、血管炎症候群を含む。
 そして自己免疫疾患は、例外なく体内でのBAFF過剰発現が確認されており、病状の進行と共にBAFF発現量の増加が報告されている。BAFFの増加は、細胞内のNIKを活性化する。NIK活性化がNF-κBの核内移動を促進し、抗体産生を促進させ、自己免疫疾患が進行する。したがって、これらの疾患を有する患者を治療するために、BAFF誘導性のNIK活性化を阻害することやBAFFの発現量あるいは分泌量を低下させることは重要である。なお、ここでは、治療とは、病状の回復だけでなく、病状の進行を抑制若しくは遅延させる効果も含まれる。
 自己免疫疾患とBAFFの関係を示す具体的な報告例としては、SLE、関節リウマチおよびシェーグレン症候群の患者において血清中のBAFF濃度が上昇していること(Groom,et al.,J.Clin.Invest.,2002,109,59-68:非特許文献5、Zhang,et al.,J.Immunol.,2001,166,6-10:非特許文献4およびCheema,et al.,Arthritis Rheum.,2001,44,1313-1319:非特許文献3)がある。
 また、SLE患者における血清BAFFレベルとイムノグロブリンや抗dsDNA抗体との相関性(Zhang,et al.,J.Immunol.,2001,166,6-10:非特許文献4)、RA患者におけるBAFFとリウマトイド因子との相関性(Cheema,et al.,Arthritis Rheum.,2001,44,1313-1319:非特許文献3)、シェーグレン症候群患者におけるBAFFと自己抗体産生との相関性(Thompson,et al.,Rheumatology.2016,55,1548-1555:非特許文献6)が報告されている。
 また、BAFFを過剰発現するマウスでは、末梢血B細胞の増多、リンパ節や脾臓の肥大、血中IgG濃度の上昇、抗核抗体産生等のSLE様の症状を示すことが報告されている(Mackay,et al., J.Exp.Med.,1999,189,1747-1756:非特許文献7およびKhare,et al., Proc.Natl.Acad.Sci.USA.,2000,97,3370-3375:非特許文献8)。
 さらに、このマウスは加齢とともに唾液腺炎、唾液腺破壊等のシェーグレン症候群様の症状を示すことが認められている(Groom,et al.,J.Clin.Invest.,2002,109,59-68:非特許文献5)。
 BAFF過剰発現シェーグレン症候群モデルマウスでは、唾液腺炎症部位においてBAFF高発現によりB細胞の浸潤と成熟B細胞への分化を誘導することが示されている(Ding,et al.,Clin Immunol.,2016,169,69-79:非特許文献9)。
 また、BAFF発現抑制マウスではシェーグレン症候群の発症を抑制することとともに、B細胞の活性化、分化を阻害することも報告されている(Thompson,et al.,Rheumatology.2016,55,1548-1555:非特許文献6)。
 また、関節リウマチ患者において滑膜および血清中でのBAFF高発現が自己反応性B細胞の維持に関与すること、さらにNIKを抑制するTRAF2およびTRAF3を欠如したマウスにおいては非古典的(NIK/IKK/NF-κB2)経路活性化により、リンパ節および脾臓辺縁帯におけるB細胞が増加することが示されている(Noort,et al.,Arthritis Res.Ther.,2015,17,15:非特許文献10)。
 また、関節リウマチ患者の滑膜炎症部位においてB細胞および形質細胞が健常成人と比較し多く存在することが報告されている(Jimenez-Boi,et al.,J.Immunol.,2005,175,2579-2588:非特許文献11)。
 さらに、SLE患者における血清中BAFFの増加は形質細胞の増加に関与することが報告されている(Chu,et al.,Arthritis Rheum.2009,60,2083-2093:非特許文献12)。
 また、NIK分解に関わるPeli1の過剰発現マウスにおいて、NIKを抑制することで非古典的経路を抑制し、SLEを抑制すること、また、SLE患者においてPlei1の発現がSLEの症状発現と負に相関することが示されている(Liu,et al.,Nat Commun.,2018,9,1136:非特許文献13)。
 さらに、BAFF過剰発現マウスにおいて、dsDNA自己抗体産生、B細胞生存・増殖・分化にNF-κB2非古典的経路が重要であり、この経路の阻害により自己抗体産生、B細胞生存・増殖・分化を抑制することも示されている(Enzler,et al.,Immunity,2006,25,403-415:非特許文献14)。
 また、自己免疫疾患では、血清BAFF濃度が上昇していることが示されている(Lenert,et al.,Drug Des Devel Ther.,2015,9,333-347:非特許文献15、Krumbholz,et al.,J Autoimmun.,2005,25,298-302:非特許文献16、Lepse,et al.,Autoimmun Rev.,2011,11,77-83:非特許文献17、Migita,et al.,Hum Immunol.,2007,68,586-591:非特許文献18、Zhang,et al.,Dig Dis Sci.,2016,61,2608-2618:非特許文献19、Qian,et al.,Exp Dermatol.,2014,23,596-605:非特許文献20、Thomas,et al.,Br J Haematol.,2011,155,620-622:非特許文献21およびLin,et al., Arthritis Res.Ther.,2014,16,R118:非特許文献22)。
 また、顕微鏡的多発血管炎患者、ベーチェット病患者、バセドウ病含む原発性甲状腺機能低下症患者、原発性胆汁性胆管炎患者、自己免疫性溶血性貧血患者およびIgG4関連疾患患者では血清BAFF濃度と自己抗体産生量が相関することも報告されている(Lepse,et al.,Autoimmun Rev.,2011,11,77-83:非特許文献17、Hamzaoui,et ak.,Clin Exp Rheumatol.,2008,26(Suppl.50)、S64-S71:非特許文献23、Lin,et al.,Clin Chim Acta,2016,462,96-102:非特許文献24、Tang,et al.,J Gastroenterol Hepatol.,2017,32,659-666:非特許文献25、Xu,et al.,Int J Hematol.,2015,102,394-400:非特許文献26、およびLin,et al., Arthritis Res.Ther.,2014,16,R118:非特許文献22)。
 サルコイドーシス患者、多発性筋炎患者、皮膚筋炎患者および混合性結合組織病患者では健常成人と比較し、血清BAFF濃度が高く、自己抗体発現と相関することとともに、これらの疾患では病巣部位におけるBAFF発現増加がB細胞の増殖・分化を誘導することも報告されている(Saussine,et al.,PLoS ONE,2012,7,e43588:非特許文献27、Baek,et al.,J Neuroimmunol.,2012,249,96-100:非特許文献28、Krystufkova,et al.,Ann Rheum Dis.,2009,68,836-843:非特許文献29、およびKaneko,et al.,Mod Rheumatol.,2014,24,310-315:非特許文献30)。
 乾癬患者ではBAFF量が健常成人と比較して高く、その発現量は乾癬の病態と相関することが示されている(Eldin,et al.,J.Microbiol.Res.Rev.,2013,1,1-11:非特許文献31)。
 強皮症患者では血清中BAFF量が増加しており、これによりB細胞生存・活性化・増殖・分化が亢進していること、BAFF増加が自己抗体産生量とも相関していることが示されている。また強皮症モデルマウスでは、BAFFの阻害が自己抗体産生およびインターロイキン6やトランスフォーミンググロースファクター産生を抑制することも報告されている(Sanges,et al.,Rev Med Interne,2017,38,113-124:非特許文献32)。
 抗リン脂質抗体症候群患者では、血清BAFFが増加していること、また、抗リン脂質抗体症候群モデルマウスにおいて、BAFF受容体阻害によりB細胞が減少することが示されている(van den Hoogen,et al.,RMD Open,2018,4,e000693:非特許文献33)。
 さらに、多発性硬化症患者ではBAFFレベルが増加していることが報告されている(Krumbholz,et al.,Nat.Rev.Neurol.,2012,8,613-623:非特許文献34)。また、NIKノックアウトマウスでは多発性硬化症の発症を抑制することが示されている(Jin.,et al.,Blood.2009,113,6603-6610:非特許文献35)。
 腫瘍壊死因子α(TNFα)は関節リウマチや炎症性腸疾患などで、炎症反応に伴い分泌される。結腸上皮細胞およびマウス線維芽細胞において、TNFα刺激は非古典的NF-κB経路の活性化を介してNF-κBp52およびRelBヘテロダイマーの核内移行を促進し、炎症を誘発する。TNFαはTRAFの分解を亢進することで、NIKの細胞質内量を増加させ、NIKを活性化する(Bhattacharyya et al. J Biol.Chem.2010,285,39511-39522:非特許文献36)。
 以上のように、自己免疫疾患とは、BAFFの過剰発現が生じ、NIKの活性化がNF-κBを活性化させ、その結果自身の身体の組織又は器官に対する抗体を生成することが、原因の疾患であるのは、すでに科学的常識であると言える。したがって、BAFFによるNIK活性化を阻害し、非古典的NF-κBシグナル伝達経路を抑制することができる医薬品等は、BAFF過剰発現、NIKおよび非古典的NF-κBシグナル伝達の過剰な活性化が認められる自己免疫疾患に対して治療効果を有する。
 さらに、研究により、NF-κBが炎症に関係する多くの遺伝子の発現を制御することが示され、また、NF-κBシグナル伝達が、炎症性腸疾患、敗血症などの多くの炎症性疾患で慢性的に活性であることが見出された。このように、NIKを阻害し、そのことによって非古典的NF-κBシグナル伝達経路を減衰させることができる化合物は、非古典的NF-κBシグナル伝達の過剰な活性化が認められる疾患および障害に対して治療効果を有する。
 なお、NF-κB活性阻害については、以下の特許文献が挙げられる。特許文献1には、NF-κB誘導キナーゼ(NIK)/MAP3K14またはその特定部分に特異的に結合する抗体が開示されている。この抗体は免疫調節分子として作用するとされている。
 また特許文献2には、癌、炎症性疾患、代謝異常および自己免疫性疾患などの病気の治療に有用なNIK阻害剤として、3-(1H-ピラゾール-4-イル)-1H-ピロロ[2,3-c]ピリジン誘導体が開示されている。
 また、特許文献3には、免疫機能不全による疾患の治療薬として一般式(10)式の物質が開示されている。
Figure JPOXMLDOC01-appb-C000006
 なお、式中Rは水素または低級アルコキシ基を、Aは酸素またはスルホニル基を表す。
 また、特許文献4には、マンギフェリンがリウマチ等に対する消炎効果があることが記載されている。
特表2007-537708号公報 特表2016-531858号公報 特開昭57-16821号公報 特開2009-023935号公報
Thu YM, Richmond A.: Cytokine Growth Factor Rev. 2010, 21, 213-226. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D,Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, NardelliB, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, HilbertDM.: Science. 1999, 285, 260-263. Cheema GS, Roschke V, Hilbert DM, Stohl W.: Arthritis Rheum. 2001,44, 1313-1319. Zhang J, Roschke V, Baker KP, Wang Z, Alarcon GS, Fessler BJ,Bastian H, Kimberly RP, Zhou T.: J Immunol. 2001, 166, 6-10. Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P,Tschopp J, Cachero TG, Batten M, Wheway J, Mauri D, Cavill D, Gordon TP, MackayCR, Mackay F.: J Clin Invest. 2002, 109, 59-68. Thompson N, Isenberg DA, Jury EC, Ciurtin C.: Rheumatology. 2016,55, 1548-1555. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N,Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-FavreC, Zubler RH, Browning JL, Tschopp J.: J Exp Med. 1999, 189, 1747-1756. Khare SD, Sarosi I, Xia XZ, McCabe S, Miner K, Solovyev I, HawkinsN, Kelley M, Chang D, Van G, Ross L, Delaney J, Wang L, Lacey D, Boyle WJ, HsuH.: Proc Natl Acad Sci U S A. 2000, 97, 3370-3375. Ding J, Zhang W, Haskett S, Pellerin A, Xu S, Petersen B, JandreskiL, Hamann S, Reynolds TL, Zheng TS, Mingueneau M.: Clin Immunol. 2016, 169,69-79. Noort AR, Tak PP, Tas SW.: Arthritis Res Ther. 2015, 17, 15. Jimenez-Boj E, Redlich K, Turk B, Hanslik-Schnabel B, Wanivenhaus A,Chott A, Smolen JS, Schett G.: J Immunol. 2005, 175, 2579-2588. Chu VT, Enghard P, Schurer S, Steinhauser G, Rudolph B, RiemekastenG, Berek C.: Arthritis Rheum. 2009, 60, 2083-2093. Liu J, Huang X, Hao S, Wang Y, Liu M, Xu J, Zhang X, Yu T, Gan S,Dai D, Luo X, Lu Q, Mao C, Zhang Y, Shen N, Li B, Huang M, Zhu X, Jin J, ChengX, Sun SC, Xiao Y.: Nat Commun. 2018, 9, 1136. Enzler T, Bonizzi G, Silverman GJ, Otero DC, Widhopf GF,Anzelon-Mills A, Rickert RC, Karin M.: Immunity. 2006, 25, 403-415. Lenert A, Lenert P.: Drug Des Devel Ther. 2015, 9, 333-347. Krumbholz M, Specks U, Wick M, Kalled SL, Jenne D, Meinl E.: J Autoimmun. 2005, 25, 298-302. Lepse N, Abdulahad WH, Kallenberg CG, Heeringa P.: Autoimmun Rev.2011, 11, 77-83. Migita K, Abiru S, Maeda Y, Nakamura M, Komori A, Ito M, Fujiwara S,Yano K, Yatsuhashi H, Eguchi K, Ishibashi H.: Hum Immunol. 2007, 68, 586-591. Zhang P, Liu X, Guo A, Xiong J, Fu Y, Zou K.: Dig Dis Sci. 2016, 61,2608-2618. Qian H, Kusuhara M, Li X, Tsuruta D, Tsuchisaka A, Ishii N, Koga H,Hayakawa T, Ohara K, Karashima T, Ohyama B, Ohata C, Furumura M, Hashimoto T.:Exp Dermatol. 2014, 23, 596-605. Thomas MR, Machin SJ, Mackie I, Scully MA.: Br J Haematol. 2011,155, 620-622. Lin W, Jin L, Chen H, Wu Q, Fei Y, Zheng W, Wang Q, Li P, Li Y,Zhang W, Zhao Y, Zeng X, Zhang F.: Arthritis Res Ther. 2014, 16, R118. Hamzaoui K, Houman H, Ben Dhifallah I, Kamoun M, Hamzaoui A.: Clin Exp Rheumatol. 2008, 26(Suppl 50), S64-S71. Lin JD, Wang YH, Fang WF, Hsiao CJ, Chagnaadorj A, Lin YF, Tang KT,Cheng CW.: Clin Chim Acta. 2016, 462, 96-102. Tang L, Zhong R, He X, Wang W, Liu J, Zhu Y, Li Y, Hou J.: J Gastroenterol Hepatol. 2017, 32, 659-666. Xu ZZ, Zhao BB, Xiong H, Wei BW, Wang YF.: Int J Hematol. 2015, 102,394-400. Saussine A, Tazi A, Feuillet S, Rybojad M, Juillard C, Bergeron A,Dessirier V, Bouhidel F, Janin A, Bensussan A, Bagot M, Bouaziz JD.: PLoS One.2012, 7, :e43588. Baek A, Park HJ, Na SJ, Shim DS, Moon JS, Yang Y, Choi YC.: J Neuroimmunol. 2012, 249, 96-100. Krystufkova O, Vallerskog T, Helmers SB, Mann H, Putova I, BelacekJ, Malmstrom V, Trollmo C, Vencovsky J, Lundberg IE.: Ann Rheum Dis. 2009, 68,:836-843. Kaneko T, Amano H, Kawano S, Minowa K, Ando S, Watanabe T, Nakano S,Suzuki J, Morimoto S, Tokano Y, Takasaki Y.: Mod Rheumatol. 2014, 24, 310-315. Eldin N, Bendary S, Sayed EI, Nasr R.: J. Microbiol. Res. Rev. 2013,1, 1-11. Sanges S, Guerrier T, Launay D, Lefevre G, Labalette M, Forestier A,Sobanski V, Corli J, Hauspie C, Jendoubi M, Yakoub-Agha I, Hatron PY, HachullaE, Dubucquoi S.: Rev Med Interne. 2017, 38, 113-124. van den Hoogen LL, Palla G, Bekker CPJ, Fritsch-Stork RDE, RadstakeTRDJ, van Roon JAG.: RMD Open. 2018, 4, e000693. Krumbholz M, Derfuss T, Hohlfeld R, Meinl E.: Nat Rev Neurol. 2012,8, 613-623. Jin W, Zhou XF, Yu J, Cheng X, Sun SC.: Blood. 2009, 113, 6603-6610. Bhattacharyya S, Dudeja PK, Tobacman JK.: J Biol Chem. 2010, 285, 39511-39522. Hu, L., Wu, W., Chai, X., Luo, J., Wu, Q.: Bioorg. Med. Chem. Lett.2011, 21, 4013-4015.
 引用文献に示すように免疫細胞が発現するサイトカインを抑制する薬剤は、抗体製剤が主に使用されているが、特許文献4のマンギフェリンを除いて投薬経路が静脈内投与であり、患者の負担が重いものとなっている。そこで、経口投与でNIKを阻害し、自己免疫疾患を改善する治療薬および改善用組成剤を提供することを目的とする。
 また、特許文献4のマンギフェリンは経口投与によって効果を奏するが、必要な摂取量が多く、経口であっても、容易に摂取できなかった。そこで、より効果あるいは活性の高い治療薬および改善用組成物が、求められた。
 さらに、NIKなどのキナーゼを阻害する既存の薬剤の新しいまたは改良された形態が、自己免疫疾患を処置するためのものより有効な医薬品等を開発するために、常に必要とされている。
 本発明者らは、上記の課題を解決すべくNIKを阻害する化合物を探索したところ、キサントン骨格を有するある種の物質にNIK阻害作用を有することを見出し、実際に関節リウマチを発症させたマウスを完治させることを確認し、本発明を完成するに至った。
 すなわち、本発明に係る自己免疫疾患の改善用組成物は、以下の(1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000007
 本発明に係る自己免疫疾患の改善用組成物は、自己免疫疾患を改善させることができ、例えば関節リウマチを発症させたマウスの関節の炎症あるいは変形を劇的に治癒させることができる。また、投与は経口で効果を表し、ヒトへの適用の場合、患者への負担は非常に軽い。
 また、自己免疫疾患は、BAFFの過剰存在によって自己抗原を認識する自己反応性B細胞が生存、増殖、形質細胞への分化および抗体産生を行うことで発症すると考えられている。すなわち、自己免疫疾患は発症の原因が同じであり、上記に記載された自己免疫疾患以外の自己免疫疾患でも原因を同じくするものが多いと考えられる。したがって、本発明に係る自己免疫疾患の改善用組成物は、実施例で示される関節リウマチだけでなく、BAFF過剰発現を伴う自己免疫疾患すべてに改善効果を有すると考えられる。
ノラチリオールの合成手順を示す図である。 コラーゲンで免疫し、関節リウマチを発症させたマウスに各試薬を投与した場合の炎症スコアの経時変化を示すグラフである。 図2で関節リウマチを発症させたマウスの前足の状態を示す写真および各試薬を投与したマウスの前足の状態を示す写真である。 図2での50日目のマウス血清を回収し、抗コラーゲン抗体を測定したグラフである。 NP-KLHで免疫し、全身性エリテマトーデスを発症したマウスに各試薬を投与し、11週間後のマウス血清を回収後、自己抗体である抗dsDNA抗体を測定したグラフである。 シェーグレン症候群を自然発症するマウスに各試薬を投与し、20週間後のマウス血清を回収後、自己抗体である抗dsDNA抗体を測定したグラフである。 マウスの耳介にイモキミドを塗布し、乾癬を発症させたマウスにノラチリオールを塗布および経口投与した場合の耳介腫脹の経時変化を示すグラフである。 マウスの背部皮膚にイモキミドを塗布し、乾癬を発症させたマウスにノラチリオールを塗布および経口投与した場合の重症度の経時変化を示すグラフである。 図8で乾癬を発症させた6日目のマウス背部皮膚の状態を示す写真である。 マウスから採取したプレB細胞に各試薬を添加し、その後BAFF刺激を行った細胞のCD138発現(形質細胞への分化)をフローサイトメトリーを使用して測定したパネルである。 マウスから採取したプレB細胞に各試薬を添加し、その後BAFF刺激を行った細胞のCD138発現(形質細胞への分化)をフローサイトメトリーを使用して測定したパネルである。 マウスから採取したプレB細胞に各試薬を添加し、その後BAFF刺激を行った細胞のIgMおよびIgD発現(成熟B細胞への分化)をフローサイトメトリーを使用して測定したパネルである。 マウスから採取したプレB細胞に各試薬を添加し、その後BAFF刺激を行った細胞のIgMおよびIgD発現(成熟B細胞への分化)をフローサイトメトリーを使用して測定したパネルである。 マウスから回収したプレB細胞に各試薬を添加し、その後BAFF刺激を行った場合のphospho-NIK、NIK、NF-κB p52 nuclear、NF-κB p65 nuclearおよびlaminの発現をWestern Blottingで検討した結果を示す写真である。
 以下に本発明に係る自己免疫疾患の改善用組成物について説明を行う。なお、以下の説明は本発明の一実施の形態および一実施例についての例示であって、本発明は以下の説明に限定されるものではない。本発明の趣旨を逸脱しない限りにおいて、以下の実施の形態は変更することができる。
 本発明に係る自己免疫疾患の改善用組成物はキサントン骨格を有する(1)式で表される物質、ノラチリオール、、また、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンの中から選ばれる少なくとも1種の化合物を有効成分として含む。(1)式は、1,2’,3’,4’,6-ペンタ-O-プロピオニルマンギフェリンであり、以下「KPP-08-008a」と称する。マンギフェリンを(3)式に示す。また(2)式は、1,3,6,7-テトラヒドロキシキサントンであり、以下「ノラチリオール」と呼ぶ。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 KPP-08-008aは、(1)式を見てわかるように、マンギフェリン((2)式参照)の一部のヒドロキシ基の位置にプロピオニル基をエーテル結合させたものである。この化合物は、以下の実施例でも示されるように、マンギフェリンよりも優れたNIKおよびIKK活性阻害を示し、自己免疫疾患に対する高い予防効果を示す。
 ノラチリオール(CAS番号3542-72-1)はキサントン(CAS番号:90-47-1)の一部にヒドロキシ基をつけたものであり、KPP-08-008a同様にキサントン骨格を有している。そして、KPP-08-008a同様に、マンギフェリンよりもNIKおよびIKK活性阻害を示し、自己免疫疾患に対する高い予防効果を示す。
 また、1,3,5,6-テトラヒドロキシキサントン(CAS番号:5084-31-1:(4)式)、キサントヒドロール(CAS番号:90-46-0:(5)式)、α-マンゴスチン(CAS番号:6147-11-1:(6)式)、γ-マンゴスチン(CAS番号:31271-07-5:(7)式)も同様にキサントン骨格を有する化合物であり、ノラチリオール、KPP-08-008a同様にマンギフェリンよりもNIKおよびIKK活性阻害を示し、自己免疫疾患に対する高い予防効果を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 これらの化合物は、マンギフェリン同様に低分子量化合物で、水に良く溶け、経口摂取が可能である。本発明に係る自己免疫疾患の改善用組成物は、上記の化合物の少なくとも何れか一種以上を有効成分として含む。またその他の薬剤として許容される成分を含んでいて良い。また、本発明に係る自己免疫疾患の改善用組成物としては、これらの化合物を複数含んでいてもよい。
 本発明に係る自己免疫疾患の改善用組成物は、自己免疫疾患治療薬(医薬組成物といってもよい。)として提供することが可能である。医薬組成物として本発明に係る組成物は、静脈内、皮下、もしくは筋肉内注射だけでなく、経口投与することで効果を発揮することができる。したがって、内用剤として提供することができる。例えば、粉末状の自己免疫疾患改善用組成物を、カプセル剤、顆粒剤、散剤、錠剤等に製剤化して提供されうる。経口剤とする際には、結合剤、滑沢剤、崩壊剤、着色剤、矯味剤、防腐剤、抗酸化剤、安定化剤といった添加剤を加え、カプセル剤、顆粒剤、散剤、錠剤を常法によって製造することができる。
 さらに、本発明に係る医薬組成物は、液剤、軟膏剤、クリーム剤、ゲル化剤、貼付剤、エアゾール剤といった外用剤に製剤化し、非経口投与してもよい。外用剤とする際には、水、低級アルコール、溶解補助剤、界面活性剤、乳化安定剤、ゲル化剤、粘着剤、その他必要とされる基剤成分を配合することができる。また、血管膨張剤、副腎皮質ホルモン、角質溶解剤、保湿剤、殺菌剤、抗酸化剤、清涼化剤、香料、色素といった添加剤を適宜配合してもよい。
 また、本発明に係る自己免疫疾患の改善用組成物は加工食品として提供することも可能である。つまり、本発明に係る自己免疫疾患の改善用組成物は加工食品として摂取しても、本発明に係る自己免疫疾患の改善用組成物と同等の効果を奏する。
 加工食品としては、例えば、飴、ガム、ゼリー、ビスケット、クッキー、煎餅、パン、麺、魚肉・畜肉練製品、茶、清涼飲料、コーヒー飲料、乳飲料、乳清飲料、乳酸菌飲料、ヨーグルト、アイスクリーム、プリン等といった嗜好食品や健康食品を含む一般加工食品だけでなく、厚生労働省の保健機能食品制度に規定された特定保健用食品や栄養機能食品などの保健機能食品を含み、さらに、栄養補助食品(サプリメント)、飼料、食品添加物等も加工食品に含まれる。
 これらの加工食品の原料中に、自己免疫疾患の改善用組成物を添加することで、本発明に係る加工食品を調製することができる。なお、これらの加工食品にノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンを添加する場合は、そもそも原料にこれらの物質を含む材料を使用する場合は本発明に係る加工食品から除外される。ただし、その材料が含むこれらの物質の含有量を超えて、これらの物質を含む加工食品については、本発明に係る加工食品である。以下実施例に基づいて本発明に係る自己免疫疾患の改善用組成物を説明する。
 本発明に係る自己免疫疾患の改善用組成物が対象とする疾患は、再掲するとSLE、関節リウマチ、シェーグレン症候群、サルコイドーシス、多発性筋炎、皮膚筋炎、混合性結合組織病、多発性硬化症、好酸球性多発性血管炎肉芽腫症、多発性血管炎肉芽腫症、ベーチェット病、顕微鏡的多発血管炎、大型血管炎(高安血管炎、巨細胞性動脈炎)、クリオグロブリン血管炎、バセドウ病含む原発性甲状腺機能低下症、自己免疫性膵炎、重症筋無力症、特発性血小板減少性紫斑病、自己免疫性肝炎、潰瘍性大腸炎、クローン病、類天疱瘡、血栓性血小板減少性紫斑病、自己免疫性溶血性貧血、IgG4関連疾患、乾癬、強皮症、原発性胆汁性胆管炎、抗リン脂質抗体症候群、ギラン・バレー症候群、慢性胃炎、慢性萎縮性胃炎、グッドパスチャー症候群、巨赤芽球性貧血、自己免疫性好中球減少症、橋本病、特発性アジソン病、1型糖尿病、慢性円板状エリテマトーデス、限局性強皮症、天疱瘡、膿疱性乾癬、尋常性乾癬、妊娠性疱疹、線状IgA水疱性皮膚症、後天性表皮水疱症、円形脱毛症、尋常性白斑、サットン後天性遠心性白斑・サットン母斑、原田病、自己免疫性視神経症、自己免疫性内耳障害、特発性無精子症、習慣性流産、血管炎症候群である。
 また、上記以外の疾患であっても、BAFFが過剰発現しており、自己免疫疾患と判断できる疾患は対象とすることができる。また、B細胞が活性化していると判断できる疾患を対象としてもよい。なお、ここでBAFFが過剰発現とは、健常成人に対してBAFF濃度が増加していればよい。またB細胞が活性化しているとは、自己抗体の量が健常成人と比較して高ければよい。
実施例1
 <実施例1:KPP-08-008aの合成>
 KPP-08-008aは、原料となる1,3,2’,3’,4’,6,6’,7‐オクタ‐O‐プロピオニルマンギフェリンを合成し、それを元にさらに合成する2段階で得た。
 (1)1,3,2’,3’,4’,6,6’,7‐オクタ‐O‐プロピオニルマンギフェリンの合成
 マンギフェリン(2.1g,4.98mmol)、無水プロピオン酸(12.8mL,99.4mmol)および乾燥ピリジン(60mL)を80°Cで5時間加熱した。反応液を氷水(400mL)に注加し、酢酸エチルで抽出した。酢酸エチル層を氷冷した10%硫酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。残渣をカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1)を用いて精製し,(8)式の1,3,2’,3’,4’,6,6’,7-オクタ-O-プロピオニルマンギフェリン(3.71g,86%)を無色固体として得た。
Figure JPOXMLDOC01-appb-C000015
 H-NMR (800 MHz, DMSO-d)δ: 0.70-1.26 (24H,m, COCHCH), 1.92-2.89(16H, m, COCHCH), 3.83-3.91(1H, m, H-6’a), 4.05-4.15 (2H, m, H-5’ and H-6’b), 4.98-5.05 (1H, m, H-4’), 5.09-5.21 (1H, m, H-1’),5.43-5.51 (2H, m, H-3’ and H-2’), 7.50-7.54 (1H, m, H-4), 7.68-7.71 (1H, m, H-5),7.96-7.98 (1H, m, H-8). 13C-NMR (200 MHz,DMSO-d)δ:8.68/8.77/8.79/8.92/8.95/8.98/9.00/9.01/9.04/9.06/9.17/9.19/9.28 (COCHCH),26.6/26.7/26.9/26.8/26.93/26.97/27.00/27.09/27.35/27.37 (COCHCH),62.1/62.2 (C6’), 68.20/68.23 (C4’), 69.6/70.1 (C2’),70.9/71.3 (C1’), 73.6/73.7 (C3’), 75.06/75.10 (C5’), 110.3/111.8 (C4),111.7/112.6 (C9a), 113.3/113.4 (C5), 118.9/119.0 (C2), 119.7/119.7 (C8a),120.36/120.40 (C8), 139.57/139.59 (C7’), 147.9 (C6),149.1/150.9 (C1), 152.5/152.6 (C8b), 153.4/154.8 (C4a), 156.6/156.8 (C3), 171.09/171.13/171.15/171.20/171.72/171.79/171.82/171.93/172.37/172.44/172.78/172.87/173.16/173.23/173.26(COCHCH), 173.56/173.60 (C9). HRMS (FAB) m/z: [M+Na]+ Calcd for C435019Na 893.2844; Found 893.2883.
 (2)KPP-08-008a(1,2’,3’,4’,6‐ペンタ‐O‐プロピオニルマンギフェリン)の合成
 1,3,2’,3’,4’,6,6’,7‐オクタ‐O‐プロピオニルマンギフェリン(3.7g,4.25mmol)、酢酸アンモニウム(3.8g,49.4mmol)、メタノール(80mL)および水(40mL)の混合溶液を室温で5.5時間攪拌した。反応液から減圧濃縮によりメタノールを留去した後、残渣を酢酸エチル(100mL)で希釈した。その混合物を、水および飽和食塩水で順次洗浄後、無水硫酸ナトリウムで乾燥後、ろ過、濃縮した。残渣をカラムクロマトグラフィー[CHCl/CHOH(20:1)]を用いて精製して得た淡黄色固体(2.54g)をメタノール(80mL)に溶解し、活性炭で脱色して(1)式のKPP-08-008a(2.16g,73%)を無色固体として得た。
 H-NMR (800 MHz, DMSO-d)δ::0.92-1.24 (15H, m, COCHCH), 1.92-2.32  (10H, m, COCHCH), 3.85(0.5H, dd-like, J = ca. 12.5, 1.5, H-6a’), 4.02-4.13(2H, m, H-5’, H-6a’, H-6b’), 4.21 (0.5H, dd, J = 12.5, 4.7, H-6b’), 4.95(0.5H, d, J = 10.0, H-1’), 5.00 (0.5H, dd, J = 9.6, 9.6, H-1’),5.01 (0.5H, dd, J = 9.6, 9.6, H-4’), 5.15 (0.5H, d, J = 10.0,H-1’), 5.31 (0.5H, dd, J = 9.6, 9.6, H-3’), 5.39 (0.5H, dd, J =9.6, 9.6, H-3’), 5.48 (0.5H, dd, J = 10.0, 9.6, H-2’), 5.84 (0.5H, dd, J= 10.0, 9.6, H-2’), 6.71/6.73 (each 0.5H, s, H-4), 6.79/6.80 (each 0.5H, s,H-5), 7.278/7.279 (each 0.5H, s, H-8), 9.00-11.5 (3H,br s, OH × 3). 13C-NMR (200 MHz, DMSO-d)δ:: 8.84/8.89/9.00/9.05/9.10/9.14/9.15/9.21/9.23(COCHCH),26.7/26.92/26.96/26.98/27.04/27.08/27.12/27.4 (COCHCH),62.1/62.4 (C-6’), 68.2/68.4 (C-4’), 68.8/70.5 (C-2’), 71.0/71.1 (C-1’),73.8/74.2 (C-3’), 74.7/75.3 (C-5’), 99.6/100.8 (C-4), 102.50/102.52 (C-5),106.6/107.7 (C-9a), 109.1 (C-8), 113.4 (C-2), 114.0/114.1 (C-8a), 143.87/143.88(C-7), 149.83/149.89 (C-6), 151.3 (C-1), 153.4 (C-8b), 157.6/157.7 (C-4a),161.0/162.4 (C-3), 171.2/172.0/172.3/172.9/173.2/173.5/173.6 (COCHCH)172.7/172.8 (C-9). HRMS (FAB) m/z: [M+Na] Calcd for C3438NaO16 725.2058; Found. 725.2074.
実施例2
 <実施例2:ノラチリオールの合成>
ノラチリオールを非特許文献37の方法に従って合成した。
 本実施例に示す合成方法を簡単に説明すると次のとおりである。すなわち、文献記載(非特許文献37)の方法に従って、2,4,5‐トリメトキシ安息香酸(化合物II)を塩化チオニルで処理して2,4,5‐トリメトキシ安息香酸クロリド(化合物III)を得た。次に、得られた化合物(化合物III)と1,3,5‐トリメトキシベンゼン(化合物IV)とのフリーデル‐クラフト反応により2‐ヒロドキシ‐2’,4,4’,5,6’‐ペンタメトキシベンゾフェノン(化合物V)を得た。さらに、この化合物(V)にテトラブチルアンモニウムヒドロキシドを処理して、1,3,6,7‐テトラメトキシキサントン(化合物VI)を得、その後、脱メチル化を行い、ノラチリオール(化合物I)を収率39%で得た。
合成経路
 以下に、本実施例の合成経路を詳細に説明する。なお、図1を参照する。
 (1)2,4,5‐トリメトキシ安息香酸クロリド(化合物III)の製造方法
 2,4,5‐トリメトキシ安息香酸(化合物II、8.49g、0.040mol)にアルゴン雰囲気下、室温で塩化チオニル(5mL)を徐々に加えて溶解させたのち、6時間加熱還流を行った。反応終了後、反応混合物を減圧下留去し、2,4,5‐トリメトキシ安息香酸クロリド(化合物III、8.30g、90%)を得た。得られた化合物(III)は、ただちに次の反応へ用いた。
 (2)2‐ヒロドキシ‐2’,4,4’,5,6’‐ペンタメトキシベンゾフェノン(化合物V)の製造方法
 上述のようにして得られた2,4,5‐トリメトキシ安息香酸クロリド(化合物III、8.07g、0.035mol)、1,3,5‐トリメトキシベンゼン(化合物IV、6.48g、0.0385mol)および無水ジエチルエーテル(500mL)の混合懸濁物にアルゴン雰囲気下、室温で塩化アルミニウム(16g)を徐々に加えた後、反応混合物を室温で48時間攪拌した。反応液を減圧下溶媒留去した後、残渣に水を加え、酢酸エチルにて抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1,v/v)により精製し、2‐ヒロドキシ‐2’,4,4’,5,6’‐ペンタメトキシベンゾフェノン(化合物V、8.43g、69%)を得た。
 (3)1,3,6,7‐テトラメトキシキサントン(化合物VI)の製造方法
 上述のようにして得られた2‐ヒロドキシ‐2’,4,4’,5,6’‐ペンタメトキシベンゾフェノン(化合物V、6.97g、0.020mol)をピリジン(10mL)と水(10mL)との混合溶媒を溶かし、40%テトラブチルアンモニウムヒドロキシド水溶液(5mL)を加えて6時間加熱還流を行った。得られた反応混合物を5%塩酸に注加した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=1:1,v/v)により精製し、1,3,6,7‐テトラメトキシキサントン(化合物VI、5.82 g、92%)を得た。
 (4)ノラチリオール(化合物I)の製造方法
 上述のようにして得られた1,3,6,7‐テトラメトキシキサントン(化合物VI、4.74g、0.015mol)とピリジン塩酸塩(5.00g)の混合物を6時間、200℃にて加熱攪拌した。得られた反応混合物を室温まで放冷後、5%塩酸に注加した後、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、ひだ折りろ紙にて乾燥剤を濾別後、ろ液を減圧下溶媒留去して粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=7:1,v/v)により精製し、(2)式のノラチリオール(化合物I、2.65g、68%)を得た。
<実施例3:コラーゲン誘発関節炎(CIA)に対するキサントン骨格を有する化合物の消炎効果の検定試験>
 Freund‘s Complete AjuvantおよびBovinr type2 collagenの等量混合物を6週齢のオスDBA/1Jマウス(清水実験材料)に0.1mL投与を行った(試験開始0日目とする)。21日後に再度DBA/1Jマウスに、上記混合物を0.1mL注射し、2次免疫を行った。2次免疫後からマンギフェリンを100mg/kg、KPP-08-008aを10mg/kg、ノラチリオールを10mg/kg、1,3,5,6-tetrahydroxyxanthone(1,3,5,6-テトラヒドロキシキサントン)を20mg/kg、xanthydrol(キサントヒドロール)を10mg/kg、α-mangostin(α-マンゴスチン)を10mg/kg、γ-mangostin(γ-マンゴスチン)を10mg/kgでマウスに30日間連日経口投与し、四肢の関節炎の度合いを下記に示したスコアーで評価した。
 コラーゲンで免疫しただけのグループを対照群、マンギフェリンを投与したグループをマンギフェリン投与群、KPP-08-008aを投与したグループをKPP-08-008a投与群、ノラチリオールを投与した群をノラチリオール投与群、1,3,5,6-tetrahydroxyxanthoneを投与した群をテトラヒドロキシキサントン投与群、xanthydrolを投与したものをキサントヒドロール投与群、α-mangostinを投与したものをα-マンゴスチン投与群、γ-mangostinを投与したものをγ-マンゴスチン投与群と呼ぶ。それぞれの群は5匹で構成した。
<関節炎の基準>
 関節炎の評価基準は、0=変化なし、1=足指の腫脹、2=足指および足裏の腫脹、3=足全体の腫脹、4=重症度の腫脹、とし、骨病変が見られた場合+1を加算して評価した。
 結果を図2に示す。図を参照して、横軸は1次免疫後の経過日数を示し、縦軸は炎症のスコアを示す。白丸印は対照群(「vehicle」と表示)を示す。黒四角印はマンギフェリン投与群(「100mg/kg mangiferin」と表示)を示す。黒ひし形印はKPP-08-008a投与群(「10mg/kg KPP-08-008a」と表示)を示す。黒三角印はノラチリオール投与群(「10mg/kg norathyriol」と表示)を示す。バツ印はテトラヒドロキシキサントン投与群(「20mg/kg 1,3,5,6-tetrahydroxyxanthone」と表示)を示す。黒丸印はキサントヒドロール投与群(「10mg/kg xanthydrol」と表示)を示す。プラス印はα-マンゴスチン投与群(「10mg/kg α-mangostin」と表示)を示す。横棒印はγ-マンゴスチン投与群(「10mg/kg γ-mangostin」と表示)を示す。また、対照群に対して有意な差(P<0.01)であったものには「*」を示した。
 対照群(白丸印「-O-」)は一次免疫28日後から炎症が観測され、その後炎症スコアは時間の経過とともに高くなった。マンギフェリン投与群(黒四角印「-■-」)は、炎症スコアは対照群の炎症スコアの増加に従って高くなったが、炎症スコアが5以上になることはなかった。
 KPP-08-008a投与群(黒ひし形印「-◆-」)では、炎症スコアは上昇するものの、4を超えることはなかった。ノラチリオール投与群(黒三角印「-▲-」)も、炎症スコアは上昇するものの、4を超えることはなかった。テトラヒドロキシキサントン投与群(バツ印「-×-」)、キサントヒドロール投与群(黒丸印「-●-」)、α-マンゴスチン投与群(プラス印「-+-」)、γ-マンゴスチン投与群(横棒印「-‐-」)もそれぞれ5を超えることはなかった。
 すなわち、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群は対照群よりも有意に炎症を抑えた。また、グラフよりこれらの投与群は、マンギフェリン投与群より少ない投与量で同等の効果を示した。
 図3には、1次免疫50日後のマウスの足の写真を示す。図3(a)は対照群、図3(b)はマンギフェリン投与群、図3(c)はKPP-08-008a投与群、図3(d)はノラチリオール投与群、図3(e)はテトラヒドロキシキサントン投与群、図3(f)はキサントヒドロール投与群、図3(g)はα-マンゴスチン投与群、図3(h)はγ-マンゴスチン投与群の中の1匹のマウスの前足(左右)の写真を示す。図3(a)の対照群では、指の腫脹および発赤が顕著に認められ、変形すら確認できる。一方、図3(b)のマンギフェリン投与群では、若干の腫脹は認められるものの、発赤は対照群ほどではなく、また、特に指の変形も認められず、明らかな抗炎症作用が認められた。
 図3(c)のKPP-08-008a投与群では、ほとんど発赤はなく、わずかに左足の中指の腫脹が認められるだけであった。図3(d)のノラチリオール投与群では、右足の一つの指の腫脹が認められるだけであり、マンギフェリン投与群よりも炎症は低いことが認められた。また図3(e)のテトラヒドロキシキサントン投与群、図3(f)のキサントヒドロール投与群、図3(g)のα-マンゴスチン投与群、図3(h)のγ-マンゴスチン投与群はマンギフェリン投与群と同程度の発赤であることが認められた。
 以上のように、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群およびγ-マンゴスチン投与群は、マンギフェリン投与群よりも低用量で顕著に炎症を抑制することが分かった。
実施例4
<実施例4:抗コラーゲン抗体産生抑制効果>
 実施例3の1次免疫後50日目にマウスから血清を採取し、酵素結合免疫吸着測定法(ELISA)によって抗コラーゲン抗体産生量を測定した。この測定にはマウス抗コラーゲン抗体ELISAキット(CRC)を用いて行った。
 結果を図4に示す。横軸はサンプル群を表し、縦軸は抗コラーゲン抗体産生量を反映している吸光度(OD)を表す。対照群では抗コラーゲン抗体が1.170(OD)であるのに対し、マンギフェリン投与群、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではそれぞれ、0.590(OD)、0.271(OD)、0.236(OD)、0.390(OD)、0.599(OD)、0.450(OD)、0.456(OD)であった。
 以上のようにマンギフェリン投与群は自己抗体の発現を低下させることが認められ、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著に自己抗体産生を抑制することが分かった。
実施例5
<実施例5:全身エリテマトーデスモデルマウスにおける抗dsDNA抗体産生抑制効果>
 100μgのNP-KLH(4-Hydroxy-3-nitrophenylacetyl-Keyhole Limpet Hemocyanin:4-ヒドロキシ-3-ニトロフェニルアセチル-キーホールリンペットヘモシアニン)および250μgの水酸化アルミニウムの混合物を12週齢のメスNZB/W F1マウス(清水実験材料)に投与した。混合物投与1週間後からマンギフェリンを100mg/kg、KPP-08-008aを10mg/kg、ノラチリオールを10mg/kg、1,3,5,6-tetrahydroxyxanthoneを20mg/kg、xanthydrolを10mg/kg、α-mangostinを10mg/kg、γ-mangostinを10mg/kgでマウスに11週間連日経口投与した。11週間投与後にマウスから血清を採取し、酵素結合免疫吸着測定法(ELISA)によって抗dsDNA抗体産生量を測定した。この測定にはマウス抗dsDNA抗体ELISAキット(FUJIFILMWAKO)を用いて行った。
 結果を図5に示す。横軸はサンプル群を表し、縦軸は抗dsDNA抗体産生量(mU/mL)を表す。対照群では抗dsDNA抗体が3506mU/mLであるのに対し、マンギフェリン投与群、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではそれぞれ、1379mU/mL、1064mU/mL、1096mU/mL、2214mU/mL、1850mU/mL、1071mU/mL、452mU/mLであった。
 以上のようにマンギフェリン投与群は自己抗体の発現を低下させることが認められ、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著に自己抗体産生を抑制することが分かった。すなわち、対照群は全身エリテマトーデスを発症し、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群は、全身エリテマトーデスの発症を抑制したといえる。
実施例6
<実施例6:シェーグレン症候群モデルマウスにおける抗dsDNA抗体産生抑制効果>
 シェーグレン症候群を自然発症する4週齢のMRL/lpr(清水実験材料)マウスを購入し、5週齢時からマンギフェリンを100mg/kg、KPP-08-008aを10mg/kg、ノラチリオールを10mg/kg、1,3,5,6-tetrahydroxyxanthoneを20mg/kg、xanthydrolを10mg/kg、α-mangostinを10mg/kg、γ-mangostinを10mg/kgでマウスに20週間連日経口投与した。20週間目にマウスから血清を採取し、酵素結合免疫吸着測定法(ELISA)によって抗dsDNA抗体産生量を測定した。この測定にはマウス抗dsDNA抗体ELISAキット(FUJIFILMWAKO)を用いて行った。
 結果を図6に示す。横軸はサンプル群を表し、縦軸は抗dsDNA抗体産生量(mU/mL)を表す。対照群では抗dsDNA抗体が9798mU/mLであるのに対し、マンギフェリン投与群、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではそれぞれ、6978mU/mL、3580mU/mL、4864mU/mL、5255mU/mL、5184mU/mL、7741mU/mL、5102mU/mLであった。
 以上のようにマンギフェリン投与群は自己抗体の発現を低下させることが認められ、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群ではマンギフェリン投与群よりも低用量で顕著に自己抗体産生を抑制することが分かった。すなわち、対照群はシェーングレン症候群を発症し、KPP-08-008a投与群、ノラチリオール投与群、テトラヒドロキシキサントン投与群、キサントヒドロール投与群、α-マンゴスチン投与群、γ-マンゴスチン投与群は、シェーングレン症候群の発症を抑制したといえる。
実施例7
<実施例7:イミキモド誘導乾癬モデルマウスにおける消炎効果>
 6週齢のオスBalb/c(清水実験材料)の背部毛をマウス用バリカンで刈り取った後、除毛クリームを塗布し、背部毛を脱毛した。脱毛後、5%イミキモドクリームを背部皮膚に62.5mg、右耳介に12.5mg塗布した。8時間後から1%ノラチリオール軟膏(軟膏剤1gにノラチリオールを10mg含有したもの)、5%ノラチリオール軟膏(軟膏剤1gにノラチリオールを50mg含有したもの)を耳介あるいは背部皮膚に6日間塗布した。また、経口投与による効果を判定するため、ノラチリオールを100mg/kgでマウスに6日間経口投与した。耳介皮膚の腫脹の測定についてはノギスにより算出した。さらに、背部皮下の重症度を下記に示した基準(Psoriasis Area and Severity Index(PASI))によりスコア化した。なお、ノラチリオール軟膏剤およびノラチリオール経口投与をはじめに行った日を1日目とした。
 5%イミキモドクリームを塗布しただけのグループを対照群、1%ノラチリオール軟膏塗布を塗布したものを1%ノラチリオール塗布群、5%ノラチリオール軟膏を塗布したものを5%ノラチリオール軟膏塗布群、100mg/kgノラチリオールを経口投与したものを100mg/kgノラチリオール投与群と呼ぶ。
<重症度の基準>
 重症度の基準は、0=変化なし、1=軽度、2=中等度、3=重度、4=極めて重度、として評価を行った。
 図7に耳介腫脹の結果を示す。図7を参照して横軸は経過日数を示し、縦軸は耳介皮膚の腫脹を示す。白丸印は対照群(「vehicle」と表示)を示す。黒四角印は1%ノラチリオール軟膏塗布群(「1% norathyriol」と表示)を示す。黒ひし形印は5%ノラチリオール軟膏塗布群(「5% norathyriol」と表示)を示す。黒三角印は100mg/kgノラチリオール投与群(「100mg/kg norathyriol」と表示)を示す。また、対照群に対して有意な差(P<0.01)であったものには「*」を示した。
 対照群(白丸印「-O-」)は3日目から耳介の腫脹が観測され、その後腫脹は時間の経過とともに高くなった。1%ノラチリオール軟膏塗布群(黒四角印「-■-」)は、ほどんど、耳介の腫脹は認められなかった。また、5%ノラチリオール軟膏塗布群(黒ひし形印「-◆-」)および100mg/kgノラチリオール投与群(黒三角印「-▲-」)についても、ほとんど耳介の腫脹は認められなかった。
 図8に背部皮下の重症度スコアの結果を示す。図8を参照して横軸は経過日数を示し、縦軸は重症度スコアを示す。対照群(白丸印「-O-」)は2日目から重症度スコアの増加が観測され、その後重症度スコアは時間の経過とともに高くなった。1%ノラチリオール軟膏塗布群(黒四角印「-■-」)は、重症度スコアは対照群の重症度スコアの増加に従って高くなったが、重症度スコアが2以上になることはなかった。また、5%ノラチリオール軟膏塗布群(黒ひし形印「-◆-」)および100mg/kgノラチリオール投与群(黒三角印「-▲-」)についても、重症度スコアは増加するものの、1.7を超えることはなかった。
 図9には、6日目時点のマウスの背部皮膚の写真を示す。図9(a)は対照群、図9(b)は1%ノラチリオール軟膏塗布群、図9(c)は5%ノラチリオール軟膏塗布群、図9(d)は100mg/kgノラチリオール投与群の中の1匹のマウス背部皮膚の写真を示す。図9(a)の対照群では、皮膚の鱗片および発赤が顕著に認められる。一方、図9(b)の1%ノラチリオール軟膏塗布群では、若干の発赤は認められるものの、発赤は対照群ほどではなく、また、特に鱗片も認められず、明らかな抗炎症作用が認められた。
 図9(c)の5%ノラチリオール軟膏塗布群では、ほとんど発赤はなく、鱗片も認められなかった。図9(d)の100mg/kgノラチリオール投与群では、わずかに発赤が認められるだけであり、明らかに炎症を抑制していることが認められた。
 すなわち、1%ノラチリオール塗布群、5%ノラチリオール塗布群、100mg/kgノラチリオール投与群は対照群よりも有意に乾癬による炎症を抑えた。また、これまでの結果から、ノラチリオール以外の薬剤(マンギフェリン、KPP-08-008a、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチン)においても同様に乾癬による炎症を抑制できるものと考えられる。
実施例8
<実施例8:形質細胞への分化抑制効果>
 6週齢のオスDBA/1Jマウスから脾臓を採取し、B細胞を分取した。分取は抗B220抗体を用いてB細胞を標識し、BD-FACSAriaで行った。B細胞を分取後、RPMI1640培地にて1日培養した。その後、100μMマンギフェリン、10μMKPP-08-008a、10μMノラチリオール、20μMテトラヒドロキシキサントン、10μMキサントヒドロール、10μMα-マンゴスチン、10μMγ-マンゴスチンをB細胞に添加し、3時間後に100ng/mLBAFFを添加した後、10日間培養した。10日間培養後、細胞を形質細胞のマーカーである抗CD138抗体を用いて染色し、BD LSRFortessaを用いて、CD138の発現を測定した。
 結果を図10および図11に示す。横軸はCD138の発現量を表し、縦軸は細胞数を表す。また、パネル内の実線はBAFFも薬剤も含まれていないcontrol、点線は100ng/mLBAFF添加、破線は100ng/mLBAFF+各薬剤を添加したものを示す。薬剤およびBAFF無添加のcontrol群と比較し、BAFF添加群ではCD138発現が顕著に増加していた。マンギフェリン投与群(図10(a))、KPP-08-008a投与群(図10(b))、ノラチリオール投与群(図10(c))、テトラヒドロキシキサントン投与群(図10(d))、キサントヒドロール投与群(図11(e))、α-マンゴスチン投与群(図11(f))、γ-マンゴスチン投与群(図11(g))ではBAFF添加群と比較し、顕著にCD138発現量が低下し、ほぼcontrolと同程度になっていた。すなわち、マンギフェリン、KPP-08-008a、ノラチリオール、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンはBAFFによる形質細胞への分化を抑制することが分かった。
実施例9
<実施例9:成熟B細胞への分化抑制効果>
 6週齢のオスDBA/1Jマウスから脾臓を採取し、B細胞を分取した。分取は抗B220抗体を用いてB細胞を標識し、BD-FACSAriaで行った。B細胞を分取後、RPMI1640培地にて1日培養した。その後、100μMマンギフェリン、10μMKPP-08-008a、10μMノラチリオール、20μMテトラヒドロキシキサントン、10μMキサントヒドロール、10μMα-マンゴスチン、10μMγ-マンゴスチンをB細胞に添加し、3時間後に100ng/mLBAFFを添加した後、10日間培養した。
 10日間培養後、細胞をB細胞のマーカーである抗IgM抗体および抗IgD抗体を用いて染色し、BD LSRFortessaを用いて、IgMおよびIgDの発現を測定した。なお、IgM陰性IgD陰性はプレB細胞、IgM陽性IgD陰性は未熟B細胞、IgM陽性IgD陽性は成熟B細胞を示す。
 結果を図12および図13に示す。横軸はIgMの発現量を表し、縦軸はIgDの発現量を表す。薬剤およびBAFF無添加のcontrol群(図12(a))では、IgM陰性IgD陰性の集団が98.2%、IgM陽性IgD陰性の集団が1.81%、IgM陽性IgD陽性の集団が0%に対し、BAFF添加群(図12(b))ではIgM陰性IgD陰性の集団が10.2%、IgM陽性IgD陰性の集団が40.1%、IgM陽性IgD陽性の集団が48.6%と成熟B細胞へ分化していることが分かる。
 マンギフェリン投与群(図12(c))ではIgM陰性IgD陰性の集団が96.5%、IgM陽性IgD陰性の集団が3.51%、IgM陽性IgD陽性の集団が0%であった。KPP-08-008a投与群(図12(d))では、IgM陰性IgD陰性の集団が97.4%、IgM陽性IgD陰性の集団が2.64%、IgM陽性IgD陽性の集団が0%であった。ノラチリオール投与群(図12(e))では、IgM陰性IgD陰性の集団が96.9%、IgM陽性IgD陰性の集団が3.03%、IgM陽性IgD陽性の集団が0%であった。テトラヒドロキシキサントン投与群(図13(f))を投与したものではIgM陰性IgD陰性の集団が95.1%、IgM陽性IgD陰性の集団が4.9%、IgM陽性IgD陽性の集団が0%であった。キサントヒドロール投与群(図13(g))ではIgM陰性IgD陰性の集団が96.9%、IgM陽性IgD陰性の集団が3.08%、IgM陽性IgD陽性の集団が0%であった。α-マンゴスチン投与群(図13(h))では、IgM陰性IgD陰性の集団が85.3%、IgM陽性IgD陰性の集団が14.1%、IgM陽性IgD陽性の集団が0.25%であった。γ-マンゴスチン投与群(図13(i))ではIgM陰性IgD陰性の集団が83.2%、IgM陽性IgD陰性の集団が15.9%、IgM陽性IgD陽性の集団が0.25%であった。いずれの薬剤においても成熟B細胞の割合が顕著に減少していた。
 すなわち、マンギフェリン、KPP-08-008a、ノラチリオール、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンはBAFFによるプレB細胞から成熟B細胞への分化を抑制することが分かった。
実施例10
<実施例10:Bリンパ球におけるBAFF刺激時のNIK活性抑制効果>
 Bリンパ球を以下の条件で培養した。上記の方法で分取したBリンパ球を100mmデッシュに播種し、48時間培養したものをControlとした。また、Bリンパ球を100mmデッシュに播種し、47時間培養後に100ng/mL BAFFを添加し、1時間培養したものを100ng/mLBAFFとした。さらに、Bリンパ球を100mmデッシュに播種し、24時間後に100μMマンギフェリン、10μMKPP-08-008a、10μMノラチリオール、20μMテトラヒドロキシキサントン、10μMキサントヒドロール、10μMα-マンゴスチン、10μMγ-マンゴスチンを添加し、23時間後に100ng/mL BAFFを添加し、1時間培養したものを用意した。いずれも37℃、5%CO条件下で培養した。
 培養液から細胞溶解液でタンパク質を抽出し、サンプルとした。各サンプルをSDSPAGE後、PVDF膜に転写し、抗phospho-NIK抗体、抗NIK抗体、抗NF-κBp52抗体、抗NF-κBp65抗体および抗Lamin抗体を用いてアッセイを行った。
 イムノブロッティングの結果を図14に示す。試薬としてマンギフェリン、KPP-08-008a、ノラチリオール、テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンを並べた。なお、マンギフェリンの濃度は100μMであるが、KPP-08-008aの濃度は10μM、ノラチリオールの濃度は10μM、テトラヒドロキシキサントンの濃度は20μM、キサントヒドロールの濃度は10μM、α-マンゴスチンの濃度は10μM、γ-マンゴスチンの濃度は10μMである。
 縦方向には、抗体種を示した。具体的には、抗phospho-NIK抗体、抗NIK抗体、抗NF-κBp52抗体、抗NF-κBp65抗体および抗Lamin抗体である。
 また、それぞれのバンドを数値化し、各バンドの下に記載した。バンドの数値化はCS Analyzerを用いて以下のように行った。まず、NIKに関しては、バンドを数値化した後、それぞれのリン酸化とトータルタンパクの比を算出した。その後、control(試薬およびBAFF未処理)を1とし、これに対する比を算出した。
 次にp52およびp65に関しては、バンドを数値化した後、それぞれのLaminタンパクとの比を算出した。その後、control(薬剤およびBAFF未処理)を1とし、これに対する比を算出した。
 NIKは各試薬を添加しても、バンドの影は明確に写っていた。しかし、リン酸化NIKについては、いずれの試薬もコントロールに対する比率が減少した。マンギフェリンはコントロールに対して0.673(比率を表す。以下同様。)であった。一方、KPP-08-008aは、コントロールに対して0.376であった。したがって、KPP-08-008aは、明らかにマンギフェリンよりNIKのリン酸化を抑制しているといえる。
 ノラチリオールは、コントロールに対して0.893、テトラヒドロキシキサントンは、コントロールに対して0.728、γ-マンゴスチンはコントロールに対して0.714であり、NIKのリン酸化はマンギフェリンほど抑制していなかった。また、キサントヒドロールはコントロールに対して0.409、α-マンゴスチンはコントロールに対して0.208であり、マンギフェリンよりNIKのリン酸化を抑制しているといえる。しかし、KPP-08-008a、ノラチリオール、キサントヒドロール、α-マンゴスチンおよびγ-マンゴスチンは、マンギフェリンの10分の1の濃度であるので、リン酸化抑制の効果はおよそ10倍よいといえる。また、テトラヒドロキシキサントンは、マンギフェリンの5分の1の濃度であるので、リン酸化抑制効果はおよそ5倍よいといえる。
 なお、BAFF添加時の場合には、コントロールに対して2倍以上のバンドが計測されているが、これはBAFFによる効果を直接受けた場合の程度を示している。
 核内のp52およびP65については、マンギフェリンはコントロールに対して、それぞれ0.930、1.241であり、ある程度の核内移行を抑制しているといえる。一方、KPP-08-008aは、コントロールに対してそれぞれ0.634と1.256であり、p52に関してはマンギフェリンよりも核内移行を抑制していた。ノラチリオールはコントロールに対して0.569と1.215であった。p52の核内移行については、よく抑制しているといえる。
 テトラヒドロキシキサントンはコントロールに対して0.191と0.993であった。キサントヒドロールはコントロールに対して0.582と1.085であった。α-マンゴスチンはコントロールに対して0.871と1.067であった。γ-マンゴスチンはコントロールに対して0.472と0.996であった。これらの物質も、p52およびp65ともにマンギフェリンより核内移行を抑制していた。
 p52は炎症シグナルであり、これらの物質が核内に移行すると、炎症誘発性あるいは抗炎症性のタンパク質の発現を調節するとされている。したがって、p52の核内移行を抑制するということは、炎症が生じにくくしていると考えられ、図2-図13に示した実施例の結果とも一致する。また、BAFFによるNIK/NF-κBp52経路活性化は自己免疫疾患発症に関わるB細胞分化、B細胞活性化および自己抗体産生に関わるとされている。つまり、これらの経路を阻害することは、B細胞分化および自己抗体産生を抑制していると考えられ、図2-図13に示した実施例とも一致する。
 本発明に係る自己免疫疾患の改善用組成物は、選択的NIK阻害剤としてNF-κB p52が活性化し発症する自己免疫疾患に対して有用な医薬組成物とすることができる。

 

Claims (5)

  1.  キサントン骨格を有する(1)式の化合物。
    Figure JPOXMLDOC01-appb-C000001
  2. (1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物を有効成分とする自己免疫疾患の改善用組成物。
    Figure JPOXMLDOC01-appb-C000002
  3. (1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物を有効成分とするBAFF過剰発現が関与する自己免疫疾患の改善用組成物。
    Figure JPOXMLDOC01-appb-C000003
  4.  (1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物を有効成分とする自己免疫疾患治療薬。
    Figure JPOXMLDOC01-appb-C000004
  5.  (1)式で表される物質、ノラチリオール、1,3,5,6-テトラヒドロキシキサントン、キサントヒドロール、α-マンゴスチン、γ-マンゴスチンから選ばれる少なくとも一種の化合物を含む加工食品。
    Figure JPOXMLDOC01-appb-C000005

     
     
PCT/JP2019/049939 2018-12-19 2019-12-19 自己免疫疾患の改善用組成物 WO2020130102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561525A JP7479695B2 (ja) 2018-12-19 2019-12-19 自己免疫疾患の改善用組成物
JP2024027267A JP2024051068A (ja) 2018-12-19 2024-02-27 自己免疫疾患の改善用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018237688 2018-12-19
JP2018-237688 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020130102A1 true WO2020130102A1 (ja) 2020-06-25

Family

ID=71101323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049939 WO2020130102A1 (ja) 2018-12-19 2019-12-19 自己免疫疾患の改善用組成物

Country Status (2)

Country Link
JP (2) JP7479695B2 (ja)
WO (1) WO2020130102A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057956A (zh) * 2021-03-31 2021-07-02 黑龙江中医药大学 一种含藤黄科成份的药物及制备缓解自身免疫药物的用途
WO2022138735A1 (ja) * 2020-12-22 2022-06-30 学校法人近畿大学 悪性腫瘍疾患の改善用医薬組成物
WO2022173042A1 (ja) * 2021-02-15 2022-08-18 学校法人近畿大学 サイトカインストーム抑制用医薬組成物
WO2023077397A1 (en) * 2021-11-05 2023-05-11 Xantho Biotechnology Co., Ltd Use of mangosteen fruit shell extract in the preparation of a medicament for treating psoriasis
WO2023234312A1 (ja) * 2022-05-30 2023-12-07 学校法人近畿大学 自己免疫系疾患の改善用医薬組成物
WO2024029528A1 (ja) * 2022-08-02 2024-02-08 学校法人近畿大学 アレルギー性疾患の改善用医薬組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432602A (zh) * 2011-10-24 2012-05-02 广西中医学院 芒果苷七丙酯化衍生物
CN102432601A (zh) * 2011-10-24 2012-05-02 广西中医学院 一种芒果苷五乙酯化衍生物
CN104257650A (zh) * 2014-09-12 2015-01-07 广西中医药大学 一种药物制剂
CN104873487A (zh) * 2015-05-29 2015-09-02 广西中医药大学 一种具有抗肝纤维化作用的药物
JP2017031146A (ja) * 2015-07-30 2017-02-09 学校法人近畿大学 Nik阻害剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102432602A (zh) * 2011-10-24 2012-05-02 广西中医学院 芒果苷七丙酯化衍生物
CN102432601A (zh) * 2011-10-24 2012-05-02 广西中医学院 一种芒果苷五乙酯化衍生物
CN104257650A (zh) * 2014-09-12 2015-01-07 广西中医药大学 一种药物制剂
CN104873487A (zh) * 2015-05-29 2015-09-02 广西中医药大学 一种具有抗肝纤维化作用的药物
JP2017031146A (ja) * 2015-07-30 2017-02-09 学校法人近畿大学 Nik阻害剤

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEIRO, J. ET AL.: "Expression profiles of genes involved in the mouse nuclear factor-kappa B signal transduction pathway are modulated by mangiferin", INTERNATIONAL IMMUNOPHARMACOLOGY, vol. 4, no. 6, 2004, pages 763 - 778, XP055288383, DOI: 10.1016/j.intimp.2004.03.002 *
LI, X. ET AL.: "Synthesis and hypoglycemic activity of esterified-derivatives of mangiferin", CHINESE JOURNAL OF NATURAL MEDICINES, vol. 11, no. 3, 2013, pages 296 - 301, XP055721115 *
WEI, X. ET AL.: "Semi-synthesis of neomangiferin from mangiferin", TETRAHEDRON LETTERS, vol. 55, no. 19, 2014, pages 3083 - 3086, XP028646507, DOI: 10.1016/j.tetlet.2014.03.129 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138735A1 (ja) * 2020-12-22 2022-06-30 学校法人近畿大学 悪性腫瘍疾患の改善用医薬組成物
WO2022173042A1 (ja) * 2021-02-15 2022-08-18 学校法人近畿大学 サイトカインストーム抑制用医薬組成物
CN113057956A (zh) * 2021-03-31 2021-07-02 黑龙江中医药大学 一种含藤黄科成份的药物及制备缓解自身免疫药物的用途
WO2023077397A1 (en) * 2021-11-05 2023-05-11 Xantho Biotechnology Co., Ltd Use of mangosteen fruit shell extract in the preparation of a medicament for treating psoriasis
EP4203986A4 (en) * 2021-11-05 2024-05-29 Xantho Biotechnology Co., Ltd USE OF AN EXTRACT OF MANGOSTANE FRUIT HELL IN THE PREPARATION OF A MEDICINE FOR THE TREATMENT OF PSORIASIS
WO2023234312A1 (ja) * 2022-05-30 2023-12-07 学校法人近畿大学 自己免疫系疾患の改善用医薬組成物
WO2024029528A1 (ja) * 2022-08-02 2024-02-08 学校法人近畿大学 アレルギー性疾患の改善用医薬組成物

Also Published As

Publication number Publication date
JP2024051068A (ja) 2024-04-10
JPWO2020130102A1 (ja) 2021-11-04
JP7479695B2 (ja) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2020130102A1 (ja) 自己免疫疾患の改善用組成物
JP6773915B2 (ja) 前立腺癌を治療する組み合わせ、薬物組成物および治療方法
WO2017047769A1 (ja) トール様受容体7またはトール様受容体9の活性化阻害剤
WO2020162638A1 (ja) 悪性腫瘍疾患の改善用組成物
US8454956B2 (en) Methods for treating rheumatoid arthritis and osteoporosis with anti-IL-20 antibodies
WO2022007461A1 (zh) 一种免疫调节剂
US20140179780A1 (en) Pharmaceutical composition containing oleanolic acid acetate as an active ingredient for preventing or treating tlr- or il-6-mediated diseases
KR102588426B1 (ko) 치환 디히드로피롤로피라졸 유도체
EP2340039B1 (en) Use of il-20 antagonists for treating osteoporosis
de Vallière et al. A novel OGR1 (GPR68) inhibitor attenuates inflammation in murine models of colitis
US20240124430A1 (en) Pharmaceutical composition for ameliorating malignant diseases
CN111759827A (zh) 一种用于预防或治疗关节炎或炎性疾病的药物组合物
WO2022097287A1 (ja) Eomes陽性CD4陽性T細胞の増加に起因する進行型疾患治療剤
TWI537246B (zh) 用於治療發炎性腸病之化合物
US8759323B2 (en) Protein phosphatase inhibitor
WO2017076332A1 (zh) 具有acc1蛋白调控作用的五环三萜类化合物及其用途
KR102105483B1 (ko) 테트라하이드로파파베린 및 il-6 억제제를 유효성분으로 포함하는 tnf-관련 질환 예방 또는 치료용 조성물 및 이를 이용한 tnf 활성 억제 방법
JPH06122623A (ja) 抗腫瘍剤
US20240115589A1 (en) Pharmaceutical composition for preventing cytokine storm
WO2023234312A1 (ja) 自己免疫系疾患の改善用医薬組成物
KR101659785B1 (ko) Il-6 활성 억제 작용을 갖는 화합물 또는 이의 약학적으로 허용되는 염을 유효성분으로 포함하는 il-6로 매개되는 질환의 예방 또는 치료용 조성물
KR102218542B1 (ko) 모노아세틸디아실글리세롤 화합물을 함유하는 통풍 치료용 조성물 및 통풍의 치료 방법
JP7268264B2 (ja) ピロロピリミジン化合物を有効成分とする炎症性疾患の予防及び/又は治療剤
RU2675237C1 (ru) Соединение (6-{ [(1S)-1(5-фтор-4-оксо-3-фенил-3,4-дигидрохиназолин-2-ил)пропил]амино} -9Н-пурин-9-ил)метилацетат как ингибитор p110δ - дельта-изоформы фосфоинозитид-3-киназы (PI3K), способы его получения (варианты) и применения
JPH1160484A (ja) Tnf産生阻害剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899647

Country of ref document: EP

Kind code of ref document: A1