WO2020129257A1 - 温度調整回路 - Google Patents

温度調整回路 Download PDF

Info

Publication number
WO2020129257A1
WO2020129257A1 PCT/JP2018/047373 JP2018047373W WO2020129257A1 WO 2020129257 A1 WO2020129257 A1 WO 2020129257A1 JP 2018047373 W JP2018047373 W JP 2018047373W WO 2020129257 A1 WO2020129257 A1 WO 2020129257A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
temperature
heat medium
control circuit
temperature control
Prior art date
Application number
PCT/JP2018/047373
Other languages
English (en)
French (fr)
Inventor
哲 宮本
敏勝 片桐
謙悟 青木
藤原 直樹
歩 鵜野
健太 杉立
豪士 大谷
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201880100252.8A priority Critical patent/CN113195294B/zh
Priority to JP2020561131A priority patent/JP6997883B2/ja
Priority to PCT/JP2018/047373 priority patent/WO2020129257A1/ja
Priority to US17/416,788 priority patent/US11731483B2/en
Publication of WO2020129257A1 publication Critical patent/WO2020129257A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a temperature adjustment circuit that adjusts the temperature of a battery or the like.
  • An electric vehicle including a coupling path that is coupled to form a coupling circuit, a switching unit that can switch between a circulation state in which the heat medium circulates in the coupling circuit, and a non-circulation state in which the heat medium does not circulate in the coupling circuit.
  • Temperature regulation circuits are known.
  • a cooling circuit that cools a battery a cooling circuit that cools an inverter, a first refrigerant pump that is provided in the cooling circuit that cools the battery, and a second refrigerant pump that is provided in a cooling circuit that cools the inverter.
  • a switching valve and a temperature regulation circuit are described.
  • Patent Document 1 in this temperature adjustment circuit, when the outside air temperature is lower than a predetermined temperature, a circulating state is set, while when the outside air temperature is equal to or higher than a predetermined temperature, a non-circulating state is set to improve temperature adjustment accuracy. It is described to increase.
  • Patent Document 1 describes that a three-way valve may be used to construct an equivalent circuit, but it lacks specificity.
  • the present invention provides a temperature adjusting circuit that can easily switch between a circulating state and a non-circulating state and can reduce the required number of buffer tanks.
  • the temperature adjustment circuit of the present invention is A first pump that supplies a heat medium to a first cooling target; and a first heat exchange circuit that includes a first heat exchange unit that exchanges heat between the heat medium and the air-conditioning refrigerant, A second temperature adjustment circuit including a second pump that supplies the heat medium to a second object to be cooled, and a second heat exchange unit that exchanges heat between the heat medium and the outside air; A first coupling passage that connects the first connecting portion of the first temperature adjusting circuit and the first connecting portion of the second temperature adjusting circuit; A second coupling passage that connects the second connecting portion of the first temperature adjusting circuit and the second connecting portion of the second temperature adjusting circuit; Supplying the heat medium to the second connecting portion of the second temperature adjusting circuit, which is provided at the first connecting portion of the second temperature adjusting circuit, and supplying the heat medium to the first coupling passage.
  • a three-way valve to switch A shutoff valve provided between the first connecting portion of the first temperature adjusting circuit and the second connecting portion of the first temperature adjusting circuit;
  • a control device for controlling the three-way valve and the shutoff valve The control device is A coupling circuit in which the shutoff valve is closed and the three-way valve is controlled to supply the heat medium to the first coupling passage to couple the first temperature regulation circuit and the second temperature regulation circuit.
  • the temperature control circuit can be easily switched by controlling the three-way valve and the shutoff valve to switch between the circulating state and the non-circulating state. Further, since the first temperature adjusting circuit and the second temperature adjusting circuit are connected by the second connecting passage regardless of the circulating state and the non-circulating state, even if the heat medium expands, the temperature adjusting circuit is Only one buffer tank is needed, and the number of parts can be reduced.
  • a temperature adjusting circuit 1 for an electric vehicle includes a first temperature adjusting circuit 4 that exchanges heat with a battery 2 and a charger 3, and a power converter that supplies electric power to a motor 105 (see FIG. 5).
  • the heat medium is a liquid medium such as water, a radiator liquid, and a coolant liquid.
  • the first temperature control circuit 4 includes a first pump EWP1 for circulating a heat medium in the circuit, and a chiller 11 arranged downstream of the first pump EWP1 for performing heat exchange using an air conditioning circuit of an electric vehicle.
  • the battery 2 and the charger 3 are provided on the downstream side of the chiller 11, and the electromagnetic opening/closing valve FSV is provided on the downstream side of the charger 3 and on the upstream side of the first pump EWP1.
  • the heat medium discharged by the first pump EWP1 is transferred to the chiller 11, the battery 2, and the charger 3.
  • the heat medium cooled by the chiller 11 exchanges heat with the battery 2 and the charger 3 without being affected by the heat of the first pump EWP1, and the battery 2 and the charger 3 are appropriately cooled.
  • the battery 2 and the charger 3 can be cooled at the same time, the battery 2 and the charger 3 which generate heat during charging can be efficiently cooled. Further, the battery 2 and the charger 3 can be arranged close to each other, and the cooling pipe can be shortened.
  • the second temperature control circuit 6 is provided with a second pump EWP2 for circulating a heat medium in the circuit, a solenoid three-way valve EWV arranged downstream of the second pump EWP2 for switching between a separate mode and a series mode, and a solenoid three-way valve.
  • the power conversion device 5 arranged on the downstream side of the EWV, the buffer tank 15 arranged on the downstream side of the power conversion device 5, and the radiator 12 arranged on the downstream side of the buffer tank 15 for cooling the heat medium.
  • Prepare The power conversion device 5 includes at least one of an inverter that converts DC power into AC power and AC power into DC power, and a DC-DC converter that steps up or steps down DC voltage.
  • the electromagnetic three-way valve EWV of this embodiment is an electromagnetic three-way valve, and is provided in the first connection portion 14 a of the second temperature control circuit 6.
  • the electromagnetic three-way valve EWV is connected to a first port 17 connected to the downstream side of the second pump EWP2, a second port 18 connected to the upstream side of the power conversion device 5, and a first coupling passage 8 side described later.
  • the third port 19 the valve body 20 that is a movable body that switches the flow path, the spring 23 that urges the valve body 20 to the first position (the position of FIG. 4), and the urging force of the spring 23.
  • an electromagnet 21 for switching the position of the valve body 20 to the second position.
  • the electromagnet 21 of the electromagnetic three-way valve EWV is not energized and the valve body 20 is in the first position.
  • the electromagnetic three-way valve EWV allows connection between the downstream side flow passage (first port 17) of the second pump EWP2 and the upstream side flow passage (second port 18) of the power conversion device 5, and at the same time, the second pump
  • the connection between the downstream side flow path (first port 17) of the EWP 2 and the later-described first coupling passage 8 (third port 19) is cut off.
  • the heat medium discharged by the second pump EWP2 is circulated in the order of the power conversion device 5, the buffer tank 15, and the radiator 12. be able to.
  • the heat medium cooled by the radiator 12 exchanges heat with the power conversion device 5, and the power conversion device 5 is appropriately cooled.
  • the second pump EWP2 is arranged on the downstream side of the radiator 12, heat generation due to the operation of the second pump EWP2 can be efficiently suppressed.
  • the second pump EWP2 can be used in a limited temperature range, a highly versatile pump can be used. Further, by providing the buffer tank 15 on the downstream side of the power conversion device 5 that generates a large amount of heat, the air bleeding efficiency can be improved.
  • the electromagnet 21 of the electromagnetic three-way valve EWV is energized, and the position of the valve body 20 is switched from the first position to the second position.
  • the electromagnetic three-way valve EWV shuts off the connection between the downstream side flow passage (first port 17) of the second pump EWP2 and the upstream side flow passage (second port 18) of the power conversion device 5, and at the same time, the second pump
  • the downstream side flow path (first port 17) of the EWP 2 and a first coupling passage 8 (third port 19) described later are allowed to be connected. The flow of the heat medium in the series mode will be described later.
  • the coupling passages 8 and 9 include a first coupling passage 8 and a second coupling passage 9.
  • the first coupling passage 8 couples the first connecting portion 14a of the second temperature adjusting circuit 6 and the first connecting portion 13a of the first temperature adjusting circuit 4.
  • the second connecting passage 9 connects the second connecting portion 14b of the second temperature adjusting circuit 6 and the second connecting portion 13b of the first temperature adjusting circuit 4.
  • the first connecting portion 14a and the second connecting portion 14b of the second temperature adjusting circuit 6 are located on the downstream side of the electromagnetic three-way valve EWV in the second temperature adjusting circuit 6 and on the upstream side of the power conversion device 5.
  • the first connecting portion 13 a of the first temperature adjusting circuit 4 is located on the downstream side of the first pump EWP1 in the first temperature adjusting circuit 4 and on the upstream side of the chiller 11.
  • the second connecting portion 13b of the first temperature adjusting circuit 4 is located on the downstream side of the charger 3 in the first temperature adjusting circuit 4 and on the upstream side of the electromagnetic opening/closing valve FSV.
  • the passage between the first connecting portion 13a and the second connecting portion 13b in the first temperature adjusting circuit 4, that is, the passage in which the first pump EWP1 and the electromagnetic on-off valve FSV are arranged in the first temperature adjusting circuit 4 is a coupling circuit. 7 functions as a branch passage 16 that bypasses a part thereof.
  • the first pump EWP1 is stopped and the heat medium is circulated by driving the second pump EWP2. Further, in the series mode, the electromagnetic opening/closing valve FSV is closed to stop the circulation of the heat medium via the branch passage 16.
  • the heat medium discharged from the second pump EWP2 circulates in the order of the chiller 11, the battery 2, the charger 3, the power conversion device 5, the buffer tank 15, and the radiator 12, and the battery 2, the charger 3, and the power conversion.
  • the device 5 is cooled.
  • the battery 2 having a low management temperature can be preferentially cooled.
  • the cooling demand of the battery 2 is large, the cooling capacity can be increased by using the chiller 11 and the radiator 12.
  • energy consumption can be reduced by using only the radiator 12.
  • the heat medium when the heat medium is circulated only by the second pump EWP2 in the series mode, the heat medium is circulated without passing through the first pump EWP1, so that the pressure loss can be reduced. Further, in the series mode, since the first temperature adjusting circuit 4 and the second temperature adjusting circuit 6 are connected via the connecting passages 8 and 9, the thermal expansion of the heat medium in the two temperature adjusting circuits 4 and 6 is caused.
  • One buffer tank 15 can absorb the change in pressure and the change in flow rate due to.
  • the electromagnetic opening/closing valve FSV is opened.
  • the first pump EWP1 and the second pump EWP2 are driven.
  • the heat medium circulates through the temperature control circuits 4 and 6 separately, and the objects to be cooled in the temperature control circuits 4 and 6 are cooled.
  • the buffer tank 15 in the second temperature control circuit 6 coupled through the second coupling passage 9 can absorb the pressure change and the flow rate change due to the thermal expansion.
  • the control device 10 inputs the temperature information of the battery 2, the power conversion device 5, etc., and the rotation speed information of the second pump EWP2 and the first pump EWP1, and based on the judgment according to these input information, By controlling the first pump EWP1, the second pump EWP2, the electromagnetic three-way valve EWV, and the electromagnetic opening/closing valve FSV, the temperature adjusting circuit 1 is properly operated.
  • the control device 10 closes the electromagnetic opening/closing valve FSV and supplies the heat medium to the first coupling passage 8 by the electromagnetic three-way valve EWV when the temperature adjusting circuit 1 is switched from the separate mode to the series mode. It controls and drives only the second pump EWP2.
  • the electromagnetic opening/closing valve FSV is opened and the electromagnetic three-way valve EWV supplies the heat medium to the second connecting portion 14b of the second temperature adjusting circuit 6.
  • the first pump EWP1 and the second pump EWP2 are driven.
  • the temperature adjustment circuit 1 can be easily switched by controlling the electromagnetic three-way valve EWV and the electromagnetic opening/closing valve FSV to switch between the series mode and the separate mode.
  • FIG. 5 is a perspective view showing a schematic configuration of an electric vehicle 100 in which the temperature adjusting circuit 1 of the present embodiment can be used.
  • the electric vehicle 100 may be an electric vehicle having only an electric motor as a drive source, a fuel cell vehicle, or a hybrid vehicle having an electric motor and an internal combustion engine.
  • an electric vehicle will be described as an example.
  • the vehicle body 101 of the electric vehicle 100 is equipped with a battery case 103 that accommodates the battery 2 in the underfloor portion of the passenger compartment 102.
  • a motor room 104 is provided in the front part of the electric vehicle 100. In the motor room 104, a motor 105, a power converter 5, a branch unit 106, a charger 3 and the like are provided.
  • the rotational driving force of the motor 105 is transmitted to the shaft 107.
  • the front wheels 108 of the electric vehicle 100 are connected to both ends of the shaft 107.
  • the power conversion device 5 is arranged on the upper side of the motor 105 and is fastened and fixed directly to the case of the motor 105.
  • the power conversion device 5 is electrically connected to the connector of the battery case 103 by the power cable 111. Further, the power conversion device 5 is electrically connected to the motor 105 by, for example, a three-phase bus bar.
  • the power conversion device 5 drives and controls the motor 105 with the power supplied from the battery 2.
  • the branch unit 106 and the charger 3 are arranged in parallel on the left and right.
  • the branching unit 106 and the charger 3 are arranged above the power conversion device 5.
  • the branching unit 106 and the charger 3 are arranged in a state of being separated from the power conversion device 5.
  • the branch unit 106 and the battery case 103 are electrically connected by a cable 110 having connectors at both ends.
  • the branch unit 106 is electrically connected to the charger 3.
  • the charger 3 is connected to a general external power source such as a household power source to charge the battery 2.
  • the charger 3 and the branch unit 106 are electrically connected by a cable (not shown) having connectors at both ends.
  • the charger 3 is cooled by the first temperature adjustment circuit 4, but the charger 3 may be cooled by the second temperature adjustment circuit 6. In this way, the battery 2 and the charger 3 can be separated and cooled, so that only the battery 2 can be preferentially cooled.
  • the buffer tank 15 is arranged on the downstream side of the power converter 5 and on the upstream side of the radiator 12, but the buffer tank 15 is arranged on the downstream side of the radiator 12 and in the second pump EWP2. It may be arranged on the upstream side.
  • the heat resistance of the buffer tank 15 can be reduced by disposing the buffer tank 15 on the downstream side of the radiator 12 in which the temperature of the heat medium is low. Further, when the heat medium is injected from the buffer tank 15, the second pump EWP2 is located downstream of the buffer tank 15, so that the time for injecting the heat medium can be shortened.
  • a first pump (first pump EWP1) that supplies a heat medium to a first cooling target (battery 2), and a first heat exchange section (chiller 11) that performs heat exchange between the heat medium and the air-conditioning refrigerant. ), a first temperature control circuit (first temperature control circuit 4), A second pump (second pump EWP2) that supplies the heat medium to a second cooling target (power conversion device 5); and a second heat exchange unit (radiator 12) that performs heat exchange between the heat medium and the outside air,
  • a second temperature control circuit (second temperature control circuit 6) including A first connecting passage (first connecting passage 8) connecting the first connecting portion (first connecting portion 13a) of the first temperature adjusting circuit and the first connecting portion (14a) of the second temperature adjusting circuit; A second coupling passage (second coupling passage) that connects the second connecting portion (second connecting portion 13b) of the first temperature adjusting circuit and the second connecting portion (second connecting portion 14b) of the second temperature adjusting circuit.
  • a temperature adjustment circuit (temperature adjustment circuit 1) for switching between the state and the state.
  • the temperature control circuit can be easily switched by controlling the three-way valve and the shutoff valve to switch between the circulating state and the non-circulating state. Further, since the first temperature adjusting circuit and the second temperature adjusting circuit are connected by the second connecting passage regardless of the circulating state and the non-circulating state, even if the heat medium expands, the temperature adjusting circuit is Only one buffer tank (reserve tank) is needed, and the number of parts can be reduced.
  • the temperature adjusting circuit according to (1) The first cooling target is a battery (battery 2),
  • the second cooling target is a power conversion device (power conversion device 5), In the circulation state, the temperature adjusting circuit in which the heat medium flows in the order of the second cooling target, the second heat exchange unit, the first heat exchange unit, and the first cooling target.
  • the battery having a low management temperature is preferentially cooled. can do. Further, when the cooling requirement of the battery is large, the cooling capacity can be increased by using the first heat exchange section and the second heat exchange section. On the other hand, when the battery cooling requirement is small, energy consumption can be reduced by using only the first heat exchange unit or the second heat exchange unit.
  • the temperature adjusting circuit according to (2), The first temperature adjustment circuit further includes a charger (charger 3).
  • the battery and the charger can be cooled at the same time, the battery and the charger which generate heat during charging can be efficiently cooled. Further, the battery and the charger can be arranged close to each other, and the cooling pipe can be shortened.
  • the temperature adjusting circuit according to (2), The second temperature adjustment circuit further includes a charger.
  • the battery and the charger can be separated and cooled, and only the battery can be preferentially cooled.
  • the temperature adjusting circuit includes a buffer on the downstream side of the second cooling target and on the upstream side of the second heat exchange unit in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state.
  • a temperature adjustment circuit further including a tank (buffer tank 15).
  • the air bleeding efficiency can be improved by providing the buffer tank on the downstream side of the power converter that generates a large amount of heat.
  • the temperature adjusting circuit according to any one of (2) to (4),
  • the second temperature control circuit includes a buffer tank on the downstream side of the second heat exchange section and on the upstream side of the second pump in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state.
  • a temperature adjusting circuit further including (buffer tank 15).
  • the heat resistance of the buffer tank can be reduced by providing the buffer tank on the downstream side of the second heat exchange section where the temperature of the heat medium is low. Further, when the heat medium is injected from the buffer tank, the second pump is provided downstream of the buffer tank, so that the time for injecting the heat medium can be shortened. ..
  • the second pump is disposed downstream of the second heat exchange unit in the flow direction of the heat medium of the second temperature control circuit in the non-circulation state, and in the three-way valve.
  • a temperature adjustment circuit located on the upstream side.
  • the second pump is arranged on the downstream side of the second heat exchange section, it is possible to efficiently suppress heat generation due to the operation of the second pump. Moreover, since the second pump can be used in a limited temperature range, the second pump having high versatility can be used.
  • the temperature adjusting circuit according to any one of (1) to (7), In the first temperature control circuit, the first pump, the first heat exchange unit, and the first cooling target are arranged in this order in the flow direction of the heat medium of the first temperature control circuit in the non-circulation state. Temperature control circuit.
  • the heat medium can be supplied from the first heat exchange unit to the first cooling target without being affected by the heat of the first pump.
  • the temperature adjustment circuit according to any one of (1) to (8), In the first temperature control circuit, in the non-circulation state, in the flow direction of the heat medium of the first temperature control circuit, the first pump is connected to the second connection portion of the first temperature control circuit and the first temperature control circuit.
  • a temperature adjusting circuit which is arranged between the temperature adjusting circuit and the first connecting portion.
  • Temperature adjustment circuit Battery (first cooling target) 3 Charger 4 First Temperature Control Circuit 5 Power Converter (Second Cooling Target) 6 2nd temperature control circuit 7 Coupling circuit 8 1st coupling passage 9 2nd coupling passage 10 Control device 11 Chiller (1st heat exchange part) 12 radiator (second heat exchange part) 13a 1st connection part of 1st temperature control circuit 13b 2nd connection part of 1st temperature control circuit 14a 1st connection part of 2nd temperature control circuit 14b 2nd connection part of 2nd temperature control circuit 15 Buffer tank EWP1 1st Pump EWP2 Second pump EWV Electromagnetic three-way valve (three-way valve) FSV solenoid on-off valve (shut-off valve)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

温度調整回路(1)は、第1温度調節回路(4)と、第2温度調節回路(6)と、第1温度調節回路(4)と第2温度調節回路(6)とを接続する第1結合通路(8)及び第2結合通路(9)と、電磁三方弁(EWV)と、電磁開閉弁(FSV)と、電磁三方弁(EWV)及び電磁開閉弁(FSV)を制御する制御装置(10)と、を備える。制御装置(10)は、電磁開閉弁(FSV)を閉弁状態とし、電磁三方弁(EWV)を第1結合通路(8)へ熱媒体を供給するように制御して、結合回路(7)を熱媒体が循環する循環状態と、電磁三方弁(EWV)を開弁状態とし、電磁三方弁(EWV)を第2温度調節回路(6)の第2接続部(14b)へ熱媒体を供給するように制御して、熱媒体が結合回路(7)を循環しない非循環状態と、を切り替える。

Description

温度調整回路
 本発明は、バッテリなどの温度調整を行う温度調整回路に関する。
 第1温度調節回路と、第2温度調節回路と、第1温度調節回路及び第2温度調節回路の少なくとも一方に熱媒体を循環させるポンプと、第1温度調節回路と第2温度調節回路とを結合して結合回路を形成する結合通路と、熱媒体が結合回路を循環する循環状態と、熱媒体が結合回路を循環しない非循環状態とを切替可能な切替部と、を備える電動車両用の温度調整回路が知られている。
 例えば、特許文献1には、バッテリを冷却する冷却回路と、インバータを冷却する冷却回路と、バッテリを冷却する冷却回路に設けられる第1冷媒ポンプと、インバータを冷却する冷却回路に設けられる第2冷媒ポンプと、バッテリ及びインバータを同一回路で温度調整する状態(以下、循環状態とも呼ぶ。)とバッテリ及びインバータを別々の回路で温度調整する状態(以下、非循環状態とも呼ぶ。)とを切り換える切換バルブと、を備える温度調整回路が記載されている。特許文献1では、この温度調整回路において、外気温度が所定温度未満である場合、循環状態とする一方、外気温度が所定温度以上である場合、非循環状態とすることにより、温度調整の精度を高めることが記載されている。
日本国特開2013-188098号公報
 しかしながら、特許文献1に示される温度調整回路では、四方弁を用いて循環状態と非循環状態との切替えを行っているが、四方弁を適切に制御するのは容易ではない。また、非循環状態では四方弁によって2つ回路が独立しているので、それぞれの回路にバッファタンク(リザーブタンク)を設ける必要があった。なお、特許文献1には、三方弁を使用して同等の回路を構築してもよいと記載されているが、具体性を欠くものであった。
 本発明は、循環状態と非循環状態とを容易に切り替えることが可能であって、バッファタンクの必要数を削減できる温度調整回路を提供する。
 本発明の温度調整回路は、
 第1冷却対象に熱媒体を供給する第1ポンプ、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部、を備える第1温度調節回路と、
 第2冷却対象に前記熱媒体を供給する第2ポンプ、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部、を備える第2温度調節回路と、
 前記第1温度調節回路の第1接続部と前記第2温度調節回路の第1接続部とを接続する第1結合通路と、
 前記第1温度調節回路の第2接続部と前記第2温度調節回路の第2接続部とを接続する第2結合通路と、
 前記第2温度調節回路の前記第1接続部に設けられ、前記第2温度調節回路の前記第2接続部への前記熱媒体の供給と、前記第1結合通路への前記熱媒体の供給とを切り替える三方弁と、
 前記第1温度調節回路の前記第1接続部と前記第1温度調節回路の前記第2接続部との間に設けられる遮断弁と、
 前記三方弁及び前記遮断弁を制御する制御装置と、を備え、
 前記制御装置は、
 前記遮断弁を閉弁状態とし、前記三方弁を前記第1結合通路へ前記熱媒体を供給するように制御して、前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路を前記熱媒体が循環する循環状態と、
 前記遮断弁を開弁状態とし、前記三方弁を前記第2温度調節回路の前記第2接続部へ前記熱媒体を供給するように制御して、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える。
 本発明によれば、三方弁及び遮断弁を制御して循環状態と非循環状態とを切り替えることにより、温度調整回路の切り替えを容易に行うことができる。また、第1温度調節回路及び第2温度調節回路が、循環状態と非循環状態とに関わらず第2結合通路で結合されているため、仮に熱媒体が膨張しても、温度調整回路に1つのバッファタンクがあればよく、部品点数を削減することができる。
本発明の一実施形態の温度調整回路の構成を示す回路図である。 図1の温度調整回路においてセパレートモード時の熱媒体の流れを示す説明図である。 図1の温度調整回路においてシリーズモード時の熱媒体の流れを示す説明図である。 図1の温度調整回路が備える電磁三方弁の概略構成を示す説明図である。 本実施形態の温度調整回路が使用可能な電動車両の概略構成を示す斜視図である。
 以下、本発明の一実施形態について、図1~図4を参照して説明する。
[温度調整回路]
 図1に示すように、電動車両用の温度調整回路1は、バッテリ2及び充電器3と熱交換する第1温度調節回路4と、モータ105(図5参照)に電力を供給する電力変換装置5と熱交換する第2温度調節回路6と、第1温度調節回路4と第2温度調節回路6とを結合して結合回路7を形成する結合通路8、9と、熱媒体が結合回路7を循環するシリーズモード(循環状態)と、熱媒体が結合回路7を循環せず、別々の温度調節回路4、6を循環するセパレートモード(非循環状態)とを切替可能な電磁三方弁EWVと、電磁三方弁EWV及び後述する電磁開閉弁FSVなどを制御する制御装置10と、を備える。なお、熱媒体は、水、ラジエータ液、クーラント液等の液状媒体である。
[第1温度調節回路]
 第1温度調節回路4は、該回路に熱媒体を循環させる第1ポンプEWP1と、第1ポンプEWP1の下流側に配置され、電動車両の空調回路を利用して熱交換を行うチラー11と、チラー11の下流側に配置されるバッテリ2及び充電器3と、充電器3の下流側で、且つ第1ポンプEWP1の上流側に配置される電磁開閉弁FSVと、を備える。
 図2に示すように、セパレートモードでは、電磁開閉弁FSVの開弁状態で第1ポンプEWP1を駆動することにより、該第1ポンプEWP1が吐出する熱媒体をチラー11、バッテリ2、充電器3の順番で循環させることができる。これにより、チラー11によって冷却された熱媒体が第1ポンプEWP1による熱の影響を受けずにバッテリ2及び充電器3と熱交換し、バッテリ2及び充電器3が適切に冷却される。また、バッテリ2と充電器3とを同時に冷却できるので、充電中に発熱するバッテリ2及び充電器3を効率的に冷却することができる。また、バッテリ2と充電器3とを近接配置することができ、冷却配管を短くできる。
[第2温度調節回路]
 第2温度調節回路6は、該回路に熱媒体を循環させる第2ポンプEWP2と、第2ポンプEWP2の下流側に配置され、セパレートモードとシリーズモードとを切替える電磁三方弁EWVと、電磁三方弁EWVの下流側に配置される電力変換装置5と、電力変換装置5の下流側に配置されるバッファタンク15と、バッファタンク15の下流側に配置され、熱媒体を冷却するラジエータ12と、を備える。なお、電力変換装置5は、直流電力を交流電力に変換するとともに交流電力を直流電力に変換するインバータ、及び直流電圧を昇圧又は降圧するDC-DCコンバータの少なくとも一方を含む。
 図4に示すように、本実施形態の電磁三方弁EWVは、電磁式の三方弁であり、第2温度調節回路6の第1接続部14aに設けられる。電磁三方弁EWVは、第2ポンプEWP2の下流側に接続される第1ポート17と、電力変換装置5の上流側に接続される第2ポート18と、後述する第1結合通路8側に接続される第3ポート19と、流路を切替える可動体である弁体20と、弁体20を第1位置(図4の位置)に付勢するスプリング23と、スプリング23の付勢力に抗して弁体20の位置を第2位置に切替える電磁石21と、を備える。
 セパレートモードでは、電磁三方弁EWVの電磁石21に通電されず、弁体20が第1位置にある。このとき電磁三方弁EWVは、第2ポンプEWP2の下流側流路(第1ポート17)と電力変換装置5の上流側流路(第2ポート18)との接続を許容するとともに、第2ポンプEWP2の下流側流路(第1ポート17)と後述する第1結合通路8(第3ポート19)との接続を遮断する。そして、セパレートモードでは、図2に示すように、第2ポンプEWP2を駆動することにより、該第2ポンプEWP2が吐出する熱媒体を電力変換装置5、バッファタンク15、ラジエータ12の順番で循環させることができる。
 これにより、ラジエータ12によって冷却された熱媒体が電力変換装置5と熱交換し、電力変換装置5が適切に冷却される。また、第2ポンプEWP2は、ラジエータ12の下流側に配置されるため、第2ポンプEWP2の運転による発熱を効率的に抑えることができる。また、第2ポンプEWP2を限られた温度域で使用できるため、汎用性の高いポンプを使用することができる。また、発熱の大きい電力変換装置5の下流側にバッファタンク15を設けることで、エア抜き効率を向上させることができる。
 一方、シリーズモードでは、電磁三方弁EWVの電磁石21に通電され、弁体20の位置が第1位置から第2位置に切替えられる。このとき電磁三方弁EWVは、第2ポンプEWP2の下流側流路(第1ポート17)と電力変換装置5の上流側流路(第2ポート18)との接続を遮断するとともに、第2ポンプEWP2の下流側流路(第1ポート17)と後述する第1結合通路8(第3ポート19)との接続を許容する。なお、シリーズモードにおける熱媒体の流れは後述する。
[結合回路]
 結合通路8、9は、第1結合通路8と第2結合通路9とを含む。第1結合通路8は、第2温度調節回路6の第1接続部14aと第1温度調節回路4の第1接続部13aとを結合する。第2結合通路9は、第2温度調節回路6の第2接続部14bと第1温度調節回路4の第2接続部13bとを結合する。第2温度調節回路6の第1接続部14a及び第2接続部14bは、第2温度調節回路6における電磁三方弁EWVの下流側で、且つ電力変換装置5の上流側に位置する。第1温度調節回路4の第1接続部13aは、第1温度調節回路4における第1ポンプEWP1の下流側で、且つチラー11の上流側に位置する。第1温度調節回路4の第2接続部13bは、第1温度調節回路4における充電器3の下流側で、且つ電磁開閉弁FSVの上流側に位置する。
 第1温度調節回路4における第1接続部13aと第2接続部13bとの間の通路、即ち第1温度調節回路4において第1ポンプEWP1及び電磁開閉弁FSVが配置される通路は、結合回路7において、その一部をバイパスする分岐通路16として機能する。
 図3に示すように、熱媒体が結合回路7を循環するシリーズモードでは、第1ポンプEWP1を停止させ、第2ポンプEWP2の駆動によって熱媒体を循環させる。また、シリーズモードでは、電磁開閉弁FSVを閉弁して分岐通路16を経由した熱媒体の循環を停止する。これにより、第2ポンプEWP2から吐出される熱媒体がチラー11、バッテリ2、充電器3、電力変換装置5、バッファタンク15、ラジエータ12の順番で循環し、バッテリ2、充電器3及び電力変換装置5が冷却される。
 このとき、ラジエータ12及びチラー11を通過した熱媒体を、電力変換装置5よりも先にバッテリ2に流すことができるので、管理温度の低いバッテリ2を優先的に冷却することができる。また、バッテリ2の冷却要求が大きい場合は、チラー11及びラジエータ12を利用して、冷却能力を増強させることができる。一方、バッテリ2の冷却要求が小さい場合は、ラジエータ12のみを利用することで、エネルギー消費を低減できる。
 また、シリーズモードにおいて第2ポンプEWP2のみで熱媒体を循環させるとき、熱媒体が第1ポンプEWP1を経由せずに循環されるので、圧損を低減できる。また、シリーズモードでは、結合通路8、9を介して第1温度調節回路4及び第2温度調節回路6が結合されているので、2つの温度調節回路4、6内における熱媒体の熱膨張などに伴う圧力変化や流量変化を1つのバッファタンク15で吸収することができる。
 一方、図2に示すように、熱媒体が結合回路7を循環せず、第1温度調節回路4及び第2温度調節回路6を別々に循環するセパレートモードでは、電磁開閉弁FSVを開弁するとともに、第1ポンプEWP1及び第2ポンプEWP2を駆動させる。これにより、熱媒体が各温度調節回路4、6を別々に循環して各温度調節回路4、6内の冷却対象が冷却される。
 セパレートモードであっても第1温度調節回路4と第2温度調節回路6は第2結合通路9を介して結合されているので、仮に第1温度調節回路4内の熱媒体が熱膨張したとしても、第2結合通路9を介して結合された第2温度調節回路6内のバッファタンク15で熱膨張に伴う圧力変化や流量変化を吸収することができる。
[制御装置]
 制御装置10は、バッテリ2、電力変換装置5等の温度情報と、第2ポンプEWP2及び第1ポンプEWP1の回転数情報と、を入力し、これらの入力情報に応じた判断に基づいて、第1ポンプEWP1、第2ポンプEWP2、電磁三方弁EWV及び電磁開閉弁FSVを制御することで、温度調整回路1を適切に動作させる。
 そして、制御装置10は、温度調整回路1をセパレートモードからシリーズモードに切替える際に、電磁開閉弁FSVを閉弁状態とし、電磁三方弁EWVを第1結合通路8へ熱媒体を供給するように制御するとともに、第2ポンプEWP2のみを駆動する。一方、温度調整回路1をシリーズモードからセパレートモードに切替える際に、電磁開閉弁FSVを開弁状態とし、電磁三方弁EWVを第2温度調節回路6の第2接続部14bへ熱媒体を供給するように制御するとともに、第1ポンプEWP1及び第2ポンプEWP2を駆動する。このように、温度調整回路1によれば、電磁三方弁EWV及び電磁開閉弁FSVを制御してシリーズモードとセパレートモードとを切り替えることにより、温度調整回路1の切り替えを容易に行うことができる。
 図5は、本実施形態の温度調整回路1が使用可能な電動車両100の概略構成を示す斜視図である。電動車両100は、駆動源として電動機のみを有する電気自動車、燃料電池車であってもよく、電動機及び内燃機関を有するハイブリッド自動車でもよいが、以下の説明では、電気自動車を例に説明する。
 電動車両100の車体101には、車室102の床下部分にバッテリ2を収容するバッテリケース103が搭載されている。電動車両100の前部には、モータルーム104が設けられている。モータルーム104内には、モータ105、電力変換装置5、分岐ユニット106、充電器3等が設けられている。
 モータ105の回転駆動力は、シャフト107に伝達される。シャフト107の両端部には、電動車両100の前輪108が接続されている。電力変換装置5は、モータ105の上側に配置されてモータ105のケースに直接、締結固定されている。電力変換装置5は、電源ケーブル111でバッテリケース103のコネクタに電気的に接続されている。また、電力変換装置5は、例えば三相バスバーによりモータ105に電気的に接続されている。電力変換装置5は、バッテリ2から供給される電力によりモータ105を駆動制御する。
 分岐ユニット106および充電器3は、左右に並列して配置されている。分岐ユニット106および充電器3は、電力変換装置5の上方に配置されている。分岐ユニット106および充電器3は、電力変換装置5と離間した状態で配置されている。分岐ユニット106とバッテリケース103とは、両端にコネクタを有するケーブル110により電気的に接続されている。
 分岐ユニット106は、充電器3に電気的に接続されている。充電器3は、家庭用電源等の一般的な外部電源に接続して、バッテリ2に対して充電を行う。充電器3と分岐ユニット106とは、両端にコネクタを有する不図示のケーブルにより電気的に接続されている。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、上記実施形態では、充電器3を第1温度調節回路4で冷却しているが、充電器3を第2温度調節回路6で冷却するようにしてもよい。このようにすると、バッテリ2と充電器3とを切り離して冷却できるので、バッテリ2のみを優先して冷却することが可能になる。
 また、上記実施形態では、バッファタンク15が電力変換装置5の下流側、且つ、ラジエータ12の上流側に配置されていたが、バッファタンク15がラジエータ12の下流側、且つ、第2ポンプEWP2の上流側に配置されていてもよい。バッファタンク15を、熱媒体の温度が低いラジエータ12の下流側に配置することで、バッファタンク15の耐熱性を下げることができる。また、バッファタンク15から熱媒体を注入するに際し、バッファタンク15の下流に第2ポンプEWP2があることで、熱媒体の注入時間を短縮できる。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 第1冷却対象(バッテリ2)に熱媒体を供給する第1ポンプ(第1ポンプEWP1)、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部(チラー11)、を備える第1温度調節回路(第1温度調節回路4)と、
 第2冷却対象(電力変換装置5)に前記熱媒体を供給する第2ポンプ(第2ポンプEWP2)、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部(ラジエータ12)、を備える第2温度調節回路(第2温度調節回路6)と、
 前記第1温度調節回路の第1接続部(第1接続部13a)と前記第2温度調節回路の第1接続部(14a)とを接続する第1結合通路(第1結合通路8)と、
 前記第1温度調節回路の第2接続部(第2接続部13b)と前記第2温度調節回路の第2接続部(第2接続部14b)とを接続する第2結合通路(第2結合通路9)と、
 前記第2温度調節回路の前記第1接続部に設けられ、前記第2温度調節回路の前記第2接続部への前記熱媒体の供給と、前記第1結合通路への前記熱媒体の供給とを切り替える三方弁(電磁三方弁EWV)と、
 前記第1温度調節回路の前記第1接続部と前記第1温度調節回路の前記第2接続部との間に設けられる遮断弁(電磁開閉弁FSV)と、
 前記三方弁及び前記遮断弁を制御する制御装置(制御装置10)と、を備え、
 前記制御装置は、
 前記遮断弁を閉弁状態とし、前記三方弁を前記第1結合通路へ前記熱媒体を供給するように制御して、前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路(結合回路7)を前記熱媒体が循環する循環状態と、
 前記遮断弁を開弁状態とし、前記三方弁を前記第2温度調節回路の前記第2接続部へ前記熱媒体を供給するように制御して、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える、温度調整回路(温度調整回路1)。
 (1)によれば、三方弁及び遮断弁を制御して循環状態と非循環状態とを切り替えることにより、温度調整回路の切り替えを容易に行うことができる。また、第1温度調節回路及び第2温度調節回路が、循環状態と非循環状態とに関わらず第2結合通路で結合されているため、仮に熱媒体が膨張しても、温度調整回路に1つのバッファタンク(リザーブタンク)があればよく、部品点数を削減することができる。
 (2) (1)に記載の温度調整回路であって、
 前記第1冷却対象は、バッテリ(バッテリ2)であり、
 前記第2冷却対象は、電力変換装置(電力変換装置5)であり、
 前記循環状態では、前記第2冷却対象、前記第2熱交換部、前記第1熱交換部、及び前記第1冷却対象の順に前記熱媒体が流れる、温度調整回路。
 (2)によれば、第2熱交換部及び第1熱交換部を通過した熱媒体を、電力変換装置よりも先にバッテリに流すことができるので、管理温度の低いバッテリを優先的に冷却することができる。また、バッテリの冷却要求が大きい場合は、第1熱交換部及び第2熱交換部を利用して、冷却能力を増強させることができる。一方、バッテリの冷却要求が小さい場合は、第1熱交換部又は第2熱交換部のみを利用することで、エネルギー消費を低減できる。
 (3) (2)に記載の温度調整回路であって、
 前記第1温度調節回路は、充電器(充電器3)をさらに備える、温度調整回路。
 (3)によれば、バッテリと充電器とを同時に冷却できるので、充電中に発熱するバッテリ及び充電器を効率的に冷却することができる。また、バッテリと充電器とを近接配置することができ、冷却配管を短くできる。
 (4) (2)に記載の温度調整回路であって、
 前記第2温度調節回路は、充電器をさらに備える、温度調整回路。
 (4)によれば、バッテリと充電器と切り離して冷却でき、バッテリのみを優先して冷却することができる。
 (5) (2)~(4)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2冷却対象の下流側、且つ、前記第2熱交換部の上流側にバッファタンク(バッファタンク15)をさらに備える、温度調整回路。
 (5)によれば、発熱の大きい電力変換装置の下流側にバッファタンクを設けることで、エア抜き効率を向上させることができる。
 (6) (2)~(4)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第2ポンプの上流側にバッファタンク(バッファタンク15)をさらに備える、温度調整回路。
 (6)によれば、熱媒体の温度が低い第2熱交換部の下流側にバッファタンクを設けることで、バッファタンクの耐熱性を下げることができる。また、バッファタンクから熱媒体を注入するに際し、バッファタンクの下流に第2ポンプがあることで、熱媒体の注入時間を短縮できる。 
 (7) (1)~(6)のいずれかに記載の温度調整回路であって、
 前記第2温度調節回路では、前記第2ポンプが、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記三方弁の上流側に配置されている、温度調整回路。
 (7)によれば、第2ポンプは、第2熱交換部の下流側に配置されるため、第2ポンプの運転による発熱を効率的に抑えることができる。また、第2ポンプを限られた温度域で使用できるため、汎用性の高い第2ポンプを使用することができる。
 (8) (1)~(7)のいずれかに記載の温度調整回路であって、
 前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプ、前記第1熱交換部、及び前記第1冷却対象がこの順に配置されている、温度調整回路。
 (8)によれば、第1ポンプによる熱の影響を受けずに第1熱交換部から熱媒体を第1冷却対象に供給することができる。
 (9) (1)~(8)のいずれかに記載の温度調整回路であって、
 前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプが、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている、温度調整回路。
 (9)によれば、循環状態において第2ポンプのみで熱媒体を循環させるとき、熱媒体が第1ポンプを経由せずに循環されるので、圧損を低減できる。
1 温度調整回路
2 バッテリ(第1冷却対象)
3 充電器
4 第1温度調節回路
5 電力変換装置(第2冷却対象)
6 第2温度調節回路
7 結合回路
8 第1結合通路
9 第2結合通路
10 制御装置
11 チラー(第1熱交換部)
12 ラジエータ(第2熱交換部)
13a 第1温度調節回路の第1接続部
13b 第1温度調節回路の第2接続部
14a 第2温度調節回路の第1接続部
14b 第2温度調節回路の第2接続部
15 バッファタンク
EWP1 第1ポンプ
EWP2 第2ポンプ
EWV 電磁三方弁(三方弁)
FSV 電磁開閉弁(遮断弁)

Claims (9)

  1.  第1冷却対象に熱媒体を供給する第1ポンプ、及び、前記熱媒体と空調用冷媒とで熱交換を行う第1熱交換部、を備える第1温度調節回路と、
     第2冷却対象に前記熱媒体を供給する第2ポンプ、及び、前記熱媒体と外気とで熱交換を行う第2熱交換部、を備える第2温度調節回路と、
     前記第1温度調節回路の第1接続部と前記第2温度調節回路の第1接続部とを接続する第1結合通路と、
     前記第1温度調節回路の第2接続部と前記第2温度調節回路の第2接続部とを接続する第2結合通路と、
     前記第2温度調節回路の前記第1接続部に設けられ、前記第2温度調節回路の前記第2接続部への前記熱媒体の供給と、前記第1結合通路への前記熱媒体の供給とを切り替える三方弁と、
     前記第1温度調節回路の前記第1接続部と前記第1温度調節回路の前記第2接続部との間に設けられる遮断弁と、
     前記三方弁及び前記遮断弁を制御する制御装置と、を備え、
     前記制御装置は、
     前記遮断弁を閉弁状態とし、前記三方弁を前記第1結合通路へ前記熱媒体を供給するように制御して、前記第1温度調節回路と前記第2温度調節回路とを結合した結合回路を前記熱媒体が循環する循環状態と、
     前記遮断弁を開弁状態とし、前記三方弁を前記第2温度調節回路の前記第2接続部へ前記熱媒体を供給するように制御して、前記熱媒体が前記結合回路を循環しない非循環状態と、を切り替える、温度調整回路。
  2.  請求項1に記載の温度調整回路であって、
     前記第1冷却対象は、バッテリであり、
     前記第2冷却対象は、電力変換装置であり、
     前記循環状態では、前記第2冷却対象、前記第2熱交換部、前記第1熱交換部、及び前記第1冷却対象の順に前記熱媒体が流れる、温度調整回路。
  3.  請求項2に記載の温度調整回路であって、
     前記第1温度調節回路は、充電器をさらに備える、温度調整回路。
  4.  請求項2に記載の温度調整回路であって、
     前記第2温度調節回路は、充電器をさらに備える、温度調整回路。
  5.  請求項2~4のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2冷却対象の下流側、且つ、前記第2熱交換部の上流側にバッファタンクをさらに備える、温度調整回路。
  6.  請求項2~4のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路は、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記第2ポンプの上流側にバッファタンクをさらに備える、温度調整回路。
  7.  請求項1~6のいずれか1項に記載の温度調整回路であって、
     前記第2温度調節回路では、前記第2ポンプが、前記非循環状態における前記第2温度調節回路の前記熱媒体の流れ方向において、前記第2熱交換部の下流側、且つ、前記三方弁の上流側に配置されている、温度調整回路。
  8.  請求項1~7のいずれか1項に記載の温度調整回路であって、
     前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプ、前記第1熱交換部、及び前記第1冷却対象がこの順に配置されている、温度調整回路。
  9.  請求項1~8のいずれか1項に記載の温度調整回路であって、
     前記第1温度調節回路では、前記非循環状態における前記第1温度調節回路の前記熱媒体の流れ方向において、前記第1ポンプが、前記第1温度調節回路の前記第2接続部と前記第1温度調節回路の前記第1接続部との間に配置されている、温度調整回路。
PCT/JP2018/047373 2018-12-21 2018-12-21 温度調整回路 WO2020129257A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880100252.8A CN113195294B (zh) 2018-12-21 2018-12-21 温度调整回路
JP2020561131A JP6997883B2 (ja) 2018-12-21 2018-12-21 温度調整回路
PCT/JP2018/047373 WO2020129257A1 (ja) 2018-12-21 2018-12-21 温度調整回路
US17/416,788 US11731483B2 (en) 2018-12-21 2018-12-21 Temperature adjustment circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047373 WO2020129257A1 (ja) 2018-12-21 2018-12-21 温度調整回路

Publications (1)

Publication Number Publication Date
WO2020129257A1 true WO2020129257A1 (ja) 2020-06-25

Family

ID=71102692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047373 WO2020129257A1 (ja) 2018-12-21 2018-12-21 温度調整回路

Country Status (4)

Country Link
US (1) US11731483B2 (ja)
JP (1) JP6997883B2 (ja)
CN (1) CN113195294B (ja)
WO (1) WO2020129257A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606672A (zh) * 2020-12-23 2021-04-06 陈春兰 一种新能源汽车的热交换系统
JP2022052965A (ja) * 2020-09-24 2022-04-05 本田技研工業株式会社 温調装置及び車両
US11506306B2 (en) * 2019-09-17 2022-11-22 Ford Global Technologies, Llc Thermal management system for electrified vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022207755A1 (de) 2022-07-28 2024-02-08 Vitesco Technologies GmbH Temperiersystem zum Temperieren einer Kraftfahrzeugbatterie
DE102022207754A1 (de) 2022-07-28 2024-02-08 Vitesco Technologies GmbH Temperiersystem zum Temperieren einer Kraftfahrzeugbatterie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2013188098A (ja) * 2012-03-12 2013-09-19 Daimler Ag ハイブリッド電気自動車の冷却装置
JP2013254725A (ja) * 2011-12-01 2013-12-19 Magna Steyr Fahrzeugtechnik Ag & Co Kg 自動車のバッテリ用加熱/冷却システムとそのための作動手順

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8336319B2 (en) * 2010-06-04 2012-12-25 Tesla Motors, Inc. Thermal management system with dual mode coolant loops
CN102148413B (zh) * 2011-03-08 2013-05-08 中信国安盟固利动力科技有限公司 车载蓄电池组温度控制器
US20120297809A1 (en) * 2011-05-26 2012-11-29 Neil Carpenter Refrigerant loop for battery electric vehicle with internal heat exchanger for heat exchange with coolant
CN102610838B (zh) * 2012-03-22 2014-10-15 中国东方电气集团有限公司 燃料电池热管理系统、燃料电池系统及具有该系统的车辆
CN110126677A (zh) * 2016-08-30 2019-08-16 福州丹诺西诚电子科技有限公司 一种电动车的自动控制热管理系统
DE102019207993A1 (de) * 2018-06-08 2019-12-12 Mahle International Gmbh Thermomanagementsystem für ein Fahrzeug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2013254725A (ja) * 2011-12-01 2013-12-19 Magna Steyr Fahrzeugtechnik Ag & Co Kg 自動車のバッテリ用加熱/冷却システムとそのための作動手順
JP2013188098A (ja) * 2012-03-12 2013-09-19 Daimler Ag ハイブリッド電気自動車の冷却装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506306B2 (en) * 2019-09-17 2022-11-22 Ford Global Technologies, Llc Thermal management system for electrified vehicle
US20230021779A1 (en) * 2019-09-17 2023-01-26 Ford Global Technologies, Llc Thermal management system for electrified vehicle
US11898657B2 (en) * 2019-09-17 2024-02-13 Ford Global Technologies, Llc Thermal management system for electrified vehicle
JP2022052965A (ja) * 2020-09-24 2022-04-05 本田技研工業株式会社 温調装置及び車両
JP7158445B2 (ja) 2020-09-24 2022-10-21 本田技研工業株式会社 温調装置及び車両
CN112606672A (zh) * 2020-12-23 2021-04-06 陈春兰 一种新能源汽车的热交换系统

Also Published As

Publication number Publication date
JP6997883B2 (ja) 2022-01-18
CN113195294A (zh) 2021-07-30
US20220063368A1 (en) 2022-03-03
US11731483B2 (en) 2023-08-22
CN113195294B (zh) 2023-08-29
JPWO2020129257A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020129257A1 (ja) 温度調整回路
US11897309B2 (en) Vehicle heat management system
JP6743844B2 (ja) 冷却水回路
US20200101810A1 (en) Vehicle heat management system
US20200101816A1 (en) Vehicle heat management system
CN111354997B (zh) 温度调整回路及其控制方法
JP6886960B2 (ja) 温度調整回路及びその制御方法
JP6997884B2 (ja) 車両
KR20140106788A (ko) 차량용 공조장치
WO2019022023A1 (ja) 冷却水回路
WO2020129260A1 (ja) 車両
JP7042362B2 (ja) 温度調整回路
CN111347932B (zh) 温度调整回路及其控制方法
WO2022107381A1 (ja) 温調装置
WO2022107383A1 (ja) 温調装置
WO2022107428A1 (ja) 温調装置
KR20190092801A (ko) 전기자동차용 캐빈 히터 예열시스템
JP2020102379A (ja) 温度調整回路及びその制御方法
JP2022042435A (ja) 電動車両用の熱マネージメントシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943657

Country of ref document: EP

Kind code of ref document: A1