WO2020125665A1 - 一种多阻带滤波器及其实现方法 - Google Patents

一种多阻带滤波器及其实现方法 Download PDF

Info

Publication number
WO2020125665A1
WO2020125665A1 PCT/CN2019/126241 CN2019126241W WO2020125665A1 WO 2020125665 A1 WO2020125665 A1 WO 2020125665A1 CN 2019126241 W CN2019126241 W CN 2019126241W WO 2020125665 A1 WO2020125665 A1 WO 2020125665A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
parallel
filter
resonator
band
Prior art date
Application number
PCT/CN2019/126241
Other languages
English (en)
French (fr)
Inventor
庞慰
刘胜杰
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Publication of WO2020125665A1 publication Critical patent/WO2020125665A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the invention relates to the field of semiconductors and microelectromechanical systems, in particular to a multi-stopband filter and its implementation method.
  • the RF filter plays a vital role. It can filter out-of-band interference and combined noise to satisfy the RF system and Communication protocol requirements for signal-to-noise ratio.
  • RF filters are mainly used in wireless communication systems, for example, radio frequency front-ends of base stations, mobile phones, computers, satellite communications, radar, electronic countermeasure systems, etc.
  • the main performance indicators of RF filters are insertion loss, out-of-band rejection, power capacity, linearity, device size and cost.
  • Good filter performance can improve the data transmission rate, life and reliability of the communication system to a certain extent. Therefore, the design of high-performance and simplified filters for wireless communication systems is crucial.
  • the multi-stop band filter is usually obtained by parallel connection of filters.
  • the traditional multi-stop band filter is designed by multiple filters in cascade or parallel connection. It is necessary to design several molds if the device has several stop bands.
  • the out-of-band suppression is relatively poor. Not only does the filter performance deteriorate, the manufacturing process is complicated, the cost is higher, and the device size is also larger and more complex, but the design And manufacturing have certain complexity.
  • the present invention provides a multi-stop band filter and its implementation method, which realizes the design of the multi-stop band filter by controlling the resonance point of the resonator in the filter, which reduces the complexity of design and manufacturing to a certain extent
  • the production cost is greatly reduced, and the size of the device is nearly doubled, which can better achieve the miniaturization of the device.
  • a multi-stopband filter including:
  • the series resonator groups are connected in series between the input port and the output port of the multi-stop band filter, and the series resonator group is composed of n resonators connected in series,
  • the parallel resonator group is connected in parallel between two series resonator groups and a ground terminal, and the parallel resonator group is composed of n resonators connected in parallel in sequence;
  • n is the number of stop bands of the filter, and in the series resonator group/parallel resonator group) the resonance frequency of each resonator is different.
  • the parallel resonance group is grounded through bondwire or through an inductance coil in the substrate.
  • the series resonator group is connected in series between the input port and the output port of the multi-stop band filter, the series resonator group is composed of two resonators connected in series in series, and the parallel resonator group is connected in parallel in two series resonances respectively
  • the parallel resonator group is composed of two resonators connected in parallel in sequence; among them, (in the series resonator group/in the parallel resonator group) the resonance frequency of each resonator is different.
  • the stop band frequencies of the multi-stop band filter are 2.0 GHz and 2.4 GHz, respectively.
  • the stop band frequency is not fixed, and the stop band frequency can be changed arbitrarily by adjusting the fs and fp of the resonator.
  • the parallel resonance group is arranged to resonate in the stop band frequency band
  • the series resonance group is arranged in the stop band frequency band Anti-resonance.
  • the resonator may be a thin film bulk acoustic wave resonator FBAR or a solid-state bulk acoustic wave piezoelectric resonator SMR.
  • a wireless communication device including the above multi-stop band filter is provided.
  • a method for implementing a multi-stopband filter including the following steps:
  • the parallel resonance frequency of four series resonators is set close to the series resonance frequency of three parallel resonators, and a stop band appears at 2.0 GHz;
  • the parallel resonance frequency of four series resonators is set close to the series resonance frequency of three parallel resonators, and a stop band appears at 2.4 GHz;
  • this application proposes a new multi-stop band filter, which can realize the design of multi-stop band filter by controlling the resonance point of the resonator, which greatly reduces the complexity of design and manufacturing, greatly The production cost is saved, and the size of the device is nearly doubled, so that the miniaturization of the device can be better achieved.
  • Figure 1 is a prior art multi-stopband filter.
  • FIG. 2 is a structure of a first band stop filter of a prior art multi-stop band filter.
  • FIG. 3 is a structure of a second band-reject filter blocked by a prior art multi-stop band filter.
  • Fig. 4 is a characteristic curve of the first band stop filter.
  • Fig. 5 is a characteristic curve of the second band stop filter.
  • 6 is a multi-stopband filter according to an embodiment of the present application.
  • FIG. 7 is an impedance characteristic curve of four resonators in the multi-stopband filter of the embodiment of the present application.
  • Fig. 8 is a characteristic curve of a multi-stop band filter.
  • FIG. 1 shows a prior art multi-stop band filter.
  • a multi-stop band filter obtained by connecting filters in parallel is composed of a first-stage ladder-type circuit network 101 and a second-stage ladder-type circuit
  • the circuit network 102 is formed in parallel.
  • the first-level ladder-type circuit network 101 and the second-level ladder-type circuit network 102 are respectively composed of a four-stage series branch (two resonators with a total of 8 resonators) and a three-stage parallel branch (two-stage The ladder consists of 6 resonators). These 14 resonators are divided into 4 kinds of resonance frequencies, which are f 0 , f 1 , f 2 , and f 3.
  • the multi-stop band filter is realized by controlling these four resonance frequencies.
  • the main principles of the two stop bands are as follows.
  • FIG. 2 shows a structure of a first band stop filter of the prior art multi-stop band filter.
  • the first-stage ladder-type circuit network 101 is a first band-reject filter.
  • the first band-reject filter includes two types of resonators, and the resonance frequencies of the resonators are f 0 and f 2 , respectively.
  • the resonance frequency of the series resonator 201 is f 0
  • the resonance frequency of three parallel FBAR resonators 202 is f 2 .
  • FIG. 3 shows a structure of a second band stop filter of the prior art multi-stop band filter.
  • the second-stage ladder-type circuit network 102 is a second band-reject filter.
  • the second band-reject filter includes two types of resonators, and the resonance frequencies of the resonators are f 1 and f 3 , respectively.
  • the resonance frequency of the series resonator 301 is f 1
  • the resonance frequency of three parallel FBAR resonators 302 is f 3 .
  • FIG. 4 shows the characteristic curve of the second band stop filter.
  • the main function of the second band stop filter is to suppress the RF signal at 2.4GHz, that is, 401 is the stop band frequency, and the high impedance state at 401 is approximately open; while for other frequency points 402 is Low impedance state, approximate short circuit, RF signal can pass normally.
  • the anti-resonance point of the series resonator of the second band stop filter at 2.4GHz is very large, which can effectively prevent the signal from passing through.
  • the impedance of the parallel resonator is very small, which can lead the signal to the ground, and can also effectively prevent the signal from passing through.
  • a stop band is formed at 2.4 GHz.
  • FIG. 5 shows the characteristic curve of the first band stop filter.
  • the main function of the first band stop filter is to suppress the RF signal at 2GHz, that is, 501 is the stop band frequency, and the high impedance state at 501 is approximately open; while for other frequency points 502 is low Impedance state, approximate short circuit, RF signal can pass normally.
  • the anti-resonance point of the series resonator of the first band stop filter at 2.0 GHz is very large, which can effectively prevent the signal from passing through.
  • the impedance of the parallel resonator is very small, which can lead the signal to the ground, and can also effectively prevent the signal from passing through.
  • a stop band is formed at 2.0 GHz.
  • the above-mentioned first band-reject filter and second band-reject filter are used in cascade to obtain the multi-stop band filter in the prior art, and the filters respectively suppress radio frequency signals at 2 GHz and 2.4 GHz.
  • FIG. 6 shows a multi-stopband filter according to an embodiment of the present application.
  • the multi-stop band filter of the present application includes four series resonator groups and three parallel resonator groups, and the series resonator groups are connected in series at the input port port1 and the output port of the multi-stop band filter Between port2, the series resonator group is composed of resonators with resonant frequency f 0 and f 1 in series, one end of each parallel resonator group is connected between two adjacent series resonator groups, and the other end passes Bondwire is grounded or grounded through an inductance coil in the substrate.
  • the parallel resonator group is composed of resonators with a resonance frequency of f 2 and f 3 in parallel.
  • FIG. 7 is an impedance characteristic curve of four resonators in the multi-stopband filter of the embodiment of the present application.
  • the four FBAR resonator impedance curves used in the multi-stop band filter of which 701 (resonator frequency f 3 ) and 703 (resonator frequency f 2 ) are the impedance curves of the parallel resonance group, 702 (resonance The frequency f 1 ) and 704 (resonator frequency f 0 ) are the impedance curves of the series resonance group.
  • Set the series resonance group (702, 704) to a lower frequency than the parallel resonance group (701, 703).
  • the parallel resonance group (The impedance of the resonance point of 701, 703) is as small as possible, and the impedance of the anti-resonance point of the series resonance group (702, 704) is as large as possible, so that the suppression of the stop band will be better.
  • 705 is the frequency of the parallel resonator of 701 and 702. Adjust the frequency of 705 as close as possible to 2.4GHz.
  • the multi-stop band filter of this application will show a high-impedance state at 2.4GHz, which is approximately an open circuit, thus forming a 2.4GHz stop band frequency;
  • 706 is the frequency of the parallel resonator of 703 and 704. Adjust the frequency of 706 as close to 2 GHz as possible.
  • the multi-stop band filter of this application will show a high-impedance state at 2 GHz, which is approximately an open circuit, thus forming a 2 GHz stop band frequency.
  • FIG. 8 shows the characteristic curve of the multi-stopband filter of the present application.
  • the multi-stop band filter of this application has a stop band near the frequency points of 2 GHz and 2.4 GHz, and the pass band is approximated at other frequencies, of which 801 is equivalent to the first band stop filter in the prior art
  • the stop band frequency of 802 is equal to the stop band frequency of the second band stop filter in the prior art.
  • the filter structure of the present invention can be realized by using one filter chip, which greatly Reduced size and cost have great significance.
  • This embodiment also provides a method for implementing a multi-stopband filter, including the following steps:
  • the parallel resonant frequency of the four series resonators with the resonator frequency f 0 and the series resonant frequency of the three parallel resonators with the resonator frequency f 2 are close, and a stop band appears at 2.0 GHz;
  • the parallel resonance frequency of the four series resonators with the resonator frequency f 1 and the series resonance frequency of the three parallel resonators with the resonator frequency f 3 are close, and a stop band appears at 2.4 GHz;
  • the resonators with resonance frequencies f 0 and f 1 are connected in series to form four series resonator groups, and the resonance frequencies are f 2 and f 3
  • the resonators are connected in parallel to form three parallel resonator groups.
  • the series resonator groups are connected in series between the input port and the output port of the multi-stop band filter.
  • the parallel resonator groups are connected in parallel to two series resonator groups and one ground respectively Between the terminals, constitute a multi-stopband filter.
  • One architecture exhibits a high-resistance state at the stop-band frequency, and the other architecture is straight-through at this frequency, so the first and second band-stop filter architectures can be combined directly.
  • the disclosed system and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种多阻带滤波器及其实现方法,所述多阻带滤波器包括:四个串联谐振器组和三个并联谐振器组,所述串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,串联谐振器组由n个谐振器依次串联组成,所述并联谐振器组分别并联连接在两个串联谐振器组以及一个接地端之间,并联谐振器组由n个谐振器依次并联组成,其中,n为滤波器的阻带数,(串联谐振器组内/并联谐振器组内)每个谐振器的谐振频率不同;本申请通过控制滤波器内谐振器的谐振点实现多阻带滤波器设计,在一定程度上减小了设计以及制造上的复杂度,大幅度减少了生产成本,而且器件尺寸缩小近一倍,能够更好的实现器件的微型化。

Description

一种多阻带滤波器及其实现方法 技术领域
本发明涉及半导体及微机电系统领域,特别是涉及一种多阻带滤波器及其实现方法。
背景技术
随着无线通讯应用的发展,人们对于数据传输速率的要求越来越高,与数据传输速率相对应的是频谱资源的高利用率和频谱的复杂化。通信协议的复杂化对于射频系统的各种性能提出了严格的要求,在射频前端模块,射频滤波器起着至关重要的作用,它可以将带外干扰和合噪声滤除掉以满足射频系统和通信协议对于信噪比的要求。
射频滤波器主要应用于无线通信系统,例如,基站的射频前端,移动电话,电脑,卫星通讯,雷达,电子对抗系统等等。射频滤波器的主要性能指标为插损、带外抑制、功率容量、线性度、器件尺寸和成本。良好的滤波器性能可以在一定程度上提高通信系统的数据传输速率、寿命及可靠性。所以对于无线通信系统高性能、简单化滤波器的设计是至关重要的。现有技术中,通常采用滤波器并联的方式得到多阻带滤波器,传统的多阻带滤波器通过多个滤波器级联或并联的方式得到的多阻带滤波器设计,多阻带滤波器有几个阻带就要设计几颗模具,带外抑制相对较差,不仅滤波器性能上存在一定的恶化,制造过程复杂,成本较高,而且器件尺寸也较大较复杂,但是,设计、制造上都具有一定的复杂性。
因此,如何实现多组带滤波器的器件尺寸缩小和构造微型化是本领域技术人员目前亟需解决的技术问题。
发明内容
有鉴于此,本发明提供一种多阻带滤波器及其实现方法,通过控制滤波器内谐振器的谐振点实现多阻带滤波器设计,在一定程度上减小了设计以及制造上的复杂度,大幅度减少了生产成本,而且器件尺寸缩小近一倍,能够更好的实现器件的微型化。
第一方面,提供一种多阻带滤波器,包括:
四个串联谐振器组和三个并联谐振器组,所述串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,串联谐振器组由n个谐振器依次串联组成,所述并联谐振器组分别并联连接在两个串联谐振器组以及一个接地端之间,并联谐振器组由n个谐振器依次并联组成;
其中,n为滤波器的阻带数,串联谐振器组内/并联谐振器组)每个谐振器的谐振频率不同。
结合第一方面及其上述实现方式,在第一方面的第一种可能的实现方式中,所述并联谐振组通过bondwire接地或者通过基板内电感线圈接地。
结合第一方面及其上述实现方式,在第一方面的第一种可能的实现方式中,当n=2时,多阻带滤波器包括四个串联谐振器组和三个并联谐振器组,所述串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,串联谐振器组由2个谐振器依次串联组成,所述并联谐振器组分别并联连接在两个串联谐振器组以及一个接地端之间,并联谐振器组由2个谐振器依次并联组成;其中,(串联谐振器组内/并联谐振器组内)每个谐振器的谐振频率不同。
结合第一方面及其上述实现方式,在第一方面的第三种可能的实现方式中,所述多阻带滤波器的阻带频率分别为2.0GHz、2.4GHz。阻带频率并不固定,可以通过调整谐振器的fs、fp,任意的改变阻带频率。
结合第一方面及其上述实现方式,在第一方面的第四种可能的实 现方式中,所述并联谐振组被安排在阻带频带上谐振,所述串联谐振组被安排在阻带频带上反谐振。
结合第一方面及其上述实现方式,在第一方面的第五种可能的实现方式中,所述谐振器可以是薄膜体声波谐振器FBAR或固态装配体声波压电谐振器SMR。
第二方面,提供包含上述多阻带滤波器的无线通信设备。
第三方面,提供一种多阻带滤波器的实现方法,包括如下步骤:
(1)建立阻带频率为2.0GHz的第一带阻滤波器架构:
设置四个串连谐振器的并联谐振频率和三个并联谐振器的串联谐振频率接近,在2.0GHz出现阻带;
(2)建立阻带频率为2.4GHz的第二带阻滤波器架构:
设置四个串连谐振器的并联谐振频率和三个并联谐振器的串联谐振频率接近,在2.4GHz出现阻带;
(3)将第一带阻滤波器架构、第二带阻滤波器架构组合,得到多阻带滤波器。
因此,本申请提出了一种新的多阻带滤波器,能够通过控制谐振器的谐振点实现多阻带滤波器设计,在很大程度上减小了设计以及制造上的复杂度,大幅度节约了生产成本,而且器件尺寸缩小近一倍,能够更好的实现器件的微型化。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1是现有技术多阻带滤波器。
图2是现有技术多阻带滤波器的第一带阻滤波器结构。
图3是现有技术多阻带滤波器阻第二带阻滤波器结构。
图4是第一带阻滤波器的特性曲线。
图5是第二带阻滤波器的特性曲线。
图6是本申请实施例的多阻带滤波器。
图7是本申请实施例的多阻带滤波器中四种谐振器阻抗特性曲线。
图8是多阻带滤波器的特性曲线。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
应理解,文中描述的第一、第二只是为了指代和区别不同的信号、指令等,其中,第一、第二不具有先后顺序的限定。
图1示出了现有技术的多阻带滤波器,如图1所示,通过滤波器并联的方式得到的多阻带滤波器,由第一级ladder型电路网络101与第二级ladder型电路网络102并联组成,第一级ladder型电路网络101和第二级ladder型电路网络102都分别由四级串联支路(两级ladder共8个谐振器)和三级并联支路(两级ladder共6个谐振器)构成,这14个谐振器共分为4种谐振频率,分别为f 0,f 1,f 2,f 3,多阻带滤波器通过控制这四种谐振频率来实现两个阻带,主要原理如下。
图2示出了现有技术多阻带滤波器的第一带阻滤波器结构。如图2所示,第一级ladder型电路网络101为第一带阻滤波器,所述第一带阻滤波器包含两种谐振器,谐振器的谐振频率分别为f 0,f 2,其中串联谐振器201的谐振频率为f 0,并联的三个FBAR谐振器202的谐振频率为f 2
图3示出了现有技术多阻带滤波器的第二带阻滤波器结构。如图2所示,第二级ladder型电路网络102为第二带阻滤波器,所述第二带阻滤波器包含两种谐振器,谐振器的谐振频率分别为f 1,f 3,其中串联谐振器301的谐振频率为f 1,并联的三个FBAR谐振器302的谐振频 率为f 3
图4示出了第二带阻滤波器的特性曲线。如图4所示,第二带阻滤波器的主要作用就是抑制2.4GHz处的射频信号,即401为阻带频率,在401处为高阻抗状态,近似开路;而对于其他的频点402为低阻抗状态,近似短路,射频信号可以正常通过。第二带阻滤波器在2.4GHz处串联谐振器的反谐振点的阻抗很大,可以有效阻止信号通过,并联谐振器的阻抗很小,可以将信号导入到地上,也可以有效阻止信号通过,从而在2.4GHz处形成阻带。
图5示出了第一带阻滤波器的特性曲线。如图5所示,第一带阻滤波器的主要作用就是抑制2GHz处的射频信号,即501为阻带频率,在501处为高阻抗状态,近似开路;而对于其他的频点502为低阻抗状态,近似短路,射频信号可以正常通过。第一带阻滤波器在2.0GHz处串联谐振器的反谐振点的阻抗很大,可以有效阻止信号通过,并联谐振器的阻抗很小,可以将信号导入到地上,也可以有效阻止信号通过,从而在2.0GHz处形成阻带。
将上述第一带阻滤波器和第二带阻滤波器进行级联使用得到现有技术中的多阻带滤波器,滤波器分别抑制2GHz、2.4GHz处射频信号。
图6示出了本申请实施例的多阻带滤波器。如图6所示,本申请的多阻带滤波器包括四个串联谐振器组和三个并联谐振器组,所述串联谐振器组串联连接在多阻带滤波器的输入端口port1和输出端口port2之间,串联谐振器组由谐振频率为f 0,f 1的谐振器依次串联组成,所述每个并联谐振器组分别一端接入相邻两个串联谐振器组之间,另一端通过bondwire接地或者通过基板内电感线圈接地,并联谐振器组由谐振频率为f 2,f 3的谐振器依次并联组成。
图7是本申请实施例的多阻带滤波器中四种谐振器阻抗特性曲线。如图7所示,多阻带滤波器用到的四种FBAR谐振器阻抗曲线,其中,701(谐振器频率f 3)、703(谐振器频率f 2)为并联谐振组阻抗曲线,702(谐振器频率f 1)、704(谐振器频率f 0)为串联谐振组阻抗曲线, 设置串联谐振组(702、704)比并联谐振组(701、703)更加偏低频,同时,并联谐振组(701、703)的谐振点阻抗尽量小,串联谐振组(702、704)的反谐振点阻抗尽量大一些,这样阻带的抑制会更好一些。
705为701和702的并联谐振器频率,调节705的频率尽量接近2.4GHz,本申请的多阻带滤波器会在2.4GHz呈现高阻状态,近似开路,因此形成了2.4GHz的阻带频率;同理706为703和704的并联谐振器频率,调节706的频率尽量接近2GHz,本申请的多阻带滤波器会在2GHz呈现高阻状态,近似开路,因此形成了2GHz的阻带频率。
图8示出了本申请多阻带滤波器的特性曲线。由图8所示,本申请多阻带滤波器在2GHz和2.4GHz的频点附近各有一个阻带,在其他的频率处近似通带,其中801等同现有技术中第一带阻滤波器的阻带频率,802等同现有技术中第二带阻滤波器的阻带频率。原来使用两颗滤波器即第一带阻滤波器和第二带阻滤波器级联才能实现的多阻带抑制曲线,本发明的滤波器结构可以使用1颗滤波器芯片就可以实现,极大地缩减了尺寸和成本,具有非常大的意义。
本实施例还提供一种多阻带滤波器的实现方法,包括如下步骤:
(1)建立阻带频率为2.0GHz的第一带阻滤波器架构:
设置谐振器频率f 0的四个串连谐振器的并联谐振频率和谐振器频率f 2的三个并联谐振器的串联谐振频率接近,在2.0GHz出现阻带;
(2)建立阻带频率的第二带阻滤波器架构:
设置谐振器频率f 1的四个串连谐振器的并联谐振频率和谐振器频率f 3的三个并联谐振器的串联谐振频率接近,在2.4GHz出现阻带;
(3)将第一带阻滤波器架构、第二带阻滤波器架构组合,得到多阻带滤波器:
将第一带阻滤波器架构、第二带阻滤波器架构组合,即将谐振频率为f 0,f 1的谐振器依次串联组成四组串联谐振器组,将谐振频率为f 2,f 3的谐振器依次并联组成三组并联谐振器组,串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,并联谐振器组分别并联连 接在两个串联谐振器组以及一个接地端之间,构成多阻带滤波器。
一个架构在阻带频率处呈现高阻状态,另外一个架构在这个频率处为直通的,因此第一带阻滤波器架构、第二带阻滤波器架构可直接组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

  1. 一种多阻带滤波器,其特征在于,包括:
    四个串联谐振器组和三个并联谐振器组;
    所述串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,串联谐振器组由n个谐振器依次串联组成;
    所述并联谐振器组分别并联连接在两个串联谐振器组以及一个接地端之间,并联谐振器组由n个谐振器依次并联组成;
    其中,n为滤波器的阻带数,(串联谐振器组内/并联谐振器组内)每个谐振器的谐振频率不同。
  2. 根据权利要求1所述的多阻带滤波器,其特征在于,所述并联谐振组通过bondwire接地或者通过基板内电感线圈接地。
  3. 根据权利要求2所述的多阻带滤波器,其特征在于,当n=2时,多阻带滤波器包括四个串联谐振器组和三个并联谐振器组;
    所述串联谐振器组串联连接在多阻带滤波器的输入端口和输出端口之间,串联谐振器组由两个谐振器依次串联组成;
    所述并联谐振器组分别并联连接在两个串联谐振器组以及一个接地端之间,并联谐振器组由两个谐振器依次并联组成;
    其中,(串联谐振器组内/并联谐振器组内)每个谐振器的谐振频率不同。
  4. 根据权利要求3所述的多阻带滤波器,其特征在于,所述多阻带滤波器的阻带频率分别为2.0GHz、2.4GHz,这个频率可以通过调整谐振器的谐振频率进行灵活的调整。
  5. 根据权利要求1中所述的多阻带滤波器,其特征在于,所述并联谐振组被安排在阻带频带上谐振,所述串联谐振组被安排在阻带频带上反谐振。
  6. 根据权利要求1至5中任一项所述的多阻带滤波器,其特征在 于,所述谐振器为薄膜体声波谐振器或固态装配体声波压电谐振器。
  7. 一种包括权利要求1-5任一权利要求所述的多阻带滤波器的无线通信设备。
  8. 一种多阻带滤波器的实现方法,其特征在于,包括如下步骤:
    (1)建立阻带频率为2.0GHz的第一带阻滤波器架构:
    设置四个串联谐振器的并联谐振频率fp和三个并联谐振器的串联谐振频率fs接近,在2.0GHz出现阻带;
    (2)建立阻带频率为2.4GHz的第二带阻滤波器架构:
    设置四个串联谐振器的并联谐振频率fp和三个并联谐振器的串联谐振频率fs接近,在2.4GHz出现阻带;
    (3)将第一带阻滤波器架构、第二带阻滤波器架构组合,得到多阻带滤波器。
PCT/CN2019/126241 2018-12-20 2019-12-18 一种多阻带滤波器及其实现方法 WO2020125665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811565453.3 2018-12-20
CN201811565453.3A CN109831177A (zh) 2018-12-20 2018-12-20 一种多阻带滤波器及其实现方法

Publications (1)

Publication Number Publication Date
WO2020125665A1 true WO2020125665A1 (zh) 2020-06-25

Family

ID=66859912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126241 WO2020125665A1 (zh) 2018-12-20 2019-12-18 一种多阻带滤波器及其实现方法

Country Status (2)

Country Link
CN (1) CN109831177A (zh)
WO (1) WO2020125665A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109831177A (zh) * 2018-12-20 2019-05-31 天津大学 一种多阻带滤波器及其实现方法
CN110798169A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110768641A (zh) * 2019-10-11 2020-02-07 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110798168A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110798166A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110995195B (zh) * 2019-11-15 2023-12-15 天津大学 滤波器
CN111010141A (zh) * 2019-11-15 2020-04-14 天津大学 一种滤波器、射频前端电路以及通信装置
CN111600571A (zh) * 2020-01-03 2020-08-28 诺思(天津)微系统有限责任公司 一种滤波器、信号处理设备及制造所述滤波器的方法
CN111224640B (zh) * 2020-01-15 2020-11-27 诺思(天津)微系统有限责任公司 多通道滤波器
CN111313862B (zh) * 2020-02-26 2021-06-01 诺思(天津)微系统有限责任公司 调整滤波器电路的方法和滤波器、多工器、通讯设备
CN111431505B (zh) * 2020-04-07 2021-01-05 诺思(天津)微系统有限责任公司 滤波器和多工器以及通信设备
CN112615602B (zh) * 2020-11-27 2023-04-21 中国电子科技集团公司第十三研究所 一种fbar滤波器电路结构
CN117335110B (zh) * 2023-12-01 2024-04-05 成都频岢微电子有限公司 一种高滚降滤波器及多工器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252669A (zh) * 2007-02-22 2008-08-27 约翰·梅扎林瓜联合有限公司 具有增强的高通频带响应的双带阻滤波器
CN102362431A (zh) * 2009-03-30 2012-02-22 株式会社村田制作所 弹性波滤波器
CN108604893A (zh) * 2016-02-08 2018-09-28 株式会社村田制作所 高频滤波电路、双工器、高频前端电路以及通信装置
CN109831177A (zh) * 2018-12-20 2019-05-31 天津大学 一种多阻带滤波器及其实现方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312951A (ja) * 1998-04-28 1999-11-09 Kyocera Corp 弾性表面波フィルタ
GB0014630D0 (en) * 2000-06-16 2000-08-09 Koninkl Philips Electronics Nv Bulk accoustic wave filter
US6924715B2 (en) * 2002-02-12 2005-08-02 Nortel Networks Limited Band reject filters
JP2010062816A (ja) * 2008-09-03 2010-03-18 Murata Mfg Co Ltd 弾性波フィルタ
JP5679558B2 (ja) * 2011-01-19 2015-03-04 太陽誘電株式会社 分波器
CN103929148B (zh) * 2013-01-11 2017-09-19 中兴通讯股份有限公司 一种低插损压电声波带通滤波器及实现方法
CN204289664U (zh) * 2014-12-09 2015-04-22 中国电子科技集团公司第十六研究所 一种微带椭圆函数带阻滤波器
JP6556668B2 (ja) * 2016-06-22 2019-08-07 太陽誘電株式会社 フィルタおよびマルチプレクサ
US10250214B2 (en) * 2016-10-31 2019-04-02 Murata Manufacturing Co., Ltd. Filter device, multiplexer, radio-frequency front end circuit, and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252669A (zh) * 2007-02-22 2008-08-27 约翰·梅扎林瓜联合有限公司 具有增强的高通频带响应的双带阻滤波器
CN102362431A (zh) * 2009-03-30 2012-02-22 株式会社村田制作所 弹性波滤波器
CN108604893A (zh) * 2016-02-08 2018-09-28 株式会社村田制作所 高频滤波电路、双工器、高频前端电路以及通信装置
CN109831177A (zh) * 2018-12-20 2019-05-31 天津大学 一种多阻带滤波器及其实现方法

Also Published As

Publication number Publication date
CN109831177A (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2020125665A1 (zh) 一种多阻带滤波器及其实现方法
JP7234062B2 (ja) 無線周波数フィルタのためのカスケード接続フィルタ回路、及び無線周波数信号をフィルタリングする方法
US7501912B2 (en) General matching network for acoustic wave filters and acoustic resonators
CN109643984B (zh) 一种梯形结构宽带压电滤波器
CN109075771B (zh) 射频滤波器,高选择性三工器和通信设备
US20040119562A1 (en) Duplexer and communication apparatus
CN107342749B (zh) 一种带通滤波器
CN110071702B (zh) 一种带通滤波器及双工器
JP2001024475A (ja) 弾性表面波フィルタ
JP2009514275A (ja) 広帯域の帯域阻止を行うsawフィルタ
WO2020125214A1 (zh) 多通道滤波器及其组件、电子设备
US9203375B2 (en) Band rejection filter comprising a serial connection of at least two pi-elements
CN111342793B (zh) 带通滤波器及提高其抑制水平的方法、双工器和电子设备
US10193527B2 (en) Branching filter
JP2007124085A (ja) 弾性表面波装置
WO2021203761A1 (zh) 滤波器和多工器以及通信设备
US11601115B2 (en) Electronic RF filter
CN115882813A (zh) 一种基于声表面波-集总元件组合谐振器及带通滤波器
CN112615602B (zh) 一种fbar滤波器电路结构
JP3246906B2 (ja) 分波器
CN104393382B (zh) 具有宽阻带特性的高阶小型化窄带带通滤波器
CN218570205U (zh) 一种射频滤波器拓扑结构
CN111988007A (zh) 带通滤波器和滤波器
CN111342806B (zh) 具有兰姆波谐振器的压电滤波器、双工器和电子设备
CN112688660B (zh) Fbar滤波器电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900359

Country of ref document: EP

Kind code of ref document: A1