WO2020129410A1 - 超音波半田付け装置および超音波半田付け方法 - Google Patents

超音波半田付け装置および超音波半田付け方法 Download PDF

Info

Publication number
WO2020129410A1
WO2020129410A1 PCT/JP2019/042073 JP2019042073W WO2020129410A1 WO 2020129410 A1 WO2020129410 A1 WO 2020129410A1 JP 2019042073 W JP2019042073 W JP 2019042073W WO 2020129410 A1 WO2020129410 A1 WO 2020129410A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
substrate
iron tip
soldering
ultrasonic
Prior art date
Application number
PCT/JP2019/042073
Other languages
English (en)
French (fr)
Inventor
傑也 新井
ミエ子 菅原
小林 賢一
秀利 小宮
正五 松井
潤 錦織
Original Assignee
アートビーム有限会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アートビーム有限会社 filed Critical アートビーム有限会社
Priority to CN201980084527.8A priority Critical patent/CN113226613A/zh
Priority to KR1020217022576A priority patent/KR20210100729A/ko
Priority to JP2020561189A priority patent/JPWO2020129410A1/ja
Publication of WO2020129410A1 publication Critical patent/WO2020129410A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/025Bits or tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0607Solder feeding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an ultrasonic soldering device and an ultrasonic soldering method for soldering to a substrate or a film portion formed on the substrate.
  • a solar cell has an N-type/P-type silicon substrate that converts sunlight energy into electric energy, a silicon nitride film that is an insulator thin film on the surface of the silicon substrate, a finger electrode that takes out electrons generated in the silicon substrate, Each element is composed of a bus bar electrode that collects the electrons taken out by the finger electrode and a lead-out lead electrode that takes out the electrons collected in the bus bar electrode to the outside.
  • lead wires are soldered to aluminum electrodes formed by applying aluminum paste.
  • the lead wire is soldered to the aluminum electrode on the back surface of the solar cell.
  • its strength is weak, and a hole is made in an aluminum electrode, silver paste is applied and sintered, and a lead wire is soldered to the portion of the silver paste to secure the strength.
  • a lead wire is soldered to the aluminum electrode formed on the back surface of the solar cell, or a hole is made in the aluminum electrode and a silver paste is applied and sintered here, and the lead wire is soldered to the silver paste portion.
  • a sufficient tensile strength of the lead wire cannot be obtained by attaching it, or an extra step of applying and sintering a silver paste is required, resulting in a high cost.
  • the present inventors have increased the cross-sectional area and heat capacity of the soldering iron tip to reduce the heating temperature of the iron tip to reduce thermal damage to the substrate, and to improve ultrasonic conduction and reduce ultrasonic output. Then, the deposits on the substrate were removed to form a thin and uniform solder layer, and the uniform and thin solder layer was formed without damage to the film on the substrate.
  • the present invention is an ultrasonic soldering apparatus for soldering a substrate or a film portion formed on the substrate, in which the substrate to be soldered or the substrate on which the film is formed has a predetermined temperature lower than the melting temperature of the solder.
  • the substrate preheating device that preheats the substrate and the soldering iron tip portion that is close to the part of the substrate that has been preheated by the substrate preheating device are adjusted to the predetermined temperature at which the solder supplied under the application of ultrasonic waves melts.
  • the iron tip heating device to do the ultrasonic oscillation device that supplies ultrasonic waves to the iron tip portion heated by the iron tip heating device, and the thread-shaped solder to be supplied to the iron tip part from the temperature at which the thread-shaped solder melts.
  • the solder preheating device that preheats to a low temperature
  • the solder slide device that adjusts the speed at which the thread-shaped solder preheated by the solder preheating device is supplied to the heated iron tip, and the heated iron trowel that is close to the board
  • it is equipped with a soldering iron tip moving device that moves the iron tip in the soldering direction at a predetermined speed while supplying the yarn solder that has been preheated by the solder slide device at a predetermined speed.
  • the parts are melted and ultrasonic waves are applied to remove the deposits on the adjacent substrate parts, and the molten solder is adhered to the substrate parts for soldering.
  • the length of the iron tip in the moving direction is made longer than the width of the iron tip, and the cross-sectional area and heat capacity are increased to improve the heat conduction to the substrate and improve the iron tip temperature.
  • the thermal damage to the film on the substrate or the film in the substrate is reduced.
  • the length of the iron tip in the moving direction is made longer than the width of the iron tip in the moving direction to increase the cross-sectional area and improve the conduction of ultrasonic waves to the substrate. Is improved to reduce the ultrasonic oscillation output and reduce the ultrasonic damage to the film on the substrate or the film in the substrate.
  • the ultrasonic oscillation output is set to 2W to 6W, preferably 2W.
  • the length of the iron tip in the moving direction is set to 3 to 6 times the width of the iron tip in the moving direction to match the period of the undulation length of the substrate in the iron tip moving direction.
  • a solder layer having a uniform thickness is formed.
  • the cross-sectional area of the preheated thread-shaped solder is made large or small so that the thickness of the solder on the board can be adjusted as thin as possible.
  • the supply speed of the preheated thread-shaped solder is set to be the same as the moving speed of the iron tip.
  • the former is made faster than the latter to increase the amount of molten solder to increase the solder thickness to the substrate, or the former is made to be thicker than the latter. By slowing down, the amount of molten solder is reduced to reduce the thickness of the solder on the substrate, and the solder thickness can be adjusted to be as thin as possible.
  • the moving speed of the iron tip is set to 150 to 200 mm/s to form a uniform and thin solder layer.
  • the material of the iron tip or the material that coats the iron tip is made to have high hardness and wear resistance.
  • the material is either titanium, titanium alloy, silicon, or silicon alloy.
  • the thickness of the coating on the iron tip is set to 5 to 15 ⁇ m.
  • the present invention increases the cross-sectional area and heat capacity of the soldering iron tip to reduce the heating temperature of the iron tip to reduce heat damage to the substrate, and to improve ultrasonic conduction to achieve ultrasonic waves. It has become possible to form a thin and uniform solder layer by reducing the output and removing the deposits on the substrate, and to form a uniform and thin solder layer without damaging the film on the substrate. These have the following characteristics. (1) By increasing the cross-sectional area of the iron tip (about 4 times in the experiment), the heating temperature of the iron tip can be lowered by about 90°C (experimental), and the molten solder melted on the iron tip can be moved closer (approx.
  • the temperature of the substrate preheating table for preheating the substrate can be lowered by about 30° C., which can contribute to the reduction of heat damage to the substrate.
  • the conduction of ultrasonic waves from the ultrasonic oscillator becomes good, and the output becomes 2W. Even if the amount was reduced, the deposits on the substrate were sufficiently removed, and a thin and uniform solder layer could be formed.
  • the thickness of the solder layer on the substrate can be reduced to half or one-third, that is, 50 to 100 ⁇ m, the amount of solder material used can be reduced to half or one-third, and the cost can be reduced. It was (5) The life of the soldering iron tip is significantly extended by forming or coating the soldering iron tip with a metal having high hardness and wear resistance (titanium, titanium alloy, silicon, silicon alloy, etc.). It has become possible.
  • FIG. 1 shows a block diagram of an embodiment of the present invention.
  • FIG. 1 shows an example of ultrasonic soldering on the back surface of a solar cell substrate (silicon substrate), which can be applied to the front surface of the solar cell substrate.
  • a solar cell substrate silicon substrate
  • a substrate (solar cell substrate, silicon substrate) 1 is a silicon substrate that constitutes a solar cell (see FIG. 5).
  • the board loading table (board preheating table) 2 is for mounting the board 1 and preheating it, and here, it is heated to a predetermined temperature below the temperature at which the solder melts but above room temperature.
  • the soldering iron tip 3 is a soldering iron tip that constitutes a soldering device, is disposed close to the substrate 1 to be soldered (usually about 30 ⁇ m), is heated to a predetermined temperature by the soldering iron heating device 4, and With the ultrasonic wave applied from the sound wave oscillating device 5, the iron tip moving device 32 moves the ultrasonic wave in the soldering direction.
  • the iron tip temperature (T3) 31 is the iron tip temperature T3.
  • the iron tip moving device (S1) 32 is a device for moving the iron tip 3 in the soldering direction.
  • the iron tip heating device 4 heats the iron tip 3 to a predetermined temperature, and is a heating body such as a ceramic heater.
  • the ultrasonic wave oscillating device 5 oscillates an ultrasonic wave and supplies it to the iron tip 3, and here, generates an ultrasonic wave output of 2W to 6W.
  • the solder 6 is a thread-shaped solder to be supplied to the iron tip 3, and is a solder containing Sn, Zn, etc. but not Pb, etc.
  • the solder preheating device (T2) 7 preheats the thread-shaped solder 7, and preheats the solder 7 to a temperature below the melting temperature of the solder 7.
  • the solder slide device 8 automatically supplies the preheated filamentous solder 7 to the tip portion of the iron tip 3 at a predetermined speed as shown in the figure.
  • S1 prepares a solar cell substrate (backside aluminum pattern formation). This prepares the solar cell substrate (silicon substrate) shown in FIG. 5 described later.
  • the silicon substrate 1 shown in FIG. 5 has an aluminum film 11 formed by screen-printing an aluminum paste on the back surface as shown in FIG. 5(b) and sintering the aluminum paste.
  • the aluminum film 11 is not present on the rear surface portion (corresponding to the bus bar electrode) formed on the front surface of the substrate 1 and the underlying silicon substrate 1 is exposed.
  • the substrate stacking base is heated to a predetermined temperature T1.
  • the solder preheating device and the iron tip are heated to predetermined temperatures T2 and T3, respectively. This is because the solder preheating device 6 in FIG. 1 is heated to a predetermined temperature T2 (a temperature slightly lower than the melting temperature of the solder 7), and the soldering tip 3 in FIG. (The temperature at which 7 melts).
  • S5 sets the ultrasonic output to a predetermined power W.
  • the ultrasonic wave output of the ultrasonic wave oscillating device 5 of FIG. 1 is set to a predetermined power W (2 W is preferable in the range of 2 to 6 W in the experiment).
  • the soldering tip is brought close to the substrate surface and the molten solder is bonded to the silicon substrate (or aluminum surface) (about 30 ⁇ m on the substrate). This is because the iron tip 3 of FIG. 1 is brought close to about 30 ⁇ m on the back surface of the substrate 1 (see (b) of FIG. 5), and the filamentous solder 7 preheated and supplied to the iron tip 3 is melted. The molten solder thus obtained is adhered to the aluminum surface on the back surface of the substrate 1 or the exposed silicon substrate (silicon surface) of the substrate 1 by the supplied ultrasonic waves to remove deposits on the surface.
  • the iron tip is moved at a predetermined speed S1 from the start point of the soldering target toward the end point.
  • ⁇ S9 determines if it is the end. If YES, then end. In the case of NO, the process moves to the next soldering start place in S10, and S6 and subsequent steps are repeated. For example, in the case of a 150 mm square solar cell substrate (silicon substrate), five experiments were repeated.
  • the iron tip 3 is arranged close to the aluminum surface or the silicon surface of the preheated solar cell substrate, and the preheated thread-shaped solder 7 is automatically supplied to the tip portion of the iron tip 3 so that the iron tip Forming the molten solder on the tip 3 and supplying ultrasonic waves from the iron tip 3 to the aluminum surface or the silicon surface of the adjacent solar cell to remove the deposits and then to bond the molten solder from the start point to the end point
  • the ribbon (lead wire) is firmly fixed directly to the aluminum surface or the silicon surface of the solar cell (in this case, the pre-soldered ribbon is used instead of the thread-shaped solder 7 in FIG. 1), Alternatively, the ribbon can be soldered (without ultrasonic waves) after pre-soldering with the thread-shaped solder 7.
  • FIG. 4 shows a temperature setting flowchart of the present invention. This is a detailed description of the setting of the temperatures T1, T2 and T3 described with reference to FIGS. 1, 2 and 3.
  • T1 temperature of the substrate stacking table of Fig. 1-Temperature
  • T2 temperature of the solder preheating device of Fig. 1-Temperature
  • T3 temperature of the iron tip 3 of Fig. 1
  • S11 is T1, T2, T3 Set the optimum temperature range. For this, the optimum temperature ranges obtained in advance by experiments are set.
  • S12 determines whether T1 is within a predetermined temperature range. This determines whether the current temperature T1 is within the optimum temperature range of T1 set in S11. If YES, the process proceeds to S13. If NO, the process returns to S11 and is repeated.
  • S13 determines whether T2 is within a predetermined temperature range. This determines whether the current temperature T2 is within the optimum temperature range of T2 set in S11. If YES, the process proceeds to S14. If NO, the process returns to S11 and is repeated.
  • T3 determines whether T3 is within a predetermined temperature range. This determines whether the current temperature T3 is within the optimum temperature range of T3 set in S11. If YES, soldering is started in S15. If NO, the process returns to S11 and is repeated.
  • the temperature T1 of the board mounting table 2 of FIG. 1, the temperature T2 of the solder preheating device 6, and the temperature T3 of the iron tip 3 are kept within the optimum temperature ranges (which will be described later) obtained in advance by experiments.
  • soldering is started (execution of S5 and subsequent steps in FIG. 2 described above) and preheating while removing deposits on the aluminum surface or silicon surface of the solar cell substrate by ultrasonic waves.
  • the molten solder thus melted can be adhered to the aluminum surface or the silicon surface adjacent to the soldering iron tip to be soldered.
  • FIG. 5 shows an example of a board to be soldered according to the present invention.
  • FIG. 5A shows a cross-sectional view of the back surface of the solar cell substrate (silicon substrate), and FIG. 5B shows a plan view of the back surface of the solar cell.
  • the aluminum film 11 is formed on the back surface of the solar cell (silicon substrate) 1 by coating and sintering aluminum paste, as shown in the figure, and is not shown. Is formed in a structure in which the silicon surface is exposed without the aluminum film in the portion corresponding to the strip-shaped bus bar electrode on the surface of.
  • molten solder is adhered and soldered to a portion of the aluminum film 11 on the back surface of the solar cell or a portion where the silicon surface is exposed.
  • FIG. 6 shows a configuration example of the soldering device of the present invention.
  • This soldering device comprises an ultrasonic oscillator 5, a propagation path 51, and a soldering tip 3.
  • an ultrasonic wave oscillating device 5 corresponds to the ultrasonic wave oscillating device 5 of FIG. 1 and oscillates and outputs an ultrasonic wave.
  • the ultrasonic wave output can be adjusted within a range of 2 W to 6 W. It was done.
  • the propagation path 51 efficiently propagates the ultrasonic output generated by the ultrasonic oscillator 5 to the iron tip 3.
  • the iron tip 3 is the iron tip 3 of FIG. 1, and melts the solder that has been heated to a predetermined temperature T3 and preheated to generate molten solder, and also propagates the ultrasonic waves generated by the ultrasonic oscillator 5. After receiving through the path 51, propagating to the aluminum surface or silicon surface of the solar cell substrate arranged in close proximity and removing the deposits on the aluminum surface or silicon surface, the molten solder is adhered and soldered. It is for doing.
  • the iron tip 3 has a long length (horizontal direction and a direction in which the iron tip 3 moves and solders) with respect to the width (vertical direction) as shown in the drawing (usually about 2 to 6 times). , Which will be described later with reference to FIGS. 7 and 14.).
  • the ultrasonic oscillating device 5 by connecting the ultrasonic oscillating device 5 to the iron tip 3 via the propagation path 51, ultrasonic waves are supplied to the aluminum surface or the silicon surface of the solar cell substrate arranged in the vicinity of the iron tip 3. After removing the deposits on the surface, the molten solder of the iron tip 3 can be adhered to the aluminum surface or the silicon surface for firm soldering.
  • FIG. 7 shows an example of improving the iron tip of the present invention.
  • FIG. 7A shows an example of the shape of a conventional iron tip.
  • the conventional soldering iron tip is soldered using a soldering portion 33 having a square or circular shape of 1 mm ⁇ 1 mm.
  • This conventional soldering portion 33 has no directionality and is convenient because it can be soldered in any direction.
  • the contact area of the soldering portion 33 is small, and in the example of FIG. 7A, it is a rectangle of 1 mm ⁇ 1 mm and is 1 mm square, and the aluminum surface or the silicon surface in contact has a large thermal resistance and the ultrasonic resistance. Was also great.
  • the width is the same as 1 mm
  • the length is 4 times the 4 mm
  • the contact area is increased 4 times to the aluminum surface or the silicon surface to be contacted.
  • the heat resistance of the iron tip 3 is reduced to about 1/4 and the ultrasonic resistance is also reduced to about 1/4.
  • the heating temperature of the iron tip 3 corresponding to this amount can be lowered and the ultrasonic output can be lowered. did it.
  • FIG. 7B shows an example of the shape of the iron tip of the present invention.
  • the iron tip of the present invention was soldered using a rectangular soldering portion 34 having a width of 1 mm and a length of 4 mm as illustrated.
  • the padding portion 34 of the present invention has a contact area with the aluminum surface or the silicon surface that is four times as large, so that the thermal resistance and the ultrasonic resistance are increased. Can be reduced to about 1/4, and the heat capacity can be increased (about 4 times) by quadrupling the cross-sectional area of the iron tip 3.
  • FIG. 7C shows an example of the shape of another iron tip of the present invention.
  • another iron tip of the present invention has a rectangular soldering portion 34 having a width of 1 mm or less and a length of about 4 mm.
  • Another example of the shape of the iron tip is a structure in which a small tip width of 1 mm or less and a length of 4 mm or less is added to the tip 3 of FIG. This is a convenient structure if you want to: That is, there is a feature that only the width can be arbitrarily reduced to 1 mm or less in the state that the shape has the same or slightly larger heat resistance, ultrasonic resistance, and heat capacity as the shape of the iron tip in FIG. 7B.
  • the length direction with respect to the width of the iron tip is lengthened (4 times in the experiment) and the heat between the minium surface or the silicon surface of the solar cell substrate can be applied in a state where soldering with the same width is possible.
  • the resistance is small (about 1/4 in the experiment) and the heat capacity is large (about 4 times).
  • the temperature of the iron tip and the ultrasonic output are reduced, and the aluminum surface or the silicon surface of the solar cell substrate is reduced.
  • FIG. 8 shows an example of the iron tip speed (S1) of the present invention. This corresponds to the speed S1 of the iron tip 3 in FIG. 1 and the following information shown in the figure.
  • the optimum range of the speed of the iron tip 3 in FIG. 1 is 150 to 200 mm/s. Therefore, even if it is too slow or too fast, the solder is uniform and thin, and the aluminum surface or the silicon surface can be applied. There wasn't. In the experiment, the shape of the iron tip 3 in FIG. 7B was used, but if the other shape (width, etc.) and the desired solder thickness are different, it is necessary to obtain the optimum speed by experiment. Is.
  • FIG. 9 shows an example of the solder supply rate (S2) of the present invention. This corresponds to the speed S2 at which the solder 7 of FIG. 1 is supplied to the iron tip 3 and the following information shown in the figure.
  • solder 7 supplied by the solder slide device 8 in FIG. 1 is increased (higher than the speed of the iron tip), the solder 7 is supplied to the iron tip 3 at a speed higher than the speed of the iron tip 3, so to speak, solder. Excessive supply caused the molten solder to be applied thickly on the aluminum surface or silicon surface of the solar cell substrate 1, and when it was too fast, a solder pool was formed.
  • FIG. 10 shows an example of temperature setting of the present invention. This corresponds to the following information in association with the substrate stacking table 2, the solder preheating device 7, and the iron tip heating device 4 in FIG. 1.
  • the set temperature indicates an example of the set temperature set in each device in the experiment, and the set temperature range is an appropriate set temperature range used in the experiment in each device. This will be described below.
  • the temperature of the substrate stacking base (T1) 2 in FIG. 1 is slightly lower than the temperature at which the solder 6 melts and becomes molten solder at the iron tip 3 when ultrasonic waves are applied. And the appropriate set temperature range was 140 to 200°C.
  • the solder preheating device (T2) 7 in FIG. 1 preheats the solder 6 to a temperature slightly lower than the temperature at which the soldering tip 3 becomes molten solder, and is set to 160° C. in the experiment.
  • the proper set temperature range was 150 to 200°C.
  • the iron tip heating device (T3) 4 in FIG. 1 is a temperature at which the solder 6 melts when the ultrasonic wave is applied and becomes molten solder at the iron tip 3, and is set to 360° C. in the experiment.
  • the appropriate set temperature range was 340 to 450°C.
  • the set temperature and the set temperature range depend on the material of the solder 6 used, and Sn/Zn solder was used in the above experimental example. Since other solder materials have different melting temperatures, it is necessary to experimentally determine and set the preset temperature and preset temperature range.
  • FIG. 11 shows an example of ultrasonic power setting of the present invention. This corresponds to the following information in association with the oscillation output power of the ultrasonic oscillator 5 of FIG.
  • the solder bonding surface is not smooth Optimal range 2-6W (optimum 2W) Small amount of solder is evenly applied Small 2W or less
  • Power required is the ultrasonic oscillation output (power) supplied to the iron tip 3 by the ultrasonic oscillation device 5 in FIG. 1.
  • W is the power (W) set in the experiment. The remarks show information observing the situation for each power. This will be described below.
  • substrate or crystal damage, breakage increased the ultrasonic output, and as a result, the large ultrasonic output caused ultrasonic damage to the aluminum surface and silicon surface of the solar cell substrate, and It means that there is a high possibility that damage and even membrane breakage will occur.
  • the solder bonding surface does not become smooth means that the ultrasonic wave output is so large that the solder to the aluminum surface and the silicon surface is not smooth and becomes rugged.
  • the solder could be applied uniformly and thinly to the aluminum surface and the silicon surface of the solar cell substrate 1.
  • FIG. 12 shows a setting example of the present invention and a conventional setting.
  • each item is described by comparing the conventional and the present invention and the difference is specifically described as follows.
  • the item is a comparison item, such as “iron tip temperature (T3)” as illustrated.
  • T3 iron tip temperature
  • Item Conventional invention Remarks Iron tip temperature (T3) 450°C 360°C Corrosion resistant to 450°C or less Substrate preheating temperature (T1) 260°C 170°C Iron tip speed (S1) 150mm/S 178mm/S Requirement 150mm/S or more Wafer 1 sheet/second or more Solder supply (S2) 200 pulse Iron tip height 20-30 ⁇ m 30 ⁇ m No solder preheating (T2) 160°C 200°C or less (first time in the present invention) Ultrasonic oscillation output 6W 2W (range of 2-6W) 6W or less Solder weight 0.02-0.03g/0.01g/0.5g or less per one pass Per one pass (total of 0.05g for 5 buses)/wafer
  • the iron tip temperature (T3) was 450° C., but in the present invention, when the width of the tip portion of the iron tip 3 is the same, the length is increased by about 4 times and the cross-sectional area is increased by 4 times.
  • the iron tip temperature (iron tip heating temperature) was 360° C., and it was confirmed by experiments that the iron tip temperature was lowered by about 90° C. As a result, the temperature at which the molten solder of the iron tip 3 was adhered in close proximity to the aluminum surface and the silicon surface of the solar cell substrate 1 was lowered, and the heat damage could be reduced.
  • the substrate preheating temperature (T1) has made it possible to reduce the temperature of the iron tip, and at the same time, even if the substrate preheating temperature is also reduced by about 30° C. from 200° C. to 170° C. Soldering can be performed using a soldering iron tip (see FIG. 7B) having a length that is about four times longer than the conventional one.
  • the iron tip speed (S1) can be improved by 178 mm/S and 28 mm/S by changing the iron tip of the present invention from the conventional 150 mm/S.
  • solder supply was performed with 200 pulses.
  • the iron tip height was 20 to 30 ⁇ m in the past, but was controlled to 30 ⁇ m in the present invention.
  • the solder preheating temperature (T2) was not available in the past, but was preheated to 160°C in the present invention.
  • the ultrasonic oscillation output was 6 W in the past, but in the present invention, using the iron tip of the present invention (see FIG. 7(b)), the width is the same and the cross-sectional area is quadrupled to reduce the ultrasonic resistance.
  • the deposits on the solar cell substrate 1 were sufficiently removed and the molten solder was adhered, and the solder could be uniformly and thinly (half the thickness of the conventional solder).
  • the weight of solder was 0.02 to 0.03 g per pass, and 0.1 to 0.15 g of solder was used for 5 wafers (5 passes). Since the present invention uses 0.01 g per pass and uses 0.05 g of solder for 5 wafers (5 passes), the amount of solder used can be reduced to one-third that of the conventional one. Can be reduced. Further, the reduction in the amount of solder used according to the present invention means that the thickness of the solder on the aluminum surface and the silicon surface of the solar cell substrate 1 can be reduced to one-third that of the conventional one.
  • FIG. 13 shows an example of a soldering photograph of the present invention.
  • the (a) lateral direction in FIG. 13 shows an example of a soldering photograph in the case of proper conditions (in the case of the present invention in FIG. 12), and it can be observed that the soldering is performed thinly and uniformly.
  • FIG. 13 shows a photograph example of defective soldering under improper conditions.
  • the surface of the soldered portion has irregularities, and uniform soldering is performed. You can observe the soldering failure.
  • FIG. 14 shows an example of the shape of the iron tip of the present invention.
  • FIG. 14A shows an example of the width of the iron tip. This is a description of the soldering state when the width of the soldering iron tip 3 to be soldered is the same as, or larger than, the width of the pattern to be soldered (here, a bus bar pattern).
  • the soldering state is divided into widths of the iron tip (large, same, small) as shown in the drawing, and the soldering state is described as follows.
  • Width of iron tip Soldering state ⁇ Bus bar pattern Solder pattern suitable for soldering position is not formed.
  • solder (For example, 1 mm)
  • the solder will meander.
  • FIG. 14B shows an experimental example. This is the condition, result, etc. at the time of the experiment, and is the following shown in the figure.
  • the width of the iron tip matches the width of the busbar pattern on the surface.
  • the width of the iron tip of the present invention is matched with the width of 1 mm of the bus bar pattern to be soldered, as shown in the above-described example of the iron tip shape of the present invention shown in FIG. 7B.
  • the length of the iron tip depends on the unevenness (waviness) of the processed shape of the wafer surface. This is because the length of the iron tip is the relationship that the molten solder at the tip of the iron tip is adhered to the soldering target portion (pattern on the wafer, for example, a bus bar pattern) to be soldered. It is necessary to match with the cycle (for example, one cycle) of the undulation (unevenness) of the processed shape of the surface, which means that it depends on the undulation (unevenness) of the wafer.
  • the unevenness (waviness) of the current wafer processing shape is 4 mm, so it was set to 4 mm. This is because one cycle of the unevenness (waviness) of the processed shape of the wafer used in the experiment was 4 mm, so that the length of the iron tip shape example of the present invention shown in FIG. I matched it.
  • the width and length of the iron tip are determined (adjusted) according to the width of the portion to be soldered (width of the pattern) and the unevenness (waviness) of the processed shape of the surface of the wafer to be soldered.
  • the shape of the iron tip was determined (adjusted) so that the thermal resistance and the ultrasonic resistance were small and the heat capacity was large.
  • a solder layer having a thickness half or one-third that of the conventional one and a uniform solder layer is strongly soldered to the aluminum surface and the silicon surface of the solar cell substrate, and the heating temperature of the iron tip is increased. It was possible to reduce the heat generation and the ultrasonic output, and to reduce the heat damage and the ultrasonic damage on the soldering surface of the solar cell substrate.
  • FIG. 15 shows an ABS coating treatment explanatory diagram of the present invention.
  • FIG. 15 schematically shows the state of titanium (TA) treatment.
  • the base material 11 is a base material (material) of the tip of the ultrasonic soldering iron, and is, for example, titanium metal (titanium alloy).
  • the base material 11 is not limited to titanium metal, and may be any metal as long as it has good thermal conductivity, is hard, and has abrasion resistance (described later in FIG. 17 and the like).
  • a material having high adhesiveness or alloying property is required.
  • the TA mixed layer 12 is a mixed layer formed as shown in the drawing from the surface of the substrate 11 inside by bombarding titanium ions by ion sputtering from above the base material 11. Generally, the thickness of the TA mixed layer 12 is about 5 to 10 ⁇ m as shown in the figure.
  • the TA film 13 is a titanium film (TA film) formed on the substrate 11 as shown in the drawing when titanium ions are made to collide with the substrate 11 by ion sputtering.
  • the appropriate thickness of the TA coating 13 is usually about 5 to 10 ⁇ m as shown in the figure. If necessary, it may be thinly polished from the top to make it thin, but it may be made flat to improve flatness.
  • ABS coating ion sputtering
  • the original base material surface 14 is the surface of the base material 11 before ion sputtering.
  • the TA mixed layer 12 is formed from the surface of the base material 11 to the inside and is firmly fixed, and the top surface of the base material 11 is fixed.
  • the TA coating 13 is formed on the surface, and it is possible to create a high-altitude and wear-resistant iron tip of the TA coating 13.
  • the TA coating 13 may be polished to have a flat surface so that the surface of the TA coating 13 may be slippery if necessary.
  • FIG. 15(b) schematically shows the state of silicon (SA) processing.
  • the base material 21 is the base material (material) of the tip of the ultrasonic soldering iron, and is, for example, silicon metal (silicon alloy).
  • the base material 21 is not limited to silicon metal, and may be any metal that has good thermal conductivity, is hard, and has abrasion resistance (described later in FIG. 17 and the like).
  • abrasion-resistant film on the base material 21 by ion sputtering a material having high adhesiveness or alloying property is required.
  • the SA mixed layer 22 is a mixed layer formed as shown in the figure from the surface of the substrate 21 to the inside by bombarding silicon ions here by ion sputtering from above the base material 21. Generally, the thickness of the SA mixed layer 22 is about 5 to 10 ⁇ m as shown in the figure.
  • the SA coating 23 is a silicon coating (SA coating) formed on the substrate 21 as shown in the figure when silicon ions are made to collide with the substrate 21 by ion sputtering.
  • the SA coating 23 usually has an appropriate thickness of about 5 to 10 ⁇ m as shown in the figure. If necessary, it may be thinly polished from the top to make it thin, but it may be made flat to improve flatness.
  • the original substrate surface 24 is the surface of the substrate 21 before ion sputtering.
  • the SA mixed layer 22 is formed from the surface of the base material 21 to the inside and firmly fixed, and the SA mix layer 22 is firmly fixed on the base material 21.
  • the SA coating 23 is formed on the surface of the SA coating 23, and it is possible to form a high-altitude and wear-resistant iron tip of the SA coating 23.
  • the surface of the SA coating 23 can be slightly polished to make the surface flat and smooth, if necessary.
  • FIG. 16 shows a process explanatory diagram (hardness) of the ABS coating of the present invention.
  • FIG. 16 shows an example of the film hardness (HV: Pickers hardness) of the TA treatment shown in FIG.
  • the left column indicates the right side when the TA treatment of FIG. 15(a) described above, the polishing process up to the original substrate surface 14 and the 5 ⁇ m polishing process from the original substrate surface are performed.
  • HV coating film hardness
  • 2000 HV of polishing processing to the original substrate surface means that the film hardness when polishing processing from the state after TA treatment of FIG. 15( a) to the original substrate surface 14 is about 2000 HV. To do. This means that the tip of the conventional ultrasonic soldering iron is 13 times harder than the stainless steel (SUS304) at an altitude of 150 HV (see FIG. 17 described later) (the wear resistance is almost the same. ).
  • the 1000 HV of 5 ⁇ m polishing from the original substrate surface means that the coating hardness is about 1000 HV when 5 ⁇ m polishing is performed from the original substrate surface from the state after TA treatment of FIG. means.
  • the tip of the conventional ultrasonic soldering iron is about 6 times harder than the stainless steel (SUS304) at an altitude of 150 HV (see FIG. 17, which will be described later) (the wear resistance is almost the same).
  • FIG. 17 shows an application example of the ABS coating of the present invention to a soldering iron.
  • This FIG. 17 shows the hardness (HV), the specific heat (J/KgK), and the thermal conductivity (W/mK) of the TA coating shown in FIG. 15A and the SA coating shown in FIG. 15B. It shows a relationship.
  • the left column indicates the hardness, specific heat, and thermal conductivity on the right side when the TA coating of FIG. 15A, the SA coating of FIG. And has the following hardness, specific heat, and thermal conductivity, respectively.
  • HV Iron coating/material Hardness
  • J/KgK Specific heat
  • W/mK Thermal conductivity
  • the coating/material for the iron tip in the left column conventionally, molybdenum, chrome molybdenum steel, SUS304, etc. were used, and the hardness was within the range of 147 to 415 HV (several hundred HV) (Fig. 17). See “(1) Original altitude (several hundred HV)" on the right side).
  • the base material of the iron tip is changed from the conventional "SUS304" to "molybdenum” of the present invention to increase the thermal conductivity by about 9 times, and the TA coating is formed on the surface to reduce the surface hardness to about 6 I was able to make it twice as big.
  • the thermal characteristics of the silicon substrate, especially the thermal conductivity, were significantly improved, and the iron tip replacement frequency was extended to about June.
  • the iron tip replacement frequency was around June.
  • the molybdenum as the base material of the iron tip was subjected to TA treatment (TA coating) (see (a) of FIG. 15 described above) to increase the hardness and the iron tip replacement frequency could be improved to about one and a half years. ..
  • FIG. 18 shows an example of a surface microscope image (molybdenum) of the ABS coating of the present invention.
  • the ABS coating shown in FIG. 18 was provided with a pulse voltage of 50 Hz, a maximum of 220 V, and a current of 14 A (mild mode), whereby unevenness of about 5 ⁇ m was obtained.
  • a 10x10 mm 2 area was treated in 40 minutes.
  • FIG. 18A shows a microscopic image of the molybdenum surface (base material), and FIG. 18B shows a microscopic image of the TA surface (titanium coating). Both images are images in which the magnification increases from the top in the order of 5, 10, 20, and 50 times.
  • the TA surface titanium coating in FIG. 18(b)
  • titanium is formed in an island shape by titanium ion sputtering on the molybdenum surface of the base material of the iron tip.
  • the TA surface has island-shaped irregularities. Therefore, the TA surface will be described with reference to FIG. 15(a) described above, if necessary.
  • the surface can be flattened by the "TA surface", "polishing to the original substrate surface", and "5 ⁇ m polishing from the original substrate surface". It should be noted that, as the polishing is performed, the hardness becomes smaller from 2500 to 1000 HV as shown in FIG. 16, so it is necessary to perform the polishing that obtains the optimum flatness according to the use.
  • FIG. 19 shows an example (No. 2) of a surface microscope image of the ABS coating of the present invention. This is because each of the Mo (molybdenum) of FIG. 18A, the TA (titanium coating) of FIG. 18B and the SA (silicon coating) of FIG. It is an example of an image of a stereoscopic microscope.
  • FIG. 20 shows a flowchart for explaining the operation of the present invention (when there is no preliminary solder).
  • step S101 the temperature of the soldering iron, the wafer mounting table and the like, the ultrasonic oscillation frequency and the like are set. This is performed as follows as a pre-preparation before ultrasonic soldering is performed.
  • Solder iron Heating to a predetermined temperature (heating to the temperature at which the solder attached to the ribbon or wire melts).
  • Wafer mounting table The wafer mounting table, which is the substrate, is preheated to a predetermined temperature (a temperature slightly lower than the temperature at which the solder attached to the ribbon or the wire melts, for example, 180° C. (described later)).
  • ⁇ Ultrasonic oscillation frequency, etc. Adjust so that ultrasonic waves of a predetermined frequency and a predetermined output are supplied from the soldering iron tip to the wafer that is the substrate (for example, as described below, ultrasonic waves of several tens KHz and 1 to 6 W are Adjust to supply first).
  • S102 sets the wafer at a predetermined position. This is done by ultrasonically soldering a ribbon or wire, for example, a wafer of a solar cell is conveyed and fixed to a predetermined position of a wafer mounting table heated to a predetermined temperature in S101 by an automatic machine (not shown). When fixed, it is instantly preheated to a predetermined temperature (for example, 180° C.).
  • S103 sends out a soldered wire or ribbon.
  • This is a wire (wire material) to which solder is previously attached at a predetermined position (a predetermined position of a substrate to be ultrasonically soldered or a film on the substrate) which is preheated and fixed at a predetermined position of the wafer mounting table in S102.
  • the ribbon is sent by an automatic machine (not shown).
  • Wires (ribbons) or ribbons are delivered from a reel, or delivered from a mounting box containing a large number of wires or ribbons cut into a predetermined length. It is desirable that the wire (wire material) cut into a predetermined length be sent from the loading box by an automatic machine, since the wire sometimes breaks due to twisting during the sending from the reel. Not so much with ribbons.
  • S104 is ultrasonic soldering. This is because the wafer is fixed on the wafer mounting table in S102 and preheated to a predetermined temperature (for example, 180° C.), and the wire (wire) or the ribbon to which the solder is attached in S103 is placed on the wafer or on the wafer. While it is being supplied (or placed) on the film (aluminum film, nitride film, glass film, etc.) formed on, the ultrasonic soldering iron tip is pressed gently to supply ultrasonic waves and remove dust, etc. At the same time, the solder attached to the wire (wire) or ribbon is melted, and the wire or ribbon and the film (film on the substrate) formed on the wafer (substrate) or wafer are ultrasonicated. Solder.
  • a predetermined temperature for example, 180° C.
  • S105 determines whether there is a processed wafer. In the case of YES, there are still wafers to be processed, so the processing of the next wafer (the processing of S102 to S104) is repeated in S106. In the case of NO, since the processing of all the wafers has been completed, the processing ends.
  • the wire (ribbon) or ribbon to which solder has been attached in advance is attached to the wafer (substrate) or film (film on the substrate) formed on the wafer that has been preheated, to attach the solder attached to the wire or ribbon. It melts and can be ultrasonically soldered directly to the film on the wafer or wafer. As a result, the following advantages can be obtained as compared with the case where the wire or ribbon to which the solder is not attached is ultrasonically soldered to the substrate or the film on the substrate as described above.
  • solder is attached to the wire or the ribbon, an automatic solder supply device, a preheating device, etc. are unnecessary. 2
  • the preliminary soldering step becomes unnecessary as compared with the case where the solder is pre-soldered on the substrate or the film on the substrate and then the wire or the ribbon is soldered.
  • FIG. 21 shows an example of ribbon connection of the present invention.
  • the ribbon to which the solder is attached is directly ultrasonically soldered to the wafer (for example, a solar cell) or the film on the wafer, and the ribbon is electrically and mechanically strengthened.
  • the wafer for example, a solar cell
  • the ribbon is electrically and mechanically strengthened.
  • connecting to is an example of connecting to.
  • FIG. 21A shows an example of connection to the finger surface
  • FIG. 21B shows an example of connection to the silicon surface
  • FIG. 21C shows an example of connection to the back surface aluminum surface.
  • FIG. 21A shows an example of connection to the finger surface.
  • 21A-1 shows an example in which a ribbon is ultrasonically soldered to the finger surface
  • FIG. 21A-2 shows a view seen from the lateral direction.
  • the illustrated ribbon (solder attached ribbon) is ultrasonically soldered directly to the finger surface formed on the silicon substrate according to the flowchart of FIG. 20, and the ribbon is attached to the finger surface (
  • An example is shown in which the ribbon is electrically connected (fixed) and the ribbon is mechanically and firmly connected (fixed) to a film (nitride film or a glass film formed on the nitride film).
  • FIG. 21(b) shows an example of connection to the silicon surface (substrate).
  • FIG. 21(b-1) shows an example in which a ribbon is ultrasonically soldered to a silicon surface
  • FIG. 21(b-2) shows a lateral view.
  • the illustrated ribbon (solder attached ribbon) is ultrasonically soldered directly onto a silicon substrate according to the flowchart of FIG. 20, and the ribbon is electrically connected to the silicon surface (substrate). And an example in which the ribbon is mechanically and firmly connected (fixed) to the silicon surface (substrate).
  • 21C shows an example of connection to the back aluminum surface.
  • 21C-1 shows an example in which the ribbon is ultrasonically soldered to the back aluminum surface, and
  • FIG. 21C-2 shows a view seen from the lateral direction.
  • the illustrated ribbon (solder attached ribbon) is ultrasonically soldered directly to the aluminum surface of the back surface of the silicon substrate according to the flowchart of FIG. 20, and the ribbon is attached to the back surface aluminum surface.
  • An example of electrically connecting and mechanically firmly connecting (fixing) the ribbon will be shown.
  • FIG. 22 shows a wire connection example of the present invention.
  • the wire (wire material) to which the solder is attached is directly ultrasonically soldered to the wafer (for example, a solar cell) or a film on the wafer to electrically and mechanically connect the wire.
  • the wafer for example, a solar cell
  • a film on the wafer to electrically and mechanically connect the wire.
  • FIG. 22A shows an example of connection to the finger surface
  • FIG. 22B shows an example of connection to the silicon surface
  • FIG. 22C shows an example of connection to the back surface aluminum surface.
  • FIG. 22A shows an example of connection to the finger surface.
  • 22A shows an example in which a wire is ultrasonically soldered to the finger surface
  • FIG. 22A-2 shows a view seen from the lateral direction.
  • the illustrated wire (the wire to which the solder is attached) is ultrasonically soldered directly to the finger surface formed on the silicon substrate according to the flowchart of FIG. 20, and the wire is attached to the finger surface (
  • An example is shown in which the wire is electrically connected and the wire is mechanically and firmly connected (fixed) to a film (nitride film or a glass film formed on the nitride film).
  • 22(b) shows an example of connection to the silicon surface (substrate).
  • 22(b-1) shows an example in which a wire is ultrasonically soldered to a silicon surface, and
  • FIG. 22(b-2) shows a view seen from the lateral direction.
  • the illustrated wire (wire to which solder is attached) is ultrasonically soldered directly onto a silicon substrate according to the flowchart of FIG. 20, and the wire is electrically connected to the silicon surface (substrate). And an example in which the wire is mechanically and firmly connected (fixed) to the silicon surface (substrate).
  • 22(c) shows an example of connection to the back aluminum surface.
  • 22(c-1) shows an example in which a wire is ultrasonically soldered to the back aluminum surface, and
  • FIG. 22(c-2) shows a lateral view.
  • the illustrated wire (the wire to which the solder is attached) is ultrasonically soldered directly to the aluminum surface of the back surface of the silicon substrate according to the flowchart of FIG. 20, and the wire is attached to the back surface aluminum surface.
  • An example of electrically connecting and mechanically firmly connecting (fixing) the wire is shown.
  • FIG. 23 shows an example of soldering conditions of the present invention. This shows an example of soldering conditions used in ultrasonic soldering in FIGS. 20, 21, and 22 described above. As shown in the figure, the sample, ultrasonic output, ultrasonic frequency, iron temperature, and stage temperature (wafer holding table temperature) were as shown below.
  • FIG. 24 shows a soldering condition of the wire of the present invention and an example of successful soldering.
  • FIG. 24A shows an example of the number of successful pieces/the total number of pieces.
  • the cross-sectional shape of the wire as shown in the figure, an example of the number of successful wires when experimenting with 0.5 mm ⁇ , 0.4 mm ⁇ , 0.3 mm ⁇ , and 0.2 mm ⁇ is shown, and the following results shown in the figure are obtained. It was
  • (a-1) "About 10 ⁇ m thick solder coat” is a wire (copper wire) with about 10 ⁇ m of solder attached (solder coat).
  • (a-2) "The crushed shape of the wire” is, as will be described later with reference to FIG. 24(b), a ⁇ -shaped wire of "about 10 ⁇ m thick solder coat” crushed.
  • (a-3) “Preliminary solder, copper wire ⁇ shape” is obtained by pre-soldering on a substrate and ultrasonically soldering a copper wire ⁇ shape wire to this.
  • a 0.5 mm ⁇ wire (a copper wire having a 0.5 mm ⁇ surface with solder attached thereto) is too hard, and the wafer may be cracked or peeled off when ultrasonically soldered to the wafer. , It is difficult to handle. To use the wire, it is necessary to soften it by annealing or the like.
  • FIG. 24B shows a crushing wire explanatory diagram. This shows an explanatory view of “(a-2) crushed shape of the wire” in FIG.
  • FIG. 24B-1 shows an example of a copper wire-shaped wire
  • FIG. 24B-2 shows an example of a crushed shape.
  • the copper wire ⁇ -shaped wire of (b-1) of FIG. 24 is crushed a little in the upper and lower parts in the diametrical direction, as shown in the figure, and the portion contacting the lower substrate is
  • stable soldering is possible when the thickness is about 100 to 200 ⁇ m or more.
  • FIG. 25 shows an explanatory diagram of ultrasonic soldering of the present invention (presence/absence of preliminary solder, presence/absence of solder supply, etc.).
  • the vertical axis indicates the presence or absence of preliminary solder. This distinguishes whether the wire or ribbon is pre-soldered in advance on the part of the substrate (for example, the wafer or the film formed on the surface of the wafer) to be ultrasonically soldered, and is not pre-soldered. Is.
  • the horizontal axis shows the presence/absence of solder of wire or ribbon. This is present when the surface of the wire or ribbon is previously soldered (or solder coated), and is not present when it is not soldered.
  • solder material may not be uniformly applied in some cases. This is because the wire or ribbon that is not soldered is superposed on the part that is pre-soldered beforehand by ultrasonic soldering on the part of the substrate (wafer) or the film formed on the substrate where the wire or ribbon is to be ultrasonically soldered. It is an experimental result at the time of sonic soldering. The result shows that the solder material may not be uniformly applied depending on how the heat is transferred.
  • solder is not attached to the wire or ribbon, and because the pre-solder is applied to the part of the board to be soldered, ultrasonic soldering is performed while lightly pressing the wire or ribbon with the soldering iron tip. In some cases, uniform and clean soldering cannot be performed depending on how the heat is transferred to the iron tip, the wire or the ribbon, and the path where the heat is transferred to the preliminary soldering portion on the substrate. This can be solved by soldering to the wire or ribbon.
  • ABS coating of the present invention It is an example of a soldering photograph of the present invention. It is an example of the shape of the iron tip of the present invention. It is a processing explanatory view of ABS coating of the present invention. It is a processing explanatory view (hardness) of the ABS coating of the present invention. It is an application example of the ABS coating of the present invention to a soldering iron. It is an example of a surface microscope image (molybdenum) of the ABS coating of the present invention. It is a surface microscope image example (the 2) of the ABS coating of the present invention. It is an operation
  • soldering conditions of the present invention It is an example of soldering conditions of the present invention. It is a soldering condition of the wire of the present invention and an example of successful soldering. It is explanatory drawing of the presence/absence of preliminary soldering, the presence/absence of solder supply, and the like in the ultrasonic soldering of the present invention.
  • Substrate (solar cell substrate, silicon substrate) 2: Board loading table (board preheating table) 3: Iron tip 31: Iron tip temperature (T3) 32: Iron tip moving device (S1) 4: Iron tip heating device 5: Ultrasonic oscillating device 6: Solder 7: Solder preheating device (T2) 8: Solder slide device (S2) 11, 21: Substrate 12: TA mixed layer 13: TA coating 14: Original substrate surface 22: SA mixed layer 23: SA coating 24: Original substrate surface

Abstract

【目的】本発明は、超音波半田付け装置および超音波半田付け方法に関し、基板の膜への熱損傷、超音波損傷なしに均一かつ薄くかつ強固な半田層の形成を目的とする。 【構成】コテ先加熱装置と、超音波発振装置と、半田予備加熱装置と、半田スライド装置と、コテ先移動装置とを備え 予備加熱した糸状の半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して基板部分に溶融半田を付着させて半田付けすることを特徴とする超音波半田付け装置である。

Description

超音波半田付け装置および超音波半田付け方法
 本発明は、基板あるいは基板上に形成した膜の部分に半田付けする超音波半田付け装置および超音波半田付け方法に関するものである。
 従来、太陽電池は、太陽光エネルギーを電気エネルギーに変換するN型/P型のシリコン基板、シリコン基板の表面に絶縁体薄膜である窒化シリコン膜、シリコン基板中に発生した電子を取り出すフィンガー電極、フィンガー電極で取り出した電子を集めるバスバー電極、バスバー電極に集めた電子を外部に取り出す引出リード電極の各要素より構成されている。
 また、太陽電池の裏面には、アルミペーストを塗布して形成したアルミ電極にリード線を半田付けしている。
 この際、太陽電池の裏面ではアルミ電極にリード線を半田付けしている。しかし、その強度が弱く、アルミ電極に穴を開けて銀ペーストを塗布・焼結し、当該銀ペーストの部分にリード線を半田付けし、強度を確保している。
 上述した例えば太陽電池の裏面に形成したアルミ電極にリード線を半田付けしたり、該アルミ電極に穴を開けてここに銀ペーストを塗布・焼結し、この銀ペーストの部分にリード線を半田付けしたりしたのでは十分な当該リード線の引張強度が得られなかったり、銀ペーストを塗布・焼結という余分の工程が必要となってコスト高になるという問題があった。
 このため、太陽電池を構成する基板(シリコン基板)あるいは基板上に形成されたアルミ電極にリード線を強固かつ低コストに半田付けすることが要望されている。
 本発明者らは、半田のコテ先の断面積および熱容量を大きくしてコテ先の加熱温度を低減して基板への熱損傷を低減し、かつ超音波伝導を良好にして超音波出力を小さくして基板上の付着物を除去し薄い均一な半田層を形成し、基板の膜への損傷なしに均一かつ薄い半田層の形成を実現した。
 そのため、本発明は、基板あるいは基板上に形成した膜の部分に半田付けする超音波半田付け装置において、被半田付け対象の基板あるいは膜を形成した基板を、半田の溶融温度よりも低い所定温度に予備加熱する基板予備加熱装置と、基板予備加熱装置で予備加熱した所定温度の基板の部分に近接する半田コテ先部分を、超音波を印加した状態で供給した半田が溶融する所定温度に調整するコテ先加熱装置と、コテ先加熱装置で加熱したコテ先部分に、超音波を供給する超音波発振装置と、コテ先部分に供給する糸状の半田を、当該糸状の半田が溶解する温度よりも低い温度に予備加熱する半田予備加熱装置と、半田予備加熱装置で予備加熱した糸状の半田を、加熱したコテ先部分に供給する速度を調整する半田スライド装置と、基板に近接する加熱したコテ先に、半田スライド装置で予備加熱した糸状の半田を所定速度で供給しつつ、コテ先を所定速度で半田付け方向に移動させるコテ先移動装置とを備え、予備加熱した糸状の半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して当該基板部分に該溶融半田を付着させて半田付けするように構成する。
 この際、コテ先部分の形状について、コテ先の移動方向の長さを、コテ先の幅よりも長くし、断面積および熱容量を大きくして基板への熱伝導を改善し、コテ先温度を低下させ、基板上の膜あるいは基板中の膜への熱損傷を低減するようにしている。
 また、コテ先部分の形状について、コテ先の移動方向の長さを、コテ先の移動方向の幅よりも長くし、断面積を大きくして超音波の基板への伝導を改善し、付着物の除去を改善して超音波発振出力を低減し、基板上の膜あるいは基板中の膜への超音波損傷を低減するようにしている。
 また、超音波発振出力を2Wから6W、望ましくは2Wとするようにしている。
 また、コテ先部分の形状について、コテ先の移動方向の長さを、コテ先の移動方向の幅の3倍ないし6倍とし、基板のコテ先の移動方向のうねりの長さの周期に合わせ、均一厚さの半田層を形成するようにしている。
 また、予備加熱した糸状の半田の断面積を大きくあるいは小さくして基板への半田厚さを可及的に薄く調整可能にするようにしている。
 また、予備加熱した糸状の半田の供給速度と、コテ先の移動速度とを同じにするようにしている。
 また、予備加熱した糸状半田の供給速度と、コテ先の移動速度とについて、前者を後者よりも速くして溶融半田量を増加させて基板への半田厚さを厚く、あるいは前者を後者よりも遅くして溶融半田量を減少させて基板への半田厚さを薄くし、半田厚さを可及的に薄く調整可能にするようにしている。
 また、コテ先部分の移動速度を、150ないし200mm/sとし、均一かつ薄い半田層を形成するようにしている。
 また、コテ先の材料あるいはコテ先をコーティングする材料を高硬度、耐摩耗性の材料とするようにしている。
 また、材料をチタン、チタン合金、シリコン、あるいはシリコン合金のいずれかとするようにしている。
 また、コテ先のコーティングの厚さは、5~15μmとするようにしている。
 本発明は、上述したように、半田のコテ先の断面積および熱容量を大きくしてコテ先の加熱温度を低減して基板への熱損傷を低減し、かつ超音波伝導を良好にして超音波出力を小さくして基板上の付着物を除去し薄い均一な半田層を形成し、基板の膜への損傷なしに均一かつ薄い半田層の形成することが可能となった。これらにより、下記の特徴がある。(1)コテ先の断面積を増大(実験では約4倍)にしたことで、コテ先の加熱温度を約90℃下げることができ(実験)、コテ先に溶けた溶融半田を近接(約30μm)した基板に付着して半田付けするときに、基板に与える熱損傷を低減できた。
(2)また、(1)のときに、基板を予備加熱する基板予備加熱台の温度を約30℃低くでき、基板への熱損傷を低減するのに寄与できた。
(3)また、(1)のときに、コテ先の断面積を大きく(実験では約4倍)にしたことで、超音波発振装置からの超音波の伝導が良好になり、出力を2Wに低減しても基板の付着物を十分に除去し、薄いかつ均一の半田層を形成できた。
(4)基板上の半田層の厚さは、従来の半分ないし3分の1程度の50から100μm程度が実現でき、半田材料の使用量が半減ないし3分の1に減し、コスト低減できた。
(5)半田コテのコテ先を高硬度、耐摩耗性の金属(チタン、チタン合金、シリコン、シリコン合金など)で作成したり、コーティングしたりすることにより、コテ先の寿命を大幅に長くすることが可能となった。
 図1は、本発明の1実施例構成図を示す。この図1は、太陽電池の基板(シリコン基板)の裏面の超音波半田付けの例であり、太陽電池の基板の表面にも適用できる。
 図1において、基板(太陽電池基板、シリコン基板)1は、太陽電池を構成するシリコン基板である(図5参照)。
 基板積載台(基板予備加熱台)2は、基板1を搭載して予備加熱するものであって、ここでは、半田が溶融する温度以下、室温以上の所定温度に加熱するものである。
 コテ先3は、半田付け装置を構成するコテ先であって、被半田付け対象の基板1に近接(通常約30μm)して配置し、コテ先加熱装置4で所定温度に加熱され、かつ超音波発振装置5から超音波が印加された状態で、コテ先移動装置32で半田付け方向に移動されるものである。
 コテ先温度(T3)31は、コテ先の温度T3である。
 コテ先移動装置(S1)32は、コテ先3を半田付け方向に移動させる装置である。
 コテ先加熱装置4は、コテ先3を所定温度に加熱するものであって、セラミックヒータなどの加熱体である。
 超音波発振装置5は、超音波を発振してコテ先3に供給するものであって、ここでは、2Wないし6Wの超音波出力を発生するものである。
 半田6は、コテ先3に供給する糸状の半田であって、Sn、Znなどを含みPbなどを含まない半田である。
 半田予備加熱装置(T2)7は、糸状の半田7を予備加熱するものであって、半田7を当該半田7が溶融する温度以下に予備加熱するものである。
 半田スライド装置8は、予備加熱された糸状の半田7を所定速度でコテ先3の先端部分に図示のように自動供給するものである。
 次に図2および図3を用いて図1の構成の動作を詳細に説明する。
 図2および図3は、本発明の動作説明フローチャートを示す。
 図2において、S1は、太陽電池基板(裏面アルミパターン形成)を準備する。これは、後述する図5に示す太陽電池基板(シリコン基板)を準備する。図5のシリコン基板1は、裏面にアルミペーストを図5の(b)のようにスクリーン印刷し、焼結してアルミニウム膜11を形成したものであって、縦方向の帯状の部分(図示外の表面に形成したバスバー電極に対応した裏面の部分)にアルミニウム膜11が無く下地のシリコン基板1が露出したものである。
 S2は、基板積層台を所定の温度T1に加熱する。これは、図1の基板積載台2を所定の温度T1(半田7が溶解する温度よりもわずかに低い温度)に加熱する。
 S3は、基板を基板積層台に乗せる。これにより、所定温度T1に加熱された基板積層台2に、基板を順次乗せて所定温度T1に順次加熱する。
 S4は、半田予備加熱装置、コテ先をそれぞれ所定温度T2,T3に加熱する。これは、図1の半田予備加熱装置6を所定温度T2(半田7が溶融する温度よりもわずかに低い温度)に加熱、および図1のコテ先3をT3(超音波を印加したときに半田7が溶融する温度)に加熱する。
 S5は、超音波出力を所定パワーWに設定する。これは、図1の超音波発振装置5の超音波出力を所定パワーW(実験では例えば2からら6Wの範囲で、2Wが望ましい)に設定する。
 図3において、S6は、コテ先を基板面に近接させて溶融半田をシリコン基板(又はアルミニウム面)に接着させる(基板上約30μm)。これは、図1のコテ先3を基板1の裏面(図5の(b)参照)の上、約30μmに近接させ、当該コテ先3に予備加熱されて供給された糸状の半田7が溶融した溶融半田を基板1の裏面のアルミニウム面あるいは基板1の露出したシリコン基板(シリコン面)に、供給された超音波で当該面上の付着物を除去して当該溶融半田を接着させる。
 S7は、コテ先を半田付け対象の始点より終点に向かって所定速度S1で移動させる。
 S8は、終点でコテ先を持ち上げる。これらS6からS8により、コテ先の部分に自動供給された溶融半田が、近接した基板上の図5の(b)のアルミニウム面あるいはシリコン面の付着物が除去された部分に、始点から終点に向かって接着させることが可能となる。
 S9は、終わりか判別する。YESの場合には、終了する。NOの場合には、S10で次の半田付け開始場所に移動し、S6以降を繰り返す。例えば150mm角の太陽電池基板(シリコン基板)の場合には実験では5本分繰り返した。
 以上のように、予備加熱した太陽電池基板のアルミニウム面あるいはシリコン面に近接してコテ先3を配置し、当該コテ先3の先端部分に予備加熱した糸状の半田7を自動供給して当該コテ先3に溶融半田を形成すると共に当該コテ先3から超音波を近接した太陽電池のアルミニウム面あるいはシリコン面に供給して付着物を除去した後に溶融半田を接着することを始点から終点まで移動することにより、太陽電池基板のアルミニウム面あるいはシリコン面に溶融半田をアルミニウム面やシリコンン面に損傷を与えることなく薄くかつ強固かつ綺麗に接着することが可能となった。これらにより、リボン(リード線)を太陽電池のアルミニウム面あるいはシリコン面に強固に直接に固定したり(この場合には図1の糸状の半田7の代わりに、予備半田したリボンを使用する)、あるいは糸状の半田7でプリ半田した後にリボンを半田付け(超音波なしでも可)したりすることが可能となった。
 以下順次詳細に説明する。
 図4は、本発明の温度設定フローチャートを示す。これは、図1および図2と図3で説明した温度T1,T2,T3の設定を詳細に説明したものである。
 ・温度T1:図1の基板積層台の温度
 ・温度T2:図1の半田予備加熱装置の温度
 ・温度T3:図1のコテ先3の温度
 図4において、S11は、T1,T2,T3の最適な温度範囲を設定する。これは、予め実験で求めた最適な温度範囲をそれぞれ設定する。
 S12は、T1は所定の温度範囲か判別する。これは、現在の温度T1がS11で設定したT1の最適な温度範囲内か判別する。YESの場合にはS13に進む。NOの場合には、S11に戻り、繰り返す。
 S13は、T2は所定の温度範囲か判別する。これは、現在の温度T2がS11で設定したT2の最適な温度範囲内か判別する。YESの場合にはS14に進む。NOの場合には、S11に戻り、繰り返す。
 S14は、T3は所定の温度範囲か判別する。これは、現在の温度T3がS11で設定したT3の最適な温度範囲内か判別する。YESの場合にはS15で半田付け開始する。NOの場合には、S11に戻り、繰り返す。
 以上のように、図1の基板積載台2の温度T1、半田予備加熱装置6の温度T2、およびコテ先3の温度T3が予め実験で求めた最適な温度範囲内(後述する)にそれぞれが調整されたと判明した場合に、半田付けを開始し(既述した図2のS5以降を実行し)、太陽電池基板のアルミニウム面あるいはシリコン面の上の付着物を超音波で除去しつつ予備加熱されて溶融された溶融半田をコテ先から近接した当該アルミニウム面あるいはシリコン面に接着させて半田付けすることが可能となる。
 図5は、本発明の半田あ付け対象の基板例を示す。
 図5の(a)は太陽電池基板(シリコン基板)の裏面の断面図を示し、図5の(b)は太陽電池の裏面の平面図を示す。
 図5の(a)および(b)において、太陽電池(シリコン基板)1の裏面には、図示のように、ここでは、アルミペーストを塗布・焼結してアルミニウム膜11が形成され、図示外の表面の帯状のバスバー電極に対応した部分のアルミニウム膜が無くてシリコン面が露出した構造に形成されている。
 本発明は、太陽電池の裏面のアルミニウム膜11の部分あるいはシリコン面が露出した部分に、溶融半田を接着させて半田付けする。
 図6は、本発明の半田付け装置の構成例を示す。この半田付け装置は、超音波発振装置5、伝搬路51、コテ先3からなるものである。
 図6において、超音波発振装置5は、図1の超音波発振装置5に対応し、超音波を発振して出力するものであって、超音波出力が2Wないし6Wの範囲内で調整可能にしたものである。
 伝搬路51は、超音波発振装置5が発生した超音波出力を効率良好にコテ先3に伝搬させるものである。
 コテ先3は、図1のコテ先3であって、所定温度T3に加熱されて予備加熱された半田を溶融して溶融半田を生成すると共に、超音波発振装置5が発生した超音波を伝搬路51を介して受信し、近接して配置した太陽電池基板のアルミニウム面あるいはシリコン面に伝搬して当該アル二ニウム面あるいはシリコン面の付着物を除去した後、溶融半田を接着して半田付けするためのものである。コテ先3は、図示のように幅(縦方向)に対して長さ(横方向であって、コテ先3が移動して半田付けする方向)が長いものである(通常2倍ないし6倍程度、図7、図14を用いて後述する)。
 以上のように、超音波発振装置5を伝搬路51を介してコテ先3に接続することにより、コテ先3から近接して配置した太陽電池基板のアルミニウム面あるいはシリコン面に超音波を供給して表面の付着物を除去した後に、当該コテ先3の溶融半田をアルミニウム面あるいはシリコン面に接着して強固に半田付けすることが可能となる。
 図7は、本発明のコテ先の改善例を示す。
 図7の(a)は従来のコテ先の形状例を示す。従来のコテ先は、図示のように、1mm×1mmの正方形あるいは円の形状の半田付け部分33を用いて半田付けしていた。この従来の半田付け部分33では、方向性がなく、任意の方向に向けて半田付けでき便利であった。
 しかし、半田付け部分33の接触面積が小さく、図7の(a)の例では1mm×1mmの矩形で1mm平方であって、接触するアルミニウム面あるいはシリコン面の熱抵抗が大きく、かつ超音波抵抗も大きかった。
 このため、本発明の図7の(b)の実験例では、幅は1mmと同じにし、長さを4mmの4倍にして接触面積を4倍に大きくして接触するアルミニウム面あるいはシリコン面への熱抵抗を約1/4に小さくし、かつ超音波抵抗も約1/4に小さくし、結果としてこの分に対応するコテ先3の加熱温度を低下、かつ超音波出力を低下させることができた。その結果、アルミニウム面あるいはシリコン面の熱損傷および超音波損傷をそれぞれ低減し、薄い半田層(従来の半分ないし3分の1の厚さ)を形成し、強固かつ綺麗な半田付けが可能となった。
 図7の(b)は本発明のコテ先の形状例を示す。本発明のコテ先は、図示のように、幅が1mm、長さ4mmの矩形の形状の半田付け部分34を用いて半田付けした。この本発明の田付け部分34は、図7の(a)の半田付け部分33に比して、アルミニウム面あるいはシリコン面への接触面積が4倍となっているので、熱抵抗および超音波抵抗を約1/4に低減できると共に、コテ先3の断面積を4倍にして熱容量を増大(約4倍)できた。
 図7の(c)は本発明の他のコテ先の形状例を示す。本発明の他のコテ先は、図示のように、幅が1mm以下、長さ4mm程度の矩形の形状の半田付け部分34を有するものである。この他のコテ先の形状例では、図7の(b)のコテ先3の先端の幅が1mm以下、長さが4mm以下の小さい形状にしたもの付加した構造であって、特に、幅1mm以下にしたい場合に便利な構造である。つまり、図7の(b)のコテ先の形状とほぼ同じあるいは若干大きい熱抵抗、超音波抵抗、熱容量を有した状態で、幅のみを1mm以下の任意に小さくできるという特徴がある。
 以上のように、コテ先の幅に対する長さ方向を長く(実験では4倍)し、同一の幅の半田付けが可能な状態で、太陽電池基板のあるミニウム面あるいはシリコン面との間の熱抵抗を小さく(実験では約1/4に小さく)かつ熱容量を大にし(約4倍)、結果としてコテ先の温度を低減かつ超音波出力を低減し、太陽電池基板のアルミニウム面あるいはシリコン面の熱損傷、超音波損傷を低減して薄い半田層の半田付けを実現すると共に、強固かつ綺麗な半田付けを実現できた。
 図8は、本発明のコテ先速度(S1)例を示す。これは、図1のコテ先3の速度S1に対応づけて図示の下記の情報を対応づけたものである。
   速度   速度例(mm/s)   備考
   上限   200         半田が途切れる  
   最適範囲 150-200     半田が均一に薄く塗布
   下限   150         半田留まりができる
 ここで、速度は、図1のコテ先3を、被半田付け対象の太陽電池基板1のアルミニウム面あるいはシリコン面に対して移動する速度S1である。速度例(mm/s)は、本実験で使用した図7の(b)のコテ先の形状の場合の上限、最適範囲、下限の速度例である。備考は各速度(上限、最適範囲、下限)における半田付けの状態を観察したものである。以下説明する。
 (1)図1のコテ先3の速度を上限の200mm/s以上にすると、コテ先3に溶けた溶融半田が太陽電池基板1のアルミニウム面面あるいはシリコン面への供給が遅れ、結果として該面への半田が途切れてしまうので、速度の上限を200mm/sとしたものである。
 (2)速度の最適範囲が150から200mm/sの場合には太陽電池基板1のあるミニウム面あるいはシリコン面に半田が均一かつ薄く塗布できた。
 (3)速度の下限の150mm/s以下では、半田の供給が過剰となり、アルミニウム面あるいはシリコン面に半田溜まりができた。
 以上の実験結果から図1のコテ先3の速度の最適範囲は、150から200mm/sでこれにより遅すぎてもても速すぎても半田が均一かつ薄く、アルミウム面あるいはシリコン面が塗布できなかった。尚、実験では図7の(b)のコテ先3の形状を用いたが他の形状(幅等)、更に、希望する半田厚さなどが異なれば、実験により最適速度をそれぞれ求めることが必要である。
 図9は、本発明の半田供給速度(S2)例を示す。これは、図1の半田7をコテ先3に供給する速度S2に対応づけて図示の下記の情報を対応づけたものである。
   速度    備考
   速い    半田を厚くできる
         速すぎると半田溜まりができる  
   最適範囲  半田を均一に薄く塗布
   遅い    半田を薄くできる
         遅すぎると半田が途切れる
 ここで、速度は、図1の半田予備加熱装置7で予備加熱した半田6を半田スライド装置8でコテ先3に供給する速度S2である。備考は速度(速い(コテ先速度より速い)、最適範囲、遅い(コテ先速度より遅い))における半田付けの状態を観察したものである。以下説明する。
 (1)図1の半田スライド装置8で供給する半田7の速度を速く(コテ先速度より速く)すると、コテ先3の速度よりも速い速度で半田7がコテ先3に供給され、いわば半田過剰供給となり、溶融半田を太陽電池基板1のアルミニウム面面あるいはシリコン面へ厚く塗布、更に速すぎると半田溜まりができた。
 (2)半田6の速度が最適範囲の場合(半田6の速度とコテ先の速度が同じ場合)には、太陽電池基板1のあるミニウム面あるいはシリコン面に半田を均一かつ薄く塗布できた。
 (3)半田7の速度を遅く(コテ先速度より遅く)すると、コテ先3の速度よりも遅い速度で半田7がコテ先3に供給され、いわば半田過少供給となり、溶融半田を太陽電池基板1のアルミニウム面面あるいはシリコン面へ薄く塗布、更に遅くすると半田が途切れた。
 以上の実験結果から図1の半田スライド装置8による半田7の供給速度の最適範囲はこコテ先と同一の場合に半田を均一かつ薄く塗布でき、少し速くすれば半田を厚くできるが速すぎると半田だまりでき、少し遅くすれば半田を薄くできるが遅すぎると半田が途切れることが判明した。尚、供給する糸状の半田7の断面積を変えた(増減した)ものを用いて、半田の厚さを調整(増減)することも可能である。
 図10は、本発明の温度設定例を示す。これは、図1の基板積層台2、半田予備加熱装置7、コテ先加熱装置4に対応づけて下記の情報を対応づけたものである。
   装置           設定温度(℃) 設定温度範囲(℃)
   基板積層台(T1)    170     150-200
   半田予備加熱装置(T2) 160     140-200  
   コテ先加熱装置(T3)  360     340-450
 ここで、装置は、図1の基板積層台2、半田予備加熱装置7、コテ先加熱装置4である。設定温度は各装置に実験で設定した設定温度例を示し、設定温度範囲は各装置に実験で用いた適切な設定温度範囲である。以下説明する。
 (1)図1の基板積層台(T1)2は、超音波を印加したときに半田6が溶融してコテ先3で溶融半田となる温度よりも少し低い温度であって、実験では170℃に設定し、適切設定温度範囲は140から200℃の範囲であった。
 (2)図1の半田予備加熱装置(T2)7は、コテ先3で溶融半田となる温度よりも少し低い温度に半田6を予備加熱するものであって、実験では160℃に設定し、適切設定温度範囲は150から200℃の範囲であった。
 (3)図1のコテ先加熱装置(T3)4は、超音波を印加したときに半田6が溶融してコテ先3で溶融半田となる温度であって、実験では360℃に設定し、適切設定温度範囲は340から450℃の範囲であった。
 尚、上記設定温度、設定温度範囲は使用する半田6の材料に依存するものであって、上記実験例はSn・Zn半田を用いた。他の半田材料は溶融温度が異なるので、実験で設定温度、設定温度範囲を求めて設定する必要がある。
 図11は、本発明の超音波パワー設定例を示す。これは、図1の超音波発振装置5の発振出力パワーに対応づけて下記の情報を対応づけたものである。
   パワー   W          備考
   大     6W以上       コテ先温度を下げることが可能
                    基板又は結晶損傷、破損
                    半田接着面が滑らかにならない
   最適範囲  2-6W(最適2W) 半田が均一に薄く塗布
   小     2W以下       コテ先温度を上げる必要
                    酸化物等を十分に除去できない
 ここで、パワーは、図1の超音波発振装置5がコテ先3に供給する超音波発振出力(パワー)である。Wは実験で設定したパワー(W)である。備考は各パワーの場合の状況を観察した情報を示す。以下説明する。
 (1)図1の超音波発振装置5の超音波発振パワーを大(実験では6W以上)にした場合は、
  ・コテ先温度を下げることが可能
  ・基板又は結晶損傷、破損、
  ・半田接着面が滑らかにならない
という現象が確認できた。ここで、「コテ先温度を下げることが可能」は超音波出力(パワー)を大(例えば6W以上)にした場合、コテ先3の溶融半田となるときの加熱温度が超音波出力を大にしたことで低下し、結果としてコテ先温度(T3)を下げることができることを意味する。また、「基板又は結晶損傷、破損」は、超音波出力を大にしたので、その結果、当該大きな超音波出力により太陽電池基板のアルミニウム面、シリコン面に超音波損傷を与え、基板又は結晶の損傷、更には膜の破損が発生する可能性が大となることを意味する。また、「半田接着面が滑らかにならない」は超音波出力が大のためにアルミニウム面、シリコン面への半田が滑らかにならなくごつごつした状態になってしまうことを意味する。
 (2)超音波出力が最適範囲(例えば2Wから6Wの範囲内で、望ましくは2W)の場
合には、半田が太陽電池基板1のアルミニウム面、シリコン面に均一かつ薄く塗布できた。
 (3)超音波出力が小(例えば2W以下)の場合には、
  ・コテ先温度を上げる必要
  ・酸化物等を十分に除去できない
という現象が確認できた。ここで、「コテ先温度を上げる必要」は超音波出力(パワー)を小(例えば2W以下)にした場合、コテ先3の溶融半田となるときの加熱温度が超音波出力を小にしたことで上昇し、結果としてコテ先温度(T3)を上げる必要性が生じることを意味する。また、「酸化物等を十分に除去できない」は、超音波出力を小にしたので、その結果、太陽電池基板のアルミニウム面、シリコン面の上の付着物、酸化物等を十分に除去できないことを意味する。
 図12は、本発明と従来の設定例を示す。この図12は、各項目について、従来と本発明とを比較してその違いを具体的に図示の下記のように記述したものである。ここで、項目は比較項目であって、図示のように「コテ先温度(T3)」などである。従来は項目の従来の具体例を示し、本発明は項目の本発明の具体例を示す。備考は項目の詳細説明である。
 項目          従来   本発明        備考
 コテ先温度(T3)    450℃   360℃   450℃以下にして錆対応
 基板予備加熱温度(T1) 260℃   170℃
 コテ先速度(S1)    150mm/S  178mm/S    要件150mm/S以上
                        ウエーハ1枚/1秒以上
 半田供給(S2)           200パルス
 コテ先高さ       20-30μm  30μm
 半田予備加熱(T2)   なし    160℃        200℃以下
                  (本発明で初めて)
 超音波発振出力     6W    2W(2-6Wの範囲)   6W以下
 半田重量      0.02-0.03g/  0.01g/パス1本当たり  0.5g以下
           パス1本当たり (バス5本で合計0.05g)/ウェーハ
 ここで、コテ先温度(T3)は、従来は450℃であったが、本発明ではコテ先3の先端部分の形状の幅を同じにした場合に長さを約4倍にして断面積を4倍にした結果(図7の(b)参照)、コテ先温度(コテ先加熱温度)は360℃となり、約90℃低下させることが実験で確認できた。これにより、コテ先3の溶融半田を太陽電池基板1のアルミニウム面、シリコン面に近接して接着させるときの温度を低下させ、熱損傷を低減できた。
 基板予備加熱温度(T1)は、コテ先温度を低下させることが可能となったと同時に、当該基板予備加熱温度も200℃から170℃へと約30℃低下させても本発明のコテ先3(従来に比し、約4倍の長さを持つコテ先(図7の(b)参照))を用いて半田付け可能となった。
 コテ先速度(S1)は、従来の150mm/Sから本発明のコテ先にしたことにより、178mm/Sと28mm/Sだけ速度を向上させることができた。
 半田供給は、本発明では200パルスで行った。
 コテ先高さは、従来は20ないし30μmであったが、本発明では30μmに制御した。
 半田予備加熱温度(T2)は、従来は無であったが、本発明では160℃に予備加熱した。
 超音波発振出力は、従来は6Wであったが、本発明では本発明のコテ先(図7の(b)参照)を用いて幅を同じで断面積を4倍にし、超音波抵抗を低減し、2Wでも太陽電池基板1の上の付着物を十分に除去して溶融半田を接着させ、均一かつ薄い(従来の半分の厚さ)に半田付けできた。
 半田重量は、従来はパス1本当たり0.02から0.03gであり、1枚のウェーハで5本(5パス)で当該0.1から0.15gの半田を使用していた。本発明はパス1本当たり0.01gであり、1枚のウェーハで5本(5パス)で0.05gの半田を使用したので、従来の半分から3分の1に減少させ、半田使用量を削減できた。また、本発明による半田使用量の削減は、太陽電池基板1のアルミニウム面、シリコン面ヘの半田厚さを従来の半分から3分の1に薄くできたこととなる。
 図13は、本発明の半田付け写真例を示す。図13中の(a)横方向は適正条件の場合(図12の本発明の場合)の半田付け写真例を示し、綺麗に薄くかつ均一に半田付けされている様子を観察できる。
 一方、図13中の(b)縦方向は不適正条件の場合の半田付け不良の写真例を示し、この半田付け不良の写真例では半田付け部分の表面に凹凸があり、均一に半田付けされていない半田付け不良の様子を観察できる。
 図14は、本発明のコテ先の形状例を示す。
 図14の(a)は、コテ先の幅の例を示す。これは、半田付けしようとするコテ先3の幅が、半田付け対象のパターン(ここでは例として、バスバーパターン)の幅と、同じ、大きい、小さい場合について半田付け状態を説明したものであって、コテ先の幅(大きい、同じ、小さい)に分けて図示のように半田付け状態を図示の下記のように記載したものである。
 コテ先の幅        半田付け状態
 ・バスバーパターン    半田付けする位置に適した半田パターンが
形成されない。
 (例えば1mm)     例えば半田が蛇行してしまう。
 よりコテ先幅が大きい時 
 ・バスバーパターンと   適切
  同じ時
 ・バスバーパターン    半田形成面の面積が小さくなり十分な密着力
が選らない。
 よりコテ先が小さい時 
 以上のように、コテ先の幅(半田付け方向と直角方向の幅)は、半田付け対象のパターンの幅と同じときに最良の結果が得られ、それよりも広すぎたり、狭すぎたりすると良好な結果は得られないことが判明した。
 図14の(b)は、実験例を示す。これは、実験しときの条件、結果などであって、図示の下記であった。
  ・コテ先の幅は、表面のバスバーパターンの幅に合わせた。これは、例えば既述した図7の(b)に示す本発明のコテ先形状例に示すように、半田付け対象のバスバーパターンの幅1mmに、本発明のコテ先の幅を合わせた。
  ・コテ先の長さは、ウェーハの表面の加工形状の凹凸(うねり)に依存する。これは、コテ先の長さは、当該コテ先の先端部分の溶融半田を、半田付け対象の部分(ウェハー上のパターン、例えばバスバーパターンなど)に接着させて半田付けする関係で、当該ウェハーの表面の加工形状のうねり(凹凸)の周期(例えば1周期)に合わせることが必要であり、ウェハーのうねり(凹凸)に依存するという意味である。
  ・本実験例では、現状のウェーハの加工形状の凹凸(うねり)が4mmに入るので4mmとした。これは、実験で用いたウェーハの加工形状の凹凸(うねり)の1周期が4mmに入ったので、既述した図7の(b)に示す本発明のコテ先形状例の長さを4mmに合わせた。
 以上のように、半田付け対象の部分の幅(パターンの幅)、および半田付け対象のウェーハの表面の加工形状の凹凸(うねり)に合わせて、コテ先の幅、長さを決定(調整)すると共に、併せて、熱抵抗、超音波抵抗を小さく、かつ熱容量を大きくなるようにコテ先の形状を決定(調整)した。その結果、既述したように、本発明では従来の半分ないし3分の1の厚さかつ均一な半田層を太陽電池基板のアルミニウム面、シリコン面に強く半田付けし、かつコテ先の加熱温度を低下および超音波出力を低減し、太陽電池基板の半田付け面の熱損傷、超音波損傷を低減することができた。
 図15は、本発明のABSコーティング処理説明図を示す。
 図15の(a)は、チタン(TA)処理の様子を模式的に示す。
 図15の(a)において、基材11は超音波半田コテのコテ先の基材(材料)であって、例えばチタン金属(チタン合金)である。この基材11は、チタン金属に限られることなく、熱伝導性がよく、硬い、耐摩耗性がある金属であればどのような金属でもよい(図17などで後述する)。尚、イオンスパッタリングで基材11の上に高高度、耐摩耗性の膜を形成する関係で、付着性あるいは合金性の高いものが必要である。
 TA混合層12は、基材11の上からイオンスパッタリングでここではチタンイオンを衝突させ、当該基板11の表面から内部に図示のように形成された混合層である。TA混合層12の厚さは通常、図示のように5~10μm程度が適切である。
 TA被膜13は、基材11の上からイオンスパッタリングでここではチタンイオンを衝突させたときに、当該基板11の上に図示のように形成されたチタンの被膜(TA被膜)である。TA被膜13の厚さは通常、図示のように5~10μm程度が適切である。必要あれば、上から少し研磨して薄くなるが平坦にして平面性を良くしてもよい。ここで、実験では、イオンスパッタリング(ABSコーティング)は、パルス電圧50Hz、最大220V、電流42A(ノーマルモード)で実施することにより、凹凸は10μm以上が得られました。10×10平方mm領域を13分で処理しました。
 元の基材表面14は、イオンスパッタリング前の基材11の表面である。
 以上のように、基材11の上からチタン(あるいはチタン合金)のイオンスパッタリングすると、当該基材11の表面から内部にTA混合層12が形成されて強固に固定されると共に基材11の上にTA被膜13が形成され、当該TA被膜13の有する高高度、かつ耐摩耗性のコテ先を作成することが可能となる。TA被膜13は、必要に応じて表面を少し研磨し、平坦にして滑りを良くすることも可能である。
 図15の(b)は、シリコン(SA)処理の様子を模式的に示す。
 図15の(b)において、基材21は超音波半田コテのコテ先の基材(材料)であって、例えばシリコン金属(シリコン合金)である。この基材21は、シリコン金属に限られることなく、熱伝導性がよく、硬い、耐摩耗性がある金属であればどのような金属でもよい(図17などで後述する)。尚、イオンスパッタリングで基材21の上に高高度、耐摩耗性の膜を形成する関係で、付着性あるいは合金性の高いものが必要である。
 SA混合層22は、基材21の上からイオンスパッタリングでここではシリコンイオンを衝突させ、当該基板21の表面から内部に図示のように形成された混合層である。SA混合層22の厚さは通常、図示のように5~10μm程度が適切である。
 SA被膜23は、基材21の上からイオンスパッタリングでここではシリコンイオンを衝突させたときに、当該基板21の上に図示のように形成されたシリコンの被膜(SA被膜)である。SA被膜23の厚さは通常、図示のように5~10μm程度が適切である。必要あれば、上から少し研磨して薄くなるが平坦にして平面性を良くしてもよい。
 元の基材表面24は、イオンスパッタリング前の基材21の表面である。
 以上のように、基材21の上からシリコン(あるいはシリコン合金)のイオンスパッタリングすると、当該基材21の表面から内部にSA混合層22が形成されて強固に固定されると共に基材21の上にSA被膜23が形成され、当該SA被膜23の有する高高度、かつ耐摩耗性のコテ先を作成することが可能となる。SA被膜23は、必要に応じて表面を少し研磨し、平坦にして滑りを良くすることも可能である。
 図16は、本発明のABSコーティングの処理説明図(硬度)を示す。この図16は、既述した図15の(a)のTA処理の被膜硬度(HV:ピッカース硬度)の例を示したものである。
 図16において、左側の欄は、既述した図15の(a)のTA処理、元の基材面14まで研磨加工、元の基材面から5μm研磨加工の3つの状態のときに、右側の被膜硬度(HV)の例であって、ここでは、基材11がFe系基材の例を示し、図示の下記の硬度を有する。
  TA処理/研磨加工の区別  被膜硬度(HV)(Fe系基材の場合)
   ・TA表面             2500
   ・元の基材面まで研磨加工      2000
   ・元の基材面から5μm研磨加工   1000
 ここで、TA表面のときに被膜硬度が2500HVは、図15の(a)のTA処理後の状態のまま(5~15μm厚のTA被膜3をチタンイオンスパッタリングした状態のまま)のときの被膜硬度が2500HV程度であることを意味する。これは、従来の超音波半田コテのコテ先がステンレス(SUS304)の高度150HV(後述する図17参照)に比して、16倍程度も硬度が固いことを意味する(耐摩耗性もほぼ同じ)。
 同様に、元の基材面まで研磨加工の2000HVは、図15の(a)のTA処理後の状態から元の基材表面14まで研磨加工したときの被膜硬度が2000HV程度であることを意味する。これは、従来の超音波半田コテのコテ先がステンレス(SUS304)の高度150HV(後述する図17参照)に比して、13倍程度も硬度が固いことを意味する(耐摩耗性もほぼ同じ)。
 同様に、元の基材面から5μm研磨加工の1000HVは、図15の(a)のTA処理後の状態から元の基材面から5μm研磨加工したときの被膜硬度が1000HV程度であることを意味する。これは、従来の超音波半田コテのコテ先がステンレス(SUS304)の高度150HV(後述する図17参照)に比して、6倍程度も硬度が固いことを意味する(耐摩耗性もほぼ同じ)。
 図17は、本発明のABSコーティングの半田コテへの応用例を示す。この図17は、既述した図15の(a)のTA被膜、図15の(b)のSA被膜などの硬度(HV)、比熱(J/KgK)、熱伝導率(W/mK)の関係を示すものである。
 図17において、左側の欄は、既述した図15の(a)のTA被膜、図15の(b)のSA被膜、その他の材料のときに、右側の硬度、比熱、熱伝導率を値の例を示し、図示の下記の硬度、比熱、熱伝導率をそれぞれ有する。
 コテ先の被膜/材料  硬度(HV)  比熱(J/KgK) 熱伝導率(W/mK)
 TA被膜       1000~2500
 SA被膜       800~1000
 炭化チタン(TiC) 3000~4000        21
 シリコン       1040     678    83.7
 チタン        120      528    17
 モリブデン      147      225    147
 クロムモリブデン鋼  285~415   470     48
 SUS304     150      500     16.3
 アルミニウム      25      900    204
 コバルト       130      431    70
 ここで、左欄のコテ先の被膜/材料は、従来がモリブデン、クロムモリブデン鋼、SUS304などを使用しており、硬度は147から415HVの範囲内(数百HV)であった(図17の右側に記載した「(1)元の高度(数百HV)」参照)。
 この従来のコテ先(モリブデン、クロムモリブデン鋼、SUS304)の表面に、本発明の図15の(a)のTA被膜を形成すると、TA被膜の硬度2500HVと約6倍、硬度が高くなる(図17に図示の「(2)処理後の高度(2500HV)」参照)ことが判明し、耐摩耗性もほぼ同様に高くなることが判明した。
 同様に、図17の右側に示すように、
 「(3)元の熱伝導率(SUS304の15。3)」から「(4)変更後の熱伝導率(モリブデンの147)」に大きくなることが判明した。
 つまり、コテ先の基材を従来の「SUS304」から本発明の「モリブデン」に変更して熱伝導率を約9倍に大きくし、かつ表面にTA被膜を形成して表面の硬度を約6倍だけ大きくすることができた。
 ここで、コテ先の基材をSUS304からモリブデンに変更したことにより、シリコン基板に対する熱的特性、特に熱伝導性が大幅に改善され、コテ先の交換頻度を約6月程度の伸ばせた。しかし、硬度は小さいため、コテ先交換頻度は6月程度になった。更に、コテ先の基材であるモリブデンにTA処理(TAコーティング)を実施(既述した図15の(a)参照)し、硬度を高め、コテ先交換頻度を1年半程度に向上できた。
 図18は、本発明のABSコーティングの表面顕微鏡像例(モリブデン)を示す。この図18に示すABSコーティングは、実験では、パルス電圧50Hz、最大220V、電流14A(マイルドモード)で実施することにより、凹凸は5μm程度が得られた。10×10平方mm領域を40分で処理した。
 図18の(a)はモリブデン表面(基材)の顕微鏡像を示し、図18の(b)はTA表面(チタンコーティング)の顕微鏡像を示す。両画像は上から5、10、20、50倍の順に倍率が高くなる画像である。
 図18の(a)のモリブデン表面(基材)には、図示のように横方向に機械加工の後が観察できる。
 図18の(b)のTA表面(チタンコーティング)は、コテ先の基材のモリブデン表面に、チタンイオンスパッタによりチタンが島状に形成されている様子が判明する。このTA表面は、既述した図15の(a)に模式的に示すように、表面が島状の凹凸が存在するので、必要に応じ、既述した図15の(a)を用いて説明したように、「TA表面」、「元の基材面まで研磨加工」、「元の基材面から5μm研磨加工」とすることにより、表面を平坦にすることが可能である。尚、研磨するほど、図16に記載したように、硬度が2500から1000HV程度に小さくなるので、使用に応じて最適な平坦性が得られる研磨を行う必要がある。
 図18の(c)のSA表面(シリコンコーティング)は、コテ先の基材のモリブデン表面に、シリコンイオンスパッタによりシリコンが島状に形成されている様子が判明する。このSA表面は、既述した図15の(b)に模式的に示すように、表面が島状の凹凸が存在するので、必要に応じ、既述した図15の(b)を用いて説明したように、「SA表面」、「元の基材面まで研磨加工」、「元の基材面から5μm研磨加工」とすることにより、表面を平坦にすることが可能である。尚、研磨するほど、TA被膜と同様に硬度が小さくなるので、使用に応じて最適な平坦性が得られる研磨を行う必要がある。
 図19は、本発明のABSコーティングの表面顕微鏡像例(その2)を示す。これは、既述した図18の(a)のMo(モリブデン)、図18の(b)のTA(チタンコーティング)、図18の(c)のSA(シリコンコーティング)のぞれぞれの4倍の実体顕微鏡の画像例である。
 次に、図20から図25を用い、半田を付着させた取出線であるリボンあるいは線材(ワイヤー)などを、基板あるいは基板上に形成した膜に、直接に超音波半田付けする手順を詳細に説明する。
 図20は、本発明の動作説明フローチャート(予備半田が無い場合)を示す。
 図20において、S101は、半田コテ、ウェーハ登載台等の温度、超音波発振周波数等の設定を行う。これは、超音波半田付けを行うに先立ち、前準備として下記を行う。
  ・半田コテ:所定温度に加熱(リボンあるいは線材に付着されている半田が溶融する温度に加熱)する。
  ・ウェーハ登載台:基板であるウェーハの登載台を所定温度に予備加熱(リボンあるいは線材に付着している半田が溶融する温度よりも少し低い温度、例えば180℃(後述する))する。
  ・超音波発振周波数等:所定周波数、所定出力の超音波を半田コテ先から基板であるウェーハに供給するように調整する(例えば後述するように、数十KHz、1~6Wの超音波をコテ先に供給するように調整する)。
 S102は、ウェーハを所定の位置にセットする。これは、リボンあるいは線材を超音波半田付けしようとする、例えば太陽電池のウェーハをS101で所定温度に加熱したウェーハ登載台の所定の位置に図示外の自動機で搬送して固定する。固定すると瞬時に所定温度(例えば180℃)に予備加熱される。
 S103は、半田付きワイヤー又はリボンを送出する。これは、S102でウェーハ登載台の所定位置に固定されて予備加熱されたウェーハの所定位置(超音波半田付けする基板あるいは基板上の膜の所定位置)に、予め半田を付着させたワイヤー(線材)又はリボンを図示外の自動機で送出する。ワイヤー(線材)またはリボンは、リールから送出、あるいは所定長さにカットしたワイヤーまたはリボンを多数収納した搭載箱から送出する。尚、特にワイヤーをリールから送出中にねじれにより切れる場合がたまに発生するので、所定長さにカットしたワイヤー(線材)を自動機で登載箱から送出することが望ましい。リボンの場合にはそれほどでない。
 S104は、超音波半田付けする。これは、S102でウェーハをウェーハ登載台に固定して所定温度(例えば180℃)に予備加熱した状態で、かつS103で半田を付着させたワイヤー(線材)あるいはリボンを、ウェーハの上あるいはウェーハ上に形成した膜(アルミニウム膜、窒化膜、ガラス膜等)の上に供給(あるいは裁置)した状態で、超音波半田コテのコテ先を軽く押し当てて超音波を供給してごみなどを除去しつつ、当該ワイヤ―(線材)あるいはリボンに付着している半田を溶融させ、ワイヤーあるいはリボンとウェ―ハ(基板)あるいはウェハーの上に形成された膜(基板上の膜)とを超音波半田付けする。
 S105は、処理ウェーハの有りか判別する。YESの場合には、処理ウェーハがまだあるので、S106で次のウェーハの処理(S102からS104の処理)を繰り返す。NOの場合には、全てのウェーハの処理が終了したので、終わる。
 以上によって、予め半田を付着させたワイヤー(線材)あるいはリボンを、予備加熱したウェーハ(基板)あるいはウェーハの上に形成した膜(基板上の膜)に当該ワイヤ―あるいはリボンに付着させた半田を溶融し、ウェ―ハあるいはウェーハの上の膜に直接に超音波半田付けすることが可能となる。これにより、既述した半田の付着していないワイヤーあるいはリボンを基板あるいは基板の上の膜に超音波半田付けする場合に比して、下記の優位点がある。
 1 本例では、ワイヤーあるいはリボンに半田が付着しているので、半田の自動供給装置、予備加熱装置などが不要となる。
 2 半田を基板あるいは基板上の膜に予備半田し、次に、ワイヤーあるいはリボンを半田付けする場合に比して、当該予備半田工程が不要となる。
 図21は、本発明のリボン接続例を示す。これは、既述した図20のフローチャートに従い、半田を付着させたリボンをウェーハ(例えば太陽電池)あるいはウェーハの上の膜に直接に超音波半田付けし、当該リボンを電気的かつ機械的に強固に接続した例を示す。
 図21の(a)は、フィンガー面への接続例を示し、図21の(b)は、シリコン面への接続例を示し、図21の(c)は、裏面アルミ面への接続例を示す。
 図21の(a)は、フィンガー面への接続例を示す。図21の(a-1)はリボンをフィンガー面に超音波半田付けした例を示し、図21の(a-2)は横方向から見た図を示す。
 図21の(a)において、図示のリボン(半田を付着させたリボン)は、図20のフローチャートに従い、シリコン基板上に形成したフィンガー面に直接に超音波半田付けし、当該リボンをフィンガー面(フィンガー電極)に電気的に接続、および当該リボンを機械的に膜(窒化膜、あるいは窒化膜の上に形成したガラス膜)に機械的に強固に接続(固定)した例を示す。
 図21の(b)は、シリコン面(基板)への接続例を示す。図21の(b-1)はリボンをシリコン面に超音波半田付けした例を示し、図21の(b-2)は横方向から見た図を示す。
 図21の(b)において、図示のリボン(半田を付着させたリボン)は、図20のフローチャートに従い、シリコン基板上に直接に超音波半田付けし、当該リボンをシリコン面(基板)に電気的に接続、および当該リボンを機械的にシリコン面(基板)に機械的に強固に接続(固定)した例を示す。
 図21の(c)は、裏面アルミ面への接続例を示す。図21の(c-1)はリボンを裏面アルミ面に超音波半田付けした例を示し、図21の(c-2)は横方向から見た図を示す。
 図21の(c)において、図示のリボン(半田を付着させたリボン)は、図20のフローチャートに従い、シリコン基板の裏面のアルミ面に直接に超音波半田付けし、当該リボンを裏面アルミ面に電気的に接続、および当該リボンを機械的に強固に接続(固定)した例を示す。
 図22は、本発明のワイヤー接続例を示す。これは、既述した図20のフローチャートに従い、半田を付着させたワイヤー(線材)をウェーハ(例えば太陽電池)あるいはウェーハの上の膜に直接に超音波半田付けし、当該ワイヤーを電気的かつ機械的に強固に接続した例を示す。
 図22の(a)は、フィンガー面への接続例を示し、図22の(b)は、シリコン面への接続例を示し、図22の(c)は、裏面アルミ面への接続例を示す。
 図22の(a)は、フィンガー面への接続例を示す。図22の(a-1)はワイヤーをフィンガー面に超音波半田付けした例を示し、図22の(a-2)は横方向から見た図を示す。
 図22の(a)において、図示のワイヤー(半田を付着させたワイヤー)は、図20のフローチャートに従い、シリコン基板上に形成したフィンガー面に直接に超音波半田付けし、当該ワイヤーをフィンガー面(フィンガー電極)に電気的に接続、および当該ワイヤーを機械的に膜(窒化膜、あるいは窒化膜の上に形成したガラス膜)に機械的に強固に接続(固定)した例を示す。
 図22の(b)は、シリコン面(基板)への接続例を示す。図22の(b-1)はワイヤーをシリコン面に超音波半田付けした例を示し、図22の(b-2)は横方向から見た図を示す。
 図22の(b)において、図示のワイヤー(半田を付着させたワイヤー)は、図20のフローチャートに従い、シリコン基板上に直接に超音波半田付けし、当該ワイヤーをシリコン面(基板)に電気的に接続、および当該ワイヤーを機械的にシリコン面(基板)に機械的に強固に接続(固定)した例を示す。
 図22の(c)は、裏面アルミ面への接続例を示す。図22の(c-1)はワイヤーを裏面アルミ面に超音波半田付けした例を示し、図22の(c-2)は横方向から見た図を示す。
 図22の(c)において、図示のワイヤー(半田を付着させたワイヤー)は、図20のフローチャートに従い、シリコン基板の裏面のアルミ面に直接に超音波半田付けし、当該ワイヤーを裏面アルミ面に電気的に接続、および当該ワイヤーを機械的に強固に接続(固定)した例を示す。
 図23は、本発明の半田付け条件例を示す。これは、既述した図20、図21、図22で超音波半田付けで用いた半田付け条件の1例を示す。図示のように、サンプル、超音波出力、超音波周波数、コテ温度、ステージ温度(ウェーハ保持台温度)は、図示の下記のようにした。
 サンプル  超音波出力 超音波周波数 コテ温度   ステージ温度
                    (1mm幅)
 ワイヤー   3 W    40 kH     420 ℃     180 ℃
 (0.5mmφ)  (1~6W) (20~60 kH) (350~500℃)  (100~180℃)
 リボン
 (2mm 幅)
      6Wを超えると     500℃以上になると  200℃以上に
      セル特性劣化を    セル特性劣化を生ず  なるとセル
      生ずる場合が有    る場合が有る。熱供給 特性劣化を
      る。コテの大型    を安定にすることに  生ずる場合
      化等で熱の安定    より低温にできる。  がある。
      供給ができる。    コテ複数化。
 図24は、本発明のワイヤーの半田付け条件および半田付け成功例を示す。
 図24の(a)は成功本数/総本数の例を示す。ここでは、ワイヤーの断面形状として、図示のように、0.5mmφ、0.4mmφ、0.3mmφ、0.2mmφについて実験したときの成功本数例を示し、図示の下記のような結果が得られた。
 断面形状           0.5mmφ  0.4mmφ 0.3mmφ 0.2mmφ
 (a-1)10μm程度厚半田コート  0/10    0/10   0/10   0/10
 (a-2)上記ワイヤーの潰し形状  10/10   10/10  10/10  10/10
 (a-3)予備半田、銅線〇形状   10/10   10/10  10/10  10/10
 備考            柔軟性なし
               取り扱い難
 ここで、(a-1)「10μm程度厚半田コート」は、ワイヤー(銅ワイヤー)に10μm程度の半田を付着(半田コートで付着)させたものである。(a-2)「上記ワイヤーの潰し形状」は、後述する図24の(b)で説明するように、「10μm程度厚半田コート」の〇状のワイヤーを少し潰したものである。(a-3)「予備半田、銅線〇形状」は、基板上に予備半田付けしておき、これに銅線〇形状のワイヤーを超音波半田付けしたものである。
 以上のように、ワイヤーの断面直径が0.5mmφ、0.4mmφ、0.3mmφ、0.2mmφについて既述した図20のフローチャートに従い、基板(ウェハー)への超音波半田付けを実験した結果、上記の下記のような結果が得られた。
 (1)(a-1)の〇形状のままのワイヤーは超音波半田付けが困難であったが、それ以外は全て超音波半田付けができた(電気的、機械的な接続が良好となった)。
 (2)0.5mmφのワイヤー(銅線が0.5mmφの表面に半田を付着させたワイヤー)は固すぎ、ウェーハに超音波半田付けした場合に当該ウェーハが割れたり、はがれたりすることがあり、取り扱いに難がある。当該ワイヤーを使うには焼きなましなどし、柔らかくする必要性がある。
 (3)(a-3)に示すように、基板に予め予備半田付け(超音波予備半田付け)しておけば、銅線〇形状のワイヤーでも基板に超音波半田付けが可能なことが判明した。
 図24の(b)は、潰しワイヤー説明図を示す。これは、上述した図24の(a)の「(a-2)上記ワイヤーの潰し形状」の説明図を示す。
 図24の(b-1)は銅線〇形状のワイヤーの例を示し、図24の(b-2)は潰し形状の例を示す。
 図24の(b-2)において、図24の(b-1)の銅線〇形状のワイヤーを、ここでは、直径方向の上下に図示のように、少し潰し、下方の基板と接する部分が約100~200μm程度あるいはそれ以上あると、安定的に半田付け可能(図20のフローチャーに従った超音波半田付けが可能)となることが実験で判明した。
 図25は、本発明の超音波半田付けの説明図(予備半田の有無、半田供給の有無等)を示す。ここで、縦軸は予備半田の有、無の区別を示す。これは、ワイヤー又はリボンを超音波半田つけしようとする基板(例えばウェーハあるいはウェーハの表面に形成した膜)の部分に予め予備半田されている場合は有、予備半田されていない場合は無の区別である。
 また、横軸はワイヤー又はリボンの半田付きの有、無の区別を示す。これは、ワイヤー又はリボンの表面に予め半田付け(あるいは半田コート)されている場合は有、半田付けされていない場合は無である。
 図25において、予備半田の有無と、ワイヤー又はリボンの半田付きの有無との組み合わせについて、既述した図20のフローチャートに従って超音波半田付けした場合、図示の下記の実験結果が得られた。
 予備半田の有無  ワイヤー又はリボンの   ワイヤー又はリボンの
          半田付きの有        半田付きの無
 予備半田の有  (1)1 安定した作業   (3)1 熱の伝わり方によっ
          2 〇形状ワイヤーでも  ては、半田材用が一様に
            半田付け可能     つかない場合がある
 予備半田の無 (2)1 〇形状を潰したワイヤー (4)1 半田供給要
          又はリボンは密着
         2 〇形状ワイヤーの密着 2 ワイヤー又はリボンの
          は不安定          供給と併せて半田供給は
          3 付着させた半田が    作業が不安定
         剥げた個所の密着に問題が 3 一様な半田材料の供給
         あり              が難しい
 ここで、詳細に説明すれば、4つの組み合わせ(1)、(2)、(3)、(4)につい下記の結果が得られた。
(1)「予備半田の有」、「ワイヤー又はリボンの半田付きの有」の場合には、
  1 安定した作業  
  2 〇形状のワイヤーでも半田付け可能
という結果が得られた。これは、ワイヤー又はリボンを超音波半田付けしようとする基板(ウェーハ)あるいは基板の上に形成した膜の部分に予め超音波半田付けにより予備半田付けした部分に、半田付きのワイヤー又はリボンを超音波半田付けした場合の実験結果である。安定した作業ができ、かつ〇形状のワイヤーでも半田付けが良好に可能(電気的に接続、かつ機械的に強固に接続可能)であった。
(2)「予備半田の無」、「ワイヤー又はリボンの半田付きの有」の場合には、
  1 〇形状の潰したワイヤー又はリボンは密着  
  2 〇形状のワイヤーの密着は不安定
  3 付着させた半田が剥げた個所の密着が問題があり
という結果が得られた。これは、ワイヤー又はリボンを超音波半田付けしようとする基板(ウェーハ)あるいは基板の上に形成した膜の部分に超音波半田付けによる予備半田付けしない部分に、半田付きのワイヤー又はリボンを超音波半田付けした場合の実験結果である。〇形状の潰したワイヤー又はリボンは密着良好、〇形状のワイヤーの密着は不安定、また、付着させた半田が剥げた個所の密着に問題がありという結果が得られた。
(3)「予備半田の有」、「ワイヤー又はリボンの半田付きの無」の場合には、
  1 熱の伝わり方によっては、半田材料が一様につかない場合ばある
という結果が得られた。これは、ワイヤー又はリボンを超音波半田付けしようとする基板(ウェーハ)あるいは基板の上に形成した膜の部分に予め超音波半田付けにより予備半田付けした部分に、半田付きでないワイヤー又はリボンを超音波半田付けした場合の実験結果である。熱の伝わり方によっては、半田材料が一様につかない場合ばあるという結果が得られた。つまり、ワイヤー又はリボンに半田が付着していなく、半田付けしようとする基板の部分に予備半田がされているので、ワイヤー又はリボンの上から半田コテ先で軽く押さえながら超音波半田付けするので、コテ先、ワイヤー又はリボン、基板上の予備半田部分へと熱が伝わる経路の熱の伝わり方によって、一様な綺麗な半田付けができない場合が発生した。これは、ワイヤー又はリボンに半田付けしておけば解決できる。
(4)「予備半田の無」、「ワイヤー又はリボンの半田付きの無」の場合には、
  1 半田供給要  
  2 ワイヤー又はリボンの供給と併せての半田供給は作業が不安定
  3 一様な半田材料の供給が難しい
という結果が得られた。これは、ワイヤー又はリボン、および半田付けしようとする基板の部分にも予備半田がない場合であるので、ワイヤー又はリボンと、半田とを同時に供給する必要がある。そのため、半田供給が必要、ワイヤー又はリボンの供給と半田の供給の両者が供給作業が不安定、更に一様は半田材料の供給が難しいという結果が得られた。
本発明の1実施例構成図である。 本発明の動作説明フローチャートである。 本発明の動作説明フローチャート(その2)である。 本発明の温度設定フローチャートである。 本発明の半田付け対象の基板例である。 本発明の半田付け装置の構成例である。 本発明のコテ先の改善例である。 本発明のコテ先速度(S1)例である。 本発明の半田供給速度(S2)例である。 本発明の温度設定例である。 本発明の超音波パワー設定例である。 本発明と従来の設定例である。 本発明の半田付け写真例である。 本発明のコテ先の形状例である。 本発明のABSコーティングの処理説明図である。 本発明のABSコーティングの処理説明図(硬度)である。 本発明のABSコーティングの半田コテへの応用例である。 本発明のABSコーティングの表面顕微鏡画像例(モリブデン)である。 本発明のABSコーティングの表面顕微鏡画像例(その2)である。 本発明の動作説明フローチャート(予備半田が無い場合)である。 本発明のリボン接続例である。 本発明のワイヤー接続例である。 本発明の半田付け条件例である。 本発明のワイヤーの半田付け条件および半田付け成功例である。 本発明の超音波半田付けにおける予備半田有無、半田供給の有無等の説明図である。
1:基板(太陽電池基板、シリコン基板)
2:基板積載台(基板予備加熱台)
3:コテ先
31:コテ先温度(T3)
32:コテ先移動装置(S1)
4:コテ先加熱装置
5:超音波発振装置
6:半田
7:半田予備加熱装置(T2)
8:半田スライド装置(S2)
11、21:基材
12:TA混合層
13:TA被膜
14:元の基材表面
22:SA混合層
23:SA被膜
24:元の基材表面

Claims (16)

  1.  基板あるいは基板上に形成した膜の部分に半田付けする超音波半田付け装置において、
     被半田付け対象の基板あるいは膜を形成した基板を、半田の溶融温度よりも低い所定温度に予備加熱する基板予備加熱装置と、
     前記基板予備加熱装置で予備加熱した所定温度の前記基板の部分に近接する半田コテ先部分を、超音波を印加した状態で供給した半田が溶融する所定温度に調整するコテ先加熱装置と、
     前記コテ先加熱装置で加熱したコテ先部分に、前記超音波を供給する超音波発振装置と、
     前記コテ先部分に供給する糸状の半田を、当該糸状の半田が溶解する温度よりも低い温度に予備加熱する半田予備加熱装置と、
     前記半田予備加熱装置で予備加熱した糸状の半田を、前記加熱したコテ先部分に供給する速度を調整する半田スライド装置と、
     前記基板に近接する前記加熱したコテ先に、前記半田スライド装置で前記予備加熱した糸状の半田を所定速度で供給しつつ、当該コテ先を所定速度で半田付け方向に移動させるコテ先移動装置と
    を備え、
     予備加熱した糸状の半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して当該基板部分に該溶融半田を付着させて半田付けすることを特徴とする超音波半田付け装置。
  2.  前記コテ先部分の形状について、該コテ先の移動方向の長さを、該コテ先の幅よりも長くし、断面積および熱容量を大きくして基板への熱伝導を改善し、当該コテ先温度を低下させ、基板上の膜あるいは基板中の膜への熱損傷を低減しことを特徴とする請求項1に記載の超音波半田付け装置。
  3.  前記コテ先部分の形状について、該コテ先の移動方向の長さを、該コテ先の移動方向の幅よりも長くし、断面積を大きくして前記超音波の基板への伝導を改善し、付着物の除去を改善して該超音波発振出力を低減し、基板上の膜あるいは基板中の膜への超音波損傷を低減しことを特徴とする請求項1から請求項2のいずれかに記載の超音波半田付け装置。
  4.  請求項3において、超音波発振出力を2Wから6W、望ましくは2Wとしたたことを特徴とする超音波半田付け装置。
  5.  前記コテ先部分の形状について、該コテ先の移動方向の長さを、該コテ先の移動方向の幅の3倍ないし6倍とし、基板のコテ先の移動方向のうねりの長さの周期に合わせ、均一厚さの半田層を形成することを特徴とする請求項1ないし請求項4のいずれかに記載の超音波半田付け装置。
  6.  前記予備加熱した糸状の半田の断面積を大きくあるいは小さくして基板への半田厚さを可及的に薄く調整可能にしたことを特徴とする請求項1から請求項5のいずれかに記載の超音波半田付け装置。
  7.  前記予備加熱した糸状の半田の供給速度と、前記コテ先の移動速度とを同じにしたことを特徴とする請求項1から請求項6のいずれかに記載の超音波半田付け装置。
  8.  前記予備加熱した糸状半田の供給速度と、前記コテ先の移動速度とについて、前者を後者よりも速くして溶融半田量を増加させて基板への半田厚さを厚く、あるいは前者を後者よりも遅くして溶融半田量を減少させて基板への半田厚さを薄くし、半田厚さを可及的に薄く調整可能にしたことを特徴とする請求項1から請求項7のいずれかに記載の超音波半田付け装置。
  9.  前記コテ先部分の移動速度を、150ないし200mm/sとし、均一かつ薄い半田層を形成することを特徴とする請求項1から請求項8のいずれかに記載の超音波半田付け装置。
  10.  前記コテ先の材料あるいは前記コテ先をコーティングする材料を高硬度、耐摩耗性の材料としたことを特徴とする請求項1から請求項9のいずれかに記載の超音波半田付け装置。
  11.  前記材料をチタン、チタン合金、シリコン、あるいはシリコン合金のいずれかとしたことを特徴とする請求項10に記載の超音波半田付け装置。
  12.  前記コテ先のコーティングの厚さは、5~15μmとしたことを特徴とする請求項10から請求項11のいずれかに記載の超音波半田付け装置。
  13.  前記半田予備加熱措置、半田スライド装置、コテ先移動装置の代わりに、予め半田を付着させた外部に電流を取り出す取出し線である、リボンあるいは線材を、前記基板あるいは基板上に形成した膜の部分に前記コテ先部分で押し付けつつ、当該コテ先を所定速度で半田付け方向に移動させるコテ先移動装置を備え、
     予めリボンあるいは線材に付着させた半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して当該基板部分に該溶融半田を付着させて半田付けすることを特徴とする請求項1に記載の超音波半田付け装置。
  14.  前記線材は円形状の線材を若干つぶした形状にしたことを特徴とする請求項13に記載の超音波半田付け装置。
  15.  基板あるいは基板上に形成した膜の部分に半田付けする超音波半田付け方法において、
     被半田付け対象の基板あるいは膜を形成した基板を、半田の溶融温度よりも低い所定温度に予備加熱する基板予備加熱装置と、
     前記基板予備加熱装置で予備加熱した所定温度の前記基板の部分に近接する半田コテ先部分を、超音波を印加した状態で供給した半田が溶融する所定温度に調整するコテ先加熱装置と、
     前記コテ先加熱装置で加熱したコテ先部分に、前記超音波を供給する超音波発振装置と、
     前記コテ先部分に供給する糸状の半田を、当該糸状の半田が溶解する温度よりも低い温度に予備加熱する半田予備加熱装置と、
     前記半田予備加熱装置で予備加熱した糸状の半田を、前記加熱したコテ先部分に供給する速度を調整する半田スライド装置と、
     前記基板に近接する前記加熱したコテ先に、前記半田スライド装置で前記予備加熱した糸状の半田を所定速度で供給しつつ、当該コテ先を所定速度で半田付け方向に移動させるコテ先移動装置とを設け、
     予備加熱した糸状の半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して当該基板部分に該溶融半田を付着させて半田付けすることを特徴とする超音波半田付け方法。
  16.  前記半田予備加熱措置、半田スライド装置、コテ先移動装置の代わりに、予め半田を付着させた外部に電流を取り出す取出し線である、リボンあるいは線材を、前記基板あるいは基板上に形成した膜の部分に前記コテ先部分で押し付けつつ、当該コテ先を所定速度で半田付け方向に移動させるコテ先移動装置を設け、
     予めリボンあるいは線材に付着させた半田をコテ先部分で溶解かつ超音波を印加し、近接した基板部分の付着物を除去して当該基板部分に該溶融半田を付着させて半田付けすることを特徴とする請求項15に記載の超音波半田付け方法。
PCT/JP2019/042073 2018-12-18 2019-10-25 超音波半田付け装置および超音波半田付け方法 WO2020129410A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980084527.8A CN113226613A (zh) 2018-12-18 2019-10-25 超声波焊接装置及超声波焊接方法
KR1020217022576A KR20210100729A (ko) 2018-12-18 2019-10-25 초음파 납땜장치 및 초음파 납땜방법
JP2020561189A JPWO2020129410A1 (ja) 2018-12-18 2019-10-25 超音波半田付け装置および超音波半田付け方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018236377 2018-12-18
JP2018-236377 2018-12-18
JP2019037814 2019-03-01
JP2019-037814 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020129410A1 true WO2020129410A1 (ja) 2020-06-25

Family

ID=71101213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042073 WO2020129410A1 (ja) 2018-12-18 2019-10-25 超音波半田付け装置および超音波半田付け方法

Country Status (5)

Country Link
JP (1) JPWO2020129410A1 (ja)
KR (1) KR20210100729A (ja)
CN (1) CN113226613A (ja)
TW (1) TWI724631B (ja)
WO (1) WO2020129410A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230018795A (ko) 2021-07-30 2023-02-07 주식회사 엘지에너지솔루션 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102610A (ja) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd 半田バンプ付きリード線、太陽電池用リード線取付け装置及び太陽電池の製造方法
JP2009195939A (ja) * 2008-02-21 2009-09-03 Mitsuo Ebisawa 筒状半田鏝
JP2012016744A (ja) * 2010-07-09 2012-01-26 Honda Motor Co Ltd 半田付け装置及び方法
JP2012074565A (ja) * 2010-09-29 2012-04-12 Diamond Electric Mfg Co Ltd 超音波接合ツール及び超音波接合装置及び接合材パターン成形方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005545A (ja) * 2009-05-25 2011-01-13 Hitachi Metals Ltd はんだ合金およびこれを用いたはんだ接合体
WO2011114983A1 (ja) * 2010-03-17 2011-09-22 株式会社アルバック 太陽電池モジュール及びその製造方法
CN203875447U (zh) * 2014-05-27 2014-10-15 张曹 超声波低温钎焊装置
JP6696665B2 (ja) * 2015-10-25 2020-05-20 農工大ティー・エル・オー株式会社 超音波半田付け方法および超音波半田付け装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102610A (ja) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd 半田バンプ付きリード線、太陽電池用リード線取付け装置及び太陽電池の製造方法
JP2009195939A (ja) * 2008-02-21 2009-09-03 Mitsuo Ebisawa 筒状半田鏝
JP2012016744A (ja) * 2010-07-09 2012-01-26 Honda Motor Co Ltd 半田付け装置及び方法
JP2012074565A (ja) * 2010-09-29 2012-04-12 Diamond Electric Mfg Co Ltd 超音波接合ツール及び超音波接合装置及び接合材パターン成形方法

Also Published As

Publication number Publication date
JPWO2020129410A1 (ja) 2021-10-14
CN113226613A (zh) 2021-08-06
KR20210100729A (ko) 2021-08-17
TW202029517A (zh) 2020-08-01
TWI724631B (zh) 2021-04-11

Similar Documents

Publication Publication Date Title
US5737178A (en) Monocrystalline ceramic coating having integral bonding interconnects for electrostatic chucks
JP3895277B2 (ja) パーティクル発生の少ないスパッタリングターゲット又はバッキングプレートに接合したスパッタリングターゲット及びその製造方法
JP5988411B2 (ja) 試料保持具
TW201143915A (en) Method and apparatus for applying solder to a work piece
EP0863545A2 (en) Monocrystalline ceramic electrostatic chuck
JP5221231B2 (ja) 太陽電池用リード線の製造方法
US20090186195A1 (en) Reactive Multilayer Joining With Improved Metallization Techniques
WO2020129410A1 (ja) 超音波半田付け装置および超音波半田付け方法
US20160121415A1 (en) Apparatus and method for cutting semi/non-conductor using wedm
JP6546953B2 (ja) スパッタリングターゲット−バッキングプレート接合体及びその製造方法
TW201615875A (zh) 濺鍍靶
JP2004349666A (ja) 静電チャック
JP4165793B2 (ja) 金属箔・セラミック接合材の製造方法
JP6991172B2 (ja) スパッタリングターゲット-バッキングプレート接合体
JP2010283138A (ja) 太陽電池用リード線及びその製造方法並びにそれを用いた太陽電池
JP3359582B2 (ja) 静電チャック
JP4184829B2 (ja) 静電チャックの製造方法
CN211165354U (zh) 一种易剥离的3d打印基板及3d打印系统
JP6808503B2 (ja) 部材接合方法
CN112026172A (zh) 一种易剥离的3d打印基板、3d打印系统及方法
JP2537656B2 (ja) ワイヤボンディング装置
JP2005340400A (ja) ワイヤーボンディング用キャピラリー
JPH11172462A (ja) セラミック−金属層からなる複合部材の製造方法
JP2005026251A (ja) 半導体接続用同軸ボンディングワイヤーのボンディング方法
JP6689309B2 (ja) スパッタリングターゲット部材、スパッタリングターゲット組立体及びスパッタリングターゲット部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217022576

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19901305

Country of ref document: EP

Kind code of ref document: A1