WO2020129879A1 - 全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池 - Google Patents

全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池 Download PDF

Info

Publication number
WO2020129879A1
WO2020129879A1 PCT/JP2019/049107 JP2019049107W WO2020129879A1 WO 2020129879 A1 WO2020129879 A1 WO 2020129879A1 JP 2019049107 W JP2019049107 W JP 2019049107W WO 2020129879 A1 WO2020129879 A1 WO 2020129879A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
composite
solid
ion battery
mass
Prior art date
Application number
PCT/JP2019/049107
Other languages
English (en)
French (fr)
Inventor
武内 正隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020129879A1 publication Critical patent/WO2020129879A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte-free, high energy density all-solid-state lithium-ion battery, and more particularly to a negative electrode mixture material for all-solid-state lithium-ion batteries.
  • Lithium-ion batteries have high voltage and high energy density and are widely used.
  • studies on all-solid-state lithium-ion batteries using a solid electrolyte that does not leak and does not leak in place of the organic electrolyte have been actively studied.
  • JP, 2011-181260, A JP 2013-16423 A (US Pat. No. 9,172,113, US Pat. No. 9,845,597) JP, 2013-41749, A JP-A-2005-191864 (US Patent Publication No. 2017/0237115) JP, 2017-27886, A
  • lithium titanate Li 4 Ti 5 O 12
  • Patent Document 4 discloses that two or more kinds of materials are mixed and used as a negative electrode active material, but the optimum particle size of the solid electrolyte to be used, the physical properties of the materials, and the like are not examined, There was room for improvement.
  • Patent Document 5 discloses a negative electrode material in which fine particles containing Si element or Sn element are dispersed in a carbon matrix.
  • the average particle size of fine particles containing an active Si element or Sn element is too small as 11 nm or less, and a large amount of oxide is generated on the surface, so that the initial Coulombic efficiency is low, and the complex with the carbon matrix is insufficient. Charge/discharge cycle characteristics were insufficient.
  • an object of the present invention is to improve the above-mentioned problems of the prior art and provide a negative electrode mixture material for an all-solid-state lithium-ion battery that can obtain an all-solid-state lithium-ion battery with high capacity, high Coulombic efficiency and high cycle characteristics. And to provide an all-solid-state lithium-ion battery using the negative electrode mixture.
  • the present invention provides the following negative electrode composite material for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries.
  • a negative electrode material containing a composite (A) containing silicon-containing particles and a carbonaceous material, and one or more components (B) selected from a carbonaceous material and graphite, and a solid electrolyte The silicon-containing particles of the composite (A) have an average diameter Dav represented by the following formula (1) of 15 nm or more and 150 nm or less, a negative electrode composite material for an all-solid-state lithium-ion battery.
  • Silicon-containing particles are contained in an amount of 25.0 mass% or more and 75.0 mass% or less with respect to 100.0 mass% of the composite (A), and the volume-based accumulation of the composite (A).
  • the negative electrode material contains the composite (A) in an amount of 5.0% by mass or more and 70% by mass or less based on 100% by mass of the total of the composite (A) and the component (B).
  • An all-solid-state lithium-ion battery including a solid electrolyte layer, a negative electrode, and a positive electrode, wherein the negative electrode uses the negative-electrode mixture for all-solid-state lithium-ion battery according to any one of [1] to [11].
  • An all-solid-state lithium-ion battery characterized by being formed.
  • the negative electrode is a composite (A) of silicon-containing particles and a carbonaceous material (hereinafter abbreviated as “composite (A)”). It is possible to obtain an all-solid-state lithium-ion battery having high capacity, high Coulombic efficiency and high cycle characteristics.
  • composite (A) silicon-containing particles and a carbonaceous material
  • the durability can be improved and the capacity can be increased.
  • adhering various kinds of carbon, metal oxides, solid electrolyte particles and the like to the surface of the coating layer (coating layer) of the carbonaceous material cycle characteristics can be improved.
  • the negative electrode composite material for the all-solid-state lithium-ion battery of the present invention (hereinafter, also simply referred to as the “negative electrode composite material of the present invention” or the “negative-electrode composite material”) and the all-solid-state lithium-ion battery will be described in detail.
  • the oxygen content of the silicon-containing particles is preferably 1.0% by mass or more, more preferably 2.0% by mass or more, from the viewpoint of sufficiently suppressing oxidation. Further, the oxygen content is preferably 15.0 mass% or less from the viewpoint of increasing the initial Coulombic efficiency.
  • the oxygen content can be quantified by, for example, an oxygen-nitrogen simultaneous analyzer (inert gas melting-infrared absorption method).
  • the silicon-containing particles are preferably particles having a 90% diameter in the number-based cumulative distribution of primary particle diameters of 200 nm or less.
  • the primary particle size can be measured by observation with a microscope such as SEM or TEM.
  • the primary particle size of the composite silicon-containing particles can be calculated by image analysis of 200 images of spherical particles observed with a transmission electron microscope at a magnification of 100,000.
  • Dav is an average diameter (nm) assuming that the silicon-containing particles are dense spheres
  • Ssa is a BET specific surface area (m 2 /g) of the silicon-containing particles
  • is a true value of silicon. It is a theoretical value of density (2.33 g/cm 3 ).
  • the average diameter Dav is 15 nm or more, the SiO x content due to surface oxidation is suppressed, and the reversible capacity during the initial charge/discharge cycle of the battery increases. Further, the dispersibility in the composite with the carbonaceous material is good, the degree of expansion and contraction of the composite becomes small at the time of Li insertion and desorption during charge and discharge, and deterioration due to the collapse of the composite does not easily occur. From the same viewpoint, the average diameter Dav is preferably 25 nm or more, more preferably 35 nm or more.
  • the average diameter Dav of the silicon-containing particles is 150 nm or less, the reaction of the silicon-containing particles themselves at the time of Li insertion and desorption during charge and discharge becomes uniform, and local expansion and deterioration due to particle collapse hardly occur.
  • the average diameter Dav is preferably 120 nm or less, more preferably 100 nm or less.
  • the silicon-containing particles can contain, in addition to silicon, an element M selected from other metal elements and metalloid elements (such as carbon element).
  • an element M selected from other metal elements and metalloid elements (such as carbon element).
  • the element M include nickel, copper, iron, tin, aluminum, cobalt and the like.
  • the content of the element M is not particularly limited as long as it does not significantly inhibit the action of silicon, and is, for example, 1 mol or less per 1 mol of silicon atom.
  • the silicon-containing particles are not particularly limited by the manufacturing method.
  • it can be manufactured by the method disclosed in WO2012/000858A1.
  • the carbonaceous material in the composite (A) is a carbon material in which the growth of crystals formed by carbon atoms is low, and includes a carbon material that is not graphite. It has a peak near 1360 cm ⁇ 1 by Raman scattering.
  • the carbonaceous material can be produced, for example, by carbonizing a carbonaceous material precursor.
  • the carbonaceous material precursor is not particularly limited, various polymer materials such as phenol resin, thermal heavy oil, pyrolysis oil, straight asphalt, blown asphalt, petroleum tar by-produced during ethylene production, petroleum pitch, coal Coal tar, a heavy component obtained by removing low boiling point components of coal tar by distillation, and coal tar pitch (coal pitch) are preferable, and petroleum pitch or coal pitch is particularly preferable.
  • Petroleum pitch and coal pitch are a mixture of a plurality of polycyclic aromatic compounds. When petroleum pitch or coal pitch is used, a carbonaceous material having a high carbonization rate and few impurities can be produced. Since petroleum pitch and coal pitch have a low oxygen content, the silicon-containing particles are less likely to be oxidized when the silicon-containing particles are coated with the carbonaceous material.
  • the softening point of the carbonaceous material precursor is preferably 80°C or higher.
  • the softening point is 80° C. or higher, the polycyclic aromatic compound constituting the softening point has a sufficiently large average molecular weight and a small volatile content, so that the carbonization rate becomes low and the specific surface area is controlled within an appropriate range. ..
  • the softening point is preferably 300° C. or lower. When the softening point is 300° C. or lower, the viscosity is low and it tends to be uniformly mixed with the silicon-containing particles.
  • the softening point of the carbonaceous material precursor can be measured by the Mettler method described in ASTM-D3104-77.
  • the carbonaceous material precursor has a residual carbon rate of preferably 20% by mass or more, and more preferably 25% by mass or more, from the viewpoint of appropriately covering the surface. Further, the residual coal rate is preferably 70% by mass or less, more preferably 60% by mass or less, from the viewpoint of uniformly mixing with the silicon-containing particles without causing the viscosity to become too high.
  • Residual coal rate is determined by the following method.
  • the solid carbonaceous material precursor is pulverized in a mortar or the like, and the pulverized product is subjected to mass thermal analysis under nitrogen gas flow.
  • the ratio of the mass at 1100°C to the charged mass is defined as the residual coal rate.
  • the residual coal rate corresponds to the fixed carbon amount measured at a carbonization temperature of 1100°C according to JIS K2425.
  • the carbonaceous material precursor has a QI (quinoline insoluble content) content of preferably 10.00 mass% or less, more preferably 5.00 mass% or less, and further preferably 2.00 mass% or less.
  • the QI content of the carbonaceous material precursor is a value corresponding to the amount of free carbon.
  • the negative electrode material according to one embodiment of the present invention preferably contains the composite (A), and at least a part of the silicon-containing particles and the carbonaceous material in the composite (A) are preferably composite with each other. ..
  • the complexing can include, for example, a state in which silicon-containing particles are fixed and bonded by a carbonaceous material, or a state in which the silicon-containing particles are covered with a carbonaceous material.
  • the 50% diameter (D50) in the volume-based cumulative particle size distribution is preferably 2.0 ⁇ m or more, more preferably 4.0 ⁇ m or more.
  • the D50 is 2.0 ⁇ m or more, handling such as coating is excellent, a portion where the active silicon-containing particles are not covered with the carbonaceous material is less likely to occur, the initial Coulombic efficiency is high, and the charge/discharge cycle life is long.
  • the D50 is preferably 18.0 ⁇ m or less, more preferably 10.0 ⁇ m or less.
  • the D50 is 18.0 ⁇ m or less, the input/output characteristics are high, the uniform distribution in the electrode is excellent, and the expansion is uniform, so that the cycle characteristics are improved. That is, by setting D50 within the above range, it is possible to manufacture with good economy, and the initial Coulomb efficiency, input/output characteristics, and cycle characteristics are improved.
  • the D50 represents the diameter at the time of 50% accumulation measured on a volume basis by a laser diffraction type particle size distribution meter, and indicates the apparent diameter of the particles.
  • a laser diffraction type particle size distribution meter for example, Malvern Mastersizer (registered trademark) can be used.
  • the BET specific surface area is preferably 2.0 m 2 /g or more, more preferably 4.0 m 2 /g or more.
  • the BET specific surface area is preferably 10.0 m 2 /g or less, more preferably 8.0 m 2 /g or less.
  • the BET specific surface area is 10.0 m 2 /g or less, handling such as coating is facilitated, the amount of binder required for electrode preparation is suppressed, the electrode density is easily increased, and the energy density of the battery is improved. ..
  • carbon black is preferably attached to a part or all of the surface of the composite (A). This reduces the contact resistance with other materials in the negative electrode and improves the initial conductivity of the negative electrode. Further, the increase in battery resistance after repeating the charge/discharge cycle is small.
  • the carbon black used is not particularly limited, but Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo Co., Ltd.), Ketjen Black (registered trademark) (manufactured by Lion Corporation), “Super C65” manufactured by TIMCAL, Super C45" manufactured by TIMCAL is used. The adherence of carbon black can be confirmed by SEM observation and Raman spectroscopic analysis.
  • graphene is attached to a part or all of the surface of the composite (A). This lowers the contact resistance with other materials in the negative electrode, improves not only the conductivity of the negative electrode in the initial stage, but also relaxes the expansion and contraction of the silicon-containing particles during charging and discharging. It is possible to suppress deterioration of contact property with particles. Adhesion of graphene can be confirmed by TEM observation and Raman spectroscopic analysis.
  • the silicon-containing particles and the carbon material (C) in the composite (A) are collectively made into the carbon material (C), the silicon-containing particles and the carbon material (C) in the composite (A).
  • the content of silicon-containing particles is 25 with respect to 100.0 mass% of the composite (A). It is preferably contained in an amount of 0.0% by mass or more, more preferably 35.0% by mass. Further, it is preferable that the silicon-containing particles are contained in an amount of 75.0% by mass or less based on 100% by mass of the composite (A).
  • the volume change due to the insertion and desorption of lithium ions tends to be suppressed, and the surface of the silicon-containing particles may be sufficiently covered with the carbon material (C). Therefore, the conductivity is sufficiently imparted to silicon, the effect of suppressing the surface reactivity of silicon and the effect of relaxing expansion and contraction are enhanced, and the cycle characteristics tend to be improved.
  • silicon-containing particles are contained in an amount of 25.0% by mass or more and 75.0% by mass or less based on 100.0% by mass of the composite (A), It is more preferable that D50, which is the 50% diameter in the volume-based cumulative particle size distribution, is 2 ⁇ m or more and 18 ⁇ m or less.
  • the metal oxide adheres to a part or all of the surface of the composite (A). This improves the contact with the solid electrolyte particles.
  • the metal oxide to be attached is preferably electrochemically inactive fine particles. More preferably, the metal oxide is at least one selected from alumina-based oxides, magnesia-based oxides, and titania-based oxides.
  • lithium titanate fine particles adhere to a part or all of the surface of the composite (A).
  • the contact property with the solid electrolyte particles is improved, and at the same time, lithium titanate performs Li insertion/desorption at a potential about 1 V higher than the Li insertion/desorption potential of the silicon-containing particles.
  • the overvoltage is reduced, and the quick charge characteristics and low temperature characteristics are improved.
  • the adherence of the metal oxide can be confirmed by SEM-EDX observation.
  • the 50% diameter in the number-based cumulative distribution of the metal oxide is preferably 5 nm or more, more preferably 10 nm or more. When the 50% diameter is 5 nm or more, dispersibility and adhesion are good.
  • the 50% diameter is preferably 1000 nm or less, more preferably 500 nm or less. If the 50% diameter is 1000 nm or less, it is easy to uniformly adhere.
  • the 50% diameter in the number-based cumulative distribution can be obtained by observing with an electron microscope at a magnification of 100,000, optionally extracting 200 primary particles, and quantifying by image analysis.
  • the negative electrode material according to one embodiment of the present invention comprises a composite (A) of silicon-containing particles and a carbonaceous material, and such a composite (A) can be manufactured according to a known method.
  • a composite (A) is obtained by a method including mixing silicon-containing particles with the above-mentioned carbonaceous material precursor, and heat-treating the obtained mixture to form the carbonaceous material precursor into a carbonaceous material. be able to.
  • the mixture of the silicon-containing particles and the carbonaceous material precursor melts, for example, one of the carbonaceous material precursors, the molten pitch, the silicon-containing particles, and, if necessary, the above-described carbon black or graphene.
  • Metal oxides and other deposits are mixed in an inert gas atmosphere, the mixture is crushed, and a mechanochemical treatment is performed, or a carbonaceous material precursor is dissolved in a solvent and silicon is produced in the liquid phase. It can be obtained by adding and mixing the contained particles and then pulverizing.
  • a known device such as Hybridizer (registered trademark) manufactured by Nara Machinery Co., Ltd. can be used.
  • the negative electrode material according to one embodiment of the present invention may be manufactured by further adding and mixing carbon black in the step of obtaining a mixture of silicon-containing particles and a carbonaceous material precursor.
  • the amount of carbon black added is preferably 0.2% by mass or more, and more preferably 0.4% by mass or more, based on 100% by mass of the total of the silicon-containing particles and the carbonaceous material precursor. If the addition amount is 0.2% by mass or more, the above-mentioned effect is easily obtained.
  • the addition amount is preferably 10.0% by mass or less, more preferably 5% by mass or less.
  • the addition amount is 10.0 mass% or less, not only the charge/discharge capacity per mass of the composite (A) can be maintained high, but also the ion conduction network of the solid electrolyte is not hindered, and the ionic conductivity of the entire battery is improved. It is possible to maintain high sex.
  • the negative electrode material according to one embodiment of the present invention may be manufactured by further adding and mixing graphene in the step of obtaining a mixture of silicon-containing particles and a carbonaceous material precursor.
  • the amount of graphene added is preferably 0.2% by mass or more and more preferably 0.4% by mass or more based on 100% by mass of the total of the silicon-containing particles and the carbonaceous material precursor. When the added amount is 0.2% by mass or more, the above-mentioned effects are easily obtained.
  • the addition amount is preferably 10.0% by mass or less, more preferably 5.0% by mass or less.
  • the addition amount is 10.0 mass% or less, not only the charge/discharge capacity per mass of the composite (A) can be maintained high, but also the ion conduction network of the solid electrolyte is not hindered, and the ionic conductivity of the entire battery is improved. It is possible to maintain high sex.
  • the negative electrode material according to one embodiment of the present invention may be manufactured by further adding and mixing a metal oxide in the step of obtaining a mixture of silicon-containing particles and a carbonaceous material precursor.
  • the addition amount of the metal oxide is preferably 0.2% by mass or more, and more preferably 0.4% by mass or more, based on 100% by mass of the total of the silicon-containing particles and the carbonaceous material precursor. If the addition amount is 0.2% by mass or more, the above-mentioned effect is easily obtained.
  • the addition amount is preferably 10.0% by mass or less, more preferably 5.0% by mass or less.
  • the addition amount is 10.0 mass% or less, not only the charge/discharge capacity per mass of the composite (A) can be maintained high, but also the ion conduction network of the solid electrolyte is not hindered, and the ionic conductivity of the entire battery is improved. It is possible to maintain high sex.
  • Known devices such as a ball mill, a jet mill, a rod mill, a pin mill, a rotary cutter mill, a hammer mill, an atomizer, and a mortar can be used for pulverization and mixing, but a method that does not increase the degree of oxidation of silicon-containing particles can be used. It is preferable to adopt it, and generally, it is considered that the smaller particle size particles having a larger specific surface area are more likely to proceed, so that the crushing of the large particle size particles preferentially proceeds, and the crushing of the small particle size particles does not proceed much. A device is preferred.
  • the impact force tends to be transmitted to large-sized particles preferentially, and not so much to small-sized particles.
  • a means such as a pin mill or a rotary cutter mill that mainly crushes by impact and shear the shearing force is preferentially transmitted to large-sized particles, and not so much to small-sized particles.
  • the composite (A) can be obtained by using such a device and pulverizing or mixing the silicon-containing particles without promoting the oxidation.
  • the non-oxidizing atmosphere include an atmosphere filled with an inert gas such as argon gas and nitrogen gas.
  • the heat treatment for converting the carbonaceous material precursor into a carbonaceous material is preferably performed at a temperature of 200°C or higher and 1100°C or lower, more preferably 500°C or higher and 1050°C or lower, and particularly preferably 600°C or higher and 1050°C or lower.
  • the carbonaceous material can coat the silicon-containing particles, and the carbonaceous material can be brought into a form in which the carbonaceous material penetrates and is connected to each other. If the heat treatment temperature is too low, carbonization of the carbonaceous material precursor may not be completed sufficiently, and hydrogen and oxygen may remain in the negative electrode material, which may adversely affect the battery characteristics.
  • the heat treatment is preferably performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere include an atmosphere filled with an inert gas such as argon gas and nitrogen gas. Since a lump may be formed by fusion due to heat treatment, it is preferable to disintegrate the heat-treated product in order to use it as an electrode active material.
  • a crushing method a pulsarizer using an impact force of a hammer or the like, a jet mill using collision of objects to be crushed, and the like are preferable.
  • the composite (A) and the carbonaceous material precursor may be mixed and the resulting mixture may be heat-treated to form the composite (A) coated with the carbonaceous material.
  • the surface of the composite (A) with the carbonaceous material it is possible to reliably provide the surface with the carbonaceous material layer containing no silicon-containing particles.
  • the carbonaceous material precursor and the heat treatment conditions for coating the surface of the composite (A) with the carbonaceous material the same carbonaceous precursor and conditions as those used in the production of the composite (A) can be adopted.
  • the surface of graphite is covered with a carbonaceous material.
  • a carbonaceous material By covering the surface of the graphite with the carbonaceous material, the affinity with the solid electrolyte is increased and the dispersion in the electrode is improved.
  • the method of coating the carbonaceous material is not limited, and examples thereof include a method of depositing a carbonaceous material precursor on the surface of the composite and firing it in an inert gas atmosphere at a temperature range of 900 to 1500°C.
  • the carbonaceous material precursor is preferably petroleum pitch or coal pitch.
  • the amount of the carbonaceous material precursor added is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and further preferably 0.2 parts by mass or more with respect to 100 parts by mass of graphite.
  • the amount is preferably 0.5 parts by mass or more, and from the viewpoint that the energy density tends to be excellent, preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less, and further preferably 2.0 parts by mass or less. Is.
  • the carbonaceous material precursor can be mixed with a solvent to form a liquid, mixed and kneaded with graphite, and then the solvent is volatilized and a baking treatment is performed to coat the surface of the graphite with the carbonaceous material. Further, a method of simply mixing the carbonaceous material precursor and graphite and heat-treating it may be used.
  • 50% diameter D50 in the volume-based cumulative particle size distribution is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 5 ⁇ m or more.
  • the D50 is preferably 10 ⁇ m or less.
  • the D50 is 10 ⁇ m or less, good contact between the solid electrolyte particles and the negative electrode active material can be maintained, the resistance value of the electrode decreases, and the charge/discharge rate characteristics improve.
  • Volume-based cumulative particle size distribution can be measured using a laser diffraction particle size distribution measuring device.
  • a laser diffraction particle size distribution measuring device For example, Malvern Mastersizer (registered trademark) can be used.
  • the type of solid electrolyte is not limited, and the effects of the present invention can be exhibited by using a known solid electrolyte.
  • the solid electrolyte according to one embodiment of the present invention uses, for example, an oxide solid electrolyte or a sulfide solid electrolyte.
  • sulfide-based solid electrolyte examples include sulfide glass, sulfide glass ceramic, and Thio-LISICON type sulfide. Of these sulfide-based solid electrolytes, it is preferable to select a sulfide-based solid electrolyte that can be stably used even if the negative electrode potential is low.
  • the battery performance of an all-solid-state lithium-ion battery is further improved by combining a solid electrolyte that can be used stably even with a low negative electrode potential with the negative electrode active material of the present invention.
  • the above solid electrolyte may be used alone or in combination of two or more. It is more preferable to use a sulfide-based solid electrolyte for the solid electrolyte according to one embodiment of the present invention.
  • the solid electrolyte layer constituting the all-solid-state lithium-ion battery of the present invention is not particularly limited as long as it is a layer containing a solid electrolyte, and can be appropriately selected according to the purpose.
  • the solid electrolyte is preferably the same as that used for the negative electrode.
  • the positive electrode constituting the all-solid-state lithium-ion battery of the present invention is not particularly limited as long as it is a layer containing a positive electrode material, and can be appropriately selected according to the purpose.
  • the positive electrode mixture layer preferably contains a solid electrolyte, and more preferably contains a conductive auxiliary agent.
  • the solid electrolyte is more preferably the same as that used for the negative electrode mixture.
  • a known positive electrode active material can be used as the positive electrode material.
  • rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , spinel type active materials such as LiMn 2 O 4 , LiFePO 4 ,
  • An olivine-type active material such as LiMnPO 4 , LiNiPO 4 , LiCuPO 4 or a sulfide active material such as Li 2 S can be used. These can be used alone or in a mixture.
  • the D50 which is the 50% diameter in the volume-based cumulative particle size distribution of the positive electrode material, is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more.
  • the D50 is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the particle size of the positive electrode active material is preferably close to that of the solid electrolyte.
  • the method for producing the solid electrolyte particles, and the means for mixing each positive electrode material, the negative electrode material, the solid electrolyte particles and the conductive auxiliary agent are not particularly limited, but in addition to homogenization using a mortar, a planetary mill, a ball mill, a vibration Mechanical milling can be performed using a mill, Mechanofusion (registered trademark), or the like.
  • an aluminum foil can be used for the positive electrode and a nickel foil or a copper foil can be used for the negative electrode. Both rolled foil and electrolytic foil can be used for the current collector. A carbon-coated aluminum foil or nickel foil can also be used as the current collector.
  • the method of carbon coating is not particularly limited.
  • the carbon contained in the carbon coat layer is not particularly limited, and acetylene black, Ketjen Black (registered trademark), carbon nanotube, graphene, vapor grown carbon fiber, artificial graphite fine powder, or the like can be used.
  • ICP inductively coupled plasma
  • Petroleum pitch (softening point 220° C.) was used.
  • the residual coal ratio at 1100° C. of the petroleum pitch measured by thermal analysis under a nitrogen gas flow was 52% by mass.
  • the QI content of the petroleum pitch measured by the method described in JIS K2425 or a method similar thereto was 0.62% by mass, and the TI content was 48.9% by mass.
  • D50 ( ⁇ m), which is the 50% diameter in the volume-based cumulative particle size distribution, was measured by a wet method using water as a solvent, using a Malvern Mastersizer (registered trademark) as a laser diffraction particle size distribution measuring device.
  • the graphite crystal plane spacing d002 was calculated using the following powder X-ray diffraction (XRD) method. Fill a glass sample plate (sample plate window 18 ⁇ 20 mm, depth 0.2 mm) with a mixture of the sample and standard silicon (NIST) in a mass ratio of 9:1, and measure under the following conditions: I went.
  • XRD device Rigaku's SmartLab
  • X-ray type Cu-K ⁇ ray
  • K ⁇ ray removal method Ni filter
  • X-ray output 45kV, 200mA
  • Scan speed 2.0 deg. /Min.
  • orientation index was calculated by calculating the intensity ratio I(110)/I(004) of the diffraction peaks belonging to the (110) plane and (004) plane of graphite by using the powder X-ray diffraction (XRD) method. evaluated.
  • sample plate made of sample glass (sample plate window 18 ⁇ 20 mm, depth 0.2 mm) was filled, and measurement was performed under the following conditions.
  • XRD device Rigaku's SmartLab
  • X-ray type Cu-K ⁇ ray
  • K ⁇ ray removal method Ni filter
  • X-ray output 45kV, 200mA
  • Measuring range 5.0-100.0 deg
  • Scan speed 2.0 deg. /Min
  • (110) plane 76.5 to 78.0 deg.
  • ⁇ Content of silicon-containing particles The amount of carbon material (C) contained in the composite (A) was measured using a carbon/sulfur analyzer EMIA-920V (manufactured by Horiba Ltd.). The content of silicon-containing particles was determined by subtracting the amount of carbon material (C) from the amount of composite (A).
  • the test was conducted in a constant temperature bath set at 25°C. At this time, the capacity at the time of initial discharge was taken as the initial discharge capacity.
  • the ratio of the amount of electricity during the initial charge/discharge, that is, the amount of discharged electricity/the amount of charged electricity was expressed as a percentage, and the result was taken as the initial Coulombic efficiency.
  • This silicon-containing particle (1)/petroleum pitch/carbon black mixture was put into a firing furnace, and the temperature was raised to 1100° C. at 150° C./h under nitrogen gas flow and kept at 1100° C. for 1 hour. After cooling to room temperature, taking out from the firing furnace, disintegrating with a rotary cutter mill, and sieving with a sieve with an opening of 45 ⁇ m, the bottom of the sieve is carbon black attached to a composite containing silicon-containing particles and carbonaceous material, carbon black attachment Obtained as a composite (A1).
  • a polyacrylate was mixed so that the binder would be 3% by mass, and the Cu foil current collector having a thickness of 10 ⁇ m was coated on one side to prepare a negative electrode sheet having a thickness of about 60 ⁇ m. ..
  • the negative electrode sheet was punched out to a diameter of 15 mm in a polypropylene cell with a screw-in lid (inner diameter of about 18 mm). This and a lithium metal foil punched out to 16 mm ⁇ were sandwiched between separators (polypropylene microporous film (Celguard 2400)) and laminated, and an electrolytic solution was added to obtain a test cell.
  • the electrolytic solution was prepared by mixing 5% by mass of fluoroethylene carbonate (FEC) in a solvent in which ethylene carbonate, ethylmethyl carbonate and diethyl carbonate were mixed in a volume ratio of 3:5:2, and further, electrolyte LiPF 6 was added thereto. Is a solution obtained by dissolving the above to a concentration of 1 mol/L. Using this counter electrode lithium half cell, the initial discharge capacity and the initial efficiency were measured by the methods described above.
  • FEC fluoroethylene carbonate
  • This powder coke 1 was filled in a graphite crucible and heat-treated in an Acheson furnace for 1 week so that the maximum temperature reached was about 3300° C. to obtain scaly artificial graphite particles (B1).
  • the scale-like artificial graphite particles (B1) thus obtained had D50 of 6.4 ⁇ m, BET specific surface area of 6.1 m 2 /g, d002 of 0.3357 nm, Lc of 104 nm, R value of 0.15, and orientation.
  • the index was 0.28.
  • the initial discharge capacity and the initial Coulombic efficiency of the artificial graphite particles (B1) were measured by the same method as the composite (A1). The initial discharge capacity was 355 mAh/g and the initial Coulombic efficiency was 93%.
  • ⁇ Negative electrode>> In a glove box in an argon gas atmosphere, 25 parts by mass of the composite (A1) and 25 parts by mass of the artificial graphite particles (B1), 45 parts by mass of the solid electrolyte (Li 3 PS 4 , D50:8 ⁇ m), and , 3 parts by mass of Denka Black (HS-100) as a conductive additive and 2 parts by mass of "VGCF-H" manufactured by Showa Denko KK were mixed, and further milled at 100 rpm for 1 hour using a planetary ball mill. It homogenized by processing and the negative electrode composite material was obtained. Next, the obtained negative electrode mixture was press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mm ⁇ and a SUS punch to obtain a negative electrode used in a battery evaluation test.
  • HS-100 Denka Black
  • the first charge was 0.35 mA (0.01 C) constant current charge up to 4.2 V, followed by constant voltage charge at a constant voltage of 4.2 V for 40 hours. After that, constant current discharge was performed at 0.35 mA (0.01 C) until the voltage became 2.75 V.
  • the capacity at the first charge/discharge was defined as the discharge capacity.
  • the initial discharge capacity/initial charge capacity*100 was defined as the initial Coulombic efficiency.
  • the initial discharge capacity measured at 25°C was taken as 100%, and the discharge capacity after 50 cycles was taken as the cycle characteristic (%).
  • charging was performed with constant current of 0.35 mA (0.01 C) until it reached 4.2 V, and then with constant voltage of 4.2 V until constant current was reduced to 0.005 C. Charged. Further, the discharge was performed by a constant current discharge of 0.35 mA (0.01 C) until 2.75 V was reached.
  • Example 2 A composite (A2) containing the silicon-containing particles (1) and the carbonaceous material was produced in the same manner as in Example 1 except that carbon black was not added. With respect to the obtained composite (A2), the initial discharge capacity and the initial Coulombic efficiency of the counter lithium half cell were measured in the same manner as in Example 1.
  • Example 3 A mixture of 1% by mass of petroleum pitch with a V-type mixer was mixed with the carbon black-adhered composite material (A1) produced in the example, and the mixture was put into a firing furnace. Under nitrogen gas flow, 150°C/h up to 1100°C. The temperature was raised and kept at 1100° C. for 1 hour. The mixture was cooled to room temperature, taken out from the firing furnace, and sieved with a sieve having an opening of 45 ⁇ m to obtain a bottom of the sieve as a composite (A3) in which the carbon black-adhered composite (A1) was coated with carbon. The surface of this composite (A3) was a carbonaceous material layer containing no silicon-containing particles. With respect to the obtained composite (A3), the initial discharge capacity and the initial Coulombic efficiency of the counter lithium half cell were measured by the same method as in Example 1.
  • Table 2 shows the physical properties of the composites (A1) to (A5), and the measurement results of the initial discharge capacity and the initial cloning efficiency using a counter electrode lithium half cell.
  • Table 3 shows the evaluation results of the all-solid-state lithium ion batteries of Examples 1 to 5 and Comparative Examples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の課題は、高容量、高クーロン効率および高サイクル特性の全固体リチウムイオン電池を得ることができる全固体リチウムイオン電池用負極合材を提供することにある。本発明の全固体リチウムイオン電池用負極合材は、ケイ素含有粒子および炭素質材料を含む複合物(A)と、炭素質材料および黒鉛から選ばれる1種以上の成分(B)とを含む負極材、及び固体電解質を含むことを特徴とし、本発明の全固体リチウムイオン電池は、固体電解質層、負極および正極を含み、該負極が、前記負極合材を用いて形成されたことを特徴とする。

Description

全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池
 本発明は、電解液フリーで高エネルギー密度の全固体リチウムイオン電池、特に全固体リチウムイオン電池用の負極合材に関する。
 リチウムイオン電池は、高電圧、高エネルギー密度であり、広く使用されている。一方、リチウムイオン電池の安全性向上の1つの方策として、有機電解液の代わりに、不燃で、液漏れのない固体電解質を使用する全固体リチウムイオン電池に関する検討が盛んになっている。
 例えば、ポリエチレンオキサイドリチウム塩化合物のような高分子固体電解質を用いる全固体化したリチウムイオン電池が古くから多く検討されてきた。しかしながら、高分子固体電解質の室温でのイオン電導度は電解液に比較して1/100以下であり、室温や低温で取り出せる電流が小さいこと、充電状態で黒鉛負極と副反応を起こしやすいこと、さらに界面の抵抗が高くなるという問題がある。
 また、無機セラミックス系のリチウムイオン伝導体を固体電解質として用いる全固体化したリチウムイオン電池も古くから検討されている。
 近年はリチウムイオン伝導度が高い硫化物系の固体電解質を中心に盛んに検討されており、常温でもリチウムイオンの伝導率が10-3Scm-1以上の電解質が開発されている。
 特許文献1~4には、インジウム(In)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)等の金属系材料、LiTi12等のセラミックス系材料、グラファイト、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等の炭素系材料、粒子表面を炭素層で被覆した材料を負極活物質として用いることができる旨開示されている。
 特許文献5には、Si元素またはSn元素を含む微粒子が分散した炭素マトリックスを使用した全固体リチウムイオン電池用負極合材が開示されている。
特開2011-181260号公報 特開2013-16423号公報(米国特許第9172113号、米国特許第9484597号) 特開2013-41749号公報 特開2015-191864号公報(米国特許公開第2017/0237115号公報) 特開2017-27886号公報
 全固体リチウムイオン電池の固体電解質層の研究開発が盛んに行われている一方で、負極活物質として金属系、黒鉛など、従来の電解液を用いるリチウムイオン電池で使用されてきた材料を用いることが開示されている。これらの中で、金属系材料は黒鉛に比較して高容量であり、これを用いることにより、高エネルギー密度のリチウムイオン電池が可能となることが期待されている。
 しかし、金属系材料からなる負極材では充放電反応に伴ってリチウムの析出が起こり易い。さらに、インジウムはレアメタルであり価格が高く、チタン酸リチウム(LiTi12)は充放電サイクル寿命が長いものの電池の電圧が低く電池容量が低い。
 黒鉛系材料、炭素系材料、ケイ素系材料を負極活物質として用いた場合、負極側の電位がLi基準で0V付近まで低下するが、負極の電位が0.3Vより低下すると固体電解質が不安定化するという問題があった。従来は低い電位まで安定した固体電解質がなかったので、これと組み合わせる黒鉛系、炭素系負極活物質の最適化については十分な検討がなされていなかった。
 また、ケイ素系材料では充放電に伴う体積膨張が著しく、そのため充放電サイクルによる容量劣化が速くなるという別の問題があった。
 特許文献4には、2種類以上の材料を混合して負極活物質として使用することが開示されているが、用いる固体電解質の最適な粒子サイズや材料の物性等については検討されておらず、改善検討の余地があった。
 特許文献5には、炭素マトリックスにSi元素またはSn元素を含む微粒子を分散させた負極材が開示されている。しかしながら、活性なSi元素またはSn元素を含む微粒子の平均粒子径が11nm以下と小さすぎて、表面に酸化物が多く生成するため初期クーロン効率が低く、また炭素マトリックスとの複合が不十分で、充放電サイクル特性が不十分であった。
 従って、本発明の課題は、上記従来技術の問題を改良し、高容量、高クーロン効率および高サイクル特性の全固体リチウムイオン電池を得ることができる全固体リチウムイオン電池用負極合材を提供すること、及びその負極合材を用いた全固体リチウムイオン電池を提供することにある。
 本発明は、下記の全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池を提供する。
 [1]ケイ素含有粒子および炭素質材料を含む複合物(A)と、炭素質材料および黒鉛から選ばれる1種以上の成分(B)とを含む負極材、及び固体電解質を含み、
 前記複合物(A)のケイ素含有粒子が、下記式(1)で示される平均直径Davが15nm以上150nm以下であることを特徴とする全固体リチウムイオン電池用負極合材。
   Dav=6/(ρ×Ssa)   (1)
(式中、Davはケイ素含有粒子が稠密な球であると仮定したときの粒子の平均直径(nm)を表し、Ssaはケイ素含有粒子のBET比表面積(m/g)を表し、ρはケイ素の真密度の理論値(2.33g/cm)を表す。)
 [2]前記複合物(A)が、その表面にケイ素含有粒子を含まない炭素質材料層を有している[1]に記載の全固体リチウムイオン電池用負極合材。
 [3]前記複合物(A)100.0質量%に対して、ケイ素含有粒子が25.0質量%以上75.0質量%以下の量で含まれ、前記複合物(A)の体積基準累積粒径分布における50%径であるD50が2μm以上18μm以下である[1]または[2]に記載の全固体リチウムイオン電池用負極合材。
 [4]前記複合物(A)の表面の一部または全てにカーボンブラックが付着している[1]~[3]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [5]前記複合物(A)の表面の一部または全てにグラフェンが付着している[1]~[4]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [6]前記複合物(A)の表面の一部または全てに金属酸化物が付着している[1]~[5]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [7]前記金属酸化物が、アルミナ系酸化物、マグネシア系酸化物、およびチタニア系酸化物から選ばれる1種以上である[6]に記載の全固体リチウムイオン電池用負極合材。
 [8]前記複合物(A)の表面の一部または全てにチタン酸リチウム微粒子が付着している[1]~[7]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [9]前記黒鉛が鱗片状で、粒子長軸の平均長さが2μm以上10μm以下である[1]~[8]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [10]前記黒鉛の表面が炭素質材料で被覆されている[1]~[9]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [11]前記負極材が、前記複合物(A)と前記成分(B)の合計100質量%に対して、前記複合物(A)を5.0質量%以上70質量%以下の量で含む[1]~[10]のいずれかに記載の全固体リチウムイオン電池用負極合材。
 [12]固体電解質層、負極および正極を含む全固体リチウムイオン電池であって、前記負極が、[1]~[11]のいずれかに記載の全固体リチウムイオン電池用負極合材を用いて形成されたことを特徴とする全固体リチウムイオン電池。
 本発明では、固体電解質層、負極、正極を含む全固体リチウムイオン電池において、前記負極にケイ素含有粒子と炭素質材料の複合物(A)(以下「複合物(A)」と略記することがある。)が含まれることにより、高容量、高クーロン効率および高サイクル特性の全固体リチウムイオン電池を得ることができる。好ましい構成としては、表面に炭素質材料の被覆層(コート層)を設けることにより、ケイ素粒子の活性を制御し、充放電サイクル寿命などの耐久性を改善することができる。また、複合物(A)中のケイ素粒子の粒径、複合物(A)の粒径、複合物(A)中のケイ素含有粒子と炭素質材料の割合(組成)を最適化することにより、さらに耐久性向上とともに、高容量化することができる。さらに、炭素質材料の被覆層(コート層)の表面に、各種カーボン、金属酸化物、固体電解質粒子等を接着させることにより、サイクル特性を改善することができる。
 以下に本発明の全固体リチウムイオン電池用負極合材(以下、単に「本発明の負極合材」または「負極合材」ともいう。)および全固体リチウムイオン電池について詳細に説明する。
I.負極
 固体電解質層、負極および正極を含む本発明の全固体リチウムイオン電池では、負極として、ケイ素含有粒子および炭素質材料を含む複合物(A)と、炭素質材料および黒鉛から選ばれる1種以上の成分(B)(以下、単に「成分(B)」と略記することがある。)とを含む負極材、及び固体電解質を含む負極合材を使用する。以下、負極合材の各構成について説明する。
[ケイ素含有粒子]
 複合物(A)中のケイ素含有粒子は、粒子表層にSiO(0<x≦2)を含有することが好ましい。表層以外の部分(コア)は、元素状ケイ素からなっていてもよいし、SiO(0<x≦2)からなっていてもよい。SiOを含有する表層の平均厚さは0.5nm以上5nm以下が好ましい。SiOを含有する表層の平均厚さが0.5nm以上であると、空気や酸化性ガスによる酸化を抑制することができる。また、SiOを含有する表層の平均厚さが5nm以下であると、初期充放電サイクル時の不可逆容量の増加を抑制することができる。この平均厚さはTEM写真により測定することができる。
 ケイ素含有粒子の酸素含有率は、酸化を十分に抑制する観点から、好ましくは1.0質量%以上、より好ましくは2.0質量%以上である。また、前記酸素含有率は、初期クーロン効率を高くする観点から、好ましくは15.0質量%以下である。酸素含有率は、例えば、酸素窒素同時分析装置(不活性ガス融解-赤外線吸収法)により定量することができる。
 ケイ素含有粒子は、一次粒子径の数基準累積分布における90%径が200nm以下である粒子が好ましい。一次粒子径はSEMやTEM等の顕微鏡による観察で測定することができる。また、複合化してなるケイ素含有粒子の一次粒子径は、倍率10万倍の透過電子顕微鏡にて観察される球状粒子の像200個を画像解析することによって算出できる。
 複合物(A)中のケイ素含有粒子は、下記式(1)によって定義される平均直径Davが15nm以上150nm以下である。
  Dav=6/(ρ×Ssa)   (1)
 式中、Davはケイ素含有粒子が稠密な球であると仮定したときの平均直径(nm)であり、Ssaはケイ素含有粒子のBET比表面積(m/g)であり、ρはケイ素の真密度の理論値(2.33g/cm)である。
 平均直径Davが15nm以上であると、表面酸化によるSiO含有量が抑制され、電池の初期充放電サイクル時の可逆容量が増加する。また炭素質材料との複合物中の分散性が良く、充放電でのLi挿入脱離時で複合物の膨張収縮度合いが小さくなり、複合物の崩壊による、劣化が起こりにくい。同様の観点から平均直径Davは25nm以上が好ましく、35nm以上がより好ましい。ケイ素含有粒子の平均直径Davが150nm以下であると、充放電でのLi挿入脱離時のケイ素含有粒子自身の反応が均一となり、局部的な膨張や粒子崩壊による劣化が起こりにくい。同様の観点から平均直径Davは120nm以下が好ましく、100nm以下がより好ましい。
 ケイ素含有粒子は、ケイ素以外に、他の金属元素および半金属元素(炭素元素など)から選択される元素Mを粒子中に含むことができる。元素Mとしては、例えば、ニッケル、銅、鉄、スズ、アルミニウム、コバルト等が挙げられる。元素Mの含有量は、ケイ素の作用を大きく阻害しない範囲であれば特に制限はなく、例えばケイ素原子1モルに対して1モル以下である。
 ケイ素含有粒子は、その製法によって特に制限されない。例えば、WO2012/000858A1に開示されている方法により製造することができる。
[複合物(A)における炭素質材料]
 複合物(A)中の炭素質材料は、炭素原子により形成される結晶の発達が低い炭素材料であり、黒鉛でない炭素材料が含まれる。ラマン散乱による1360cm-1近傍にピークを持つ。
 炭素質材料は、例えば、炭素質材料前駆体を炭素化することによって製造することができる。前記炭素質材料前駆体は、特に限定されないが、フェノール樹脂などの各種高分子材料、熱重質油、熱分解油、ストレートアスファルト、ブローンアスファルト、エチレン製造時に副生する石油タール、石油ピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分、コールタールピッチ(石炭ピッチ)が好ましく、特に石油ピッチまたは石炭ピッチが好ましい。石油ピッチ、石炭ピッチは複数の多環芳香族化合物の混合物である。石油ピッチ、石炭ピッチを用いると、高い炭素化率で、不純物の少ない炭素質材料を製造できる。石油ピッチ、石炭ピッチは酸素含有率が少ないので、ケイ素含有粒子を炭素質材料で被覆する際に、ケイ素含有粒子が酸化されにくい。
 炭素質材料前駆体は、軟化点が80℃以上が好ましい。軟化点が80℃以上であると、それを構成する多環芳香族化合物の平均分子量が十分大きく、かつ揮発分が少ないので、炭素化率が低くなり、比表面積が適切な範囲に制御される。軟化点は300℃以下が好ましい。軟化点が300℃以下であると、粘度が低くケイ素含有粒子と均一に混ぜ合わせ易い傾向がある。炭素質材料前駆体の軟化点はASTM-D3104-77に記載のメトラー法で測定することができる。
 炭素質材料前駆体は、表面を適切に被覆する観点から、残炭率が、好ましくは20質量%以上、より好ましくは25質量%以上である。また、前記残炭率は、粘度が高くなりすぎずにケイ素含有粒子と均一に混合させる観点から、好ましくは70質量%以下、より好ましくは60質量%以下である。
 残炭率は以下の方法で決定される。固体状の炭素質材料前駆体を乳鉢等で粉砕し、粉砕物を窒素ガス流通下で質量熱分析する。1100℃における質量の仕込み質量に対する割合を残炭率と定義する。残炭率はJIS K2425において炭化温度1100℃にて測定される固定炭素量に相当する。
 炭素質材料前駆体は、QI(キノリン不溶分)含量が、好ましくは10.00質量%以下、より好ましくは5.00質量%以下、さらに好ましくは2.00質量%以下である。炭素質材料前駆体のQI含量はフリーカーボン量に対応する値である。フリーカーボンを多く含む炭素質材料前駆体を熱処理すると、メソフェーズ球体が出現してくる過程で、フリーカーボンが球体表面に付着し三次元ネットワークを形成して、球体の成長を妨げるため、モザイク状の組織となりやすい。一方、フリーカーボンが少ないピッチを熱処理すると、メソフェーズ球体が大きく成長してニードルコークスを生成しやすい。QI含量が上記の範囲にあることにより、電極特性が一層良好になる。
 炭素質材料前駆体は、TI(トルエン不溶分)含量が、10.0質量%以上が好ましい。TI含量が10.0質量%以上であると、それを構成する多環芳香族化合物の平均分子量が大きく、揮発分が少ないので、炭素化率が高くなり、比表面積が適切な範囲に抑えられる。また、TI含量は70.0質量%以下が好ましい。TI含量が70.0質量%以下であると、粘度が低く、ケイ素含有粒子と均一に混合させ易い傾向がある。TI含量が上記範囲にあることにより炭素質材料前駆体とその他の成分とを均一に混合でき、かつ、電池用活物質として好適な特性を示す負極材を得ることができる。
 炭素質材料前駆体のQI含量およびTI含量はJIS K2425に記載されている方法またはそれに準じた方法により測定することができる。
[複合物(A)(粒子)]
 本発明の一実施形態に係る負極材は、複合物(A)を含んでなり、複合物(A)中のケイ素含有粒子と炭素質材料は少なくともその一部が互いに複合化していることが好ましい。複合化とは、例えば、ケイ素含有粒子が炭素質材料により固定されて結合している状態や、あるいはケイ素含有粒子が炭素質材料により被覆されている状態を挙げることができる。
 本発明においてはケイ素含有粒子が炭素質材料によって完全に被覆され、ケイ素が露出していない状態となっていることが好まししい。すなわち、複合物(A)が、その表面にケイ素含有粒子を含まない炭素質材料層を有していることが好ましい。この構造を確実に得るために、複合物(A)の表面をさらに炭素質材料で被覆することもできる。複合物(A)が、その表面にケイ素含有粒子を含まない炭素質材料層を有していると、負極材として電池に用いた際に、ケイ素含有粒子の表面が露出しないことにより電解液分解反応が抑制され、充放電時の初期クーロン効率を高く維持することができ、またケイ素含有粒子が炭素質材料により被覆されることにより、その膨張および収縮に伴う体積変化を緩衝することができる。
 複合物(A)において、体積基準累積粒径分布における50%径(D50)は、好ましくは2.0μm以上、より好ましくは4.0μm以上である。前記D50が2.0μm以上であると、塗工などハンドリングに優れ、活性なケイ素含有粒子が炭素質材料に被覆されない部分が生じにくく、初期クーロン効率が高く、充放電サイクル寿命が長くなる。
 複合物(A)において、前記D50は、好ましくは18.0μm以下、より好ましくは10.0μm以下である。前記D50が18.0μm以下であると、入出力特性が高く、電極中での均一分布性に優れ膨張が均一になることからサイクル特性が向上する。すなわち、前記範囲のD50とすることで、経済性よく製造することが可能であり、初期クーロン効率と入出力特性とサイクル特性が良好になる。
 前記D50はレーザー回折式粒度分布計において体積基準で測定された50%累積時の径を表し、粒子の外見上の径を示す。レーザー回折式粒度分布計としては、例えばマルバーン製マスターサイザー(Mastersizer;登録商標)等が利用できる。
 複合物(A)において、BET比表面積は、好ましくは2.0m/g以上、より好ましくは4.0m/g以上である。BET比表面積が2.0m/g以上であると、入出力特性が高く、さらに電極中での分布が均一になりサイクル特性が向上する。また、BET比表面積は、好ましくは10.0m/g以下、より好ましくは8.0m/g以下である。BET比表面積が10.0m/g以下であると、塗工などのハンドリングが容易になり、電極作製に必要なバインダー量が抑えられ、電極密度が上がり易くなり、電池のエネルギー密度が向上する。
 複合物(A)において、その表面の一部または全てにカーボンブラックが付着していることが好ましい。これにより、負極内の他の材料との接触抵抗が下がり、初期の負極の導電性が改善される。また、充放電サイクルを繰り返した後の電池抵抗の増加が少ない。用いるカーボンブラックとしては特に限定されないが、デンカブラック(登録商標)(電気化学工業(株)製)、ケッチェンブラック(登録商標)(ライオン(株)製)、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製などが用いられる。カーボンブラックが付着していることはSEM観察、ラマン分光分析によって確認できる。
 複合物(A)において、その表面の一部または全てにグラフェンが付着していることが好ましい。これにより、負極内の他の材料との接触抵抗が下がり、初期の負極の導電性が改善されるだけでなく、ケイ素含有粒子の充放電時の膨張収縮を緩和し、膨張収縮による、他の粒子との接触性悪化を抑制することができる。グラフェンが付着していることはTEM観察、ラマン分光分析によって確認できる。
 複合物(A)における、炭素質材料と、必要に応じて付着させるカーボンブラックおよびグラフェンとをまとめて炭素材料(C)とした場合、複合物(A)におけるケイ素含有粒子と炭素材料(C)の組成(含有割合)は、電気容量の向上効果が大きく、複合物(A)の初期クーロン効率が高くなる観点から、複合物(A)100.0質量%に対して、ケイ素含有粒子が25.0質量%以上の量で含まれていることが好ましく、35.0質量%の量で含まれていることがより好ましい。また、複合物(A)100質量%に対して、ケイ素含有粒子が75.0質量%以下の量で含まれていることが好ましい。75.0質量%以下の量で含まれていると、リチウムイオンの挿入、脱離に伴う体積変化が抑えられる傾向があるとともに、ケイ素含有粒子の表面を炭素材料(C)で十分覆うことができ、ケイ素に導電性が十分付与され、ケイ素の表面反応性を抑制する効果や膨張収縮を緩和する効果が高くなり、サイクル特性が向上する傾向がある。
 本発明の負極合材では、複合物(A)100.0質量%に対して、ケイ素含有粒子が25.0質量%以上75.0質量%以下の量で含まれ、複合物(A)の体積基準累積粒径分布における50%径であるD50が2μm以上18μm以下であることがより好ましい。
 複合物(A)において、その表面の一部または全てに金属酸化物が付着していることが好ましい。これにより固体電解質粒子との接触性が改善される。付着させる金属酸化物としては、電気化学的に不活性な微粒子が好ましい。前記金属酸化物は、アルミナ系酸化物、マグネシア系酸化物、およびチタニア系酸化物から選ばれる1種以上であることがより好ましい。
 複合物(A)において、その表面の一部または全てにチタン酸リチウム微粒子が付着していることが好ましい。これにより、固体電解質粒子との接触性が改善されると同時に、チタン酸リチウムが、ケイ素含有粒子のLiの挿入脱離電位より、1V程度高い電位でLi挿入脱離を行うため、Li挿入時の過電圧が小さくなり、急速充電特性や低温特性が改善する。金属酸化物が付着していることはSEM-EDX観察によって確認できる。
 金属酸化物の数基準累積分布における50%径は、好ましくは5nm以上、より好ましくは10nm以上である。前記50%径が5nm以上であると分散性や付着性が良い。また、前記50%径は、好ましくは1000nm以下、より好ましくは500nm以下である。前記50%径が1000nm以下であると均一に付着させ易い。数基準累積分布における50%径は電子顕微鏡にて倍率10万倍により観察し、任意に一次粒子200個を抽出して画像解析により定量化することで得られる。
[複合物(A)の製造方法]
 本発明の一実施形態に係る負極材は、ケイ素含有粒子と炭素質材料の複合物(A)を含んでなり、このような複合物(A)は公知の方法に従って製造することができる。例えば、ケイ素含有粒子と前述した炭素質材料前駆体とを混ぜ合わせ、得られた混合物を熱処理して前記炭素質材料前駆体を炭素質材料にすることを含む方法によって複合物(A)を得ることができる。
 ケイ素含有粒子と炭素質材料前駆体との混合物は、例えば、炭素質材料前駆体の1つであるピッチを溶融させ、該溶融ピッチとケイ素含有粒子と、必要に応じて前述したカーボンブラックやグラフェン、金属酸化物などの付着物を不活性ガス雰囲気下にて混合し、該混合物を粉砕し、メカノケミカル処理を行うことによって、または炭素質材料前駆体を溶媒により溶解し該液相にてケイ素含有粒子を添加混合し、次いで粉砕することによって得ることができる。メカノケミカル処理は、例えば、(株)奈良機械製作所製ハイブリダイザー(登録商標)などの公知の装置を用いることができる。
 本発明の一実施形態に係る負極材は、ケイ素含有粒子と炭素質材料前駆体との混合物を得る工程でさらにカーボンブラックを添加して混合させて製造してもよい。カーボンブラックの添加量としては、ケイ素含有粒子と炭素質材料前駆体の合計100質量%に対して、好ましくは0.2質量%以上、より好ましくは0.4質量%以上である。前記添加量が0.2質量%以上であると上述の効果が得られやすい。また、前記添加量は、好ましくは10.0質量%以下、より好ましくは5質量%以下である。前記添加量が10.0質量%以下であると、複合物(A)の質量あたりの充放電容量を高く維持できるだけでなく、固体電解質のイオン伝導ネットワークを阻害することなく、電池全体のイオン導電性を高く維持させることができる。
 本発明の一実施形態に係る負極材は、ケイ素含有粒子と炭素質材料前駆体との混合物を得る工程でさらにグラフェンを添加して混合させて製造してもよい。グラフェンの添加量としては、ケイ素含有粒子と炭素質材料前駆体の合計100質量%に対して、好ましくは0.2質量%以上、より好ましくは0.4質量%以上である。前記添加量が0.2質量%以上であると、上述の効果が得られやすい。また、前記添加量は、好ましくは10.0質量%以下、より好ましくは5.0質量%以下である。前記添加量が10.0質量%以下であると、複合物(A)の質量あたりの充放電容量を高く維持できるだけでなく、固体電解質のイオン伝導ネットワークを阻害することなく、電池全体のイオン導電性を高く維持させることができる。
 本発明の一実施形態に係る負極材は、ケイ素含有粒子と炭素質材料前駆体との混合物を得る工程でさらに金属酸化物を添加して混合させて製造してもよい。金属酸化物の添加量としては、ケイ素含有粒子と炭素質材料前駆体の合計100質量%に対して、好ましくは0.2質量%以上、より好ましくは0.4質量%以上である。前記添加量が0.2質量%以上であると上述の効果が得られやすい。また、前記添加量は、好ましくは10.0質量%以下、より好ましくは5.0質量%以下である。前記添加量が10.0質量%以下であると、複合物(A)の質量あたりの充放電容量を高く維持できるだけでなく、固体電解質のイオン伝導ネットワークを阻害することなく、電池全体のイオン導電性を高く維持させることができる。
 粉砕や混合には、ボールミル、ジェットミル、ロッドミル、ピンミル、ロータリーカッターミル、ハンマーミル、アトマイザー、乳鉢等の公知の装置を用いることができるが、ケイ素含有粒子の酸化度合いが高くならないような方法を採用することが好ましく、一般的に酸化は比表面積の大きい小粒径粒子ほど進みやすいと考えられるため、大粒径粒子の粉砕が優先的に進行し、小粒径粒子の粉砕はあまり進まない装置が好ましい。例えば、ロッドミル、ハンマーミルなどのような、主に衝撃によって粉砕する手段は、衝撃力が大粒径粒子に優先的に伝わり、小粒径粒子にあまり多く伝わらない傾向がある。ピンミル、ロータリーカッターミルなどのような、主に衝撃とせん断によって粉砕する手段は、せん断力が大粒径粒子に優先的に伝わり、小粒径粒子にあまり多く伝わらない傾向がある。このような装置を使用し、ケイ素含有粒子の酸化を進ませずに粉砕や混合することによって、複合物(A)を得ることができる。
 また、ケイ素の酸化進行を抑えるために、前記の粉砕・混合時は非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。
 炭素質材料前駆体を炭素質材料とするための熱処理は、好ましくは200℃以上1100℃以下、より好ましくは500℃以上1050℃以下、特に好ましくは600℃以上1050℃以下の温度で行う。この熱処理によって、炭素質材料がケイ素含有粒子を被覆し、また炭素質材料が、ケイ素含有粒子相互の間に入り込み連結した形態にすることができる。熱処理温度が低すぎると炭素質材料前駆体の炭素化が十分に終了せず、負極材中に水素や酸素が残留し、それらが電池特性に悪影響を及ぼすことがある。逆に熱処理温度が高すぎると結晶化が進みすぎて充電特性が低下したり、ケイ素と炭素とが結合して炭化ケイ素になり、Liイオンに対し不活性な状態を生じさせたりすることがある。熱処理は、非酸化性雰囲気で行うことが好ましい。非酸化性雰囲気としては、アルゴンガス、窒素ガスなどの不活性ガスを充満させた雰囲気が挙げられる。熱処理による融着で塊になっていることがあるので、熱処理品を電極活物質として用いるためには解砕することが好ましい。解砕方法としては、ハンマーなどの衝撃力を利用したパルベライザー、被解砕物同士の衝突を利用したジェットミルなどが好ましい。
 複合物(A)と炭素質材料前駆体とを混ぜ合わせ、得られた混合物を熱処理することで、炭素質材料で被覆された複合物(A)とすることもできる。複合物(A)の表面が炭素質材料で被覆されることで、その表面にケイ素含有粒子を含まない炭素質材料層を確実に備えることができる。複合物(A)の表面を炭素質材料で被覆する際の炭素質材料前駆体および熱処理条件は、複合物(A)の製造時と同様の炭素質前駆体および条件を採用することができる。
[成分(B)]
 本発明の一実施形態に係る負極材は、炭素質材料および黒鉛から選ばれる1種以上の成分(B)を含む。成分(B)における炭素質材料としては、例えば、前記複合物(A)における炭素質材料として記載したものを用いることができる。成分(B)は、充放電容量が大きく、電極密度を上げ、電極内空孔を少なくでき、電極内導電接点を増やす観点から黒鉛が好ましい。黒鉛の形状としては、鱗片状でもよいし、非鱗片状でもよいが、鱗片状がより好ましい。鱗片状の黒鉛を用いる場合、粒子長軸の平均長さが2μm以上10μm以下であることが好ましい。
 また、本発明の一実施形態に係る負極材は、黒鉛の表面が炭素質材料で被覆されていることが好ましい。黒鉛の表面が炭素質材料で被覆されることで、固体電解質との親和性が増し、電極内での分散がより良好になる。炭素質材料を被覆する方法は限定されないが、例えば炭素質材料前駆体を前記複合物表面に付着させ、900~1500℃の温度範囲で不活性ガス雰囲気下にて焼成する方法が挙げられる。炭素質材料前駆体としては、石油ピッチまたは石炭ピッチが好ましい。
 炭素質材料前駆体の添加量は、初回クーロン効率が優れる傾向にあるという観点から、黒鉛100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、さらに好ましくは0.5質量部以上であり、エネルギー密度が優れる傾向にあるという観点から、好ましくは5.0質量部以下、より好ましくは4.0質量部以下、さらに好ましくは2.0質量部以下である。
 手順としては、炭素質材料前駆体を溶剤と混ぜて液状にして黒鉛と混合および混練し、その後に溶剤を揮発させ、焼成処理を行うことで黒鉛表面を炭素質材料で被覆することができる。また、炭素質材料前駆体と黒鉛を単純に混合し、それを熱処理する方法でも良い。
[負極材]
 本発明の一実施態様に係る負極材は、複合物(A)と成分(B)とを含み、サイクル特性を良好にし、かつ、電極膨張を小さくする観点から、複合物(A)と成分(B)の合計100.0質量%に対して、複合物(A)を、好ましくは5.0質量%以上、より好ましくは10.0質量%以上、さらに好ましくは15.0質量%以上の量で含む。また、前記負極材は、放電容量を高く維持する観点から、複合物(A)と成分(B)の合計100.0質量%に対して、複合物(A)を、好ましくは70.0質量%以下、より好ましくは65.0質量%以下、さらに好ましくは60.0質量%以下の量で含む。
[負極合材]
 本発明の一実施態様に係る負極は、負極材、固体電解質および必要に応じて導電助剤を含んだ負極合材を使用する。負極合材は、負極材、固体電解質および導電助剤の合計を100質量部とした場合、負極材を35.0質量部以上85.0質量部以下、固体電解質を15.0質量部以上65.0質量部以下、導電助剤を10.0質量部以下の量で含むことが好ましい。このような組成の負極合材を用いて負極を製造することにより、放電容量、充放電レート特性、サイクル特性がさらに向上する。
[固体電解質]
 本発明の一実施態様に係る固体電解質は、体積基準累積粒径分布における50%径であるD50が、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上である。前記D50が0.1μm以上であると固体電解質粒子と負極活物質との良好な接触を保つことができ、電極の抵抗値が低下し、充放電レート特性が向上する。また、前記D50は、好ましくは10μm以下である。前記D50が10μm以下であると、固体電解質粒子と負極活物質との良好な接触を保つことができ、電極の抵抗値が低下し、充放電レート特性が向上する。
 体積基準累積粒径分布は、レーザー回折式粒度分布測定装置を使用することで測定可能である。例えば、マルバーン製マスターサイザー(登録商標)が使用可能である。
 本発明では、固体電解質の粉体物性値、負極活物質の粉体物性値および結晶構造を特定の範囲に制御することにより、固体電解質と負極活物質の間の接触面積が増加し、リチウムイオンの挿入脱離反応を改善することができる。従って、固体電解質の種類は限定されず、公知の固体電解質を使用すれば、本発明の効果は発揮される。
 本発明の一実施態様に係る固体電解質では、例えば、酸化物系固体電解質または硫化物系固体電解質を使用する。
 酸化物系固体電解質としては、ガーネット型複合酸化物、ペロブスカイト型複合酸化物、LISICON型複合酸化物、NASICON型複合酸化物、Liアルミナ型複合酸化物、LIPON、酸化物ガラスが挙げられる。これらの酸化物系固体電解質のうち、負極電位が低くても安定的に使用できる酸化物系固体電解質を選択することが好ましい。例えば、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO43、Li7La3Zr212、50Li4SiO4・50Li3BO3、Li2.9PO3.30.46、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5Al0.5Ge1.5(PO43が好適である。
 硫化物系固体電解質としては、硫化物ガラス、硫化物ガラスセラミック、Thio-LISICON型硫化物が挙げられる。これらの硫化物系固体電解質のうち、負極電位が低くても安定的に使用できる硫化物系固体電解質を選択することが好ましい。例えば、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50Li2S・50GeS2、Li7311、Li3.250.954、Li3PS4、Li2S・P23・P25が好適である。
 負極電位が低くても安定的に使用できる固体電解質を、本発明の負極活物質と組み合わせることにより全固体リチウムイオン電池の電池性能がさらに向上する。上記の固体電解質は1種類で用いてもよいし、2種以上を組み合わせて用いることも可能である。本発明の一実施態様に係る固体電解質には、硫化物系固体電解質を使用することがさらに好ましい。
[導電助剤]
 導電助剤としては、炭素材料を使用することが好ましい。炭素材料は特に限定されないが、デンカブラック(登録商標)(電気化学工業(株)製)、ケッチェンブラック(登録商標)(ライオン(株)製)、黒鉛微粉SFGシリーズ(Timcal社製)、グラフェン等の粒子状炭素を使用することができる。また、気相法炭素繊維「VGCF(登録商標)」シリーズ(昭和電工(株)製)、カーボンナノチューブ、カーボンナノホーン等の繊維状炭素を使用することもできる。これらの導電助剤は1種類でも、2種類以上を組み合わせて使うこともできる。導電助剤は、粒子状炭素および繊維状炭素のいずれか、またはこれらの組合せで用いることもできる。
II.固体電解質層
 本発明の全固体リチウムイオン電池を構成する固体電解質層は、固体電解質が含まれる層であれば、特に制限はなく、目的に応じて適宜選択することができる。固体電解質は負極に用いるものと同種のものであることが好ましい。
III.正極
 本発明の全固体リチウムイオン電池を構成する正極は、正極材が含まれる層であれば、特に制限はなく、目的に応じて適宜選択することができる。正極合材層は固体電解質を含むことが好ましく、さらに導電助剤を含むことがより好ましい。固体電解質は負極合材に用いるものと同種のものであることがさらに好ましい。
 正極材には公知の正極活物質が採用可能である。例えば、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Mn1/3Co1/3等の岩塩型層状活物質、LiMn等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCuPO等のオリビン型活物質、LiS等の硫化物活物質等を使用することができる。これらは単独で使用することもできるし、混合して使用することもできる。正極材の体積基準累積粒径分布における50%径であるD50は、2μm以上が好ましく、3μm以上がより好ましい。また、前記D50は15μm以下が好ましく、10μm以下がより好ましい。正極活物質の粒子サイズは固体電解質の粒子サイズに近い方が望ましい。
[結着剤]
 負極および正極の形状を維持するために公知の結着剤を用いることもできる。例えば、ポリフッ化ビニリデン、ポリウレタン、ポリシロキサン、ポリテトラフルオロエチレン、ポリブタジエン、ポリアクリレート、ポリオレフィン等を用いることができる。
[メカニカルミリング]
 固体電解質粒子の製造方法、ならびに、各正極材、負極材、固体電解質粒子および導電助剤を混合する手段は特に限定されないが、乳鉢を用いた均一化の他にも、遊星ミル、ボールミル、振動ミル、メカノフュージョン(登録商標)等を用いてメカニカルミリング処理を行うことができる。
[集電体]
 集電体としては、正極にはアルミ箔が使用可能であり、負極にはニッケル箔や銅箔が使用可能である。集電体には圧延箔および電解箔のいずれも用いることができる。
 集電体として、カーボンコートしたアルミ箔またはニッケル箔を用いることもできる。カーボンコートする方法は特に限定されない。またカーボンコート層に含まれるカーボンも特に限定されないが、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンナノチューブ、グラフェン、気相法炭素繊維、人造黒鉛微粉末等を用いることができる。
 以下に本発明の代表的な例について具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何ら制限されるものではない。
[材料]
 下記の例で使用した材料は以下の通りである。
<ケイ素含有粒子>
 本実施例で用いたケイ素含有粒子(1)は、ケイ素含有粒子が稠密な球であると仮定し、窒素吸着によるBET比表面積(Ssa)が51.5m/g、ケイ素粒子の真密度ρを理論値である2.33g/cmとしたとき、式:Dav=6/(ρ×Ssa)よって定義されるケイ素含有粒子の平均直径Davは50nmであった。また、ICP(誘導結合プラズマ)により定量したケイ素含有粒子に含まれる酸素含有率は5.8質量%であった。また、電子顕微鏡にて倍率10万倍により観察し、任意に一次粒子200個を抽出して画像解析により定量化した結果、数基準累積分布における50%径は48nmであり、90%径は182nmであった。評価結果を表1に示す。
 比較例には、表1に示すケイ素含有粒子(2)およびケイ素含有粒子(3)を用いた。
Figure JPOXMLDOC01-appb-T000001
<ピッチ>
 石油ピッチ(軟化点220℃)を使用した。この石油ピッチについて、窒素ガス流通下の熱分析により1100℃における残炭率を測定したところ52質量%であった。
 また、JIS K2425に記載されている方法またはそれに準じた方法で測定した石油ピッチのQI含量は0.62質量%、TI含量は48.9質量%であった。
[評価方法]
 なお、本実施例においては粉体物性(D50、BET比表面積)、結晶構造(d002、配向性指数、ラマンR値)およびケイ素含有粒子の含有量は下記方法によって評価した。
<D50>
 体積基準累積粒径分布における50%径であるD50(μm)はレーザー回折式粒度分布測定装置としてマルバーン製マスターサイザー(登録商標)を使用して、水を溶媒に用いた湿式法により測定した。
<BET比表面積>
 BET比表面積(m/g)はNOVA-1200(ユアサアイオニクス(株)製)使用し、窒素ガスの吸着脱離量からBET法により算出した。
<d002>
 黒鉛結晶面間隔d002は、下記の粉末X線回折(XRD)法を用い算出した。
 サンプルと標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
 XRD装置:Rigaku製SmartLab、
 X線種:Cu-Kα線、
 Kβ線除去方法:Niフィルター、
 X線出力:45kV、200mA、
 測定範囲:24.0~30.0deg、
 スキャンスピード:2.0deg./min。
 得られた波形に対し、学振法(稲垣道夫、「炭素」、1963、No.36、25-34頁;Iwashita et al.,Carbon vol.42(2004),p.701-714)を適用し面間隔d002の値を求めた。
<配向性指数>
 配向性指数は、粉末X線回折(XRD)法を用い、黒鉛の(110)面と(004)面に帰属される回折ピークの強度比I(110)/I(004)を算出することにより評価した。
 サンプルガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
 XRD装置:Rigaku製SmartLab、
 X線種:Cu-Kα線、
 Kβ線除去方法:Niフィルター、
 X線出力:45kV、200mA、
 測定範囲:5.0~100.0deg、
 スキャンスピード:2.0deg./min、
 (004)面:54.0~55.0deg、
 (110)面:76.5~78.0deg。
<R値>
 日本分光株式会社製JASCO NRS-3100を用い、ラマン分光法で励起波長532nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行い、1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)を測定し、R値(ID/IG)を算出した。
<ケイ素含有粒子の含有量>
 複合物(A)に含まれる炭素材料(C)の量は炭素・硫黄分析装置EMIA-920V(堀場製作所製)を用いて測定した。複合物(A)の量から炭素材料(C)の量を差し引くことで、ケイ素含有粒子の含有量を求めた。
<初期放電容量および初期クーロン効率の測定試験>
 対極リチウムハーフセルを用いて試験を行った。レストポテンシャルから0.005Vまで電流値0.1CでCC(コンスタントカレント:定電流)充電を行った。次に0.005VでCV(コンスタントボルト:定電圧)充電に切り替え、カットオフ電流値0.005Cで充電を行った。上限電圧1.5VとしてCCモードで電流値0.1Cで放電を行った。
 試験は25℃に設定した恒温槽内で行った。この際、初回放電時の容量を初期放電容量とした。また初回充放電時の電気量の比率、すなわち放電電気量/充電電気量を百分率で表した結果を初期クーロン効率とした。
[実施例1]
<複合物(A)の製造>
 前記のケイ素含有粒子(1)10質量部と前記の石油ピッチ11.54質量部をセパラブルフラスコに投入した。窒素ガスを流通させて不活性ガス雰囲気を保ち、250℃まで昇温した。ミキサーを500rpmで回転させて撹拌し、ピッチとケイ素含有粒子とを均一に混合させた。これを冷却し固化させて混合物を得た。この混合物に、カーボンブラック「Super C45」(TIMCAL社製)3質量部を加え、ロータリーカッターミルに投入し、窒素ガスを流通させて不活性ガス雰囲気を保ちつつ25000rpmで高速撹拌し混合させた。
 このケイ素含有粒子(1)/石油ピッチ/カーボンブラック混合物を焼成炉に入れ、窒素ガス流通下で、150℃/hで1100℃まで上げ、1100℃にて1時間保持した。室温まで冷やし焼成炉から取り出しロータリーカッターミルで解砕後、45μm目開きの篩にて篩分した篩下を、ケイ素含有粒子および炭素質材料を含む複合物にカーボンブラックが付着した、カーボンブラック付着複合物(A1)として得た。
 この複合物(A1)にポリアクリレートを結着剤を3質量%となるように混合して、厚さ10μmのCu箔集電体に片側塗工し、厚さ約60μmの負極シートを作製した。露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックス内で下記の操作を実施し、複合物(A1)の初期放電容量(mAh/g)および初期クーロン効率を測定するための、対極リチウムハーフセルを作製した。
 ポリプロピレン製のねじ込み式フタつきのセル(内径約18mm)内において、上記負極シートを15mmφに打ち抜いた。これと16mmφに打ち抜いた金属リチウム箔をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層し、電解液を加えて試験用セルとした。なお、電解液は、エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートが体積比で3:5:2の割合で混合した溶媒にフルオロエチレンカーボネート(FEC)を5質量%混合し、さらにこれに電解質LiPFを1mol/Lの濃度になるように溶解させて得られた液である。
 この対極リチウムハーフセルを用いて、前述した方法で、初期放電容量および初期効率を測定した。
<混合用人造黒鉛の製造>
 中国遼寧省産原油(API28、ワックス含有率17質量%、硫黄含有率0.66質量%)を常圧蒸留し、重質溜分に対して、十分な量のY型ゼオライト触媒を用い、510℃、常圧で流動床接触分解を行った。得られたオイルが澄明となるまで触媒等の固形分を遠心分離し、デカントオイルを得た。このオイルを小型ディレイドコーキングプロセスに投入した。ドラム入り口温度は505℃、ドラム内圧は600kPa(6kgf/cm)に10時間維持した後、水冷して黒色塊を得た。得られた黒色塊を最大5cm程度になるように金槌で粉砕した後キルンにて200℃で乾燥を行った。これをコークス1とした。
 このコークス1をホソカワミクロン製バンタムミルで粉砕し、その後45μmの目開きの篩を用いて粗粉をカットした。この粉砕後のコークス1をさらにセイシン企業製ジェットミルで粉砕した。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、粒径が1.0μm以下の粒子を実質的に含まない粉末コークス1(D50=6.3μm)を得た。
 この粉末コークス1を黒鉛るつぼに充填し、アチソン炉にて最高到達温度が約3300℃となるように1週間かけて加熱処理を行い、鱗片状の人造黒鉛粒子(B1)を得た。この得られた鱗片状の人造黒鉛粒子(B1)のD50が6.4μm、BET比表面積が6.1m/g、d002が0.3357nm、Lcが104nm、R値は0.15、配向性指数は0.28であった。この人造黒鉛粒子(B1)の初期放電容量および初期クーロン効率を、前記複合物(A1)と同様の方法で測定したところ、初期放電容量は355mAh/g、初期クーロン効率は93%であった。
<全固体リチウムイオン電池の作製と評価>
≪固体電解質層≫
 アルゴン雰囲気下で出発原料のLiS(日本化学(株)製)とP(シグマ アルドリッチ ジャパン合同会社製)を75:25のモル比率で秤量して混ぜ合わせ、遊星型ボールミル(P-5型、フリッチュ・ジャパン(株)製)およびジルコニアボール(10mmφ7個、3mmφ10個)を用いて20時間メカニカルミリング(回転数400rpm)することにより、D50が8μmのLiPS非晶質固体電解質を得た。
 内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて、一軸プレス成形機によりプレス成形を行うことで、電池評価試験に用いる固体電解質層を得た。
≪負極≫
 アルゴンガス雰囲気にしたグローブボックス内で、上述した複合物(A1)25質量部および人造黒鉛粒子(B1)25質量部、さらに前記固体電解質(LiPS、D50:8μm)45質量部、ならびに、導電助剤としてデンカブラック(登録商標)(HS-100)3質量部および昭和電工(株)製「VGCF-H」2質量部を混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化して負極合材を得た。次いで、得られた負極合材を、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、電池評価試験に用いる負極を得た。
≪正極≫
 正極活物質LiCoO(日本化学工業(株)製、D50:10μm)55質量部、固体電解質(LiPS、D50:8μm)40質量部、デンカブラック(HS-100)3質量部、および昭和電工(株)製「VGCF-H」2質量部を混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化して正極合材を得た。次いで、得られた正極合材を、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、電池評価試験に用いる正極を得た。
≪電池の組み立て≫
 負極、固体電解質層、および正極を内径10mmφのポリエチレン製ダイの中に積層し、両側からSUS製のパンチで100MPaの圧力で挟むことで、設計容量35mAhの試験用全固体リチウムイオン電池を得た。設計容量として、負極の質量当たりの放電容量は604mAh/gである。
≪電池評価≫
 1回目の充電は0.35mA(0.01C)で4.2Vまで定電流充電を行い、続いて4.2Vの一定電圧で40時間の定電圧充電を行った。
 その後、0.35mA(0.01C)にて2.75Vになるまで定電流放電を行った。初回充放電時の容量を放電容量とした。初回放電容量/初回充電容量*100を初期クーロン効率とした。
 25℃にて測定した初回の放電容量を100%として、50サイクル後の放電容量をサイクル特性(%)とした。サイクル特性の測定においては、充電は4.2Vになるまで0.35mA(0.01C)の定電流充電を行い、続いて4.2Vの一定電圧で0.005Cまで電流が小さくなるまで定電圧充電を行った。また、放電は0.35mA(0.01C)の定電流放電で2.75Vになるまで行った。
[実施例2]
 カーボンブラックを添加しない以外は実施例1と同様の方法で、ケイ素含有粒子(1)および炭素質材料を含む複合物(A2)を製造した。得られた複合物(A2)について、実施例1と同様の方法で対極リチウムハーフセルの初期放電容量および初期クーロン効率を測定した。
<全固体リチウムイオン電池の作製と評価>
 複合物(A1)の代わりに、複合物(A2)を用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
[実施例3]
 実施例で作製したカーボンブラック付着複合物(A1)に対して石油ピッチ1質量%をV型混合機で混合したものを焼成炉に入れ、窒素ガス流通下で、150℃/hで1100℃まで上げ、1100℃にて1時間保持した。室温まで冷やし焼成炉から取り出し、45μm目開きの篩にて篩分した篩下を、カーボンブラック付着複合物(A1)が炭素被覆された、複合物(A3)として得た。この複合物(A3)の表面はケイ素含有粒子を含まない炭素質材料層であった。得られた複合物(A3)について、実施例1と同様の方法で対極リチウムハーフセルの初期放電容量および初期クーロン効率を測定した。
<全固体リチウムイオン電池の作製と評価>
 複合物(A1)の代わりに、複合物(A3)を用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
 [比較例1]
 複合物(A1)を50質量部、成分(B)を0質量部用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
 [比較例2]
 複合物(A1)を0質量部、成分(B)を50質量部用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
 [比較例3]
 ケイ素含有粒子(2)を用いた以外は実施例1と同様の方法で複合物(A4)を製造して評価した。
 複合物(A1)の代わりに、複合物(A4)用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
 [比較例4]
 ケイ素含有粒子(3)を用いた以外は実施例1と同様の方法を用いて複合物(A5)を製造して評価した。
 複合物(A1)の代わりに、複合物(A5)用いた以外は、実施例1と同様の方法で、全固体リチウムイオン電池を作製し、評価した。
 複合物(A1)~複合物(A5)の物性、ならびに対極リチウムハーフセルを用いた初期放電容量および初期クローン効率の測定結果を表2に示す。
 また、実施例1~5および比較例1~4の全固体リチウムイオン電池の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の通り、本発明の負極合材を用いることによって黒鉛のみの負極材よりも高い放電容量を備え、クーロン効率とサイクル特性の高い全固体リチウムイオン電池を実現できた。

Claims (12)

  1.  ケイ素含有粒子および炭素質材料を含む複合物(A)と、炭素質材料および黒鉛から選ばれる1種以上の成分(B)とを含む負極材、及び固体電解質を含み、
     前記複合物(A)のケイ素含有粒子が、下記式(1)で示される平均直径Davが15nm以上150nm以下であることを特徴とする全固体リチウムイオン電池用負極合材。
       Dav=6/(ρ×Ssa)   (1)
    (式中、Davはケイ素含有粒子が稠密な球であると仮定したときの粒子の平均直径(nm)を表し、Ssaはケイ素含有粒子のBET比表面積(m/g)を表し、ρはケイ素の真密度の理論値(2.33g/cm)を表す。)
  2.  前記複合物(A)が、その表面にケイ素含有粒子を含まない炭素質材料層を有している請求項1に記載の全固体リチウムイオン電池用負極合材。
  3.  前記複合物(A)100.0質量%に対して、ケイ素含有粒子が25.0質量%以上75.0質量%以下の量で含まれ、前記複合物(A)の体積基準累積粒径分布における50%径であるD50が2μm以上18μm以下である請求項1または2に記載の全固体リチウムイオン電池用負極合材。
  4.  前記複合物(A)の表面の一部または全てにカーボンブラックが付着している請求項1~3のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  5.  前記複合物(A)の表面の一部または全てにグラフェンが付着している請求項1~4のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  6.  前記複合物(A)の表面の一部または全てに金属酸化物が付着している請求項1~5のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  7.  前記金属酸化物が、アルミナ系酸化物、マグネシア系酸化物、およびチタニア系酸化物から選ばれる1種以上である請求項6に記載の全固体リチウムイオン電池用負極合材。
  8.  前記複合物(A)の表面の一部または全てにチタン酸リチウム微粒子が付着している請求項1~7のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  9.  前記黒鉛が鱗片状で、粒子長軸の平均長さが2μm以上10μm以下である請求項1~8のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  10.  前記黒鉛の表面が炭素質材料で被覆されている請求項1~9のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  11.  前記負極材が、前記複合物(A)と前記成分(B)の合計100質量%に対して、前記複合物(A)を5.0質量%以上70質量%以下の量で含む請求項1~10のいずれか一項に記載の全固体リチウムイオン電池用負極合材。
  12.  固体電解質層、負極および正極を含む全固体リチウムイオン電池であって、前記負極が、請求項1~11のいずれか一項に記載の全固体リチウムイオン電池用負極合材を用いて形成されたことを特徴とする全固体リチウムイオン電池。
PCT/JP2019/049107 2018-12-20 2019-12-16 全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池 WO2020129879A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018238662 2018-12-20
JP2018-238662 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020129879A1 true WO2020129879A1 (ja) 2020-06-25

Family

ID=71101412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049107 WO2020129879A1 (ja) 2018-12-20 2019-12-16 全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池

Country Status (2)

Country Link
TW (1) TW202036969A (ja)
WO (1) WO2020129879A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007939A1 (ja) 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 負極材料、負極および電池及びそれらの製造方法
WO2023073089A1 (en) 2021-10-29 2023-05-04 Umicore A powder for use in the negative electrode of a battery, a method for preparing such a powder and a battery comprising such a powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049266A (ja) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd リチウム二次電池
JP2014187007A (ja) * 2013-02-21 2014-10-02 Connexx Systems株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2015159935A1 (ja) * 2014-04-16 2015-10-22 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP2017054720A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 全固体電池用負極
JP2018048070A (ja) * 2016-09-19 2018-03-29 三星電子株式会社Samsung Electronics Co., Ltd. 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
WO2018110386A1 (ja) * 2016-12-15 2018-06-21 昭和電工株式会社 粒状複合材、リチウムイオン二次電池用負極及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049266A (ja) * 2004-07-09 2006-02-16 Samsung Sdi Co Ltd リチウム二次電池
JP2014187007A (ja) * 2013-02-21 2014-10-02 Connexx Systems株式会社 リチウム二次電池用複合活物質およびその製造方法
WO2015159935A1 (ja) * 2014-04-16 2015-10-22 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP2017054720A (ja) * 2015-09-10 2017-03-16 トヨタ自動車株式会社 全固体電池用負極
JP2018048070A (ja) * 2016-09-19 2018-03-29 三星電子株式会社Samsung Electronics Co., Ltd. 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
WO2018110386A1 (ja) * 2016-12-15 2018-06-21 昭和電工株式会社 粒状複合材、リチウムイオン二次電池用負極及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007939A1 (ja) 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 負極材料、負極および電池及びそれらの製造方法
WO2023073089A1 (en) 2021-10-29 2023-05-04 Umicore A powder for use in the negative electrode of a battery, a method for preparing such a powder and a battery comprising such a powder

Also Published As

Publication number Publication date
TW202036969A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6703988B2 (ja) リチウムイオン電池用負極材及びその用途
JP5956690B2 (ja) リチウムイオン電池用負極材及びその用途
JP6528826B2 (ja) 非水系二次電池用炭素材並びにそれを用いた負極及びリチウムイオン二次電池
KR101380259B1 (ko) 리튬 이온 전지용 전극 재료의 제조 방법
JP2019087541A (ja) 複合体の製造方法及びリチウムイオン電池用負極材
WO2015105167A1 (ja) リチウムイオン二次電池用負極活物質
WO2018123967A1 (ja) 全固体リチウムイオン電池
WO2018088248A1 (ja) 負極材料及びリチウムイオン電池
WO2007066673A1 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
KR20190042725A (ko) 리튬이온 이차전지용 음극재
WO2019031597A1 (ja) リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
WO2019131862A1 (ja) リチウムイオン二次電池用負極材
JPWO2019131861A1 (ja) リチウムイオン二次電池用負極材
WO2019069668A1 (ja) リチウムイオン二次電池用負極材料、その製造方法、負極用ペースト、負極シート及びリチウムイオン二次電池
WO2019131864A1 (ja) リチウムイオン二次電池用負極材
WO2020129879A1 (ja) 全固体リチウムイオン電池用負極合材および全固体リチウムイオン電池
WO2020213628A1 (ja) 複合炭素粒子、その製造方法及びその用途
KR20220087143A (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2019131860A1 (ja) リチウムイオン二次電池用負極材
WO2020116324A1 (ja) 全固体リチウムイオン電池および負極合剤
WO2020105599A1 (ja) 複合炭素粒子、その製造方法及びリチウムイオン二次電池
WO2019131863A1 (ja) リチウムイオン二次電池用負極材
JP2021144818A (ja) 全固体リチウムイオン電池
JP2022029464A (ja) 全固体リチウムイオン電池
JP2022079000A (ja) 複合材料及び全固体型リチウムイオン二次電池用負極材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP