WO2020130057A1 - ブタジエンの製造方法 - Google Patents

ブタジエンの製造方法 Download PDF

Info

Publication number
WO2020130057A1
WO2020130057A1 PCT/JP2019/049703 JP2019049703W WO2020130057A1 WO 2020130057 A1 WO2020130057 A1 WO 2020130057A1 JP 2019049703 W JP2019049703 W JP 2019049703W WO 2020130057 A1 WO2020130057 A1 WO 2020130057A1
Authority
WO
WIPO (PCT)
Prior art keywords
butene
gas
raw material
butadiene
mol
Prior art date
Application number
PCT/JP2019/049703
Other languages
English (en)
French (fr)
Inventor
荘祐 樋口
信啓 木村
麻由 杉本
俊杰 王
Original Assignee
Jxtgエネルギー株式会社
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社, Jsr株式会社 filed Critical Jxtgエネルギー株式会社
Priority to US17/414,137 priority Critical patent/US20220081374A1/en
Publication of WO2020130057A1 publication Critical patent/WO2020130057A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/31Chromium, molybdenum or tungsten combined with bismuth

Definitions

  • the present invention relates to a method for producing butadiene.
  • Patent Documents 1 and 2 Conventionally, a method for producing butadiene by subjecting a linear butene to an oxidative dehydrogenation reaction in the presence of a catalyst is known (for example, Patent Documents 1 and 2).
  • An object of the present invention is to provide a method for producing butadiene that can efficiently obtain butadiene from 2-butene as a novel method for producing butadiene.
  • One aspect of the present invention comprises a step of supplying a source gas containing 2-butene and an oxygen-containing gas containing molecular oxygen to a reactor filled with a catalyst to obtain a product gas containing butadiene. It relates to a method for producing butadiene.
  • the catalyst contains a composite oxide containing molybdenum and bismuth. The ratio of cis-2-butene to 2-butene in the raw material gas is 30 to 90 mol %.
  • butadiene can be efficiently obtained by using a specific catalyst and using 2-butene having a ratio of cis-2-butene within a specific range as a raw material. If the proportion of cis-2-butene is less than 30 mol%, the butadiene selectivity and the butadiene yield are lowered, and for 2-butene having a proportion of cis-2-butene exceeding 90 mol%, it becomes difficult to procure raw materials. , The efficiency of the whole process decreases.
  • the ratio of cis-2-butene to 2-butene in the raw material gas may be 35 to 45 mol %.
  • the product gas may further contain 2-butene, and the ratio of cis-2-butene to 2-butene in the product gas may be 28 to 50 mol %.
  • the ratio of cis-2-butene to 2-butene in the produced gas may be 28 to 32 mol %.
  • the production method further comprises a step of contacting the raw material composition containing 1-butene with an isomerization catalyst to isomerize at least a part of 1-butene to obtain 2-butene. Good.
  • a raw material gas containing 2-butene and an oxygen-containing gas containing molecular oxygen are supplied to a reactor filled with a catalyst to obtain a product gas containing butadiene. It has a process.
  • the catalyst contains a composite oxide containing molybdenum and bismuth. The ratio of cis-2-butene to 2-butene in the raw material gas is 30 to 90 mol %.
  • butadiene can be efficiently obtained by using a specific catalyst and using 2-butene having a ratio of cis-2-butene within a specific range as a raw material. If the proportion of cis-2-butene is less than 30 mol%, the butadiene selectivity and the butadiene yield are lowered, and for 2-butene having a proportion of cis-2-butene exceeding 90 mol%, it becomes difficult to procure raw materials. , The efficiency of the whole process decreases. Specifically, for example, in order to obtain 2-butene having a high cis ratio (more than 90 mol%) from a mixed C4 fraction derived from a refined petroleum product, a large amount of energy is required in the distillation column.
  • the raw material gas may contain straight-chain butene (1-butene and 2-butene) as a main component.
  • the content ratio of the linear butene in the raw material gas may be, for example, 50 mol% or more, preferably 60 mol% or more, and more preferably 70 mol% or more.
  • the upper limit of the linear butene content in the raw material gas is not particularly limited and may be 100 mol%.
  • the raw material gas preferably contains 2-butene as a main component.
  • the content ratio of 2-butene in the raw material gas may be, for example, 50 mol% or more, preferably 60 mol% or more, and more preferably 70 mol% or more.
  • the upper limit of the linear butene content in the raw material gas is not particularly limited and may be 100 mol%.
  • the 2-butene in the raw material gas may include cis-2-butene and trans-2-butene.
  • the ratio X 1 of cis-2-butene to 2-butene in the raw material gas is 30 mol% or more, preferably 35 mol% or more, and more preferably 37 mol% or more. Further, the ratio X 1 is 90.0 mol% or less, preferably 70 mol% or less, and 60 mol% from the viewpoint of easily obtaining a raw material from a mixed C4 fraction derived from a refined petroleum product at low cost. The following is more preferable.
  • the raw material gas may further contain components other than the linear butene.
  • the source gas may further include butane.
  • Butanes include n-butane and isobutane.
  • the butane content in the raw material gas is not particularly limited and may be, for example, 50 mol% or less, preferably 40 mol% or less, and more preferably 30 mol% or less.
  • the concentration of isobutene in the raw material gas is preferably low, for example, 3 mol% or less, and preferably 1 mol% or less.
  • the butadiene concentration in the raw material gas is preferably low, for example, 3 mol% or less, and preferably 1 mol% or less.
  • the raw material gas may further contain a hydrocarbon having 5 or more carbon atoms.
  • a by-product (or a polymer produced by the by-product) may be deposited in the latter stage of the reactor to cause clogging of the reactor.
  • the raw material gas contains hydrocarbons having 5 or more carbon atoms
  • the hydrocarbons having 5 or more carbon atoms condense into liquid and dissolve by-products.
  • the content ratio of the hydrocarbon having 5 or more carbon atoms in the raw material gas is preferably 0.05 mol% or more, more preferably 0.1 mol% or more, It is more preferably 0.2 mol% or more. From the viewpoint of reaction efficiency, the content ratio of hydrocarbons having 5 or more carbon atoms in the raw material gas is preferably 7 mol% or less, more preferably 6 mol% or less, and 5.5 mol% or less. Is more preferable.
  • the carbon number of the hydrocarbon may be, for example, 25 or less, preferably 20 or less, and more preferably 15 or less.
  • the hydrocarbon is not particularly limited, but is preferably saturated hydrocarbon. Further, the hydrocarbon may be linear, branched or cyclic, and is preferably linear or branched.
  • the raw material gas for example, a fraction containing linear butenes and butanes obtained by separating butadiene and isobutene from a C4 fraction by-produced by naphtha decomposition may be used. Further, as the raw material gas, for example, a fraction produced by a dehydrogenation reaction of n-butane may be used. Further, as the raw material gas, for example, a fraction obtained by dimerization of ethylene may be used. Further, as the raw material gas, for example, a heavy oil fraction obtained when crude oil is distilled in an oil refinery plant or the like is decomposed in a fluidized bed state using a powdery solid catalyst, and converted into a low boiling point hydrocarbon. C4 fraction obtained from fluid catalytic cracking may be used.
  • the raw material gas may be one in which the above-mentioned fraction is subjected to an isomerization reaction to isomerize at least a part of 1-butene so that the proportion of 2-butene is higher than that of the fraction. .. That is, the production method according to the present embodiment further comprises a step of contacting a raw material composition containing 1-butene with an isomerization catalyst to isomerize at least a portion of 1-butene to obtain 2-butene. You can stay.
  • the isomerization catalyst and the reaction conditions for the isomerization reaction are not particularly limited, and known catalysts and conditions capable of isomerizing 1-butene to 2-butene can be used without particular limitation.
  • the isomerization catalyst may include, for example, at least one selected from the group consisting of silica, alumina, silica-alumina, zeolite, activated clay, diatomaceous earth, and kaolin. Further, the isomerization catalyst may include at least one selected from the group consisting of silica and alumina. Further, the isomerization catalyst may be composed of silica alumina.
  • the isomerization catalyst may have a carrier and an element supported on the carrier (hereinafter, sometimes referred to as “supported element”).
  • the carrier may include, for example, at least one selected from the group consisting of silica, alumina, silica-alumina, zeolite, activated carbon, activated clay, diatomaceous earth and kaolin, and at least selected from the group consisting of silica and alumina. It may contain one kind or may be composed of zeolite.
  • the supported element of the isomerization catalyst may be, for example, at least one element selected from the group consisting of elements of Group 10 of the periodic table, elements of Group 11 of the periodic table, and lanthanoids.
  • the periodic table means a long-period type periodic table of elements based on the rules of IUPAC (International Union of Pure and Applied Chemistry).
  • the supporting element may be an element other than the group 10 element of the periodic table, the group 11 element of the periodic table, and the lanthanoid.
  • the Group 10 element of the periodic table may be at least one selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt), for example.
  • the Group 11 element of the periodic table may be at least one selected from the group consisting of copper (Cu), silver (Ag), and gold (Au), for example.
  • the lanthanoid may be, for example, at least one selected from the group consisting of lanthanum (La) and cerium (Ce).
  • the element supported on the carrier may be a combination of these elements.
  • the element carried on the carrier is preferably Ag.
  • the reaction conditions for the isomerization reaction are not particularly limited, and for example, the reaction temperature may be 150 to 450°C, preferably 250 to 400°C, more preferably 300 to 380°C.
  • the gas space velocity of the raw material of linear butenes (GHSV (h -1)) may be, for example, a 0.01 ⁇ 50.0h -1, preferably met 0.05 ⁇ 10.0h -1 You can
  • the reactor used for the oxidative dehydrogenation reaction is not particularly limited.
  • the reactor include a tubular reactor, a tank reactor, a fluidized bed reactor, and the like, preferably a fixed bed reactor, and more preferably a fixed bed multitubular reactor. These reactors may be those generally used industrially.
  • the oxygen-containing gas may be, for example, a gas containing 10% by volume or more of molecular oxygen (O 2 ), preferably a gas containing 15% by volume or more of molecular oxygen, and 20% by volume or more of molecular oxygen. More preferably, the gas contains.
  • the oxygen-containing gas may be air, for example. From the viewpoint of cost reduction, the concentration of molecular oxygen in the oxygen-containing gas may be 50% by volume or less, preferably 30% by volume or less, and more preferably 25% by volume or less.
  • the oxygen-containing gas may contain components other than molecular oxygen within the range in which the above-mentioned effects are exhibited.
  • the component include nitrogen, argon, neon, helium, CO, CO 2 , water and the like.
  • the concentration of nitrogen (molecular nitrogen) in the oxygen-containing gas may be, for example, 50% by volume or more, 70% by volume or more, and 75% by volume or more.
  • the concentration of nitrogen in the oxygen-containing gas may be, for example, 90 vol% or less, 85 vol% or less, and 80 vol% or less.
  • the concentration of components other than nitrogen may be, for example, 10% by volume or less, and preferably 1% by volume or less.
  • nitrogen gas and water may be supplied together with the raw material gas and the oxygen-containing gas.
  • Nitrogen gas is supplied from the viewpoint of adjusting the concentrations of the combustible gas and the molecular oxygen so that the reaction gas does not form detonation.
  • Water is supplied from the viewpoint of adjusting the concentrations of the flammable gas and the molecular oxygen as in the case of nitrogen gas, and the viewpoint of suppressing the coking of the catalyst.
  • the raw material gas When the raw material gas is mixed with the oxygen-containing gas, it becomes a mixture of flammable gas and molecular oxygen, so that each gas (raw material gas, oxygen-containing gas, and nitrogen if necessary) should not be in the explosion range.
  • the composition of the inlet of the reactor may be controlled while monitoring the flow rate with a flow meter installed in a pipe that supplies gas and water (water vapor). By the composition control, for example, the composition range is adjusted to the reaction gas composition described later.
  • the explosive range is the range in which the mixed gas of flammable gas and molecular oxygen has a composition that ignites in the presence of some ignition source. If the flammable gas concentration is lower than a certain value, the ignition source does not ignite. This concentration is called the lower explosion limit. Similarly, if the concentration of flammable gas is higher than a certain value, it will not ignite even in the presence of an ignition source, and this concentration is called the upper explosion limit.
  • the respective values depend on the oxygen concentration. Generally, the lower the oxygen concentration is, the closer the values are to each other, and when the oxygen concentration reaches a certain value, the two coincide with each other. The oxygen concentration at this time is called the limiting oxygen concentration, and if the oxygen concentration is lower than this, the mixed gas will not ignite regardless of the concentration of the combustible gas.
  • the amount of oxygen-containing gas, nitrogen, and steam initially supplied to the reactor is adjusted so that the oxygen concentration at the reactor inlet becomes equal to or lower than the limit oxygen concentration, and then the raw material gas is supplied. Then, the method of starting the reaction by increasing the supply amounts of the raw material gas and the oxygen-containing gas so that the combustible gas concentration becomes higher than the upper limit of explosion may be adopted. Further, when the supply amounts of the raw material gas and the oxygen-containing gas are increased, the supply amounts of nitrogen and/or steam may be reduced so that the supply amount of the gas becomes constant. Thereby, the residence time of the gas in the pipe and the reactor can be kept constant, and the fluctuation of the pressure can be suppressed.
  • reaction gas composition Hydrocarbons having 4 carbon atoms: 5 to 15% by volume based on the total amount of reaction gas Linear butene: 50 to 100% by volume based on the total of hydrocarbons having 4 carbon atoms O 2 : 40 to 120% by volume based on the total of hydrocarbons having 4 carbon atoms N 2 : 500 to 1000% by volume based on the total of hydrocarbons having 4 carbon atoms H 2 O: 90 to 900% by volume based on the total of hydrocarbons having 4 carbon atoms
  • the reactor is filled with the catalyst described below, and the linear butene reacts with oxygen on the catalyst to produce butadiene and water.
  • This oxidative dehydrogenation reaction is an exothermic reaction, and the temperature rises due to the reaction, but the reaction temperature is preferably adjusted within the range of 280 to 400°C. Therefore, it is preferable that the reactor be capable of controlling the temperature of the catalyst layer at a constant level by using a heating medium (for example, dibenzyltoluene, nitrite, etc.).
  • the pressure of the reactor is not particularly limited.
  • the pressure of the reactor is usually 0 MPaG or higher, may be 0.001 MPaG or higher, and may be 0.01 MPaG or higher.
  • the higher the pressure of the reactor the more advantageous the reaction gas can be supplied to the reactor.
  • the pressure of the reactor is usually 0.5 MPaG or less, may be 0.3 MPaG or less, and may be 0.1 MPaG or less. The smaller the reactor pressure, the narrower the explosion range tends to be.
  • the residence time of the reactor is not particularly limited.
  • the residence time in the reactor may be, for example, 0.1 seconds or longer, preferably 0.5 seconds or longer.
  • the larger the residence time in the reactor the higher the conversion of linear butene due to the oxidative dehydrogenation reaction.
  • the residence time in the reactor may be, for example, 10 seconds or less, and preferably 5 seconds or less.
  • the smaller the residence time value of the reactor the smaller the reactor can be.
  • a product gas containing butadiene is obtained by the oxidative dehydrogenation reaction.
  • the conversion rate of linear butene in the oxidative dehydrogenation reaction may be, for example, 60% or more, preferably 70% or more, and more preferably 80% or more.
  • the conversion rate of linear butene may be, for example, 99% or less, preferably 95% or less.
  • the produced gas further contains linear butene.
  • the produced gas may contain 2-butene.
  • the ratio X 2 of cis-2-butene to 2-butene in the produced gas is preferably 28 to 50 mol%, more preferably 28 to 32 mol%.
  • the produced gas may contain by-products in the oxidative dehydrogenation reaction.
  • by-products include aldehydes.
  • the source gas contains a hydrocarbon having 5 or more carbon atoms
  • the produced gas may further contain a hydrocarbon having 5 or more carbon atoms.
  • the oxidative dehydrogenation reaction catalyst may be a composite oxide catalyst containing a composite oxide containing molybdenum and bismuth.
  • the composite oxide catalyst may further contain cobalt, for example.
  • the composite oxide catalyst may include, for example, a composite oxide represented by the following formula (1).
  • X represents at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce), and samarium (Sm)
  • Y represents sodium (Na).
  • tungsten W
  • the method for producing the composite oxide catalyst is not particularly limited.
  • the composite oxide catalyst may be obtained by firing a mixture obtained by mixing the source compound of each component element in an aqueous system.
  • Examples of the source compound of the above component elements include oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, ammonium carboxylates, ammonium halides, hydrogen acids, acetylacetonates, and alkoxides of the component elements. Etc.
  • Mo source compounds include ammonium paramolybdate, molybdenum trioxide, molybdic acid, ammonium phosphomolybdate, phosphomolybdic acid, and the like.
  • Fe source compounds include ferric nitrate, ferric sulfate, ferric chloride, ferric acetate, and the like.
  • Examples of the source compound of Co include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, cobalt acetate and the like.
  • Ni source compound examples include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, and the like.
  • Si source compound examples include silica, granular silica, colloidal silica, fumed silica and the like.
  • Bi source compound examples include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth subcarbonate.
  • X component one or more of Mg, Ca, Zn, Ce and Sm
  • Y component one or more of Na, K, Rb, Cs and Tl
  • a complex carbonate compound of Bi and Na is obtained by dropping an aqueous solution of a water-soluble bismuth compound such as bismuth nitrate into an aqueous solution of sodium carbonate or sodium bicarbonate. It can be manufactured by washing the precipitate with water and drying.
  • a complex carbonate compound of Bi and the X component an aqueous solution of a water-soluble compound such as bismuth nitrate and a nitrate of the X component is added dropwise to an aqueous solution of ammonium carbonate or ammonium bicarbonate, and the resulting precipitate is formed. It can be produced by washing with water and drying.
  • sodium carbonate or sodium bicarbonate is used instead of ammonium carbonate or ammonium bicarbonate, a complex carbonate compound of Bi with Na and the X component can be produced.
  • Examples of the source compound of K include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, potassium acetate and the like.
  • Rb source compound examples include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, rubidium acetate and the like.
  • Cs source compound examples include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, and cesium acetate.
  • Tl source compounds include thallium nitrate, thallium chloride, thallium carbonate, thallium acetate, and the like.
  • Examples of the source compound of B include borax, ammonium borate, boric acid and the like.
  • Examples of the source compound of P include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, phosphorus pentoxide, and the like.
  • Examples of the source compound of As include ammonium dialcseno octamolybdate, ammonium dialcseno octatungstate, and the like.
  • Examples of the W source compound include ammonium paratungstate, tungsten trioxide, tungstic acid, phosphotungstic acid, and the like.
  • Mg source compound examples include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, magnesium acetate and the like.
  • Examples of the source compound of Ca include calcium nitrate, calcium sulfate, calcium chloride, calcium carbonate, calcium acetate and the like.
  • Zn source compound examples include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, zinc acetate, and the like.
  • Ce source compounds include cerium nitrate, cerium sulfate, cerium chloride, cerium carbonate, and cerium acetate.
  • Sm source compounds include samarium nitrate, samarium sulfate, samarium chloride, samarium carbonate, and samarium acetate.
  • a mixture obtained by mixing the source compound of each component element in an aqueous system may be dried and then calcined.
  • the firing temperature is not particularly limited, and may be, for example, 300 to 700°C, or 400 to 600°C.
  • the firing time is not particularly limited, and may be, for example, 1 to 12 hours or 4 to 8 hours.
  • the shape of the composite oxide catalyst is not particularly limited and may be appropriately changed depending on the form of the reactor and the like.
  • the composite oxide catalyst may be granular.
  • its particle size may be, for example, 0.1 to 10 mm, and may be 1 to 5 mm.
  • solution B 1.0 g of concentrated nitric acid was added to 5.0 g of pure water to make it acidic, and then 2.3 g of bismuth nitrate pentahydrate was added and stirred at room temperature to dissolve. This solution is called solution B.
  • solution C 10.0 g of ammonium molybdate tetrahydrate was added to 70.0 g of pure water, and stirred at room temperature to dissolve. This solution is called solution C.
  • solution B was added dropwise to solution A and mixed, and this solution was added dropwise to solution C, stirred at room temperature, and mixed for 2 hours.
  • the obtained solution was evaporated to dryness, further dried at 175° C. overnight, and then baked at 530° C. for 5 hours in an air atmosphere to obtain a composite oxide powder.
  • the obtained powder was tablet-molded and crushed to obtain a granular solid of the composite oxide catalyst having a uniform particle size of 0.85 to 1.4 mm.
  • Example 1 ⁇ Preparation of raw material A-1>
  • Raw materials A-1 were prepared by mixing trans-2-butene and cis-2-butene manufactured by Tokyo Kasei Kogyo Co., Ltd. at a mass ratio of 60/40 (trans-2-butene/cis-2-butene).
  • the amount of energy required to obtain the composition of raw material A-1 was determined. Specifically, a method of obtaining a straight-chain hydrocarbon by removing a branched-chain hydrocarbon by subjecting a C4 hydrocarbon fraction to isomerization distillation is assumed. The amount of input energy required to obtain 1 kg of butene was calculated. For the calculation, the Virtual Materials Group Inc. The VMG ver9.5 manufactured by the company was used. As a result of the calculation, the input energy amount was as shown in Table 2.
  • a dehydrogenation reaction was performed.
  • Gas hourly space velocity relative to the catalyst of the linear butenes in the feed (GHSV (h -1)) is 80h -1, the average temperature in the reactor 350 ° C., pressure was 0.0MPa gauge pressure.
  • the produced gas from the reactor outlet was sampled 1 hour after the reaction was started, and analyzed by gas chromatography (Agilent, Model No. 6850A). As a result of the analysis, the conversion of linear butene, the selectivity of butadiene, and the yield of butadiene were as shown in Table 3.
  • Example 2 ⁇ Preparation of raw material A-2> Trans-2-butene and cis-2-butene manufactured by Tokyo Kasei Kogyo Co., Ltd. were mixed at a mass ratio of 60/40 (trans-2-butene/cis-2-butene) to obtain a mixed gas.
  • the amount of energy required to obtain the above mixed gas was determined. Specifically, a method of removing a branched hydrocarbon by subjecting a C4 hydrocarbon fraction to isomerization distillation to obtain a linear hydrocarbon is assumed, and a linear butene having the same composition as the above mixed gas is obtained by the method. The amount of input energy required to obtain 1 kg was calculated. For calculation, Virtual Materials Group Inc. The VMG ver9.5 manufactured by the company was used. As a result of the calculation, the input energy amount was as shown in Table 2.
  • the amount of energy required to obtain the composition of the raw material A-3 was determined. Specifically, suppose a method in which a branched hydrocarbon is removed by subjecting a C4 hydrocarbon fraction to isomerization distillation to obtain a linear hydrocarbon. In this method, a linear hydrocarbon having the same composition as that of the raw material A-3 is used. The amount of input energy required to obtain 1 kg of butene was calculated. For the calculation, the Virtual Materials Group Inc. The VMG ver9.5 manufactured by the company was used. As a result of the calculation, the input energy amount was as shown in Table 2.
  • Example 4 ⁇ Preparation of raw material A-4> The trans-2-butene and cis-2-butene manufactured by Tokyo Kasei Kogyo Co., Ltd. were mixed at a mass ratio of 10.2/89.8 (trans-2-butene/cis-2-butene) to prepare a raw material A-4. Was prepared.
  • the amount of energy required to obtain the composition of the raw material A-4 was determined from the C4 hydrocarbon fraction shown in Table 1. Specifically, a method of removing a branched hydrocarbon by subjecting a C4 hydrocarbon fraction to isomerization distillation to obtain a linear hydrocarbon is assumed, and a linear chain having the same composition as that of the raw material A-4 is obtained by the method. The amount of input energy required to obtain 1 kg of butene was calculated. For the calculation, the Virtual Materials Group Inc. The VMG ver9.5 manufactured by the company was used. As a result of the calculation, the input energy amount was as shown in Table 2.
  • the amount of energy required to obtain the composition of raw material B-3 was determined. Specifically, a method of obtaining a straight-chain hydrocarbon by removing a branched hydrocarbon by subjecting a C4 hydrocarbon fraction to isomerization distillation is assumed, and in this method, a straight-chain hydrocarbon having the same composition as the raw material B-3 is used. The amount of input energy required to obtain 1 kg of butene was calculated. For the calculation, the Virtual Materials Group Inc. The VMG ver9.5 manufactured by the company was used. As a result of the calculation, the input energy amount was as shown in Table 2.
  • the raw material gas compositions and reaction results of the examples and comparative examples are shown in Tables 2 and 3.
  • the raw material gas composition in Table 2 shows the proportion (mol%) of each component in the raw material gas, and the energy input amount shows the amount of energy required for raw material preparation (per 1 kg of 2-butene).
  • the cis-form ratio in Table 3 shows the ratio of cis-2-butene to 2-butene in the produced gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

2-ブテンを含有する原料ガスと分子状酸素を含有する酸素含有ガスとを触媒が充填された反応器に供給し、ブタジエンを含有する生成ガスを得る工程を備え、触媒が、モリブデン及びビスマスを含有する複合酸化物を含み、原料ガス中の2-ブテンに占めるcis-2-ブテンの割合が、30~90mol%である、ブタジエンの製造方法。

Description

ブタジエンの製造方法
 本発明は、ブタジエンの製造方法に関する。
 従来から、直鎖状ブテンを触媒の存在下に酸化脱水素反応させてブタジエンを製造する方法が知られている(例えば、特許文献1及び2)。
特開昭60-115532号公報 特開昭60-126235号公報
 ブタジエンの需要増加に伴って、製造装置の要求特性、運転コスト、反応効率等の異なる、多様なブタジエンの製造方法の開発が求められている。
 本発明は、ブタジエンの新規製造方法として、2-ブテンからブタジエンを効率良く得ることが可能なブタジエンの製造方法を提供することを目的とする。
 本発明の一側面は、2-ブテンを含有する原料ガスと分子状酸素を含有する酸素含有ガスとを触媒が充填された反応器に供給し、ブタジエンを含有する生成ガスを得る工程を備える、ブタジエンの製造方法に関する。この製造方法において、上記触媒は、モリブデン及びビスマスを含有する複合酸化物を含む。また、上記原料ガス中の2-ブテンに占めるcis-2-ブテンの割合は、30~90mol%である。
 上記製造方法では、特定の触媒を用い、cis-2-ブテンの割合が特定範囲内にある2-ブテンを原料とすることで、ブタジエンを効率良く得ることができる。なお、cis-2-ブテンの割合が30mol%未満であると、ブタジエン選択率及びブタジエン収率が低下し、cis-2-ブテンの割合が90mol%を超える2-ブテンは、原料調達が困難となり、プロセス全体の効率が低下する。
 一態様において、上記原料ガス中の2-ブテンに占めるcis-2-ブテンの割合は、35~45mol%であってよい。
 一態様において、上記生成ガスは2-ブテンを更に含有していてよく、当該生成ガス中の2-ブテンに占めるcis-2-ブテンの割合は、28~50mol%であってよい。
 一態様において、上記生成ガス中の2-ブテンに占めるcis-2-ブテンの割合は、28~32mol%であってよい。このような割合となるように酸化脱水素反応の反応条件を調整することで、ブタジエン選択率及びブタジエン収率が一層向上する傾向がある。
 一態様に係る製造方法は、1-ブテンを含有する原料組成物を異性化触媒に接触させて、1-ブテンの少なくとも一部を異性化させて、2-ブテンを得る工程を更に備えていてよい。
 本発明によれば、ブタジエンの新規製造方法として、2-ブテンからブタジエンを効率良く得ることが可能なブタジエンの製造方法が提供される。
 以下、本発明の好適な実施形態について説明する。
 本実施形態に係るブタジエンの製造方法は、2-ブテンを含有する原料ガスと分子状酸素を含有する酸素含有ガスとを触媒が充填された反応器に供給し、ブタジエンを含有する生成ガスを得る工程を備える。本実施形態において、触媒は、モリブデン及びビスマスを含有する複合酸化物を含む。また、原料ガス中の2-ブテンに占めるcis-2-ブテンの割合は、30~90mol%である。
 上記製造方法では、特定の触媒を用い、cis-2-ブテンの割合が特定範囲内にある2-ブテンを原料とすることで、ブタジエンを効率良く得ることができる。なお、cis-2-ブテンの割合が30mol%未満であると、ブタジエン選択率及びブタジエン収率が低下し、cis-2-ブテンの割合が90mol%を超える2-ブテンは、原料調達が困難となり、プロセス全体の効率が低下する。具体的には、例えば、石油精製物に由来する混合C4留分から、cis比率の高い(90mol%を超える)2-ブテンを得るためには、蒸留塔で多量のエネルギーが必要となる。
 原料ガスは、直鎖状ブテン(1-ブテン及び2-ブテン)を主成分として含んでいてよい。原料ガス中の直鎖状ブテンの含有割合は、例えば50mol%以上であってよく、好ましくは60mol%以上、より好ましくは70mol%以上である。原料ガス中の直鎖状ブテンの含有割合の上限は特に限定されず、100mol%であってもよい。
 原料ガスは、2-ブテンを主成分として含むことが好ましい。原料ガス中の2-ブテンの含有割合は、例えば50mol%以上であってよく、好ましくは60mol%以上、より好ましくは70mol%以上である。原料ガス中の直鎖状ブテンの含有割合の上限は特に限定されず、100mol%であってもよい。
 原料ガス中の2-ブテンは、cis-2-ブテン及びtrans-2-ブテンを含むものであってよい。原料ガス中の2-ブテンに占めるcis-2-ブテンの割合Xは、30mol%以上であり、好ましくは35mol%以上、より好ましくは37mol%以上である。また、上記割合Xは、90.0mol%以下であり、石油精製物に由来する混合C4留分から低コストで原料が得られやすくなる観点からは、70mol%以下であることが好ましく、60mol%以下であることがより好ましい。
 原料ガスは、直鎖状ブテン以外の成分を更に含有していてもよい。例えば、原料ガスは、ブタンを更に含んでいてもよい。ブタンとしては、n-ブタン及びイソブタンが挙げられる。原料ガス中のブタンの含有割合は特に限定されず、例えば50mol%以下であってよく、好ましくは40mol%以下、より好ましくは30mol%以下である。
 原料ガス中のイソブテンの濃度は低いことが好ましく、例えば3mol%以下であってよく、1mol%以下であることが好ましい。
 原料ガス中のブタジエンの濃度は低いことが好ましく、例えば3mol%以下であってよく、1mol%以下であることが好ましい。
 原料ガスは、炭素原子数5以上の炭化水素を更に含有していてもよい。ブタジエンの製造方法では、反応器の後段において、副生物(又は、副生物によって生じる重合物等)が沈着し、反応器の閉塞を引き起こすことがある。原料ガスが炭素原子数5以上の炭化水素を含有することで、反応器の後段で生成ガスが冷却された際に、炭素原子数5以上の炭化水素が凝縮して液体となり、副生物を溶解又は押し流すことによって、反応器の閉塞を抑制することができる。この効果を顕著に得る観点からは、原料ガス中の炭素原子数5以上の炭化水素の含有割合は、0.05mol%以上であることが好ましく、0.1mol%以上であることがより好ましく、0.2mol%以上であることが更に好ましい。また、反応効率の観点からは、原料ガス中の炭素原子数5以上の炭化水素の含有割合は、7mol%以下であることが好ましく、6mol%以下であることがより好ましく、5.5mol%以下であることが更に好ましい。
 上記炭化水素の炭素数は、例えば、25以下であってよく、20以下であることが好ましく、15以下であることがより好ましい。また、上記炭化水素は、特に限定されないが、飽和炭化水素であることが好ましい。また、上記炭化水素は、直鎖状、分岐状又は環状であってよく、直鎖状又は分岐状であることが好ましい。
 原料ガスとしては、例えば、ナフサ分解で副生するC4留分から、ブタジエン及びイソブテンを分離して得られる、直鎖状ブテン及びブタン類を含む留分を用いてよい。また、原料ガスとしては、例えば、n-ブタンの脱水素反応により生成した留分を使用してもよい。また、原料ガスとしては、例えば、エチレンの二量化により得られた留分を使用してもよい。また、原料ガスとしては、例えば、石油精製プラント等で原油を蒸留した際に得られる重油留分を、流動層状態で粉末状の固体触媒を使って分解し、低沸点の炭化水素に変換する流動接触分解(Fluid Catalytic Cracking)から得られるC4留分を使用してもよい。
 また、原料ガスとしては、上述の留分を異性化反応に供して、1-ブテンの少なくとも一部を異性化して、2-ブテンの割合を当該留分より向上させたものであってもよい。すなわち、本実施形態に係る製造方法は、1-ブテンを含有する原料組成物を異性化触媒に接触させて、1-ブテンの少なくとも一部を異性化させて2-ブテンを得る工程を更に備えていてよい。
 異性化触媒及び異性化反応の反応条件は特に限定されず、1-ブテンを2-ブテンに異性化することが可能な公知の触媒及び条件を特に制限なく用いることができる。異性化触媒は、例えば、シリカ、アルミナ、シリカアルミナ、ゼオライト、活性白土、珪藻土及びカオリンからなる群より選択される少なくとも一種を含むものであってよい。また、異性化触媒は、シリカ及びアルミナからなる群より選択される少なくとも一種を含むものであってもよい。また、異性化触媒は、シリカアルミナで構成されたものであってもよい。
 また、異性化触媒は、担体と、担体に担持された元素(以下、場合により「担持元素」という。)と、を有していてよい。担体は、例えば、シリカ、アルミナ、シリカアルミナ、ゼオライト、活性炭、活性白土、珪藻土及びカオリンからなる群より選択される少なくとも一種を含むものであってよく、シリカ及びアルミナからなる群より選択される少なくとも一種を含むものであってもよく、ゼオライトから構成されるものであってもよい。
 異性化触媒の担持元素は、例えば、周期表第10族元素、周期表第11族元素及びランタノイドからなる群より選択される少なくとも一種の元素であってよい。周期表とは、IUPAC(国際純正応用化学連合)の規定に基づく長周期型の元素の周期表をいう。担持元素は、周期表第10族元素、周期表第11族元素及びランタノイド以外の元素であってもよい。周期表第10族元素は、例えば、ニッケル(Ni)、パラジウム(Pd)及び白金(Pt)からなる群より選択される少なくとも一種であってよい。周期表第11族元素は、例えば、銅(Cu)、銀(Ag)及び金(Au)からなる群より選択される少なくとも一種であってよい。ランタノイドは、例えば、ランタン(La)及びセリウム(Ce)からなる群より選択される少なくとも一種であってよい。担体に担持される元素は、これらの元素の組み合わせであってもよい。担体に担持される元素は、Agであることが好ましい。
 また、異性化反応の反応条件は特に限定されず、例えば、反応温度は150~450℃であってよく、好ましくは250~400℃、より好ましくは300~380℃である。また、原料の直鎖状ブテンのガス空間速度(GHSV(h-1))は、例えば0.01~50.0h-1であってよく、好ましくは0.05~10.0h-1であってよい。
 本実施形態において、酸化脱水素反応に用いられる反応器は特に限定されない。反応器としては、例えば、管型反応器、槽型反応器、流動床反応器等が挙げられ、好ましくは固定床反応器、より好ましくは固定床の多管式反応器である。これらの反応器は、一般に工業的に用いられるものであってよい。
 酸素含有ガスは、例えば、分子状酸素(O)を10体積%以上含むガスであってよく、分子状酸素を15体積%以上含むガスであることが好ましく、分子状酸素を20体積%以上含むガスであることがより好ましい。酸素含有ガスは、例えば、空気であってよい。酸素含有ガス中の分子状酸素の濃度は、コスト抑制の観点から、50体積%以下であってよく、30体積%以下であることが好ましく、25体積%以下であることがより好ましい。
 酸素含有ガスは、上述の効果が奏される範囲で、分子状酸素以外の成分を含んでいてもよい。当該成分としては、例えば、窒素、アルゴン、ネオン、ヘリウム、CO、CO、水等が挙げられる。酸素含有ガス中の窒素(分子状窒素)の濃度は、例えば、50体積%以上であってよく、70体積%以上であってよく、75体積%以上であってよい。また、酸素含有ガス中の窒素の濃度は、例えば、90体積%以下であってよく、85体積%以下であってよく、80体積%以下であってよい。窒素以外の成分の濃度は、例えば10体積%以下であってよく、1体積%以下であることが好ましい。
 反応器に原料ガスを供給するにあたっては、原料ガス及び酸素含有ガスと共に、窒素ガス及び水(水蒸気)を供給してもよい。窒素ガスは、反応ガスが爆鳴気を形成しないように、可燃性ガス及び分子状酸素の濃度を調整する観点から供給される。水(水蒸気)は、窒素ガスと同様に可燃性ガス及び分子状酸素の濃度を調整する観点と、触媒のコーキングを抑制する観点とから、供給される。
 原料ガスは、酸素含有ガスと混合されると、可燃性ガス及び分子状酸素の混合物となることから、爆発範囲に入らない様に各々のガス(原料ガス、酸素含有ガス、必要に応じて窒素ガス及び水(水蒸気))を供給する配管に設置された流量計にて流量を監視しながら、反応器入口の組成制御を行ってよい。当該組成制御により、例えば、後述の反応ガス組成に組成範囲が調整される。
 なお、爆発範囲とは、可燃性ガス及び分子状酸素の混合ガスが、何らかの着火源の存在下で着火するような組成を持つ範囲のことである。可燃性ガスの濃度がある値より低いと着火源が存在しても着火しない。この濃度を爆発下限界という。また可燃性ガスの濃度がある値より高い場合も同様に着火源が存在しても着火せず、この濃度を爆発上限界という。それぞれの値は酸素濃度に依存しており、一般に酸素濃度が低いほど両者の値が近づき、酸素濃度がある値になったとき両者が一致する。このときの酸素濃度を限界酸素濃度と言い、酸素濃度がこれより低ければ可燃性ガスの濃度によらず混合ガスは着火しない。
 本実施形態では、例えば、初めに反応器に供給される酸素含有ガス、窒素及び水蒸気の量を調整して、反応器入口の酸素濃度が限界酸素濃度以下になるようにしてから原料ガスの供給を開始し、次いで、可燃性ガス濃度が爆発上限界よりも濃くなるように原料ガス及び酸素含有ガスの供給量を増やしていき、反応を開始する方法を採用してよい。また、原料ガス及び酸素含有ガスの供給量を増やしていくときに、窒素及び/又は水蒸気の供給量を減らして、ガスの供給量が一定となるようにしてもよい。これにより、配管及び反応器におけるガスの滞留時間を一定に保ち、圧力の変動を抑えることができる。
 反応器に供給される反応ガスの代表的な組成を以下に示す。
<反応ガス組成>
 炭素数4の炭化水素:反応ガス全量に対して、5~15体積%
 直鎖状ブテン:炭素数4の炭化水素の合計に対して、50~100体積%
 O:炭素数4の炭化水素の合計に対して、40~120体積%
 N:炭素数4の炭化水素の合計に対して、500~1000体積%
 HO:炭素数4の炭化水素の合計に対して、90~900体積%
 反応器には、後述する触媒が充填されており、触媒上で直鎖状ブテンが酸素と反応して、ブタジエンと水とが生成する。この酸化脱水素反応は発熱反応であり、反応により温度が上昇するが、反応温度は280~400℃の範囲に調整することが好ましい。したがって、反応器は、熱媒体(例えば、ジベンジルトルエン、亜硝酸塩等)を使用して触媒層の温度を一定に制御できるものであることが好ましい。
 反応器の圧力は特に限定されない。反応器の圧力は、通常0MPaG以上であり、0.001MPaG以上であってよく、0.01MPaG以上であってもよい。反応器の圧力が大きくなるほど、反応器に反応ガスを多量に供給できるというメリットがある。一方、反応器の圧力は、通常0.5MPaG以下であり、0.3MPaG以下であってよく、0.1MPaG以下であってもよい。反応器の圧力が小さくなるほど、爆発範囲が狭くなる傾向がある。
 反応器の滞留時間は特に限定されない。反応器の滞留時間は、例えば0.1秒以上であってよく、0.5秒以上であることが好ましい。反応器の滞留時間の値が大きくなるほど、酸化脱水素反応による直鎖状ブテンの転化率が高くなるという利点がある。一方、反応器の滞留時間は、例えば10秒以下であってよく、5秒以下であることが好ましい。反応器の滞留時間の値が小さくなるほど、反応器を小さくできる。
 本実施形態では、酸化脱水素反応により、ブタジエンを含有する生成ガスが得られる。
 本実施形態において、酸化脱水素反応における直鎖状ブテンの転化率は、例えば、60%以上であってよく、好ましくは70%以上、より好ましくは80%以上である。また、直鎖状ブテンの転化率は、例えば、99%以下であってよく、好ましくは95%以下である。
 直鎖状ブテンの転化率が100%未満であるとき、生成ガスは、直鎖状ブテンを更に含有している。このとき、生成ガスは、2-ブテンを含有していてよい。
 生成ガス中の2-ブテンに占めるcis-2-ブテンの割合Xは、28~50mol%であることが好ましく、28~32mol%であることがより好ましい。生成ガス中の上記割合Xが上記範囲となるように酸化脱水素反応の反応条件等を調整することで、ブタジエン選択率及びブタジエン収率が一層向上する傾向がある。
 生成ガスは、酸化脱水素反応における副生物を含有していてもよい。副生物としては、例えば、アルデヒド類等が挙げられる。また、原料ガスが炭素原子数5以上の炭化水素を含有する場合、生成ガスは、炭素原子数5以上の炭化水素を更に含有していてもよい。
[触媒]
 以下に、本実施形態に係る製造方法で用いられる触媒(酸化脱水素反応触媒)の好適な態様について詳述する。
 本実施形態において、酸化脱水素反応触媒は、モリブデン及びビスマスを含有する複合酸化物を含む、複合酸化物触媒であってよい。
 複合酸化物触媒は、例えば、コバルトをさらに含有していてもよい。
 複合酸化物触媒は、例えば、下記式(1)で表される複合酸化物を含むものであってよい。
  (Mo)a(Bi)b(Co)c(Ni)d(Fe)e(X)f(Y)g(Z)h(Si)i(O)j  …(1)
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群より選択される少なくとも1種の元素を示し、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群より選択される少なくとも1種の元素を示し、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群より選択される少なくとも1種の元素を示す。また、a~jはそれぞれの元素の原子比を表し、a=12のとき、b=0.5~7、c=0~10、d=0~10(但しc+d=1~10)、e=0.05~3、f=0~2、g=0.04~2、h=0~3、i=0~48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
 複合酸化物触媒の製造方法は、特に限定されない。例えば、複合酸化物触媒は、各成分元素の供給源化合物を水系内で混合して得られた混合物を、焼成して得られたものであってよい。
 上記成分元素の供給源化合物としては、成分元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナート、アルコキシド等が挙げられる。
 Moの供給源化合物としては、例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等が挙げられる。
 Feの供給源化合物としては、例えば、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸第二鉄等が挙げられる。
 Coの供給源化合物としては、例えば、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等が挙げられる。
 Niの供給源化合物としては、例えば、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル等が挙げられる。
 Siの供給源化合物としては、例えば、シリカ、粒状シリカ、コロイダルシリカ、ヒュームドシリカ等が挙げられる。
 Biの供給源化合物としては、例えば、塩化ビスマス、硝酸ビスマス、酸化ビスマス、次炭酸ビスマス等が挙げられる。また、X成分(Mg、Ca、Zn、Ce及びSmのうちの1種又は2種以上)やY成分(Na、K、Rb、Cs及びTlのうちの1種又は2種以上)を固溶させた、Biと、X成分及び/又はY成分と、の複合炭酸塩化合物として供給することもできる。
 例えば、Y成分としてNaを用いた場合、BiとNaとの複合炭酸塩化合物は、炭酸ナトリウム又は重炭酸ナトリウムの水溶液等に、硝酸ビスマス等の水溶性ビスマス化合物の水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。また、BiとX成分との複合炭酸塩化合物は、炭酸アンモニウム又は重炭酸アンモニウムの水溶液等に、硝酸ビスマス及びX成分の硝酸塩等の水溶性化合物からなる水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。炭酸アンモニウム又は重炭酸アンモニウムの代わりに、炭酸ナトリウム又は重炭酸ナトリウムを用いると、BiとNa及びX成分との複合炭酸塩化合物を製造することができる。
 Kの供給源化合物としては、例えば、硝酸カリウム、硫酸カリウム、塩化カリウム、炭酸カリウム、酢酸カリウム等を挙げることができる。
 Rbの供給源化合物としては、例えば、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム、酢酸ルビジウム等を挙げることができる。
 Csの供給源化合物としては、例えば、硝酸セシウム、硫酸セシウム、塩化セシウム、炭酸セシウム、酢酸セシウム等を挙げることができる。
 Tlの供給源化合物としては、例えば、硝酸第一タリウム、塩化第一タリウム、炭酸タリウム、酢酸第一タリウム等を挙げることができる。
 Bの供給源化合物としては、例えば、ホウ砂、ホウ酸アンモニウム、ホウ酸等を挙げることができる。
 Pの供給源化合物としては、例えば、リンモリブデン酸アンモニウム、リン酸アンモニウム、リン酸、五酸化リン等を挙げることができる。
 Asの供給源化合物としては、例えば、ジアルセノ十八モリブデン酸アンモニウム、ジアルセノ十八タングステン酸アンモニウム等を挙げることができる。
 Wの供給源化合物としては、例えば、パラタングステン酸アンモニウム、三酸化タングステン、タングステン酸、リンタングステン酸等を挙げることができる。
 Mgの供給源化合物としては、例えば、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、酢酸マグネシウム等が挙げられる。
 Caの供給源化合物としては、例えば、硝酸カルシウム、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、酢酸カルシウム等が挙げられる。
 Znの供給源化合物としては、例えば、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛等が挙げられる。
 Ceの供給源化合物としては、例えば、硝酸セリウム、硫酸セリウム、塩化セリウム、炭酸セリウム、酢酸セリウム等が挙げられる。
 Smの供給源化合物としては、例えば、硝酸サマリウム、硫酸サマリウム、塩化サマリウム、炭酸サマリウム、酢酸サマリウム等が挙げられる。
 各成分元素の供給源化合物を水系内で混合してなる混合物は、乾燥後、焼成されてよい。焼成温度は、特に限定されず、例えば300~700℃であってよく、400~600℃であってもよい。焼成時間も特に限定されず、例えば1~12時間であってよく、4~8時間であってもよい。
 複合酸化物触媒の形状は特に限定されず、反応器の形態等に応じて適宜変更してよい。例えば、複合酸化物触媒は、粒状であってよい。複合酸化物触媒が粒状であるとき、その粒径は、例えば0.1~10mmであってよく、1~5mmであってもよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
[製造例1:複合酸化物触媒の調製]
 硝酸コバルト・六水和物12.3g及び硝酸鉄・九水和物5.8gを純水25.0gに加え、常温で撹拌し、溶解させた。この溶液を溶液Aと称す。
 次に、濃硝酸1.0gを純水5.0gに加え、酸性とした後、硝酸ビスマス・五水和物2.3gを加え、常温で撹拌し、溶解させた。この溶液を溶液Bと称す。
 次に、モリブデン酸アンモニウム・四水和物10.0gを純水70.0gに加え、常温で撹拌し、溶解させた。この溶液を溶液Cと称す。
 次に、溶液Aに溶液Bを滴下して、混合し、この溶液を溶液Cへと滴下して加え、常温で撹拌し、2時間混合した。得られた溶液を蒸発乾固し、更に175℃で一晩乾燥した後、空気雰囲気下、530℃で5時間焼成を行い、複合酸化物粉末を得た。得られた粉末を打錠成型し、それを破砕することにより、粒径が0.85~1.4mmに揃った複合酸化物触媒の粒状固体を得た。
[実施例1]
<原料A-1の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、60/40(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料A-1を調製した。
 表1に示すC4炭化水素留分から、原料A-1の組成を得るために必要なエネルギー量を求めた。具体的には、C4炭化水素留分を異性化蒸留にかけて分枝状炭化水素を取り除き、直鎖状炭化水素を得る方法を想定し、当該方法で、原料A-1と同じ組成の直鎖状ブテンを1kg得るために必要となる投入エネルギー量を計算した。計算には、Vertual Materials Group Inc.社製のVMG ver9.5を使用した。計算の結果、投入エネルギー量は表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
<ブタジエンの製造>
 内径10.9mm、長さ300mmのステンレス製反応管に、製造例1で製造された複合酸化物触媒11.6mLを充填した。反応管の中に熱電対を設置して反応器内の温度を測定した。なお、熱媒体は電気炉を使用した。
 原料ガス中の直鎖状ブテン:窒素:酸素:水蒸気=1:13.5:1.5:1.2の比率となるように混合したガスを、予め昇温した反応器に供給し、酸化脱水素反応を行った。原料中の直鎖状ブテンの触媒に対するガス空間速度(GHSV(h-1))は80h-1、反応器内の平均温度は350℃、圧力はゲージ圧で0.0MPaとした。反応器出口からの生成ガスを反応開始から1時間後にサンプリングし、ガスクロマトグラフィー(Agilent社製、型番6850A)で分析を行った。分析の結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[実施例2]
<原料A-2の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、60/40(trans-2-ブテン/cis-2-ブテン)の質量比で混合して、混合ガスを得た。
 表1に示すC4炭化水素留分から、上記混合ガスを得るために必要なエネルギー量を求めた。具体的には、C4炭化水素留分を異性化蒸留にかけて分枝状炭化水素を取り除き、直鎖状炭化水素を得る方法を想定し、当該方法で、上記混合ガスと同じ組成の直鎖状ブテンを1kg得るために必要となる投入エネルギー量を計算した。計算には、Vertual Materials Group Inc.社製のVMG ver9.5を使用した。計算の結果、投入エネルギー量は表2に示す通りであった。
 上記混合ガスを、H型-ZSM-5ゼオライト触媒(東ソー社製、SiO/Al=1900(mol/mol))2.5mLを充填した内径10.9mm、長さ300mmのステンレス製反応管に、混合ガス中の直鎖状ブテン:窒素:酸素:水蒸気=1:13.5:1.5:1.2の比率となるように混合したガスを、触媒に対する原料中の直鎖状ブテンのガス空間速度(GHSV(h-1))が1800h-1となる様に、予め昇温した反応器に供給し、異性化反応を行った。この異性化反応により、原料A-2(trans-2-ブテン/cis-2-ブテン/1-ブテン=48.7/33.1/18.2)を得た。
<ブタジエンの製造>
 原料A-1に代えて原料A-2を用い、GHSVを100h-1に変更したこと以外は、実施例1と同様にしてブタジエンの製造及び生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[実施例3]
<原料A-3の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、49.6/50.4(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料A-3を調製した。
 表1に示すC4炭化水素留分から、原料A-3の組成を得るために必要なエネルギー量を求めた。具体的には、C4炭化水素留分を異性化蒸留にかけて分枝状炭化水素を取り除き、直鎖状炭化水素を得る方法を想定し、当該方法で、原料A-3と同じ組成の直鎖状ブテンを1kg得るために必要となる投入エネルギー量を計算した。計算には、Vertual Materials Group Inc.社製のVMG ver9.5を使用した。計算の結果、投入エネルギー量は表2に示す通りであった。
<ブタジエンの製造>
 原料A-1に代えて原料A-3を用い、GHSVを90h-1に変更したこと以外は、実施例1と同様にしてブタジエンの製造、生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[実施例4]
<原料A-4の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、10.2/89.8(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料A-4を調製した。
 表1に示すC4炭化水素留分から、原料A-4の組成を得るために必要なエネルギー量を求めた。具体的には、C4炭化水素留分を異性化蒸留にかけて分枝状炭化水素を取り除き、直鎖状炭化水素を得る方法を想定し、当該方法で、原料A-4と同じ組成の直鎖状ブテンを1kg得るために必要となる投入エネルギー量を計算した。計算には、Vertual Materials Group Inc.社製のVMG ver9.5を使用した。計算の結果、投入エネルギー量は表2に示す通りであった。
<ブタジエンの製造>
 原料A-1に代えて原料A-4を用い、GHSVを100h-1に変更したこと以外は、実施例1と同様にしてブタジエンの製造、生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[比較例1]
<原料B-1の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、99.6/0.4(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料B-1を調製した。
<ブタジエンの製造>
 原料A-1に代えて原料B-1を用いたこと以外は、実施例1と同様にしてブタジエンの製造、生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[比較例2]
<原料B-2の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、73.1/26.9(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料B-2を調製した。
<ブタジエンの製造>
 原料A-1に代えて原料B-2を用いたこと以外は、実施例1と同様にしてブタジエンの製造、生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
[比較例3]
<原料B-3の調製>
 東京化成工業社製のtrans-2-ブテン及びcis-2-ブテンを、0.8/99.2(trans-2-ブテン/cis-2-ブテン)の質量比で混合し、原料B-3を調製した。
 表1に示すC4炭化水素留分から、原料B-3の組成を得るために必要なエネルギー量を求めた。具体的には、C4炭化水素留分を異性化蒸留にかけて分枝状炭化水素を取り除き、直鎖状炭化水素を得る方法を想定し、当該方法で、原料B-3と同じ組成の直鎖状ブテンを1kg得るために必要となる投入エネルギー量を計算した。計算には、Vertual Materials Group Inc.社製のVMG ver9.5を使用した。計算の結果、投入エネルギー量は表2に示す通りであった。
<ブタジエンの製造>
 原料A-1に代えて原料B-3を用いたこと以外は、実施例1と同様にしてブタジエンの製造、生成ガスの分析を行った。その結果、直鎖状ブテンの転化率、ブタジエンの選択率、ブタジエンの収率は表3に示す通りであった。
 実施例及び比較例の原料ガス組成及び反応結果を表2及び表3に示す。なお、表2中の原料ガス組成は、原料ガスに占める各成分の割合(mol%)を示し、エネルギー投入量は、原料調製に要したエネルギー量(2-ブテン1kg当たり)を示す。また、表3中のcis体比率は、生成ガス中の2-ブテンに占めるcis-2-ブテンの割合を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1.  2-ブテンを含有する原料ガスと分子状酸素を含有する酸素含有ガスとを触媒が充填された反応器に供給し、ブタジエンを含有する生成ガスを得る工程を備え、
     前記触媒が、モリブデン及びビスマスを含有する複合酸化物を含み、
     前記原料ガス中の2-ブテンに占めるcis-2-ブテンの割合が、30~90mol%である、ブタジエンの製造方法。
  2.  前記原料ガス中の2-ブテンに占めるcis-2-ブテンの割合が、35~45mol%である、請求項1に記載の製造方法。
  3.  前記生成ガスが、2-ブテンを更に含有し、
     前記生成ガス中の2-ブテンに占めるcis-2-ブテンの割合が、28~50mol%である、請求項1又は2に記載の製造方法。
  4.  前記生成ガス中の2-ブテンに占めるcis-2-ブテンの割合が、28~32mol%である、請求項3に記載の製造方法。
  5.  1-ブテンを含有する原料組成物を異性化触媒に接触させて、前記1-ブテンの少なくとも一部を異性化させて、2-ブテンを得る工程を更に備える、請求項1~4のいずれか一項に記載の製造方法。
PCT/JP2019/049703 2018-12-18 2019-12-18 ブタジエンの製造方法 WO2020130057A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/414,137 US20220081374A1 (en) 2018-12-18 2019-12-18 Butadiene production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236410 2018-12-18
JP2018236410A JP7210262B2 (ja) 2018-12-18 2018-12-18 ブタジエンの製造方法

Publications (1)

Publication Number Publication Date
WO2020130057A1 true WO2020130057A1 (ja) 2020-06-25

Family

ID=71101857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049703 WO2020130057A1 (ja) 2018-12-18 2019-12-18 ブタジエンの製造方法

Country Status (3)

Country Link
US (1) US20220081374A1 (ja)
JP (1) JP7210262B2 (ja)
WO (1) WO2020130057A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851605A (zh) * 2021-01-21 2021-05-28 浙江工业大学 一种5-羟甲基糠醛选择性氧化制备2,5-二甲酰基呋喃的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521892A (ja) * 2008-03-28 2011-07-28 エスケー イノベーション カンパニー リミテッド 連続流式二重触媒反応装置を用いてn−ブテンから1,3−ブタジエンを製造する方法
JP2015189676A (ja) * 2014-03-27 2015-11-02 三菱化学株式会社 共役ジエンの製造方法
WO2016152287A1 (ja) * 2015-03-20 2016-09-29 Jxエネルギー株式会社 ジエンの製造方法
WO2016152324A1 (ja) * 2015-03-20 2016-09-29 Jxエネルギー株式会社 ジエンの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942598B1 (ko) * 2011-03-09 2019-01-25 미쯔비시 케미컬 주식회사 공액 디엔의 제조 방법
JP6570320B2 (ja) * 2015-03-20 2019-09-04 Jxtgエネルギー株式会社 ジエンの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521892A (ja) * 2008-03-28 2011-07-28 エスケー イノベーション カンパニー リミテッド 連続流式二重触媒反応装置を用いてn−ブテンから1,3−ブタジエンを製造する方法
JP2015189676A (ja) * 2014-03-27 2015-11-02 三菱化学株式会社 共役ジエンの製造方法
WO2016152287A1 (ja) * 2015-03-20 2016-09-29 Jxエネルギー株式会社 ジエンの製造方法
WO2016152324A1 (ja) * 2015-03-20 2016-09-29 Jxエネルギー株式会社 ジエンの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851605A (zh) * 2021-01-21 2021-05-28 浙江工业大学 一种5-羟甲基糠醛选择性氧化制备2,5-二甲酰基呋喃的方法

Also Published As

Publication number Publication date
JP7210262B2 (ja) 2023-01-23
JP2020097543A (ja) 2020-06-25
US20220081374A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP5371692B2 (ja) 共役ジオレフィンの製造方法
EP3368499B1 (en) Process to convert synthesis gas to olefins over a bifunctional chromium oxide/zinc oxide-sapo-34 catalyst
US4423281A (en) Process for producing conjugated diolefins
CN107428635B (zh) 二烯的制造方法
JP5895546B2 (ja) 複合酸化物触媒及び共役ジエンの製造方法
JP2011178719A (ja) ブタジエンの製造方法
JP2019104767A (ja) ジエンの製造方法
JP5874488B2 (ja) 複合金属酸化物触媒及び共役ジエンの製造方法
JP6229201B2 (ja) 複合金属酸化物触媒及び共役ジエンの製造方法
Nieto et al. Gas phase heterogeneous partial oxidation reactions
JP7210262B2 (ja) ブタジエンの製造方法
JP5767795B2 (ja) ブタジエンの製造方法
WO2016152324A1 (ja) ジエンの製造方法
JP6405857B2 (ja) 共役ジエンの製造方法
US11452978B2 (en) Catalytic oxidation method and method for producing conjugated diene
JP5750252B2 (ja) ブタジエンの製造方法
JP6716237B2 (ja) ブタジエンの製造方法
US4292455A (en) Multi-stage dehydrogenation process for preparing indene
JP2012072076A (ja) 共役ジオレフィンの製造方法
JP2014189543A (ja) 共役ジエンの製造方法
JP6443074B2 (ja) 複合金属酸化物触媒及び共役ジエンの製造方法
WO2016056404A1 (ja) ジエンの製造方法及び脱水素触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898935

Country of ref document: EP

Kind code of ref document: A1