WO2020126155A1 - Druckmessvorrichtung zum messen eines drucks eines fluids - Google Patents

Druckmessvorrichtung zum messen eines drucks eines fluids Download PDF

Info

Publication number
WO2020126155A1
WO2020126155A1 PCT/EP2019/078577 EP2019078577W WO2020126155A1 WO 2020126155 A1 WO2020126155 A1 WO 2020126155A1 EP 2019078577 W EP2019078577 W EP 2019078577W WO 2020126155 A1 WO2020126155 A1 WO 2020126155A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure measuring
pressure
measuring element
measuring device
inner body
Prior art date
Application number
PCT/EP2019/078577
Other languages
English (en)
French (fr)
Inventor
Janpeter Wolff
Bernhard Panhoelzl
Marcus Mutschler
Ralf Wenk
Falk Rueth
Jens Neumann
Edwin Pink
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP19794123.0A priority Critical patent/EP3899469A1/de
Publication of WO2020126155A1 publication Critical patent/WO2020126155A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0033Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0046Fluidic connecting means using isolation membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0084Electrical connection means to the outside of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0026Transmitting or indicating the displacement of flexible, deformable tubes by electric, electromechanical, magnetic or electromagnetic means

Definitions

  • Pressure measuring device for measuring a pressure of a fluid
  • the invention relates to a pressure measuring device for measuring a pressure of a fluid.
  • a so-called oil reservoir or an oil bath is used to transfer the pressure from a medium or a fluid to a pressure measuring sensor.
  • the oil supply is usually limited by a membrane, i.e. that the pressure of a medium acts on the membrane, which transfers the pressure of the medium to the oil volume, which then in turn transfers the pressure to the pressure measuring sensor, e.g. passes on a silicon element.
  • the disadvantage of this is that the oil has a coefficient of thermal expansion that differs from the coefficient of thermal expansion of the materials surrounding the oil. This causes the oil to expand more than the surrounding area, which increases the volume within the oil reservoir, which in turn can only be achieved by expanding the membrane. The membrane reacts to this with a restoring force, so that the pressure in the oil in the oil reservoir increases, which impairs the reliability or precision of the pressure measurement.
  • Pressure measuring device for measuring a pressure of a fluid according to the independent claims presented.
  • Embodiments of the present invention can advantageously enable the pressure of a fluid to be measured particularly reliably and precisely.
  • a pressure measuring device for measuring a pressure of a fluid is proposed, the
  • Pressure measuring device has a pressure measuring sensor and a pressure measuring element, wherein the pressure measuring element is filled with a liquid, in particular oil, the pressure measuring element being in contact with the
  • Pressure measuring sensor stands that pressure changes in the liquid are transmitted to the pressure measuring sensor, characterized in that the pressure measuring element has a flexible shell,
  • the pressure measuring element is arranged on an inner body in such a way that the pressure measuring element at least partially, in particular essentially completely, surrounds the inner body.
  • the pressure measuring device can have a particularly small volume in relation to its surface.
  • the surface of the pressure measuring element which is the pressure of the fluid over the
  • Liquid in the pressure measuring element can be transferred to the pressure measuring sensor, or the pressure measuring element can usually be distributed particularly flexibly.
  • the entire envelope of the pressure measuring element can typically be designed to be flexible.
  • flexible can mean that the shell can change its shape.
  • Flexible can also mean that the cover is reversibly stretchable.
  • the invention is based on the idea of measuring a pressure of a fluid which is transmitted from a pressure measuring element filled with liquid to a pressure measuring sensor, the pressure measuring element having a flexible sleeve and being arranged on a base body.
  • the flexible sleeve has a plurality of
  • Pressure measuring device typically has an even larger surface.
  • the ratio between the volume of the liquid and the surface is generally even smaller.
  • temperature changes have an even smaller negative impact on the precision or reliability of the pressure measuring device.
  • the pressure measuring element essentially completely covers the inner body.
  • the pressure measuring device can generally have a particularly small volume of liquid. With the same surface area of the pressure measuring element, this is usually that
  • Ratio between the volume of the liquid and the surface is even smaller.
  • temperature changes generally have an even smaller negative impact on the precision or reliability of the
  • Pressure measuring device In this context, it can essentially mean, in particular, that only the fastening of the inner body to a further element of the pressure measuring device or a protruding small part of the inner body is not covered by the pressure measuring element.
  • the outer shape of the pressure measuring element essentially has the outer shape of a truncated cone with an elliptical, in particular circular, base area.
  • the pressure measuring element is usually arranged in a technically simple manner on a filling tube can be.
  • the fill tube can generally act as an inner body.
  • the pressure measuring element has the shape of a part of an outer surface of a circular cylinder.
  • the advantage of this is that the pressure measuring element typically does not have a tubular shape, but rather a type of pouch shape that can be rolled up and fastened.
  • Pressure measuring element can in general be limp and simply rolled up and / or rolled and then attached to the inner body. As a rule, the pressure measuring element can thus be transported on a roll, for example. As a result, the pressure measuring device can typically be produced in a technically simple and particularly cost-effective manner.
  • the pressure measuring element is attached to the inner body.
  • the pressure measuring element is generally fastened in a technically simple and particularly secure manner.
  • the pressure measuring element has a
  • the pressure measuring element is typically particularly large and secure, e.g. can be attached by means of adhesive and / or laser welding.
  • the liquid in the pressure measuring element is in direct contact with the inner body. This allows the
  • Pressure measuring device generally be technically particularly simple.
  • the liquid volume in the pressure measuring element can typically be particularly small, as a result of which the ratio between the volume of the liquid and the surface is particularly small.
  • temperature changes generally have an even smaller negative impact on the precision or reliability of the pressure measuring device.
  • the pressure measuring device has a
  • Temperature sensor can typically act as part of the inner body. In addition, the temperature sensor is generally particularly well protected from the environment.
  • FIG. 1 shows a cross-sectional view of a first embodiment of the pressure measuring device according to the invention
  • FIG. 2 shows a cross-sectional view of a second embodiment of the pressure measuring device according to the invention
  • FIG. 3 shows a cross-sectional view of a third embodiment of the pressure measuring device according to the invention.
  • FIG. 4 shows a cross-sectional view of a fourth embodiment of the pressure measuring device according to the invention.
  • FIG. 5 shows a further cross-sectional view of FIG
  • FIG. 1 shows a cross-sectional view of a first embodiment of the pressure measuring device 10 according to the invention.
  • the pressure measuring device 10 has a pressure measuring sensor 20 (for example a silicon element) and a pressure measuring element 30.
  • the pressure measuring element 30 has a liquid 50, for example oil, in its interior.
  • the pressure measuring element 30 is connected to the pressure measuring sensor 20 in such a way that Changes in pressure in the liquid 50 or in the pressure measuring element 30 are transmitted to the pressure measuring sensor 20.
  • the pressure measuring element 30 is mostly in a filling pipe 70 or
  • the pressure measuring element 30 is arranged or placed over an inner body 60, which is essentially cylindrical in FIG. 1.
  • the inner body 60 takes the majority, for example at least 70%, in particular at least 90%, preferably at least 95%, e.g. 98% of the volume enclosed by the pressure measuring element 30.
  • Inner body 60 is in direct contact with the liquid 50 in the pressure measuring element 30.
  • the inner body 60 is essentially rigid.
  • Pressure measuring element 30 largely encloses the inner body 60. Due to the inner body 60, the pressure measuring element 30 has only a small volume of oil or liquid 50, so that the oil volume / surface area of the shell 40 is particularly large. Temperature changes therefore only have a very minor effect on the precision or reliability of the pressure measurement.
  • Pressure measuring element 30 only lead to larger size changes of the
  • the pressure measuring element 30 has a flexible sleeve 40. This means that the shell 40 is not rigid, but can change its shape. In this way, the pressure of a medium or a fluid, which is located in the filling pipe 70, can increase the pressure of the liquid 50 in the pressure measuring element 30. This increased pressure is in turn transmitted to the pressure measurement sensor 20.
  • the pressure measurement sensor 20 can be in fluid contact with the liquid 50 in the
  • Pressure measuring element 30 are or are in contact with a part of the shell 40.
  • the sheath 40 can also expand reversibly.
  • the pressure measuring element 30 or the shell 40 has a projecting edge 49.
  • This cantilevered edge 49 can be formed all around or can only be formed in certain areas of the upper end of the pressure measuring element 30 in FIG. 1. In this way, the pressure measuring element 30 can be spread over a large area on other parts of the pressure measuring device 10, for example by means of bolts, Rivet, screw, adhesive, laser welding, or the like can be attached.
  • the shape of the shell 40 (apart from the projecting edge 49) essentially corresponds to the shape of a straight circular cylinder, the inner body 60 projecting into the pressure measuring element 30. This encompasses this area, in which the inner body 60 projects into the pressure measuring element 30
  • Pressure measuring element 30 completely the inner body 60.
  • the pressure measuring element 30 can be attached to the inner body 60 at one or more points.
  • the attachment can e.g. by means of
  • Laser welding, adhesive, bolts, rivets, screws or the like can be carried out.
  • the pressure measurement sensor 20 can be in direct contact with the liquid 50 in the pressure measurement element 30.
  • FIG. 2 shows a cross-sectional view of a second embodiment of the pressure measuring device 10 according to the invention.
  • the second embodiment differs from the first embodiment in that the sleeve 40 has a plurality of bulges 46, 47 and
  • the outer surface of the sheath 40 is significantly larger in the second embodiment than in the first
  • Liquid 50 in the pressure measuring element 30 and the surface of the pressure even larger.
  • FIG 3 shows a cross-sectional view of a third embodiment of the pressure measuring device 10 according to the invention.
  • Pressure measuring element 30 has a different shape.
  • Pressure measuring element 30 essentially the shape of a vertical Circular cylinder.
  • the outer shape of the pressure measuring element 30 has the outer shape of a truncated cone with an elliptical, in particular circular, base area.
  • the pressure measuring element 30 is arranged on the funnel-shaped part of the filling tube 70, the filling tube 70 forming the inner body 60.
  • Pressure measuring element 30 rests, so to speak, on the outer surface of filling tube 70. In this way, the pressure measuring element 30 can be attached or arranged in a technically particularly simple manner.
  • the pressure measuring element 30 extends to the end of the filling tube 70 (left in FIG. 3) and the pressure measuring element 30 is closed here or closes the filling tube 70.
  • a temperature sensor 90 may be arranged in the filling tube 70 .
  • FIG. 4 shows a cross-sectional view of a fourth embodiment of the pressure measuring device 10 according to the invention.
  • FIG. 5 shows another
  • Pressure measuring element 30 has a different shape.
  • the pressure measuring element 30 is essentially flat and limp.
  • the pressure measuring element 30 is arranged around the inner body 60.
  • Inner body 60 has the shape of a truncated cone with a circular cylindrical base at the level of the pressure measuring element 30.
  • Pressure measuring element 30 encloses a part, e.g. 70% -80%, of the circumference of the inner body 60 and extends over a part along the longitudinal axis of the inner body 60 (the longitudinal axis of the inner body 60 runs from top to bottom in FIG. 4).
  • the pressure measuring element 30 is along two lines that run along the
  • Outer surface of the inner body 60 run, attached to the inner body 60. In the cross section of FIG. 5, this corresponds to two points, since the Lines run obliquely into the drawing plane of FIG. 5.
  • the pressure measuring element 30 can be fastened to the inner body 60 along these two lines, for example by laser welding, adhesive or the like.
  • the pressure measurement sensor 20 can be arranged between the pressure measurement element 30 and the inner body 60, so that the pressure acting on the liquid 50 in the pressure measurement element 30 is transmitted to the pressure measurement sensor 20.
  • the pressure measuring device 10 has a temperature sensor 90, which is arranged between the pressure measuring element 30 and the inner body 60.
  • the inner body 60 can have a recess for receiving a part of the temperature sensor 90.
  • the temperature sensor 90 can e.g. be an SMD NTC.
  • the liquid 50 in the pressure measuring element 30 is not in direct contact with the inner body 60. In this case, there is no need for a limp element to be pulled over a rigid element or a rigid inner body 60, which can tilt and / or get stuck here. The sagging
  • Pressure measuring element 30 can be rolled up or rolled off and then attached. The pressure measuring element 30 can thus be delivered on a roll.
  • the temperature sensor 90 can be integrated in the oil volume of the pressure measuring element 30, i.e. be directly or immediately surrounded by it. This protects the temperature sensor 90 from the environment or the fluid, the pressure and temperature of which is to be measured, and from contact with this fluid. It is also possible that its required geometric protrusion from the other elements of the pressure measuring device 10 is additional

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Es wird eine Druckmessvorrichtung (10) zum Messen eines Drucks eines Fluids vorgeschlagen, wobei die Druckmessvorrichtung (10) einen Druckmesssensor (20) und ein Druckmesselement (30) aufweist, wobei das Druckmesselement (30) mit einer Flüssigkeit (50), insbesondere Öl, gefüllt ist, wobei das Druckmesselement (30) derart in Kontakt mit dem Druckmesssensor (20) steht, dass Druckänderungen in der Flüssigkeit (50) auf den Druckmesssensor (20) übertragen werden, dadurch gekennzeichnet, dass das Druckmesselement (30) eine flexible Hülle (40) aufweist, wobei das Druckmesselement (30) auf einem Innenkörper (60) derart angeordnet ist, dass das Druckmesselement (30) den Innenkörper (60) zumindest teilweise, insbesondere im Wesentlichen vollständig, umschließt.

Description

Beschreibung
Titel
Druckmessvorrichtung zum Messen eines Drucks eines Fluids
Gebiet der Erfindung
Die Erfindung betrifft eine Druckmessvorrichtung zum Messen eines Drucks eines Fluids.
Stand der Technik
Bei bisher bekannten Druckmessvorrichtungen wird eine sogenannte Ölvorlage bzw. ein Ölbad genutzt, um den Druck von einem Medium bzw. einem Fluid zu einem Druckmesssensor zu transferieren. Dabei ist die Ölvorlage üblicherweise durch eine Membran begrenzt, d.h. dass der Druck eines Mediums auf die Membran wirkt, die den Druck des Mediums an das Ölvolumen weitergibt, das dann wiederum den Druck an den Druckmesssensor, z.B. ein Silizium-Element weitergibt.
Nachteilig hieran ist, dass das Öl einen thermischen Ausdehnungskoeffizienten aufweist, der sich von dem thermischen Ausdehnungskoeffizienten der das Öl umgebenden Materialien unterscheidet. Dies führt dazu, dass sich das Öl stärker als die Umgebung ausdehnt, wodurch das Volumen innerhalb der Ölvorlage sich vergrößert, was wiederum nur dadurch gelingen kann, dass die Membran ausgedehnt wird. Die Membran reagiert hierauf mit einer Rückstellkraft, so dass sich der Druck im Öl der Ölvorlage vergrößert, was die Zuverlässigkeit bzw. Präzision der Druckmessung verschlechtert.
Offenbarung der Erfindung
Vor diesem Hintergrund werden mit dem hier vorgestellten Ansatz eine
Druckmessvorrichtung zum Messen eines Drucks eines Fluids gemäß den unabhängigen Ansprüchen vorgestellt. Vorteilhafte Weiterbildungen und Verbesserungen des hier vorgestellten Ansatzes ergeben sich aus der
Beschreibung und sind in den abhängigen Ansprüchen beschrieben.
Vorteile der Erfindung
Ausführungsformen der vorliegenden Erfindung können in vorteilhafter Weise ermöglichen, besonders zuverlässig und präzise den Druck eines Fluids zu messen.
Gemäß einem ersten Aspekt der Erfindung wird eine Druckmessvorrichtung zum Messen eines Drucks eines Fluids vorgeschlagen, wobei die
Druckmessvorrichtung einen Druckmesssensor und ein Druckmesselement aufweist, wobei das Druckmesselement mit einer Flüssigkeit, insbesondere Öl, gefüllt ist, wobei das Druckmesselement derart in Kontakt mit dem
Druckmesssensor steht, dass Druckänderungen in der Flüssigkeit auf den Druckmesssensor übertragen werden, dadurch gekennzeichnet, dass das Druckmesselement eine flexible Hülle aufweist,
wobei das Druckmesselement auf einem Innenkörper derart angeordnet ist, dass das Druckmesselement den Innenkörper zumindest teilweise, insbesondere im Wesentlichen vollständig, umschließt.
Ein Vorteil hiervon ist, dass Temperaturänderungen des Öls sich in der Regel nur sehr geringfügig negativ auf die Präzision bzw. Zuverlässigkeit der
Druckmessung auswirken, da die Druckmessvorrichtung ein besonders geringes Volumen im Verhältnis zu seiner Oberfläche aufweisen kann. Zudem kann die Oberfläche des Druckmesselements, das den Druck des Fluids über die
Flüssigkeit in dem Druckmesselement auf den Druckmesssensor übertragen kann, bzw. das Druckmesselement üblicherweise besonders flexibel verteilt werden. Die gesamte Hülle des Druckmesselements kann typischerweise flexibel ausgebildet sein. Flexibel kann insbesondere bedeuten, dass die Hülle ihre Form verändern kann. Flexibel kann auch bedeuten, dass die Hülle reversibel dehnbar ist.
Ideen zu Ausführungsformen der vorliegenden Erfindung können unter anderem als auf den nachfolgend beschriebenen Gedanken und Erkenntnissen beruhend angesehen werden. Der Erfindung liegt die Idee zu Grunde, einen Druck eines Fluids, der von einem mit Flüssigkeit gefüllten Druckmesselement auf einen Druckmesssensor übertragen wird, zu messen, wobei das Druckmesselement eine flexible Hülle aufweist und auf einem Grundkörper angeordnet ist.
Es wird darauf hingewiesen, dass einige der möglichen Merkmale und Vorteile der Erfindung hierin mit Bezug auf unterschiedliche Ausführungsformen der Druckmessvorrichtung beschrieben sind. Ein Fachmann erkennt, dass die Merkmale in geeigneter Weise kombiniert, angepasst oder ausgetauscht werden können, um zu weiteren Ausführungsformen der Erfindung zu gelangen.
Gemäß einer Ausführungsform weist die flexible Hülle eine Vielzahl von
Ausbuchtungen und/oder Einbuchtungen auf. Hierdurch weist die
Druckmessvorrichtung typischerweise eine noch größere Oberfläche auf. Bei nahezu gleichem Volumen der Flüssigkeit in der Druckmessvorrichtung ist somit das Verhältnis zwischen dem Volumen der Flüssigkeit und der Oberfläche im Allgemeinen noch kleiner. Somit wirken sich Temperaturveränderungen in der Regel noch geringfügiger negativ auf die Präzision bzw. Zuverlässigkeit der Druckmessvorrichtung aus.
Gemäß einer Ausführungsform bedeckt das Druckmesselement den Innenkörper im Wesentlichen vollständig. Hierdurch kann die Druckmessvorrichtung in der Regel ein besonders geringes Volumen an Flüssigkeit aufweisen. Bei gleicher Oberflächengröße des Druckmesselements ist somit üblicherweise das
Verhältnis zwischen dem Volumen der Flüssigkeit und der Oberfläche noch kleiner. Somit wirken sich Temperaturveränderungen im Allgemeinen noch geringfügiger negativ auf die Präzision bzw. Zuverlässigkeit der
Druckmessvorrichtung aus. Im Wesentlichen kann in diesem Zusammenhang insbesondere bedeuten, dass lediglich die Befestigung des Innenkörpers an einem weiteren Element der Druckmessvorrichtung bzw. ein herausstehender kleiner Teil des Innenkörpers nicht von dem Druckmesselement bedeckt wird.
Gemäß einer Ausführungsform weist die Außenform des Druckmesselements im Wesentlichen der Außenform eines Kegelstumpfes mit einer ellipsenförmigen, insbesondere kreisförmigen, Grundfläche auf. Ein Vorteil hiervon ist, dass das Druckmesselement in der Regel technisch einfach auf einem Füllrohr angeordnet werden kann. Das Füllrohr kann hierbei im Allgemeinen als Innenkörper fungieren.
Gemäß einer Ausführungsform weist das Druckmesselement die Form eines Teiles einer Mantelfläche eines Kreiszylinders auf. Vorteilhaft hieran ist, dass das Druckmesselement typischerweise keine Schlauchform aufweist, sondern eine Art Pouch-Form, die aufgerollt und befestigt werden kann. Das
Druckmesselement kann im Allgemeinen biegeschlaff sein und einfach aufgerollt und/oder abgewälzt und danach an dem Innenkörper befestigt werden. Somit kann das Druckmesselement in der Regel beispielsweise auf einer Rolle transportiert werden. Hierdurch kann die Druckmessvorrichtung typischerweise technisch einfach und besonders kostengünstig hergestellt werden.
Gemäß einer Ausführungsform ist das Druckmesselement an dem Innenkörper befestigt. Ein Vorteil hiervon ist, dass das Druckmesselement im Allgemeinen technisch einfach und besonders sicher befestigt ist.
Gemäß einer Ausführungsform weist das Druckmesselement einen
auskragenden Rand zum Befestigen des Druckmesselements an einer
Befestigungsfläche der Druckmessvorrichtung auf. Vorteilhaft hieran ist, dass das Druckmesselement typischerweise besonders großflächig und sicher, z.B. mittels Klebstoff und/oder Laserschweißung, befestigt werden kann.
Gemäß einer Ausführungsform steht die Flüssigkeit in dem Druckmesselement in unmittelbarem Kontakt mit dem Innenkörper. Hierdurch kann die
Druckmessvorrichtung in der Regel technisch besonders einfach ausgebildet sein. Zudem kann das Flüssigkeitsvolumen in dem Druckmesselement typischerweise besonders gering sein, wodurch das Verhältnis zwischen dem Volumen der Flüssigkeit und der Oberfläche besonders klein ist. Somit wirken sich Temperaturveränderungen im Allgemeinen noch geringfügiger negativ auf die Präzision bzw. Zuverlässigkeit der Druckmessvorrichtung aus.
Gemäß einer Ausführungsform weist die Druckmessvorrichtung einen
Temperatursensor auf, wobei der Temperatursensor im Innern des
Druckmesselements angeordnet ist. Vorteilhaft hieran ist, dass der
Temperatursensor typischerweise als Teil des Innenkörpers fungieren kann. Zudem ist der Temperatursensor hierdurch im Allgemeinen besonders gut vor der Umgebung geschützt.
Kurze Beschreibung der Zeichnungen
Nachfolgend werden Ausführungsformen der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, wobei weder die Zeichnungen noch die Beschreibung als die Erfindung einschränkend auszulegen sind.
Fig. 1 zeigt eine Querschnittsansicht einer ersten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung;
Fig. 2 zeigt eine Querschnittsansicht einer zweiten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung;
Fig. 3 zeigt eine Querschnittsansicht einer dritten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung;
Fig. 4 zeigt eine Querschnittsansicht einer vierten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung; und
Fig. 5 zeigt eine weitere Querschnittsansicht der
Druckmessvorrichtung aus Fig. 4.
Die Figuren sind lediglich schematisch und nicht maßstabsgetreu. Gleiche Bezugszeichen bezeichnen in den Figuren gleiche oder gleichwirkende
Merkmale.
Ausführungsformen der Erfindung
Fig. 1 zeigt eine Querschnittsansicht einer ersten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung 10.
Die Druckmessvorrichtung 10 weist einen Druckmesssensor 20 (z.B. ein Siliziumelement) und ein Druckmesselement 30 auf. Das Druckmesselement 30 weist eine Flüssigkeit 50, z.B. Öl, in seinem Innern auf. Das Druckmesselement 30 steht mit dem Druckmesssensor 20 derart in Verbindung, dass Druckänderungen in der Flüssigkeit 50 bzw. in dem Druckmesselement 30 auf den Druckmesssensor 20 übertragen werden.
Das Druckmesselement 30 ist größtenteils in einem Füllrohr 70 bzw.
Druckstutzen angeordnet. Das Druckmesselement 30 ist über einen Innenkörper 60, der in Fig. 1 im Wesentlichen zylinderförmig ausgebildet ist, angeordnet bzw. gestülpt. Der Innenkörper 60 nimmt den Großteil, beispielsweise mindestens 70%, insbesondere mindestens 90%, vorzugsweise mindestens 95%, z.B. 98%, des von dem Druckmesselement 30 umschlossenen Volumens ein. Der
Innenkörper 60 steht in unmittelbarem Kontakt mit der Flüssigkeit 50 in dem Druckmesselement 30.
Der Innenkörper 60 ist im Wesentlichen starr ausgebildet. Das
Druckmesselement 30 umschließt den Innenkörper 60 zu einem Großteil. Durch den Innenkörper 60 weist das Druckmesselement 30 nur ein geringes Volumen an Öl bzw. Flüssigkeit 50 auf, so dass Verhältnis Ölvolumen/Oberfläche der Hülle 40 besonders groß ist. Somit beeinträchtigen Temperaturänderungen nur sehr gering die Präzision bzw. Zuverlässigkeit der Druckmessung.
Temperaturveränderungen des Öls bzw. der Flüssigkeit 50 in dem
Druckmesselement 30 führen nur zu größeren Größenänderungen des
Volumens des Öls.
Das Druckmesselement 30 weist eine flexible Hülle 40 auf. Dies bedeutet, dass die Hülle 40 nicht starr ist, sondern ihre Form ändern kann. Auf diese Weise kann der Druck eines Mediums bzw. eines Fluids, das sich in dem Füllrohr 70 befindet, den Druck der Flüssigkeit 50 in dem Druckmesselement 30 erhöhen. Dieser erhöhte Druck wird wiederum auf den Druckmesssensor 20 übertragen. Der Druckmesssensor 20 kann in Fluidkontakt mit der Flüssigkeit 50 in dem
Druckmesselement 30 stehen oder mit einem Teil der Hülle 40 in Kontakt stehen. Die Hülle 40 kann sich zudem reversibel dehnen.
Das Druckmesselement 30 bzw. die Hülle 40 weist einen auskragenden Rand 49 auf. Dieser auskragende Rand 49 kann umlaufend ausgebildet sein oder kann nur in bestimmen Bereichen des in Fig. 1 oberen Endes des Druckmesselements 30 ausgebildet sein. Auf diese Weise kann das Druckmesselement 30 an weiteren Teilen der Druckmessvorrichtung 10 großflächig, z.B. mittels Bolzen, Niet, Schraube, Klebstoff, Laserschweißung, oder ähnlichem, befestigt werden bzw. sein.
Die Form der Hülle 40 entspricht (vom auskragenden Rand 49 abgesehen) im Wesentlichen der Form eines geraden Kreiszylinders, wobei der Innenkörper 60 in das Druckmesselement 30 hinein ragt. Bis auf diesen Bereich, in dem der Innenkörper 60 in das Druckmesselement 30 hineinragt, umschließt das
Druckmesselement 30 den Innenkörper 60 vollständig.
Anstelle oder zusätzlich zu der Befestigung mittels des auskragenden Rands 49 kann das Druckmesselement 30 an einem oder mehreren Punkten an dem Innenkörper 60 befestigt sein. Die Befestigung kann z.B. mittels
Laserschweißung, Klebstoff, Bolzen, Niet, Schraube oder ähnlichem ausgeführt sein.
Der Druckmesssensor 20 kann in unmittelbarem Kontakt mit der Flüssigkeit 50 in dem Druckmesselement 30 stehen.
Fig. 2 zeigt eine Querschnittsansicht einer zweiten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung 10.
Die zweite Ausführungsform unterscheidet sich von der ersten Ausführungsform dadurch, dass die Hülle 40 eine Vielzahl von Ausbuchtungen 46, 47 und
Einbuchtungen bzw. Falten aufweist. Somit ist die Außenoberfläche der Hülle 40 bei der zweiten Ausführungsform deutlich größer als bei der ersten
Ausführungsform. Somit ist das Verhältnis zwischen dem Volumen der
Flüssigkeit 50 in dem Druckmesselement 30 und der Oberfläche des Drucks noch größer.
Fig. 3 zeigt eine Querschnittsansicht einer dritten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung 10.
Die dritte Ausführungsform unterscheidet sich von der ersten Ausführungsform und der zweiten Ausführungsform insbesondere dadurch, dass das
Druckmesselement 30 eine andere Form aufweist. Bei den ersten
Ausführungsform und der zweiten Ausführungsform weist das
Druckmesselement 30 im Wesentlichen die Form eines senkrechten Kreiszylinders auf. Bei der driten Ausführungsform weist die Außenform des Druckmesselements 30 die Außenform eines Kegelstumpfes mit einer ellipsenförmigen, insbesondere kreisförmigen, Grundfläche auf.
Das Druckmesselement 30 ist auf dem trichterförmigen Teil des Füllrohrs 70 angeordnet, wobei das Füllrohr 70 den Innenkörper 60 bildet. Das
Druckmesselement 30 liegt sozusagen auf der Außenoberfläche des Füllrohrs 70 auf. Auf diese Weise kann das Druckmesselement 30 technisch besonders einfach angebracht bzw. angeordnet werden.
Möglich ist auch, dass sich das Druckmesselement 30 bis zum (in Fig. 3 linken) Ende des Füllrohrs 70 erstreckt und das Druckmesselement 30 hier geschlossen ist bzw. das Füllrohr 70 verschließt.
In dem Füllrohr 70 kann z.B. ein Temperatursensor 90 angeordnet sein.
Fig. 4 zeigt eine Querschnitsansicht einer vierten Ausführungsform der erfindungsgemäßen Druckmessvorrichtung 10. Fig. 5 zeigt eine weitere
Querschnitsansicht der Druckmessvorrichtung 10 aus Fig. 4.
Die vierte Ausführungsform unterscheidet sich von der ersten Ausführungsform und der zweiten Ausführungsform vor allem dadurch, dass das
Druckmesselement 30 eine andere Form aufweist. Das Druckmesselement 30 ist bei der vierten Ausführungsform im Wesentlichen flach ausgebildet und biegeschlaff.
Das Druckmesselement 30 ist um den Innenkörper 60 angeordnet. Der
Innenkörper 60 weist auf Höhe des Druckmesselements 30 die Form eines Kegelstumpfs mit einer kreiszylinderförmigen Grundfläche auf. Das
Druckmesselement 30 umschließt einen Teil, z.B. ca. 70%-80%, des Umfangs des Innenkörpers 60 und erstreckt sich über einen Teil entlang der Längsachse des Innenkörpers 60 (die Längsachse des Innenkörpers 60 verläuft in Fig. 4 von oben nach unten).
Das Druckmesselement 30 ist entlang von zwei Linien, die entlang der
Außenoberfläche des Innenkörpers 60 verlaufen, an dem Innenkörper 60 befestigt. In dem Querschnit der Fig. 5 entspricht dies zwei Punkten, da die Linien schräg in die Zeichenebene der Fig. 5 verlaufen. Entlang dieser zwei Linien kann das Druckmesselement 30 z.B. durch Laserschweißung, Klebstoff oder ähnliches an dem Innenkörper 60 befestigt sein. Der Druckmesssensor 20 kann zwischen dem Druckmesselement 30 und dem Innenkörper 60 angeordnet sein, so dass der auf die Flüssigkeit 50 in dem Druckmesselement 30 wirkende Druck auf den Druckmesssensor 20 übertragen wird.
Die Druckmessvorrichtung 10 weist einen Temperatursensor 90 auf, der zwischen dem Druckmesselement 30 und dem Innenkörper 60 angeordnet ist.
Zur Aufnahme eines Teils des Temperatursensors 90 kann der Innenkörper 60 eine Aussparung aufweisen. Der Temperatursensor 90 kann z.B. ein SMD NTC sein.
Die Flüssigkeit 50 in dem Druckmesselement 30 steht nicht in unmittelbarem Kontakt mit dem Innenkörper 60. Hierbei muss somit kein biegeschlaffes Element über ein steifes Element bzw. einen steifen Innenkörper 60 gezogen werden, das hierbei verkanten und/oder hängenbleiben kann. Das biegeschlaffe
Druckmesselement 30 kann hierbei aufgerollt oder abgewälzt werden und danach befestigt werden. Das Druckmesselement 30 kann somit auf einer Rolle angeliefert werden.
Der Temperatursensor 90 in dem Ölvolumen des Druckmesselements 30 integriert sein, d.h. von diesem direkt bzw. unmittelbar umgeben sein. Hierdurch wird der Temperatursensor 90 vor der Umgebung bzw. dem Fluid, dessen Druck und Temperatur gemessen werden soll, und einem Kontakt mit diesem Fluid geschützt. Möglich ist auch, dass sein benötigtes geometrisches Herausragen aus den übrigen Elementen der Druckmessvorrichtung 10 als zusätzlich
Oberfläche der Hülle 40 des Druckmesselements 30 verwendet wird.
Abschließend ist darauf hinzuweisen, dass Begriffe wie„aufweisend“,
„umfassend“, etc. keine anderen Elemente oder Schritte ausschließen und Begriffe wie„eine“ oder„ein“ keine Vielzahl ausschließen. Bezugszeichen in den Ansprüchen sind nicht als Einschränkung anzusehen.

Claims

Ansprüche
1. Druckmessvorrichtung (10) zum Messen eines Drucks eines Fluids,
wobei die Druckmessvorrichtung (10) einen Druckmesssensor (20) und ein Druckmesselement (30) aufweist,
wobei das Druckmesselement (30) mit einer Flüssigkeit (50), insbesondere Öl, gefüllt ist,
wobei das Druckmesselement (30) derart in Kontakt mit dem
Druckmesssensor (20) steht, dass Druckänderungen in der Flüssigkeit (50) auf den Druckmesssensor (20) übertragen werden,
dadurch gekennzeichnet, dass
das Druckmesselement (30) eine flexible Hülle (40) aufweist,
wobei das Druckmesselement (30) auf einem Innenkörper (60) derart angeordnet ist, dass das Druckmesselement (30) den Innenkörper (60) zumindest teilweise, insbesondere im Wesentlichen vollständig, umschließt.
2. Druckmessvorrichtung (10) nach Anspruch 1, wobei
die flexible Hülle (40) eine Vielzahl von Ausbuchtungen (46, 47) und/oder Einbuchtungen aufweist.
3. Druckmessvorrichtung (10) nach Anspruch 1 oder 2, wobei
das Druckmesselement (30) den Innenkörper (60) im Wesentlichen vollständig bedeckt.
4. Druckmessvorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei
die Außenform des Druckmesselements (30) im Wesentlichen der
Außenform eines Kegelstumpfes mit einer ellipsenförmigen, insbesondere kreisförmigen, Grundfläche aufweist.
5. Druckmessvorrichtung (10) nach einem der Ansprüche 1-3, wobei
das Druckmesselement (30) die Form eines Teiles einer Mantelfläche eines Kreiszylinders aufweist.
6. Druckmessvorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei
das Druckmesselement (30) an dem Innenkörper (60) befestigt ist.
7. Druckmessvorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei
das Druckmesselement (30) einen auskragenden Rand (49) zum Befestigen des Druckmesselements (30) an einer Befestigungsfläche der
Druckmessvorrichtung (10) aufweist.
8. Druckmessvorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei
die Flüssigkeit (50) in dem Druckmesselement (30) in unmittelbarem Kontakt mit dem Innenkörper (60) steht.
9. Druckmessvorrichtung (10) nach einem der vorhergehenden Ansprüche, wobei
die Druckmessvorrichtung (10) einen Temperatursensor (90) aufweist, wobei der Temperatursensor (90) im Innern des Druckmesselements (30) angeordnet ist.
PCT/EP2019/078577 2018-12-18 2019-10-21 Druckmessvorrichtung zum messen eines drucks eines fluids WO2020126155A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19794123.0A EP3899469A1 (de) 2018-12-18 2019-10-21 Druckmessvorrichtung zum messen eines drucks eines fluids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018222070.0A DE102018222070A1 (de) 2018-12-18 2018-12-18 Druckmessvorrichtung zum Messen eines Drucks eines Fluids
DE102018222070.0 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020126155A1 true WO2020126155A1 (de) 2020-06-25

Family

ID=68342912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/078577 WO2020126155A1 (de) 2018-12-18 2019-10-21 Druckmessvorrichtung zum messen eines drucks eines fluids

Country Status (3)

Country Link
EP (1) EP3899469A1 (de)
DE (1) DE102018222070A1 (de)
WO (1) WO2020126155A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834239A (en) * 1970-06-15 1974-09-10 Mine Safety Appliances Co Differential pressure transducer for liquid metals
US4538466A (en) * 1984-02-06 1985-09-03 Kerber George L Capacitance pressure transducer and method of fabrication therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834239A (en) * 1970-06-15 1974-09-10 Mine Safety Appliances Co Differential pressure transducer for liquid metals
US4538466A (en) * 1984-02-06 1985-09-03 Kerber George L Capacitance pressure transducer and method of fabrication therefor

Also Published As

Publication number Publication date
DE102018222070A1 (de) 2020-06-18
EP3899469A1 (de) 2021-10-27

Similar Documents

Publication Publication Date Title
DE102005020569B4 (de) Implantierbare Vorrichtung zur Erfassung von intrakorporalen Drücken
DE19917312B4 (de) Einrichtung zur Positionserfassung
DE102013109820B4 (de) Behälter mit flexibler Wandung
EP2831555B2 (de) Sensor zur erfassung eines drucks und einer temperatur eines fluiden mediums
DE2729644A1 (de) Druckwandler fuer fluessigkeiten sowie mit einem derartigen druckwandler ausgestattetes instrument zur druckmessung
DE102018110655A1 (de) Integrierter Druck- und Temperatursensor
DE102010012823B4 (de) Druckmittler mit Temperatursensor
DE10154554B4 (de) Lasterfassungsvorrichtung
DE3215238A1 (de) Fluessigkeitsstand-messsystem
DE102017205251A1 (de) Medizinische Pumpvorrichtung
EP3899469A1 (de) Druckmessvorrichtung zum messen eines drucks eines fluids
DE102018131463A1 (de) Vorrichtung zur Stabilisierung von Bewegungen zweier sich relativ zueinander bewegbarer Körper
DE2920945A1 (de) Druckmessgeraet
DE102018110921A1 (de) Brennstoffverwahrungsbaugruppe für ein Fahrzeug
DE202015101180U1 (de) Manometeranordnung
EP2617456A1 (de) Katheter und Katheteranordnung
DE102014011724B3 (de) Schutzrohrvorrichtung zum Schutz eines Temperatursensors vor Kontakt mit einem Fluid
DE10248281A1 (de) Absolutdrucksensor mit dynamischem Überlastschutz
EP1977680B1 (de) Druckmesseinrichtung
DE708914C (de) Ausdehnungsthermometer
DE102012014180B4 (de) Dildo
DE2650597A1 (de) Vorrichtung zum anzeigen des fluessigkeitsstandes eines behaelters
DE4338427A1 (de) Meß- und Anzeigeinstrument mit Schalteinrichtung
DE4036783C1 (en) Overload protector for pressure sensor - provides pneumatic low pass capillary made of metal poly:acryl or polyamide in-front of pressure input of piezo-resistive miniature sensor
DE2428634C3 (de) Einrichtung zur Übertragung der Bewegung eines MeBelementes aus einem Druckraum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19794123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019794123

Country of ref document: EP

Effective date: 20210719