WO2020125523A1 - 可折叠多旋翼无人机 - Google Patents

可折叠多旋翼无人机 Download PDF

Info

Publication number
WO2020125523A1
WO2020125523A1 PCT/CN2019/124651 CN2019124651W WO2020125523A1 WO 2020125523 A1 WO2020125523 A1 WO 2020125523A1 CN 2019124651 W CN2019124651 W CN 2019124651W WO 2020125523 A1 WO2020125523 A1 WO 2020125523A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotating mechanism
adapter bracket
rotation
fuselage
Prior art date
Application number
PCT/CN2019/124651
Other languages
English (en)
French (fr)
Inventor
杨超峰
Original Assignee
深圳市格上格创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市格上格创新科技有限公司 filed Critical 深圳市格上格创新科技有限公司
Publication of WO2020125523A1 publication Critical patent/WO2020125523A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/068Fuselage sections
    • B64C1/069Joining arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/30Parts of fuselage relatively movable to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • This application belongs to the technical field of unmanned aerial vehicles and relates to a foldable multi-rotor unmanned aerial vehicle.
  • the core application of consumer drones is selfies. Compared with larger aerial drones, this type of drone flies very low, and its main flight trajectory is to fly around people, so the exposed rotor is a big safety hazard. In order to avoid the rotor accidentally hurting people, the ideal solution is to wrap the rotor in a closed protective frame, but this will bring portability problems, and portability is a key technical indicator for selfie UAVs.
  • four-rotor drones use foldable rotors to achieve portability, but if a fixed protective frame is used to wrap the rotor, the protective frame is as large as the wing disk of the rotor. The total area of multiple protective frames will make the drone very Large and loses portability. If a detachable protective frame is used, the protective frame needs to be disassembled every time the UAV is retracted. This method will affect the usability of the Selfie UAV that requires high-frequency retractable.
  • the micro UAV has another problem is the stability of the captured images.
  • the drones need to make pitching motions and/or rolling motions under acceleration, deceleration, wind speed changes or wind direction changes, for example: the drone should bow its head when flying forward The forward tilt of the rotor produces forward thrust; while the drone rolls sideways to make the rotor roll lateral thrust; the drone rolls laterally to make the rotor roll to resist the wind.
  • pitching and rolling movements are frequent and large, which seriously affects the camera's shooting effect.
  • a simple method to solve the above problem is to use digital image stabilization technology, but the role of digital image stabilization technology is limited.
  • the current solution for mid- to high-end multi-rotor drones is to hang the camera on a gimbal, and the gimbal rotation will counteract the tilt of the fuselage to obtain a more satisfactory image.
  • a larger pitch or roll angle needs to be adjusted to generate enough force to complete the flight attitude control, when encountering a large wind
  • the micro UAV needs to frequently make large-scale pitching or rolling movements, which may cause the gimbal speed to keep up, resulting in poor image effects.
  • One of the purposes of the embodiments of the present application is to provide a foldable multi-rotor drone, aiming to solve the poor safety of the bare rotor of a rotary-wing drone, and after the protective frame is installed, the portability is not good, and the fuselage is not Smooth question.
  • a foldable multi-rotor drone including:
  • Two lift devices are respectively installed on the two rotor brackets, the lift device includes a rotor;
  • a rotor tilting device mounted on the fuselage includes at least three rotation mechanisms, two of the rotor brackets are connected to the rotation mechanism and are folded or unfolded by the rotation of the rotation mechanism ; At least one of the rotation mechanisms is connected to a rotation controller for controlling the rotation of the rotation mechanism, and the rotation controller controls the rotation of the rotation mechanism to control the inclination of the rotor.
  • a yaw controller is further included, and the yaw controller outputs a torque that causes the foldable multi-rotor drone to produce a yaw motion, which is used for the deflection of the foldable multi-rotor drone. Aero motion control.
  • a fuselage stabilizer is further included, and the fuselage stabilizer outputs a moment that causes the tilting motion of the fuselage to maintain the stability of the fuselage.
  • the fuselage stabilizer suppresses the tilting motion of the fuselage caused by wind. Combined with the tilting rotor technology, the fuselage of the drone can maintain a stable flight and ensure the effect of shooting images.
  • it further includes a rotor protection frame detachably or fixedly mounted on the rotor support, the rotor protection frame is a hollow structure, the rotor is placed inside the rotor protection frame, and the rotor protection The frame is used to protect the rotor.
  • the UAV can fold and recycle the rotor support, the lifting device and the fixedly installed rotor protective frame in an integrated manner.
  • the folding method is simple, the folding is compact, and it has good portability and application convenience.
  • the beneficial effect of the foldable multi-rotor drone provided by the embodiment of the present application is that: the drone can fold and recycle the rotor bracket and the lift device through the rotor tilting device, the folding method is simple, the folding is compact, and there is a very good Good portability and application convenience.
  • the UAV uses tilting rotor technology, and the mechanism for controlling the tilting of the rotor is a rotating mechanism connected to the rotating controller.
  • the structure is simple, the control method is direct and accurate, and the controllability is good.
  • the tilt angle of the rotor is controlled by the rotor tilting device, and the fuselage of the drone can be kept stable to ensure the effect of shooting images.
  • 1(a), 1(b), and 1(c) are respectively a perspective view, a partially enlarged view, and an exploded view of a set of foldable multi-rotor drones provided by a first embodiment of the present application;
  • FIG. 2(a) and 2(b) are respectively a perspective view of the foldable multi-rotor UAV of FIG. 1 after being folded and recovered and an enlarged view of the rotor tilting device;
  • FIG. 3 is a structural diagram of a rotor tilting device provided by a group of second embodiments of the present application.
  • 4(a) and 4(b) are a perspective view of a foldable multi-rotor UAV provided by a third embodiment of the present application and an enlarged view of the rotor tilting device;
  • 5(a) and 5(b) are respectively a perspective view and a partially enlarged view of the foldable multi-rotor UAV of FIG. 4 after being folded and recovered;
  • FIG. 6 is a structural diagram of a rotor tilting device provided by a group of fourth embodiments of the present application.
  • FIG. 7 is a perspective view of a foldable multi-rotor UAV provided by two sets of embodiments of this application;
  • 8(a) and 8(b) are respectively a perspective view and a partially enlarged view of the foldable multi-rotor UAV provided by the first embodiment of three groups of this application;
  • FIG. 9 is a structural diagram of a rotor tilting device provided by a second embodiment of three groups of this application.
  • FIG. 10 is a structural diagram of a rotor tilting device provided by a third embodiment of three groups of this application;
  • FIG. 11 is a structural diagram of a rotor tilting device provided by a fourth embodiment of three groups of this application.
  • FIG. 12 is a structural diagram of a rotor tilting device provided by a fifth embodiment of three groups of this application;
  • FIG. 13 is a structural diagram of a rotor tilting device provided by a sixth embodiment of three groups of this application;
  • FIG. 14 is a structural diagram of a rotor tilting device provided by a seventh embodiment of three groups of this application;
  • FIG. 15 is a structural diagram of a rotor tilting device provided by an eighth embodiment of three groups of this application.
  • 16(a), 16(b), and 16(c) are respectively a perspective view, a partially enlarged view, and an exploded view of a foldable multi-rotor UAV provided by the first embodiment of four groups of this application;
  • 17(a) and 17(b) are respectively a perspective view and a partially enlarged view of a foldable multi-rotor UAV provided by the second embodiment of four groups of the present application;
  • FIG. 18 is a structural diagram of a rotor tilting device provided by a third embodiment of four groups of the present application.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be fixedly connected or may be Disassembly connection or integration; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • a foldable multi-rotor drone which includes a fuselage 800, two rotor supports 500, two lift devices 200, and a rotor tilt device 100 .
  • the two lift devices 200 are respectively installed on the two rotor brackets 500.
  • the lift device 200 includes the rotor 210.
  • the rotor tilting device 100 is installed on the fuselage 800.
  • the rotor tilting device 100 includes at least three rotating mechanisms, and the two rotor brackets 500 are connected to the rotating mechanism and are folded or unfolded by the rotation of the rotating mechanism; at least one of them rotates
  • the mechanism is connected to a rotation controller 300 for controlling the rotation of the rotation mechanism.
  • the rotation controller 300 controls the rotation of the rotation mechanism to control the inclination of the rotor 210.
  • the unmanned aerial vehicle can integrally fold and recycle the rotor support 500 and the lift device 200 through the rotor tilting device.
  • the folding method is simple, compact after folding, and has good portability and application convenience.
  • the UAV uses tilting rotor technology.
  • the mechanism for controlling the tilting of the rotor is a rotating mechanism connected to the rotating controller 300.
  • the structure is simple, the control method is direct and accurate, and the controllability is good.
  • the tilt angle of the rotor 210 is controlled by the rotor tilting device 100, and the fuselage 800 of the drone can be kept stable to ensure the effect of shooting images.
  • the rotating mechanism may be a shafting structure, a hinge structure, or any rotating structure that can achieve a desired function.
  • the shafting structure refers to a rotating structure with bearings and a transmission shaft as main components.
  • a transmission shaft 1311a is provided in the middle of the first adapter bracket 121a, and a bearing 1312a is provided in the mounting hole of the fuselage 800.
  • the first adapter bracket 121a passes through the transmission shaft 1311a and
  • the bearing 1312a is rotatably connected to the body 800.
  • the rotating mechanism of the shafting structure is usually used in applications requiring higher precision rotation control.
  • the rotation controller 300 is a mechanism capable of outputting a predetermined rotation angle.
  • the rotation controller 300 shown in FIG. 1 may be a servo composed of a DC motor 301 and a gear set (302, 303).
  • the first rotation mechanism 131a is connected to the rotation controller 300, and the DC motor 301 drives the driving gear 302 to rotate.
  • the first adapter bracket 121a is fixed with a driven gear 303, and the driving gear 302 meshes with the driven gear 303 to drive the first adapter bracket 121a to rotate.
  • the hinge structure refers to a transmission structure that realizes the rotational connection of two structural parts with a hinge or a pin.
  • the pin shaft passes through the mounting hole of the rotor bracket 500, and the pin shaft is fixed to the first adapter bracket 121a, so that the rotor bracket 500 is rotatably connected to the first adapter bracket 121a.
  • a fuselage stabilizer 600 is further provided to counteract the tilting movement of the fuselage 800 caused by external forces, wherein the tilting movement refers to the pitching and rolling movements of the fuselage 800, maintaining The stability of the fuselage 800 during man-machine flight makes the images taken by the drone good.
  • the rotor protection frame 400 is detachably or fixedly mounted on the rotor support 500, and the rotor 210 is wrapped therein, which may be a fully enclosed hollow structure, used for the protection of the rotor 210 and avoiding the rotor 210 from hurting people .
  • the UAV can fold and recycle the rotor support 500, the lift device 200, and the rotor protective frame 400 in an integrated manner.
  • the UAV is compact after folding and has a simple folding method. Since the rotor protection frame 400 can be fixedly installed, it is not necessary to disassemble and disassemble the rotor protection frame 400 each time the UAV is retracted, which ensures the safety of the rotor 210 while still having good portability and application convenience.
  • the UAV uses tilting rotor technology.
  • the mechanism for controlling the tilting of the rotor 210 is a rotating mechanism connected to the rotating controller 300.
  • the structure is simple, the control method is direct and accurate, and the controllability is good.
  • FIG. 1 shows a specific embodiment, including a fuselage 800, two rotor supports 500, two lift devices 200, and a rotor tilt device 100.
  • the lift device 200 includes two motors 220 and two rotors 210.
  • the two motors 220 are installed on the rotor support 500 one by one, and the two rotors 210 are respectively installed on two motor shafts.
  • the two rotors 210 rotate in opposite directions, and their rotational torques cancel each other out.
  • the lift device 200 may include more than two rotors 210, as long as the rotation torque of all the rotors 210 can cancel each other, the working principle is the same as the dual-rotor 210 mode, and the dual-rotor mode will be described as an example below.
  • the two lift devices 200 are respectively installed on the two rotor brackets 500.
  • the fuselage 800 includes a fuselage body 810 and an arm 820.
  • the fuselage body 810 accommodates most functional modules such as batteries, sensors, and cameras of the drone. Part of the weight, one end of which protrudes an arm 820.
  • the rotation mechanism is divided into a first rotation mechanism 131a, a second rotation mechanism 132a, and a third rotation mechanism 133a.
  • the rotor tilting device 100 includes a first adapter bracket 121a.
  • the first adapter bracket 121a is rotatably connected to the arm 820 of the body 800 through the first rotating mechanism 131a.
  • the first adapter bracket 121a has two ends 1211a.
  • the two ends 1211a are rotatably connected to the two rotor brackets 500 through the second rotation mechanism 132a and the third rotation mechanism 133a, respectively, and the middle portion is connected to the first rotation mechanism 131a.
  • the first rotating mechanism 131a has a shaft structure, and a rotation controller 300 is connected.
  • the rotation controller 300 can control the two rotor brackets 500 to rotate synchronously around the rotation axis of the first rotation mechanism 131a.
  • the second rotating mechanism 132a and the third rotating mechanism 133a adopt an articulated structure for folding and recycling of the drone.
  • the two rotor brackets 500 of the drone shown in FIG. 1 are rotated around the second respectively By rotating the mechanism 132a and the third rotating mechanism 133a downward by 90 degrees, the two rotor brackets 500 and the lift device 200 mounted thereon can be folded and recovered integrally.
  • the above-mentioned drone flight control principle is: during flight, the fuselage body 810 of the drone is below the rotor 210, and the fuselage body 810 contains most of the weight of the drone. Based on the support of its gravity, the first rotation The mechanism 131a can control the two rotor brackets 500 to rotate around the rotation axis of the first rotation mechanism 131a.
  • the rotation axis of the first rotation mechanism 131a of this embodiment is parallel to the Y axis of the drone, therefore, it can be controlled without The movement of the man-machine in the X axis, that is, flying back and forth along the X axis or counteracting the wind force in the X axis; by adjusting the speed of the rotor 210, the difference in lift generated by the rotor 210 in the two lift devices 200 is controlled, while maintaining each The rotation torque of the two rotors 210 in each lift device 200 cancel each other, and can control the movement of the UAV in the Y axis, that is, fly back and forth along the Y axis or cancel the wind effect on the Y axis; by adjusting the rotation speed of the rotor 210, Control the total lift generated by the rotor 210, while maintaining the rotation torque of the two rotors 210 of each lift device 200 cancel each other to achieve the lifting control of the drone; by adjusting the rotation speed of the rotor 210
  • the thrust of the rotor 210 cannot be used to control the rotational movement of the fuselage 800 around the Y axis
  • the main force that determines the rotational movement of the fuselage 800 around the Y axis is wind (or other External force) and the gravity of the fuselage.
  • wind or other External force
  • the fuselage 800 When subjected to wind force or acceleration and deceleration, the fuselage 800 will tilt with the lift center of the drone as the fulcrum. The tilt angle is determined by the wind force and the gravity of the fuselage.
  • the drone shown in FIG. 1 further includes two fuselage stabilizers 600.
  • the two fuselage stabilizers 600 are provided at two ends of the fuselage 800.
  • the fuselage stabilizer 600 includes a stabilizing deflector 610 and a stabilizing servo controller.
  • the stabilizing deflector 610 is located below the rotor 210.
  • the downwash airflow of the rotor 210 is used to generate a torque that rotates the fuselage 800 around the Y axis.
  • the servo controller controls the rotation of the stable deflector 610, adjusts the angle relative to the rotor airflow to adjust the magnitude of the torque, thereby counteracting the tilting movement of the fuselage 800 around the Y axis caused by external forces (such as wind force) to ensure the drone
  • the rotation of the body around the Y axis is smooth.
  • the specific working principle of the fuselage stabilizer 600 shown in FIG. 1 is that one surface of its stabilizer deflector 610 faces the airflow of the rotor 210, and the airflow of the rotor generates pressure on the surface, so that the output rotates the fuselage 800 around the Y axis.
  • the torque of the stable servo controller controls the rotation of the stable deflector 610, adjusts the size of the surface facing the airflow, and thus adjusts the magnitude of the generated torque.
  • the stabilizer deflector 610 of the fuselage stabilizer 600 near the end of the arm 820 rotates toward the fuselage to reduce the torque, and the fuselage stabilizer at the nose end
  • the stable deflector 610 of 600 rotates away from the fuselage to increase the torque, thereby generating a torque that inhibits the fuselage 800 from rotating upward.
  • Each fuselage stabilizer 600 shown in FIG. 1 includes two stabilizer deflectors 610.
  • the fuselage stabilizer 600 only includes one stabilizing deflector 610, however, the fuselage stabilizer 600 of this embodiment will additionally generate a moment that rotates the fuselage 800 around the X axis, Control is more complicated. It should be noted that it is also feasible to provide only one fuselage stabilizer 600 at the end of one fuselage 800. At this time, the torque is small, and the stability of the fuselage 800 is slightly lower than that of the dual fuselage stabilizer 600, but the structure is more simple.
  • the position of the fuselage stabilizer 600 can be set in other ways.
  • the fuselage stabilizer 600 can be installed on the rotor bracket 500.
  • the fuselage stabilizer 600 should be installed at a position with a large arm as much as possible to improve power efficiency.
  • the fuselage stabilizer 600 is based on another type of deflector technology, and its stable deflector adopts the principle of fixed wing. Both surfaces of the stable deflector face the rotor airflow. The pressure difference generated by the downwash airflow on the two surfaces of the stable deflector generates torque, which has high power efficiency, but is easily affected by external airflow.
  • the fuselage stabilizer 600 is based on the implementation of the fan.
  • the fan is installed on the fuselage 800.
  • the thrust direction is preferably parallel to the X axis. Adjusting the rotation speed of the fan can control the magnitude of the torque. You can use two fans whose winds are opposite to generate torque in two directions, or set two sets of fan blades in the fan. The two sets of fan blades have opposite wind directions so that the fan can output the size when rotating clockwise or counterclockwise.
  • the torque is basically the same, and the direction of the torque can be controlled by controlling the rotation direction of the fan.
  • FIG. 3 shows another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131b, a second rotating mechanism 132b, and a third rotating mechanism 133b.
  • the rotor tilting device 100 further includes a first adapter bracket 121b.
  • the first adapter bracket 121b is rotatably connected to the fuselage 800 through the first rotation mechanism 131b; the two rotor brackets 500 are rotatably connected to the first adapter bracket 121b through the second rotation mechanism 132b and the third rotation mechanism 133b, the first rotation
  • the mechanism 131b has a shafting structure, and the rotation controller 300 is connected.
  • the second rotation mechanism 132b and the third rotation mechanism 133b have an articulated structure.
  • the structure of this embodiment is a modification of the rotor tilting device 100 of the unmanned aerial vehicle shown in FIG. 1, the only difference is that: the first adapter bracket 121b of FIG. 3 has three ends 1211b, one of which The head 1211b is connected to the first rotation mechanism 131b, the other two ends 1211b are connected to the two rotor brackets 500 through the second rotation mechanism 132b and the third rotation mechanism 133b, and the first adapter bracket 121a shown in FIG. 1 is two Each end 1211a has a middle portion connected to the first rotating mechanism 131a.
  • the rotating mechanism is divided into a first rotating mechanism 131c, a second rotating mechanism 132c, and a third rotating mechanism 133c.
  • the rotor tilting device 100 further includes a first adapter bracket 121c and a third Two adapter bracket 122c.
  • the first adapter bracket 121c is rotatably connected to the fuselage 800 through the first rotation mechanism 131c
  • the second adapter bracket 122c is rotatably connected to the first adapter bracket 121c through the second rotation mechanism 132c
  • One end 1221c of the receiving bracket 122c is fixedly connected
  • the other rotor bracket 500 is rotatably connected to the other end 1221c of the second adapter bracket 122c through the third rotating mechanism 133c.
  • the second rotation mechanism 132c has a shaft structure, and a rotation controller 300 is connected.
  • the first rotating mechanism 131c and the third rotating mechanism 133c are hinged structures. This embodiment differs from the structure shown in FIG. 2 in the folding method.
  • the folding method is that the first rotating mechanism 131c moves counterclockwise toward the body The 810 direction rotates 90° and the third rotation mechanism 133c rotates 180° clockwise in the direction of the main body 810.
  • the second adapter bracket 122c of this embodiment has a structure of two ends 1221c, similar to the first adapter bracket 121b shown in FIG. 3, the second adapter bracket 122c is also set as The modification of the three-terminal structure has the same function as the two-terminal structure.
  • the rotating mechanism is divided into a first rotating mechanism 131d, a second rotating mechanism 132d, and a third rotating mechanism 133d.
  • the rotor tilting device 100 further includes a first adapter bracket 121d, a third Two adapter brackets 122d.
  • the first adapter bracket 121d is rotatably connected to the fuselage 800 through the first rotation mechanism 131d
  • the second adapter bracket 122d is rotatably connected to the first adapter bracket 121d through the second rotation mechanism 132d
  • the receiving bracket 122d is fixedly connected
  • the other rotor bracket 500 is rotatably connected to the second adapter bracket 122d through the third rotating mechanism 133d.
  • the first rotation mechanism 131d has a shafting structure and is connected with a rotation controller 300.
  • the second rotation mechanism 132d and the third rotation mechanism 133d are hinged structures, and the folding manner of this structure is similar to the drone shown in FIG.
  • Embodiment A feature of a group of drones is that each lift device 200 includes at least two rotors 210, and the rotation torque of the rotor 210 in each lift device 200 can cancel each other.
  • this group of embodiments provides a multi-rotor drone with a yaw controller 700, used to offset the rotation torque of the rotor 210 and control the yaw motion of the drone.
  • FIG. 7 shows a specific embodiment of the unmanned aerial vehicle of this embodiment, including a fuselage 800, two rotor supports 500, two lift devices 200, a yaw controller 700, and a rotor tilt device 100.
  • the lift device 200 includes a motor 220 and a rotor 210.
  • the motor 220 is mounted on the rotor bracket 500 and the rotor 210 is mounted on the motor shaft.
  • the lifting device 200 of the drone in this embodiment is not limited to include one motor 220 and one rotor 210, for example, it may include two rotors 210 rotating in the same direction, and the working principle is the same as that of the single rotor 210.
  • the single-rotor mode is described as an example.
  • the fuselage 800, rotor support 500, and rotor tilting device 100 of the UAV shown in FIG. 7 are the same as the UAV shown in FIG. 1 and will not be described in detail.
  • the drone shown in FIG. 7 is provided with a yaw controller 700.
  • the yaw controller 700 is installed on the rotor bracket 500 under the rotor 210.
  • the flight control of the unmanned aerial vehicle of this embodiment is different from the group of unmanned aerial vehicles of the embodiment, and the only difference is the yaw control. Since the rotation torque of the rotor 210 in each lift device 200 of the unmanned aerial vehicle of this group of embodiments cannot be offset by itself, this means that the Y-axis motion control and yaw motion control cannot be achieved at the same time by adjusting the rotation speed of the rotor 210, so this implementation
  • the UAV is equipped with a yaw controller 700, which can output the torque that causes the UAV to produce yaw motion, which is used to offset the difference in rotor rotation torque generated by the two lift devices 200 or control the UAV Yaw movement.
  • the yaw controller 700 of the UAV shown in FIG. 7 includes a yaw deflector 710 and a yaw servo controller (not shown), and its working principle is: the yaw deflector 710 adopts the fixed-wing principle and is in the rotor Below 210, the downwash airflow of rotor 210 creates a pressure difference between the two surfaces of yaw deflector 710, which creates a torque that causes the UAV to yaw; the yaw diversion is controlled by the yaw servo controller The blade 710 faces the angle of attack of the airflow of the rotor 210 and controls the magnitude and direction of the yaw moment.
  • the yaw controller 700 of the UAV shown in FIG. 7 includes only one yaw deflector 710. In another embodiment of the present application, a plurality of yaw deflectors 710 are provided to increase the yaw moment. It should be noted that it is also feasible to provide only one yaw controller 700, but this asymmetric structure control is more complicated; in addition to being installed on the rotor bracket 500, the yaw controller 700 can also be installed on the fuselage 800 or other The position where the rotor airflow passes; the yaw controller 700 should be installed as far as possible at the position where the arm is the largest, in order to improve the power supply efficiency.
  • the yaw controller 700 adopts a fan implementation, and uses the thrust of the fan to generate a yaw moment.
  • the yaw deflector 710 of the yaw controller 700 of the unmanned aerial vehicle shown in FIG. 7 can be rotated to be parallel to the rotor support 500, and does not affect the folding and recovery of the rotor support 500.
  • the drone shown in FIG. 7 further includes a fuselage stabilizer 600, which is the same as the drone shown in FIG. 1 and will not be described in detail.
  • FIGS. 3 and 4 The structure shown in Fig. 6 and its modification are feasible methods.
  • the second group of drones is provided with a yaw controller 700 to control the yaw movement .
  • the UAV uses the thrust of the tilting rotor 210 to realize the yaw control of the UAV.
  • FIG. 8 shows a specific embodiment of an unmanned aerial vehicle including a fuselage 800, two rotor supports 500, two lift devices 200, and a rotor tilt device 100.
  • the lift device 200 and the rotor support 500 are the same as the unmanned aerial vehicle shown in FIG. 7 and will not be described in detail.
  • the drone shown in FIG. 8 further includes a fuselage stabilizer 600, which is the same as the drone shown in FIG. 1 and will not be described in detail.
  • the rotation mechanism is divided into a first rotation mechanism 131e, a second rotation mechanism 132e, a third rotation mechanism 133e, and a fourth rotation mechanism 134e.
  • the rotor tilt device 100 further includes a first adapter bracket 121e and a second adapter bracket 122e.
  • the first adapter bracket 121e and the second adapter bracket 122e are rotatably connected to the fuselage 800 through the first rotation mechanism 131e and the second rotation mechanism 132e, respectively, and the two rotor brackets 500 are respectively coupled through the third rotation mechanism 133e and the fourth rotation mechanism 134e is rotatably connected to the first adapter bracket 121e and the second adapter bracket 122e.
  • the first rotation mechanism 131e and the second rotation mechanism 132e adopt a shafting structure and are connected with a rotation controller 300.
  • the first rotary mechanism 131e and the second rotary mechanism 132e can control the two rotor brackets 500 to independently rotate.
  • the third rotating mechanism 133e and the fourth rotating mechanism 134e adopt an articulated structure, which is used for folding and recycling of the drone.
  • the folding method is similar to the drone shown in FIG.
  • the unmanned aerial vehicle shown in FIG. 8 corresponds to the first group of unmanned aerial vehicles and the second group of unmanned aerial vehicles.
  • the only difference is the yaw control.
  • the principle of yaw control is: through the first rotating mechanism 131e and the second
  • the rotating mechanism 132e can control the two rotors 210 to rotate at different angles, so that the thrusts of the two rotors 210 in the X axis are unequal, generate torque around the Z axis, counteract the difference in rotation torque of the two rotors 210, or achieve unmanned Aircraft yaw control.
  • one rotor 210 is tilted upward, and the other rotor 210 is tilted downward, which will generate a yaw torque that causes the drone to rotate in the direction of the arrow around the Z axis.
  • this embodiment is a modified structure of the rotor tilting device shown in FIG. 8: the third rotating mechanism 133e and the fourth rotating mechanism 134e of the structure shown in FIG. 8 are changed to The rotation mechanism (133f, 134f) of the shafting structure is connected to the rotation controller 300, and the first rotation mechanism 131e and the second rotation mechanism 132e are changed to the rotation mechanism (131f, 132f) of the hinge structure.
  • the rotor tilting device shown in FIG. 8 has other modified structures: 1.
  • the third rotating mechanism 133e is changed to a shafting structure and a rotation controller 300 is provided, and the first rotating mechanism 131e is changed to an articulated structure, As another embodiment of the present application; 2.
  • the fourth rotating mechanism 134e is changed to a shafting structure and a rotation controller 300 is provided, and the second rotating mechanism 132e is changed to an articulated structure, as another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131g, a second rotating mechanism 132g, a third rotating mechanism 133g, a fourth rotating mechanism 134g, the rotor tilting device 100 further includes a first rotating The receiving bracket 121g and the second adapter bracket 122g.
  • the first adapter bracket 121g is rotatably connected to the fuselage 800 through the first rotating mechanism 131g; the second adapter bracket 122g is rotatably connected to the first adapter bracket 121g through the third rotating mechanism 133g; one of the rotor brackets 500 is rotated through the second
  • the mechanism 132g is rotatably connected to the first adapter bracket 121g, and the other rotor bracket 500 is rotatably connected to the second adapter bracket 122g through the fourth rotation mechanism 134g.
  • the first rotating mechanism 131g and the third rotating mechanism 133g are a shafting structure and are connected with a rotation controller 300, and the second rotating mechanism 132g and the fourth rotating mechanism 134g are an articulated structure, and the structure is folded in a manner similar to that shown in FIG. 2 machine. It is worth noting that the tilt control of the two rotors 210 in this embodiment is the same as the drone shown in FIG. 8, but the implementation is different.
  • the first rotating mechanism 131g controls the two rotors The 210 rotates synchronously, and the third rotating mechanism 133g controls one of the rotors 210 to rotate independently, so that the two rotors 210 rotate at different angles.
  • the first adapter bracket 121g of this embodiment has a structure of 1211g at both ends. Similar to the first adapter bracket 121b shown in FIG. 3, the first adapter bracket 121g of this embodiment also has a modification of the three-terminal structure. As another embodiment of the present application.
  • the modified structure of this embodiment also includes: changing the third rotating mechanism 133g to a hinged structure, and changing the fourth rotating mechanism 134g to a shafting structure and connected with a rotation controller 300, as another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131h, a second rotating mechanism 132h, a third rotating mechanism 133h, a fourth rotating mechanism 134h, and the rotor tilting device 100 further includes a first rotating mechanism
  • the first adapter bracket 121h is rotatably connected to the fuselage 800 by the first rotating mechanism 131h; the second adapter bracket 122h is rotatably connected to the first adapter bracket 121h by the second rotating mechanism 132h; the third adapter bracket 123h is connected by the third The rotation mechanism 133h is rotatably connected to the second adapter bracket 122h; one of the rotor brackets 500 is fixedly connected to the second adapter bracket 122h, and the other rotor bracket 500 is rotatably connected to the third adapter bracket 123h through the fourth rotation mechanism 134h.
  • the second rotation mechanism 132h and the fourth rotation mechanism 134h are a shafting structure and are connected with a rotation controller 300, and the first rotation structure 131h and the third rotation mechanism 133h are an articulated structure. machine. Similar to the first adapter bracket 121b shown in FIG. 3, the second adapter bracket 122h of this embodiment is a two-terminal structure, and has a modification of a three-terminal structure, as another embodiment of the present application.
  • the modified structure of this embodiment also includes: changing the fourth rotating mechanism 134h to a hinged structure, and changing the third rotating mechanism 133h to a shafting structure and connected with a rotation controller 300, as another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131i, a second rotating mechanism 132i, a third rotating mechanism 133i, and a fourth rotating mechanism 134i.
  • the rotor tilting device 100 further includes a first rotating mechanism Connect the bracket 121i and the second adapter bracket 122i.
  • the first adapter bracket 121i is rotatably connected to the fuselage 800 through the first rotating mechanism 131i; the second adapter bracket 122i is rotatably connected to the first adapter bracket 121i through the second rotating mechanism 132i; the two rotor brackets 500 are respectively connected through the third
  • the rotation mechanism 133i and the fourth rotation mechanism 134i are rotatably connected to the second adapter bracket 122i.
  • the second rotation mechanism 132i and the third rotation mechanism 133i are of a shafting structure and connected with a rotation controller 300, and the first rotation mechanism 131i and the fourth rotation mechanism 134i are of an articulated structure. machine. Similar to the first adapter bracket 121b shown in FIG. 3, the second adapter bracket 122i of this embodiment is a two-terminal structure with a modification of a three-terminal structure, as another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131j, a second rotating mechanism 132j, a third rotating mechanism 133j, and a fourth rotating mechanism 134j.
  • the rotor tilting device 100 further includes a first rotating mechanism Connect the bracket 121j and the second adapter bracket 122j.
  • the first adapter bracket 121j is rotatably connected to the fuselage 800 through the first rotation mechanism 131j; the second adapter bracket 122j is rotatably connected to the first adapter bracket 121j through the second rotation mechanism 132j; one of the rotor brackets 500 is rotated through the fourth
  • the mechanism 134j is rotatably connected to the first adapter bracket 121j, and the other rotor bracket 500 is rotatably connected to the second adapter bracket 122j through the third rotation mechanism 133j.
  • the second rotating mechanism 132j and the fourth rotating mechanism 134j have a shafting structure and are connected with a rotation controller 300, and the first rotating mechanism 131j and the third rotating mechanism 133j have an articulated structure. machine.
  • the modified structure of this embodiment includes: the second rotation mechanism 132j is changed to a hinge structure, and the third rotation mechanism 133j is changed to a shafting structure and a rotation controller 300 is connected as another embodiment of the present application.
  • the rotating mechanism is divided into a first rotating mechanism 131k, a second rotating mechanism 132k, a third rotating mechanism 133k, and a fourth rotating mechanism 134k.
  • the rotor tilting device 100 further includes a first rotating mechanism The receiving bracket 121k and the second adapter bracket 122k.
  • the first adapter bracket 121k is rotatably connected to the fuselage 800 through the first rotation mechanism 131k; the second adapter bracket 122k is rotatably connected to the first adapter bracket 121k through the second rotation mechanism 132k; the two rotor brackets 500 are respectively connected through the third
  • the rotation mechanism 133k and the fourth rotation mechanism 134k are rotatably connected to the second adapter bracket 122k.
  • the first rotating mechanism 131k and the third rotating mechanism 133k are of a shafting structure and connected with a rotation controller 300, and the second rotating mechanism 132k and the fourth rotating mechanism 134k are of an articulated structure. machine.
  • the rotation mechanism is divided into a first rotation mechanism 131m, a second rotation mechanism 132m, a third rotation mechanism 133m, and a fourth rotation mechanism 134m.
  • the rotor tilting device 100 further includes a first rotation The receiving bracket 121m, the second adapter bracket 122m and the third adapter bracket 123m.
  • the first adapter bracket 121m is rotatably connected to the fuselage 800 through the first rotation mechanism 131m; the second adapter bracket 122m is rotatably connected to the first adapter bracket 121m through the second rotation mechanism 132m; the third adapter bracket 123m is connected through the third
  • the rotation mechanism 133m is rotatably connected to the second adapter bracket 122m, and one of the rotor brackets 500 is fixedly connected to the second adapter bracket 122m; the other rotor bracket 500 is rotatably connected to the third adapter bracket 123m through the fourth rotation mechanism 134m.
  • the first rotating mechanism 131m and the third rotating mechanism 133m are of the shafting structure and connected with the rotation controller 300, and the second rotating mechanism 132m and the fourth rotating mechanism 134m are of the hinged structure, and the structure is folded in a manner similar to that shown in FIG. 5 machine.
  • the modified structure of this embodiment includes: changing the fourth rotating mechanism 134m to a shafting structure and connecting a rotation controller 300, and changing the third rotating mechanism 133m to a hinged structure as another embodiment of the present application.
  • the above-mentioned rotor tilting device 100 has one thing in common: it includes two rotating mechanisms connected to the rotation controller 300, which can independently control the inclination angle of the two rotors 210 around the Y axis.
  • the drone performs acceleration and deceleration flight along the Y axis of the drone, or when there is wind in the Y axis, the fuselage 800 needs to tilt around the X axis, and then the rotor 210 is tilted to generate Y.
  • the axial thrust realizes the Y-axis motion control of the drone. Therefore, in the first three groups of embodiments, when the drone is flying, the fuselage 800 needs to be tilted around the X axis from time to time, and the fuselage is not stable around the X axis.
  • the drone of the first three groups of embodiments rotates smoothly around the Y axis, because the X-axis motion control is achieved by tilting the rotor, and the fuselage 800 does not need to tilt.
  • the torque generated by the fuselage stabilizer 600 can counteract the external force in the X axis, further improving the stability of the fuselage around the Y axis.
  • This group of embodiments provides a set of multi-rotor drones with stable fuselages around the X axis.
  • the characteristics of this type of drones are: Y-axis motion control also uses tilt rotor technology.
  • the unmanned aerial vehicle shown in FIG. 16 is a specific embodiment of the unmanned aerial vehicle of this group of embodiments, including a fuselage 800, two rotor supports 500, two lift devices 200, and a rotor tilt device 100. Among them, the lift device 200 and the rotor support 500 are the same as the unmanned aerial vehicle shown in FIG. 7 and will not be described in detail.
  • the drone shown in FIG. 16 further includes a fuselage stabilizer 600, which is the same as the drone shown in FIG. 1 and will not be described in detail.
  • the rotation mechanism is divided into a first rotation mechanism 131n, a second rotation mechanism 132n, and a third rotation mechanism 133n.
  • the rotor tilting device 100 further includes a first adapter bracket 121n and a second adapter bracket 122n.
  • the first adapter bracket 121n is rotatably connected to the fuselage 800 through the first rotation mechanism 131n
  • the second adapter bracket 122n is rotatably connected to the first adapter bracket 121n through the second rotation mechanism 132n
  • the connecting bracket 122n is fixedly connected
  • the other rotor bracket 500 is rotatably connected to the second adapter bracket 122n through the third rotating mechanism 133n.
  • the first rotation mechanism 131n and the second rotation mechanism 132n have a shaft structure and the rotation controller 300 is connected.
  • the third rotation mechanism 133n is an articulated structure, and the first rotation mechanism 131n and the third rotation mechanism 133n realize the folding and recovery of the drone.
  • the flight control principle of the UAV shown in Figure 16 X-axis motion control, lift control and yaw motion control are the same as the UAV shown in Figure 7, the difference is that the Y-axis motion control, the control method is :
  • the first rotation mechanism 131n can control the rotor bracket 500 to rotate around the rotation axis of the first rotation mechanism 131n. Note that the rotation axis of the first rotation mechanism 131n is parallel to the X axis of the drone. Therefore, the first rotation The mechanism 131n can control the rotation of the rotor 210 to generate thrust in the Y axis, and realize movement control in the Y axis.
  • the lift difference generated by the two lift devices 200 is no longer used for the U-axis motion control of the UAV, but can be used to control the tilting movement of the fuselage 800 around the X axis due to the external force .
  • the control method is: according to the tilting movement of the fuselage 800 around the X axis, adjust the lift difference generated by the two lift devices 200 to produce a The torque of the reverse rotation maintains the stability of the rotation movement of the fuselage 800 around the X axis.
  • first rotating mechanism 131n of the drone shown in FIG. 16 is also used for folding and recycling of the drone, and the folding method is the same as that of the drone shown in FIG.
  • folding method is the same as that of the drone shown in FIG.
  • the body 800 is changed to include a first body 830, a second body 840, and a steering rotation mechanism 850 (shown in FIG. 17).
  • the steering rotation mechanism 850 is connected to the rotation controller 300, and the second body 840 is connected to the One body 830 and the second body 840 are equipped with the rotor tilting device 100, so that these drones can be improved into drones with stable rotation movement around the X axis.
  • the drone shown in FIG. 17 is an improvement of the drone shown in FIG.
  • a first body 830, a second body 840, and a steering rotation mechanism 850 are added to the arm 820, and the steering rotation mechanism 850 is connected to a rotation controller 300, the control rotation mechanism 850 is used to control the tilting of the rotor 210, and control the movement of the UAV in the Y axis.
  • the above improvement is equivalent to adding a rotating mechanism for controlling the tilting of the rotor 210 to the rotor tilting device 100.
  • the drone shown in FIG. 17 is very similar to the drone shown in FIG. 16, except that the rotating mechanism 131n in FIG. 16 is used not only for the tilt angle control of the rotor 210, but also for folding, while FIG.
  • the corresponding rotation mechanism 850 in the corresponding position is only used to control the inclination of the rotor 210, which has one more rotation mechanism for folding than the drone shown in FIG. 16, and the folding effect of the drone shown in FIG. 17 is similar to the unmanned one shown in FIG. 2.
  • the folding effect of the drone shown in FIG. 16 is similar to the drone shown in FIG. 5, and it can be seen that the drone obtained by using the above improved method has a better folding effect.
  • the rotor tilting device 100 of the drone shown in FIG. 16 is actually a modification of the rotor tilting device 100 of the drone shown in FIG. 4, that is, the first rotating mechanism 131c of the drone shown in FIG. 4 is changed to an axis
  • the structure is connected to the rotation controller 300.
  • the first rotating mechanism (131h, 131i, 131j) of the rotor tilting device and its modified structure shown in FIGS. 11-13 is changed to a shaft structure and a rotation controller is provided 300, change the second tilting mechanism (132d, 132k, 132m) of the rotor tilting device and its modified structure shown in FIG. 6, FIG. 14 and FIG. Group embodiment drone.
  • the drone does not need to be provided with a yaw controller 700, and the tilting rotor can be used The thrust of 210 achieves yaw control.
  • the UAV rotor tilting device 100 adopts the improved structure of FIG. 6, FIG. 14 and FIG. 15 and their modified structures described in the previous section, the unmanned The folding effect of the machine.
  • the improvement method is: replace the second adapter bracket (122d, 122k, 122m) of the rotor tilting device 100 with two sub-adapter brackets, and the two sub-adapter brackets are connected and rotated by another rotating mechanism to achieve folding or Unfold.
  • the structure shown in FIG. 18 is a further improvement of the improved structure corresponding to FIG. 15, in FIG.
  • the improved method described in the previous subsection of the second rotating mechanism 132m is changed to the shafting structure and a rotation controller 300 is provided; the improved method in this section Further, the second adapter bracket 122m is changed to include two sub-adapter brackets (122o1, 122o2) and a rotation mechanism 122o3.
  • the sub-adapter bracket 122o1 and the sub-adapter bracket 122o2 are rotationally connected through the rotation mechanism 122o3, so the purpose of the improvement is to increase
  • a rotating mechanism 122o3 improves the folding method to obtain a folding effect similar to that of the UAV shown in FIG. 2, and the second rotating mechanism 132m of the improved structure is used for tilt angle control of the rotor 210, and is no longer used for folding.
  • the second adapter bracket 122d of FIG. 6 and the second adapter bracket 122k of FIG. 14 can be improved by the above method and the same improvement effect can be obtained. Understandably, in specific implementation, the sub-adapter bracket 122o1 in FIG. 18 may be combined with the rotor bracket 500, that is, the rotor bracket 500 is directly connected to the sub-adapter bracket 122o2 through the rotation mechanism 122o3.
  • the drones in the above four groups of embodiments are clearly divided into two groups according to the direction of the rotation axis: the rotation axis of one group of rotation mechanisms is parallel to the Y axis of the drone The axis of rotation of the other set of rotating mechanisms is parallel to the X axis of the drone. The axes of rotation of the two sets of rotating mechanisms are perpendicular to each other. It should be noted that this regular structure is conducive to simplifying the design of the flight controller and is the preferred design. In fact, in principle, other asymmetric layouts are also feasible.
  • the rotation mechanism adopting the hinge structure can be changed to a shafting structure and a rotation controller 300 is provided, which is used to realize electric folding recovery of the drone or to assist in controlling the tilt angle of the rotor 210.
  • the rotating mechanism of the drone of the present application is also provided with a limit mechanism, which limits the rotation range of the rotor bracket 500; in addition, the rotating mechanism of the hinge structure is also provided with a locking mechanism, the locking mechanism can The rotor bracket 500 is locked in the deployed position.
  • the fuselage 800 structure of the drone includes a fuselage body 810 An arm 820 extending from one end thereof has an "L" shape.
  • one arm 820 is projected from each end of the fuselage body 810, the fuselage 800 is shaped like a "U", and the two lifting arms 820 are used to support the lifting device 200.
  • the supporting force is more balanced and suitable for larger drones.
  • the fuselages of the "L” and “U” structures form a space, and the lift device 200, the rotor support 500, and the rotor protective frame 400 can be folded integrally and recovered inside the space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

本申请公开一种可折叠多旋翼无人机。无人机采用倾转旋翼技术,通过旋翼倾转装置(100)控制旋翼(210)的倾角,控制旋翼(210)倾转的机构是一种与旋转控制器(300)连接的旋转机构,结构简单,控制方式直接准确,可控性好。无人机通过旋翼倾转装置(100)可以将旋翼支架(500)、升力装置(200)一体化地进行折叠回收,折叠方式简单、折叠后小巧,有很好的便携性和应用方便性。无人机采用倾转旋翼(210)实现飞行控制,机身(800)姿态不需要调整,飞行时可维持机身(800)平稳性,保证拍摄影像的效果。

Description

可折叠多旋翼无人机
本申请要求于2018年12月18日在中国专利局提交的、申请号为201811548025.X、发明名称为“可折叠多旋翼无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于无人机技术领域,涉及可折叠多旋翼无人机。
背景技术
随着微电子技术和新型材料的发展,消费级无人机(特别是直升型无人机)得到快速发展。早期的消费级直升型无人机是传统直升机的小型化,但是,传统直升机的倾斜盘结构太复杂、制造难度大、可靠性低,相应的,多旋翼无人机的结构简单、实现容易、可靠性高,目前多旋翼无人机已成为市场的主流,其中,四旋翼无人机是最主要的多旋翼无人机类型。
消费级无人机的核心应用是自拍。相比于较大型的航拍无人机,这种无人机飞得很低,其主要飞行轨迹是绕着人飞行,因此裸露的旋翼是一个很大的安全隐患。为了避免旋翼误伤人,理想的解决方案是将旋翼用一个封闭的防护框包裹起来,可是这却会带来便携性问题,而便携性是自拍无人机的一个关键技术指标。目前四旋翼无人机采用可折叠旋翼实现便携性,但是若用一个固定的防护框来包裹旋翼,防护框与旋翼的翼盘一样大,多个防护框的总面积将使无人机变得很大,失去便携性。如果采用可拆卸的防护框,那么每次收放无人机都需要拆装防护框,这种方式对于需要高频收放的自拍无人机会影响可用性。
除了旋翼防护问题,微型无人机还有一个问题是拍摄影像的稳定性。基于多旋翼无人机的飞行控制原理,无人机在加减速、风速变化或者风向变化等等情况下都需要做出俯仰运动和/或滚转运动,比如:前飞时无人机要低头使旋翼前倾产生前向的推力;而侧飞时无人机要侧倾使旋翼侧倾产生横向的推力;侧向有风时无人机要侧倾使旋翼侧倾抵抗风力。无人机飞行过程中,这种俯仰运动和滚转运动频繁并且幅度较大,严重影响相机的拍摄效果。解决上述问题的一个简单方法是采用数字图像防抖技术,不过数字图像防抖技术的作用有限。目前中高端多旋翼无人机的解决方法是将相机挂在一个云台上,由云台转动来抵消机身的倾转以获得比较令人满意的影像。但是,微型无人机由于机身轻,相较于较重的大型无人机,需要调整更大的俯仰角或滚转角才能产生足够的力完成飞行姿态控制,当遇到较大的风时,特别是风速和风向交变时,微型无人机就需要频繁地做出大幅度的俯仰运动或滚转运动,可能造成云台速度跟不上,导致影像效果不佳。
技术问题
本申请实施例的目的之一在于:提供一种可折叠多旋翼无人机,旨在解决旋翼无人机裸露旋翼的安全性差,而安装防护框后又导致便携性不好,以及机身不平稳的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种可折叠多旋翼无人机,包括:
机身;
两个旋翼支架;
两个升力装置,分别安装于两个所述旋翼支架,所述升力装置包括旋翼;以及
安装于所述机身上的旋翼倾转装置,所述旋翼倾转装置包括至少三个旋转机构,两个所述旋翼支架连接于所述旋转机构并通过所述旋转机构的旋转实现折叠或展开;其中至少一个所述旋转机构连接有用于控制该旋转机构旋转的旋转控制器,所述旋转控制器控制该旋转机构旋转以控制所述旋翼的倾角。
在一个实施例中,还包括偏航控制器,所述偏航控制器输出使所述可折叠多旋翼无人机产生偏航运动的力矩,用于所述可折叠多旋翼无人机的偏航运动控制。
在一个实施例中,还包括机身稳定器,所述机身稳定器输出使所述机身产生倾转运动的力矩,用于保持所述机身的平稳性。机身稳定器抑制风力导致的机身倾转运动,结合倾转旋翼技术,无人机飞行时的机身可维持平稳,保证拍摄影像的效果。
在一个实施例中,还包括可拆卸或固定安装在所述旋翼支架上的旋翼防护框,所述旋翼防护框为中空结构,所述旋翼置于所述旋翼防护框的内部,所述旋翼防护框用于防护所述旋翼。无人机通过旋翼倾转装置可以将旋翼支架、升力装置及固定安装的旋翼防护框一体化地进行折叠回收,折叠方式简单、折叠后小巧,有很好的便携性和应用方便性。
有益效果
本申请实施例提供的可折叠多旋翼无人机的有益效果在于:无人机通过旋翼倾转装置可以将旋翼支架、升力装置一体化地进行折叠回收,折叠方式简单、折叠后小巧,有很好的便携性和应用方便性。无人机采用倾转旋翼技术,控制旋翼倾转的机构是一种与旋转控制器连接的旋转机构,结构简单,控制方式直接准确,可控性好。通过旋翼倾转装置控制旋翼的倾角,无人机飞行时的机身可维持平稳,保证拍摄影像的效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1(a)、图1(b)、图1(c)分别为本申请一组第一实施例提供的可折叠多旋翼无人机的立体图、局部放大图、分解图;
图2 (a)、图2(b)分别为图1的可折叠多旋翼无人机在折叠回收后的立体图与旋翼倾转装置放大图;
图3为本申请一组第二实施例提供的旋翼倾转装置结构图;
图4(a)、图4(b)为本申请一组第三实施例提供的可折叠多旋翼无人机的立体图与旋翼倾转装置放大图;
图5(a)、图5(b)分别为图4的可折叠多旋翼无人机在折叠回收后的立体图与局部放大图;
图6为本申请一组第四实施例提供的旋翼倾转装置结构图;
图7为本申请二组实施例提供的可折叠多旋翼无人机的立体图;
图8(a)、图8(b)分别为本申请三组第一实施例提供的可折叠多旋翼无人机的立体图与局部放大图;
图9为本申请三组第二实施例提供的旋翼倾转装置结构图;
图10为本申请三组第三实施例提供的旋翼倾转装置结构图;
图11为本申请三组第四实施例提供的旋翼倾转装置结构图;
图12为本申请三组第五实施例提供的旋翼倾转装置结构图;
图13为本申请三组第六实施例提供的旋翼倾转装置结构图;
图14为本申请三组第七实施例提供的旋翼倾转装置结构图;
图15为本申请三组第八实施例提供的旋翼倾转装置结构图;
图16(a)、图16 (b)、图16(c)分别为本申请四组第一实施例提供的可折叠多旋翼无人机的立体图、局部放大图、分解图;
图17(a)、图17(b)分别为本申请四组第二实施例提供的可折叠多旋翼无人机的立体图与局部放大图;
图18为本申请四组第三实施例提供的旋翼倾转装置结构图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
在本申请实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
请参阅图1及图2,在本申请一个实施例中,提供一种可折叠多旋翼无人机,其包括机身800、两个旋翼支架500、两个升力装置200、旋翼倾转装置100。两个升力装置200分别安装于两个旋翼支架500,升力装置200包括旋翼210。旋翼倾转装置100安装于机身800上,旋翼倾转装置100包括至少三个旋转机构,两个所述旋翼支架500连接于旋转机构并通过旋转机构的旋转实现折叠或展开;其中至少一个旋转机构连接有用于控制该旋转机构旋转的旋转控制器300,旋转控制器300控制该旋转机构旋转以控制旋翼210的倾角。
无人机通过旋翼倾转装置可以将旋翼支架500、升力装置200一体化地进行折叠回收,折叠方式简单、折叠后小巧,有很好的便携性和应用方便性。无人机采用倾转旋翼技术,控制旋翼倾转的机构是一种与旋转控制器300连接的旋转机构,结构简单,控制方式直接准确,可控性好。通过旋翼倾转装置100控制旋翼210的倾角,无人机飞行时的机身800可维持平稳,保证拍摄影像的效果。
需要说明的是,旋转机构可以是轴系结构、铰接结构或任意能实现所需功能的旋转结构。
轴系结构是指以轴承和传动轴为主要部件的旋转结构。比如图1所示的第一旋转机构131a,第一转接支架121a的中间部位设有传动轴1311a,机身800的安装孔内设有轴承1312a,第一转接支架121a通过传动轴1311a和轴承1312a转动连接于机身800。要说明的是,相反设置,即在第一转接支架121a设置轴承及在机身800设置传动轴,也是可行的。轴系结构的旋转机构通常用于需要较高精度旋转控制的应用场合。
旋转控制器300为能输出预定转角的机构。比如图1所示的旋转控制器300可以是一个直流电机301和齿轮组(302、303)构成的伺服器,第一旋转机构131a连接有旋转控制器300,直流电机301带动主动齿轮302转动,第一转接支架121a固定有从动齿轮303,主动齿轮302与从动齿轮303啮合传动,进而带动第一转接支架121a转动。
铰接结构是指用铰链或销轴实现两个结构件转动连接的传动结构。比如图1所示的第二旋转机构132a,销轴穿设于旋翼支架500的安装孔,且销轴固定于第一转接支架121a,使得旋翼支架500转动连接于第一转接支架121a。
在本申请另一实施例中,还设置了机身稳定器600,用于抵消外力导致机身800的倾转运动,其中,倾转运动指机身800的俯仰运动和滚转运动,维持无人机飞行时的机身800平稳性,使得无人机拍摄的影像效果好。
在本申请另一实施例中,旋翼防护框400可拆卸式或固定安装于旋翼支架500上,将旋翼210包裹其中,可以是全封闭中空结构,用于旋翼210的防护和避免旋翼210伤人。
无人机通过旋翼倾转装置100可以将旋翼支架500、升力装置200和旋翼防护框400一体化地进行折叠回收,无人机折叠后小巧、折叠方式简单。由于旋翼防护框400可以固定安装,每次收放无人机时不需要拆装旋翼防护框400,保证了旋翼210安全性的同时,仍有很好的便携性和应用方便性。无人机采用倾转旋翼技术,控制旋翼210倾转的机构是一种与旋转控制器300连接的旋转机构,结构简单,控制方式直接准确,可控性好。
实施例一组:
本组实施例提供一种四旋翼无人机。本组实施例无人机有多种实施方式,图1所示为一个具体实施例,包括机身800、两个旋翼支架500、两个升力装置200、旋翼倾转装置100。
在本申请另一实施例中,升力装置200包括两个电机220和两个旋翼210,两个电机220一上一下安装于旋翼支架500上,两个旋翼210分别安装在两个电机轴上,两个旋翼210旋转方向相反,其旋转扭矩相互抵消。要说明的是,升力装置200可以包括多于两个旋翼210,只要所有旋翼210的旋转扭矩能相互抵消,其工作原理与双旋翼210模式相同,下面以双旋翼模式为例进行描述。两个升力装置200分别安装于两个旋翼支架500上。
在本申请另一实施例中,机身800包括机身主体810和机臂820,机身主体810容置无人机的电池、传感器和相机等大部分功能模块,分配了无人机的大部分重量,其一个端部伸出一个机臂820。
在本申请另一实施例中,旋转机构分为第一旋转机构131a、第二旋转机构132a、第三旋转机构133a,旋翼倾转装置100包括第一转接支架121a。第一转接支架121a通过第一旋转机构131a转动连接于机身800的机臂820。第一转接支架121a有两个端头1211a,两个端头1211a分别通过第二旋转机构132a和第三旋转机构133a转动连接于两个旋翼支架500,中间部位与第一旋转机构131a连接。第一旋转机构131a为轴系结构,连接有旋转控制器300。通过旋转控制器300可以控制两个旋翼支架500绕着第一旋转机构131a的旋转轴同步旋转。第二旋转机构132a和第三旋转机构133a采用铰接结构,用于无人机的折叠回收,如图2所示,将图1所示无人机的两个旋翼支架500分别绕着第二旋转机构132a和第三旋转机构133a往下旋转90度,即可将两个旋翼支架500及安装其上的升力装置200一体化地折叠回收。
上述无人机的飞行控制原理为:飞行时,无人机的机身主体810处于旋翼210下方,机身主体810包含无人机的大部分重量,基于其重力的支撑作用,通过第一旋转机构131a可以控制两个旋翼支架500绕着第一旋转机构131a的旋转轴旋转,注意本实施例的第一旋转机构131a的旋转轴线与无人机的Y轴线是平行的,因此,可以控制无人机在X轴向的运动,即沿着X轴前后飞行或抵消X轴向上的风力作用;通过调整旋翼210转速,控制两个升力装置200中的旋翼210产生的升力差,同时保持每个升力装置200中的两个旋翼210旋转扭矩相互抵消,可以控制无人机在Y轴向的运动,即沿着Y轴前后飞行或抵消Y轴向上的风力作用;通过调整旋翼210转速,控制旋翼210产生的总升力,同时保持每个升力装置200的两个旋翼210旋转扭矩相互抵消,实现无人机的升降控制;通过调整旋翼210转速,使每个升力装置200的两个旋翼210旋转扭矩不能相互抵消,产生偏航力矩,控制无人机的偏航运动。
上述无人机飞行控制原理的技术特性是:旋翼210的推力不能用于控制机身800绕着Y轴的旋转运动,决定机身800绕着Y轴旋转运动的主要作用力为风力(或其它外力)和机身重力,当受到风力作用或加减速时,机身800会以无人机的升力中心为支点倾斜,倾斜角度由风力和机身重力的大小决定。
在本申请另一实施例中,图1所示无人机还包括两个机身稳定器600,两个机身稳定器600设于机身800的两个端部。机身稳定器600包括稳定导流片610和稳定伺服控制器,稳定导流片610处于旋翼210的下方,利用旋翼210的下洗气流产生使机身800绕着Y轴旋转的力矩,通过稳定伺服控制器控制稳定导流片610旋转,调整相对于旋翼气流的角度来调整力矩的大小,从而抵消外力(如风力)导致的机身800绕着Y轴的倾转运动,保证无人机机身绕着Y轴的旋转运动平稳性。
图1所示的机身稳定器600的具体工作原理是:其稳定导流片610的一个表面迎向旋翼210气流,旋翼气流在该表面产生压力,从而输出使机身800绕着Y轴旋转的力矩;稳定伺服控制器控制稳定导流片610转动,调整迎向气流的表面的大小,从而调整产生的力矩的大小。比如,如果风力使得机身800绕着Y轴机头向上旋转,则靠近机臂820端的机身稳定器600的稳定导流片610旋转往机身靠拢减小力矩,机头端的机身稳定器600的稳定导流片610旋转远离机身增大力矩,从而产生抑制机身800向上旋转的力矩。
图1所示的每个机身稳定器600包括两个稳定导流片610。在本申请另一实施例中,机身稳定器600只包含一个稳定导流片610,不过,这种实施方式的机身稳定器600会附带产生使机身800绕着X轴旋转的力矩,控制较为复杂。要说明的是,只在一个机身800端部设置一个机身稳定器600也是可行的,此时力矩较小,机身800的平稳性比设置双机身稳定器600略低,不过结构较简单。
要说明的是,机身稳定器600的设置位置可以有其它方式,比如,可以设于旋翼支架500上,机身稳定器600应尽可能设置在力臂较大的位置,可以提高电源效率。
在本申请另一实施例中,机身稳定器600基于另一种导流片技术,其稳定导流片采用固定翼原理,稳定导流片的两个表面均迎向旋翼气流,利用旋翼的下洗气流在稳定导流片的两个表面产生的压力差来产生力矩,这种方式电源效率高,不过容易受到外界气流的影响。
在本申请另一实施例中,机身稳定器600基于风扇的实现方式,风扇安装于机身800上,其推力方向优选平行于X轴,调整风扇的转速可以控制力矩的大小。可以使用两个风扇,其风力向相反以产生两个方向的力矩,或者在风扇内设置两组扇叶,两组扇叶的出风方向相反,使风扇顺时针或逆时针旋转时可以输出大小基本相同的力矩,控制风扇的旋转方向可以控制力矩的方向。
实施例一组无人机的旋翼倾转装置100有多种实施方式,下面是一些实施例:
图3所示为本申请另一种实施例,旋转机构分为第一旋转机构131b、第二旋转机构132b和第三旋转机构133b,旋翼倾转装置100还包括第一转接支架121b。第一转接支架121b通过第一旋转机构131b转动连接于机身800;两个旋翼支架500分别通过第二旋转机构132b和第三旋转机构133b转动连接于第一转接支架121b,第一旋转机构131b为轴系结构,连接有旋转控制器300,第二旋转机构132b和第三旋转机构133b为铰接结构。值得注意的是,本实施例结构是图1所示无人机的旋翼倾转装置100的改型,唯一不同点是:图3的第一转接支架121b有三个端头1211b,其中一个端头1211b与第一旋转机构131b连接,另外两个端头1211b通过第二旋转机构132b和第三旋转机构133b连接于两个旋翼支架500,而图1所示的第一转接支架121a为两个端头1211a,其中间部位与第一旋转机构131a连接。
图4所示为本申请另一种实施例,旋转机构分为第一旋转机构131c、第二旋转机构132c和第三旋转机构133c,旋翼倾转装置100还包括第一转接支架121c和第二转接支架122c。第一转接支架121c通过第一旋转机构131c转动连接于机身800,第二转接支架122c通过第二旋转机构132c转动连接于第一转接支架121c,其中一个旋翼支架500与第二转接支架122c的一个端头1221c固定连接,另一个旋翼支架500通过第三旋转机构133c转动连接于第二转接支架122c的另一个端头1221c。第二旋转机构132c为轴系结构,连接有旋转控制器300。第一旋转机构131c和第三旋转机构133c为铰接结构,本实施例与图2所示结构的折叠方式不同,如图5所示,其折叠方式为第一旋转机构131c逆时针往机身主体810方向旋转90°及第三旋转机构133c顺时针往机身主体810方向旋转180°。要说明的是,本实施例的第二转接支架122c为两个端头1221c结构,类似于图3所示的第一转接支架121b,本实施例也有将第二转接支架122c设为三端头结构的改型,其功能与两端头结构相同。
图6所示为本申请另一种实施例,旋转机构分为第一旋转机构131d、第二旋转机构132d和第三旋转机构133d,旋翼倾转装置100还包括第一转接支架121d、第二转接支架122d。第一转接支架121d通过第一旋转机构131d转动连接于机身800,第二转接支架122d通过第二旋转机构132d转动连接于第一转接支架121d,其中一个旋翼支架500与第二转接支架122d固定连接,另一个旋翼支架500通过第三旋转机构133d转动连接于第二转接支架122d。第一旋转机构131d为轴系结构并连接有旋转控制器300。第二旋转机构132d和第三旋转机构133d为铰接结构,该结构的折叠方式类似图5所示无人机。
实施例二组:
实施例一组无人机的特点是每个升力装置200至少包含两个旋翼210,每个升力装置200中的旋翼210旋转扭矩可相互抵消。对于每个升力装置200只包含一个旋翼210,或者包含多个旋翼210但这些旋翼210的旋转扭矩不能相互抵消的情况,本组实施例提供一种多旋翼无人机,其设置偏航控制器700,用于旋翼210旋转扭矩的抵消和无人机的偏航运动控制。
图7所示为本实施例组无人机的一种具体实施例,包括机身800、两个旋翼支架500、两个升力装置200、偏航控制器700、旋翼倾转装置100。
升力装置200包括一个电机220和一个旋翼210,电机220安装在旋翼支架500上,旋翼210安装在电机轴上。要说明的是,本实施例无人机的升力装置200不限于包含一个电机220和一个旋翼210,比如可以包含两个同向旋转的旋翼210,其工作原理与单旋翼210模式相同,下面以单旋翼模式为例进行描述。
图7所示无人机的机身800、旋翼支架500、旋翼倾转装置100与图1所示无人机相同,不再赘述。相对于图1所示无人机,图7所示无人机设有偏航控制器700,偏航控制器700安装在旋翼支架500上,处于旋翼210下方。
本实施例无人机的飞行控制相对于实施例一组无人机,唯一的不同点在于偏航控制。由于本组实施例无人机的每个升力装置200中的旋翼210旋转扭矩不能自我抵消,这意味着不能通过调整旋翼210转速同时实现Y轴向的运动控制和偏航运动控制,因此本实施例无人机设置了偏航控制器700,偏航控制器700可以输出使无人机产生偏航运动的力矩,用于抵消两个升力装置200产生的旋翼旋转扭矩差或者控制无人机的偏航运动。
图7所示无人机的偏航控制器700包括偏航导流片710和偏航伺服控制器(图未示),其工作原理为:偏航导流片710采用固定翼原理,处于旋翼210下方,旋翼210的下洗气流在偏航导流片710的两个表面产生压力差,该压力差产生使无人机进行偏航运动的力矩;通过偏航伺服控制器控制偏航导流片710面向旋翼210气流的迎角,控制偏航力矩大小和力矩方向。
图7所示无人机的偏航控制器700仅包含一个偏航导流片710。在本申请另一实施例中,设置多个偏航导流片710以提高偏航力矩大小。要说明的是,只设置一个偏航控制器700也是可行的,不过这种非对称结构控制较为复杂;偏航控制器700除了安装在旋翼支架500上,还可以安装在机身800上或其它旋翼气流流过的位置;偏航控制器700应尽可能安装在力臂最大的位置,以提高电源效率。
在本申请另一实施例中,偏航控制器700采用风扇的实现方式,利用风扇的推力产生偏航力矩。
要说明的是,图7所示无人机的偏航控制器700的偏航导流片710可以旋转至与旋翼支架500平行,不影响旋翼支架500的折叠回收。
图7所示无人机还包含机身稳定器600,其与图1所示无人机相同,不再赘述。
本实施例无人机的旋翼倾转装置100有多种实施方式,实施例一组无人机适用的旋翼倾转装置100结构均可用于本实施例无人机,例如,图3、图4和图6所示结构及其改型均是可行方式。
实施例三组:
对于每个升力装置200只包含一个旋翼210,或者包含多个旋翼210但这些旋翼210的旋转扭矩不能相互抵消的情况,实施例二组无人机设置偏航控制器700对偏航运动进行控制。本组实施例无人机利用倾转旋翼210的推力来实现无人机的偏航控制。
图8所示为本实施无人机的一个具体实施例,包括机身800、两个旋翼支架500、两个升力装置200、旋翼倾转装置100。其中,升力装置200、旋翼支架500与图7所示无人机相同,不再赘述。图8所示无人机还包含机身稳定器600,其与图1所示无人机相同,不再赘述。
旋转机构分为第一旋转机构131e、第二旋转机构132e、第三旋转机构133e和第四旋转机构134e,旋翼倾转装置100还包括第一转接支架121e和第二转接支架122e。第一转接支架121e和第二转接支架122e分别通过第一旋转机构131e和第二旋转机构132e转动连接于机身800,两个旋翼支架500分别通过第三旋转机构133e和第四旋转机构134e转动连接于第一转接支架121e和第二转接支架122e。第一旋转机构131e和第二旋转机构132e采用轴系结构并连接有旋转控制器300。通过第一旋转机构131e和第二旋转机构132e可以控制两个旋翼支架500独立旋转。第三旋转机构133e和第四旋转机构134e采用铰接结构,用于无人机的折叠回收,折叠方式类似图2所示无人机。
图8所示无人机相应于与实施例一组无人机和实施例二组无人机,唯一不同点在于偏航控制,其偏航控制原理为:通过第一旋转机构131e和第二旋转机构132e可以控制两个旋翼210旋转不同的角度,使两个旋翼210在X轴向的推力不相等,产生绕着Z轴旋转的扭矩,抵消两个旋翼210的旋转扭矩差或实现无人机的偏航控制。如图8所示,一个旋翼210往上倾转,另一个旋翼210往下倾转,会产生使无人机绕着Z轴沿箭头方向旋转的偏航扭矩。
本组实施例无人机的旋翼倾转装置100还有其它实施方式,下面是一些实施例:
图9所示本申请另一种实施例中,本实施例是图8所示旋翼倾转装置的改型结构:将图8所示结构的第三旋转机构133e和第四旋转机构134e改为轴系结构的旋转机构(133f、134f)并连接旋转控制器300,将第一旋转机构131e和第二旋转机构132e改为铰接结构的旋转机构(131f、132f)。类似的,图8所示旋翼倾转装置还有其它改型结构:1. 将第三旋转机构133e改为轴系结构并设置旋转控制器300,及将第一旋转机构131e改为铰接结构,作为本申请另一种实施例;2. 将第四旋转机构134e改为轴系结构并设置旋转控制器300,及将第二旋转机构132e改为铰接结构,作为本申请另一种实施例。
图10所示本申请另一种实施例,旋转机构分为第一旋转机构131g、第二旋转机构132g、第三旋转机构133g、第四旋转机构134g,旋翼倾转装置100还包括第一转接支架121g和第二转接支架122g。第一转接支架121g通过第一旋转机构131g转动连接于机身800;第二转接支架122g通过第三旋转机构133g转动连接于第一转接支架121g;其中一个旋翼支架500通过第二旋转机构132g转动连接于第一转接支架121g,另外一个旋翼支架500通过第四旋转机构134g转动连接于第二转接支架122g。第一旋转机构131g和第三旋转机构133g为轴系结构并连接有旋转控制器300,第二旋转机构132g和第四旋转机构134g为铰接结构,该结构的折叠方式类似图2所示无人机。值得注意的是,本实施例对两个旋翼210的倾转控制与图8所示无人机虽然原理相同,但实现方式有所不同,本实施例中,第一旋转机构131g控制两个旋翼210同步旋转,第三旋转机构133g控制其中一个旋翼210独自旋转,从而实现两个旋翼210旋转不同的角度,后续有些实施例也有这个特性,不再赘述。本实施例的第一转接支架121g为两端头1211g结构,类似于图3所示的第一转接支架121b,本实施例的第一转接支架121g也有三端头结构的改型,作为本申请另一实施例。本实施例的改型结构还有:将第三旋转机构133g改为铰接结构,将第四旋转机构134g改为轴系结构并连接有旋转控制器300,作为本申请另一实施例。
图11所示本申请另一种实施例,旋转机构分为第一旋转机构131h、第二旋转机构132h、第三旋转机构133h、第四旋转机构134h,旋翼倾转装置100还包括第一转接支架121h、第二转接支架122h和第三转接支架123h。第一转接支架121h通过第一旋转机构131h转动连接于机身800;第二转接支架122h通过第二旋转机构132h转动连接于第一转接支架121h;第三转接支架123h通过第三旋转机构133h转动连接于第二转接支架122h;其中一个旋翼支架500与第二转接支架122h固定连接,另外一个旋翼支架500通过第四旋转机构134h转动连接于第三转接支架123h。第二旋转机构132h和第四旋转机构134h为轴系结构并连接有旋转控制器300,第一旋转结构131h和第三旋转机构133h为铰接结构,该结构的折叠方式类似图5所示无人机。类似于图3所示的第一转接支架121b,本实施例的第二转接支架122h为两端头结构,有三端头结构的改型,作为本申请另一实施例。本实施例的改型结构还有:将第四旋转机构134h改为铰接结构,将第三旋转机构133h改为轴系结构并连接有旋转控制器300,作为本申请另一实施例。
图12所示本申请另一种实施例,旋转机构分为第一旋转机构131i、第二旋转机构132i、第三旋转机构133i和第四旋转机构134i,旋翼倾转装置100还包括第一转接支架121i和第二转接支架122i。第一转接支架121i通过第一旋转机构131i转动连接于机身800;第二转接支架122i通过第二旋转机构132i转动连接于第一转接支架121i;两个旋翼支架500分别通过第三旋转机构133i和第四旋转机构134i转动连接于第二转接支架122i。第二旋转机构132i和第三旋转机构133i为轴系结构并连接有旋转控制器300,第一旋转机构131i和第四旋转机构134i为铰接结构,该结构的折叠方式类似图5所示无人机。类似图3所示的第一转接支架121b,本实施例的第二转接支架122i为两端头结构,有三端头结构的改型,作为本申请另一实施例。
图13所示本申请另一种实施例,旋转机构分为第一旋转机构131j、第二旋转机构132j、第三旋转机构133j和第四旋转机构134j,旋翼倾转装置100还包括第一转接支架121j和第二转接支架122j。第一转接支架121j通过第一旋转机构131j转动连接于机身800;第二转接支架122j通过第二旋转机构132j转动连接于第一转接支架121j;其中一个旋翼支架500通过第四旋转机构134j转动连接于第一转接支架121j,另一个旋翼支架500通过第三旋转机构133j转动连接于第二转接支架122j。第二旋转机构132j和第四旋转机构134j为轴系结构并连接有旋转控制器300,第一旋转机构131j和第三旋转机构133j为铰接结构,该结构的折叠方式类似图5所示无人机。本实施例的改型结构有:第二旋转机构132j改为铰接结构,第三旋转机构133j改为轴系结构并连接有旋转控制器300,作为本申请另一实施例。
图14所示本申请另一种实施例,旋转机构分为第一旋转机构131k、第二旋转机构132k、第三旋转机构133k、第四旋转机构134k,旋翼倾转装置100还包括第一转接支架121k和第二转接支架122k。第一转接支架121k通过第一旋转机构131k转动连接于机身800;第二转接支架122k通过第二旋转机构132k转动连接于第一转接支架121k;两个旋翼支架500分别通过第三旋转机构133k和第四旋转机构134k转动连接于第二转接支架122k。第一旋转机构131k和第三旋转机构133k为轴系结构并连接有旋转控制器300,第二旋转机构132k和第四旋转机构134k为铰接结构,该结构的折叠方式类似图5所示无人机。
图15所示本申请另一种实施例,旋转机构分为第一旋转机构131m、第二旋转机构132m、第三旋转机构133m、第四旋转机构134m,旋翼倾转装置100还包括第一转接支架121m、第二转接支架122m和第三转接支架123m。第一转接支架121m通过第一旋转机构131m转动连接于机身800;第二转接支架122m通过第二旋转机构132m转动连接于第一转接支架121m;第三转接支架123m通过第三旋转机构133m转动连接于第二转接支架122m,其中一个旋翼支架500与第二转接支架122m固定连接;另一个旋翼支架500通过第四旋转机构134m转动连接于第三转接支架123m。第一旋转机构131m和第三旋转机构133m为轴系结构并连接有旋转控制器300,第二旋转机构132m和第四旋转机构134m为铰接结构,该结构的折叠方式类似图5所示无人机。本实施例的改型结构有:将第四旋转机构134m改为轴系结构并连接有旋转控制器300,将第三旋转机构133m改为铰接结构,作为本申请另一实施例。
概括起来,上述旋翼倾转装置100有一个共同点:包含两个连接有旋转控制器300的旋转机构,可独立控制两个旋翼210绕着Y轴的倾角。
实施例四组:
前三组实施例无人机沿着无人机的Y轴向做加减速飞行运动,或者Y轴向有风时,机身800需要绕着X轴倾转,继而带动旋翼210倾转产生Y轴向的推力,实现无人机Y轴向的运动控制,因此前三组实施例无人机飞行时机身800需要绕着X轴时不时倾转,机身绕着X轴是不平稳的。不过,要说明的是,前三组实施例无人机绕着Y轴是旋转运动平稳的,因为其X轴向的运动控制是通过倾转旋翼实现的,机身800不需要倾转,另外,机身稳定器600产生的扭矩可以抵消X轴向上的外力作用,进一步提升机身绕着Y轴的平稳性。
本组实施例提供一组绕着X轴也是机身平稳的多旋翼无人机,这种无人机的特点是:Y轴向的运动控制也采用倾转旋翼技术。图16所示无人机为本组实施例无人机的一个具体实施例,包括机身800、两个旋翼支架500、两个升力装置200、旋翼倾转装置100。其中,升力装置200、旋翼支架500与图7所示无人机相同,不再赘述。图16所示无人机还包含机身稳定器600,其与图1所示无人机相同,不再赘述。
旋转机构分为第一旋转机构131n、第二旋转机构132n、第三旋转机构133n,旋翼倾转装置100还包括第一转接支架121n和第二转接支架122n。第一转接支架121n通过第一旋转机构131n转动连接于机身800,第二转接支架122n通过第二旋转机构132n转动连接于第一转接支架121n,其中一个旋翼支架500与第二转接支架122n固定连接,另一个旋翼支架500通过第三旋转机构133n转动连接于第二转接支架122n。第一旋转机构131n和第二旋转机构132n为轴系结构并连接有旋转控制器300。第三旋转机构133n为铰接结构,第一旋转机构131n和第三旋转机构133n实现无人机的折叠回收。
图16所示无人机的飞行控制原理:X轴向的运动控制、升降控制以及偏航运动控制与图7所示无人机相同,不同点在于Y轴向的运动控制,其控制方法为:通过第一旋转机构131n可以控制旋翼支架500绕着第一旋转机构131n的旋转轴旋转,注意第一旋转机构131n的旋转轴线与无人机的X轴线是平行的,因此,通过第一旋转机构131n可以控制旋翼210旋转产生Y轴向的推力,实现Y轴向的运动控制。
本实施例中,两个升力装置200产生的升力差不再用于无人机Y轴向的运动控制,而可以用于控制机身800由于外力作用所导致的绕着X轴的倾转运动,控制机身绕着X轴的旋转运动平稳性,其控制方法为:根据机身800绕着X轴的倾转运动情况,调整两个升力装置200产生的升力差,产生一个使机身800反向旋转的力矩,保持机身800绕着X轴的旋转运动平稳性。
值得注意的是,图16所示无人机的第一旋转机构131n同时还用于无人机的折叠回收,折叠方式与图5所示无人机相同。本组实施例无人机还有其它实施方式:
在本申请另一实施例中,对于前三组实施例中采用如图1、图3、图8、图9、图10所示旋翼倾转装置100及其改型结构的无人机,机身800更改为包括第一机体830、第二机体840和操纵旋转机构850(图17所示),操纵旋转机构850连接有旋转控制器300,第二机体840通过操纵旋转机构850转动连接于第一机体830,第二机体840上安装旋翼倾转装置100,即可将这些无人机改进为具有绕着X轴旋转运动平稳性的无人机。例如,图17所示无人机为图1所示无人机的改进,其机臂820上增设第一机体830、第二机体840和操纵旋转机构850,操纵旋转机构850连接有旋转控制器300,操纵旋转机构850用于控制旋翼210倾转,控制无人机在Y轴向上的运动。可以理解的,上述改进等同于为旋翼倾转装置100增加了一个用于控制旋翼210倾转的旋转机构。值得注意的是,图17所示无人机跟图16所示无人机很类似,不同点在于图16中的旋转机构131n除了用于旋翼210的倾角控制,还用于折叠,而图17中相应位置的旋转机构850仅用于控制旋翼210的倾角,其比图16所示无人机多一个旋转机构用于折叠,图17所示无人机的折叠效果类似图2所示无人机,图16所示无人机的折叠效果类似图5所示无人机,可见使用上述改进方法得到的无人机具有较好的折叠效果。
图16所示无人机的旋翼倾转装置100实际上是图4所示无人机的旋翼倾转装置100的改型,即将图4所示无人机的第一旋转机构131c改为轴系结构并连接旋转控制器300。同样地,在本申请其它实施例中,将图11-图13所示旋翼倾转装置及其改型结构的第一旋转机构(131h、131i、131j)改为轴系结构并设置旋转控制器300,将图6、图14和图15所示旋翼倾转装置及其改型结构的第二旋转机构(132d、132k、132m)改为轴系结构并设置旋转控制器300,均可实现本组实施例无人机。要说明的是,根据实施例三组所论述的,若采用图11-图15所示旋翼倾转装置的改进结构,则该无人机不需要设置偏航控制器700,可以利用倾转旋翼210的推力实现偏航控制。
在本申请另一实施例中,若无人机的旋翼倾转装置100为采用上一小节所述的图6、图14和图15及其改型结构的改进结构,则可进一步改进无人机的折叠效果。改进方法为:将旋翼倾转装置100的第二转接支架(122d、122k、122m)替换为两个子转接支架,且该两个子转接支架通过另外一个旋转机构转动连接并旋转实现折叠或展开。例如,图18所示结构为图15对应改进结构的进一步改进,在图18中,第二旋转机构132m以上一小节所述改进方法改为轴系结构并设置旋转控制器300;本节改进方法进一步将第二转接支架122m改为包括两个子转接支架(122o1、122o2)和一个旋转机构122o3,子转接支架122o1和子转接支架122o2通过旋转机构122o3转动连接,如此改进的目的为增加一个旋转机构122o3以改进折叠方式,获得类似图2所示无人机的折叠效果,改进结构的第二旋转机构132m用于旋翼210的倾角控制,不再用于折叠。同样,图6的第二转接支架122d和图14的第二转接支架122k可以用上述方法进行改进并获得同样的改进效果。可以理解地,具体实施时图18中的子转接支架122o1可以与旋翼支架500合并,即旋翼支架500直接通过旋转机构122o3旋转连接于子转接支架122o2。
值得注意的是,上述四组实施例中的无人机,根据旋转轴线的指向,其包含的旋转机构很清晰地分为两组:一组旋转机构的旋转轴线与无人机的Y轴线平行,另一组旋转机构的旋转轴线与无人机的X轴线平行。两组旋转机构的旋转轴线相互垂直。要说明的是,这种规则的结构有利于简化飞行控制器的设计,是优选设计,实际上,在原理上其它非对称布局也是可行的。
可以理解地,上述实施例中,采用铰接结构的旋转机构都可以改为轴系结构并设置旋转控制器300,用于实现无人机的电动折叠回收或用于辅助控制旋翼210的倾角。
在本申请另一实施例中,本申请无人机的旋转机构还设置限位机构,限位机构限定旋翼支架500的旋转范围;另外,铰接结构的旋转机构还设有锁定机构,锁定机构能将旋翼支架500锁定在展开位置上。
在本申请另一实施例中,请参阅图1、图2,作为本申请提供的可折叠多旋翼无人机的一种具体实施方式,无人机的机身800结构是包含机身主体810及其一个端部伸出的一个机臂820,形状呈“L”型。在本申请另一实施例中,在机身主体810的两个端部各伸出一个机臂820,机身800形状呈“U”型,用两个机臂820对升力装置200进行支撑,支撑力更平衡,适用于较大型的无人机。“L”型和“U”型结构的机身围成一个空间,升力装置200、旋翼支架500和旋翼防护框400可以一体化的折叠回收在该空间内部。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 可折叠多旋翼无人机,其特征在于,包括:
    机身(800);
    两个旋翼支架(500);
    两个升力装置(200),分别安装于两个所述旋翼支架(500),所述升力装置(200)包括旋翼(210);以及
    安装于所述机身(800)上的旋翼倾转装置(100),所述旋翼倾转装置(100)包括至少三个旋转机构,两个所述旋翼支架(500)连接于所述旋转机构并通过所述旋转机构的旋转实现折叠或展开;其中至少一个所述旋转机构连接有用于控制该旋转机构旋转的旋转控制器(300),所述旋转控制器(300)控制该旋转机构旋转以控制所述旋翼(210)的倾角。
  2. 如权利要求1所述的可折叠多旋翼无人机,其特征在于,还包括偏航控制器(700),所述偏航控制器(700)输出使所述可折叠多旋翼无人机产生偏航运动的力矩,用于所述可折叠多旋翼无人机的偏航运动控制。
  3. 如权利要求1所述的可折叠多旋翼无人机,其特征在于,所述旋转机构分为第一旋转机构(131a;131b)、第二旋转机构(132a;132b)和第三旋转机构(133a;133b),所述旋翼倾转装置(100)还包括第一转接支架(121a;121b);所述第一转接支架(121a;121b)通过所述第一旋转机构(131a;131b)转动连接于所述机身(800);两个所述旋翼支架(500)分别通过所述第二旋转机构(132a;132b)和第三旋转机构(133a;133b)转动连接于所述第一转接支架(121a;121b);所述第一旋转机构(131a;131b)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131e;131f)、第二旋转机构(132e;132f)、第三旋转机构(133e;133f)和第四旋转机构(134e;134f),所述旋翼倾转装置(100)还包括第一转接支架(121e;121f)、第二转接支架(122e;122f);所述第一转接支架(121e;121f)通过所述第一旋转机构(131e;131f)转动连接于所述机身(800);所述第二转接支架(122e;122f)通过所述第二旋转机构(132e;132f)转动连接于所述机身(800);其中一个所述旋翼支架(500)通过所述第三旋转机构(133e;133f)转动连接于所述第一转接支架(121e;121f),另外一个所述旋翼支架(500)通过所述第四旋转机构(134e;134f)转动连接于所述第二转接支架(122e;122f);所述第一旋转机构(131e;131f)或所述第三旋转机构(133e;133f)连接有旋转控制器(300);所述第二旋转机构(132e;132f)或所述第四旋转机构(134e;134f)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131g)、第二旋转机构(132g)、第三旋转机构(133g)和第四旋转机构(134g),所述旋翼倾转装置(100)还包括第一转接支架(121g)、第二转接支架(122g);所述第一转接支架(121g)通过所述第一旋转机构(131g)转动连接于所述机身(800);所述第二转接支架(122g)通过所述第三旋转机构(133g)转动连接于所述第一转接支架(121g);其中一个所述旋翼支架(500)通过所述第二旋转机构(132g)转动连接于所述第一转接支架(121g),另外一个所述旋翼支架(500)通过所述第四旋转机构(134g)转动连接于所述第二转接支架(122g);所述第一旋转机构(131g)连接有旋转控制器(300),所述第三旋转机构(133g)或第四旋转机构(134g)连接有旋转控制器(300)。
  4. 如权利要求3所述的可折叠多旋翼无人机,其特征在于,所述机身(800)包括第一机体(830)、第二机体(840)和操纵旋转机构(850),所述第二机体(840)通过所述操纵旋转机构(850)转动连接于第一机体(830),所述旋翼倾转装置(100)安装于所述第二机体(840),所述操纵旋转机构(850)连接有旋转控制器(300)。
  5. 如权利要求1所述的可折叠多旋翼无人机,其特征在于,所述旋转机构分为第一旋转机构(131c)、第二旋转机构(132c)、第三旋转机构(133c),所述旋翼倾转装置(100)还包括第一转接支架(121c)、第二转接支架(122c);所述第一转接支架(121c)通过所述第一旋转机构(131c)转动连接于所述机身(800);所述第二转接支架(122c)通过所述第二旋转机构(132c)转动连接于所述第一转接支架(121c);其中一个所述旋翼支架(500)与所述第二转接支架(122c)固定连接,另一个所述旋翼支架(500)通过所述第三旋转机构(133c)转动连接于所述第二转接支架(122c);所述第二旋转机构(132c)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131h)、第二旋转机构(132h)、第三旋转机构(133h)和第四旋转机构(134h),所述旋翼倾转装置(100)还包括第一转接支架(121h)、第二转接支架(122h)、第三转接支架(123h);所述第一转接支架(121h)通过所述第一旋转机构(131h)转动连接于所述机身(800);所述第二转接支架(122h)通过所述第二旋转机构(132h)转动连接于所述第一转接支架(121h);所述第三转接支架(123h)通过所述第三旋转机构(133h)转动连接于所述第二转接支架(122h);其中一个所述旋翼支架(500)与所述第二转接支架(122h)固定连接,另一个所述旋翼支架(500)通过所述第四旋转机构(134h)转动连接于所述第三转接支架(123h);所述第二旋转机构(132h)连接有旋转控制器(300);所述第三旋转机构(133h)或者第四旋转机构(134h)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131i)、第二旋转机构(132i)、第三旋转机构(133i)和第四旋转机构(134i),所述旋翼倾转装置(100)还包括第一转接支架(121i)、第二转接支架(122i);所述第一转接支架(121i)通过所述第一旋转机构(131i)转动连接于所述机身(800);所述第二转接支架(122i)通过所述第二旋转机构(132i)转动连接于所述第一转接支架(121i);两个所述旋翼支架(500)分别通过所述第三旋转机构(133i)和第四旋转机构(134i)转动连接于所述第二转接支架(122i);所述第二旋转机构(132i)连接有旋转控制器(300);所述第三旋转机构(133i)或第四旋转机构(134i)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131j)、第二旋转机构(132j)、第三旋转机构(133j)和第四旋转机构(134j),所述旋翼倾转装置(100)还包括第一转接支架(121j)、第二转接支架(122j);所述第一转接支架(121j)通过所述第一旋转机构(131j)转动连接于所述机身(800);所述第二转接支架(122j)通过所述第二旋转机构(132j)转动连接于所述第一转接支架(121j);其中一个所述旋翼支架(500)通过所述第三旋转机构(133j)转动连接于所述第二转接支架(122j),另外一个所述旋翼支架(500)通过所述第四旋转机构(134j)转动连接于所述第一转接支架(121j);所述第二旋转机构(132j)连接有旋转控制器(300),所述第四旋转机构(134j)连接有旋转控制器(300)。
  6. 如权利要求5所述的可折叠多旋翼无人机,其特征在于,所述第一旋转机构(131c;131h;131i;131j)连接有旋转控制器(300)。
  7. 如权利要求1所述的可折叠多旋翼无人机,其特征在于,所述旋转机构分为第一旋转机构(131d)、第二旋转机构(132d)和第三旋转机构(133d),所述旋翼倾转装置(100)还包括第一转接支架(121d)、第二转接支架(122d);所述第一转接支架(121d)通过所述第一旋转机构(131d)转动连接于所述机身(800);所述第二转接支架(122d)通过所述第二旋转机构(132d)转动连接于所述第一转接支架(121d);其中一个所述旋翼支架(500)与所述第二转接支架(122d)固定连接,另一个所述旋翼支架(500)通过所述第三旋转机构(133d)转动连接于所述第二转接支架(122d);所述第一旋转机构(131d)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131k)、第二旋转机构(132k)、第三旋转机构(133k)和第四旋转机构(134k),所述旋翼倾转装置(100)还包括第一转接支架(121k)、第二转接支架(122k);所述第一转接支架(121k)通过所述第一旋转机构(131k)转动连接于所述机身(800);所述第二转接支架(122k)通过所述第二旋转机构(132k)转动连接于所述第一转接支架(121k);两个所述旋翼支架(500)分别通过所述第三旋转机构(133k)和第四旋转机构(134k)转动连接于所述第二转接支架(122k);所述第一旋转机构(131k)连接有旋转控制器(300);所述第三旋转机构(133k)或第四旋转机构(134k)连接有旋转控制器(300);
    或者,所述旋转机构分为第一旋转机构(131m)、第二旋转机构(132m)、第三旋转机构(133m)和第四旋转机构(134m),所述旋翼倾转装置(100)还包括第一转接支架(121m)、第二转接支架(122m)、第三转接支架(123m);所述第一转接支架(121m)通过所述第一旋转机构(131m)转动连接于所述机身(800);所述第二转接支架(122m)通过所述第二旋转机构(132m)转动连接于所述第一转接支架(121m);所述第三转接支架(123m)通过第三旋转机构(133m)转动连接于所述第二转接支架(122m);其中一个所述旋翼支架(500)与所述第二转接支架(122m)固定连接,另一个所述旋翼支架(500)通过所述第四旋转机构(134m)转动连接于所述第三转接支架(123m);所述第一旋转机构(131m)连接有旋转控制器(300);所述第三旋转机构(133m)或者第四旋转机构(134m)连接有旋转控制器(300)。
  8. 如权利要求7所述的可折叠多旋翼无人机,其特征在于,所述第二旋转机构(132d;132k;132m)连接有旋转控制器(300)。
  9. 如权利要求8所述的可折叠多旋翼无人机,其特征在于,所述第二转接支架(122d;122k;122m)替换为两个子转接支架(122o1、122o2),且所述两个子转接支架(122o1、122o2)通过另外一个所述旋转机构(122o3)转动连接并旋转实现折叠或展开。
  10. 如权利要求1至9任一项所述的可折叠多旋翼无人机,其特征在于,还包括机身稳定器(600),所述机身稳定器(600)输出使所述机身(800)产生倾转运动的力矩,用于保持所述机身(800)的平稳性。
  11. 如权利要求10所述的可折叠多旋翼无人机,其特征在于,其中至少一个所述机身稳定器(600)包括稳定导流片(610)和稳定伺服控制器,所述稳定导流片(610)安装于所述旋翼(210)的下方,利用所述旋翼(210)的下洗气流产生使所述机身(800)发生倾转运动的力矩,所述稳定伺服控制器控制所述稳定导流片(610)旋转,从而控制所述稳定导流片(610)产生的力矩大小。
  12. 如权利要求11所述的可折叠多旋翼无人机,其特征在于,所述稳定导流片(610)的一个表面朝向所述旋翼(210)的下洗气流,利用所述旋翼(210)的下洗气流在该表面形成的压力产生使所述机身(800)发生倾转运动的力矩。
  13. 如权利要求10所述的可折叠多旋翼无人机,其特征在于,其中至少一个所述机身稳定器(600)为风扇,所述风扇设于所述机身(800)上,所述风扇的推力产生使所述机身(800)发生倾转运动的力矩,通过控制风扇转速调整力矩大小。
  14. 如权利要求1至9任一项所述的可折叠多旋翼无人机,其特征在于,还包括可拆卸或固定安装在所述旋翼支架(500)上的旋翼防护框(400),所述旋翼防护框(400)为中空结构,所述旋翼(210)置于所述旋翼防护框(400)的内部,所述旋翼防护框(400)用于防护所述旋翼(210)。
  15. 如权利要求1至9任一项所述的可折叠多旋翼无人机,其特征在于,所述机身(800)为L字型结构或U字型结构,所述升力装置(200)和所述旋翼支架(500)通过所述旋转机构的旋转置入所述机身(800)所包围的空间内以实现所述可折叠多旋翼无人机的折叠回收。
PCT/CN2019/124651 2018-12-18 2019-12-11 可折叠多旋翼无人机 WO2020125523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811548025.X 2018-12-18
CN201811548025.XA CN110641680B (zh) 2018-12-18 2018-12-18 可折叠多旋翼无人机

Publications (1)

Publication Number Publication Date
WO2020125523A1 true WO2020125523A1 (zh) 2020-06-25

Family

ID=69009194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124651 WO2020125523A1 (zh) 2018-12-18 2019-12-11 可折叠多旋翼无人机

Country Status (2)

Country Link
CN (1) CN110641680B (zh)
WO (1) WO2020125523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102673664B1 (ko) 2023-09-01 2024-06-11 주식회사 네스앤텍 무인 비행체의 접이식 구조체

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110641692A (zh) * 2018-12-14 2020-01-03 深圳市格上格创新科技有限公司 机身平衡无人机及其控制方法
KR102288268B1 (ko) * 2020-01-09 2021-08-10 한국항공우주연구원 비행체 및 비행체의 제어 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB171533A (en) * 1920-09-06 1921-11-24 Charles Tuckfield Feathering propeller for flying machines, and automatic means of actuating same
FR1442487A (fr) * 1965-05-05 1966-06-17 Nord Aviation Hélice multipales repliable
CN101314409A (zh) * 2008-07-10 2008-12-03 周武双 燕式倾转旋翼机
CN205098469U (zh) * 2015-10-26 2016-03-23 深圳智航无人机有限公司 倾转旋翼机
CN205396518U (zh) * 2016-02-29 2016-07-27 无锡觅睿恪科技有限公司 无人机的折叠臂组件
CN107031828A (zh) * 2016-06-27 2017-08-11 Mmp有限公司 一种无人机
CN108750081A (zh) * 2018-06-05 2018-11-06 中国人民解放军国防科技大学 倾转四旋翼变形飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160041697A (ko) * 2014-10-08 2016-04-18 한화테크윈 주식회사 무인 비행체
CN106005361B (zh) * 2016-04-07 2019-06-28 珠海市磐石电子科技有限公司 航空动力单元及其飞行机架和模块化飞行器
CN106428543B (zh) * 2016-11-11 2018-11-13 杨超峰 一种旋翼控制机构和双旋翼无人机
EP3366582B1 (en) * 2017-02-28 2019-07-24 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor aircraft with an airframe and a thrust producing units arrangement
CN106945829A (zh) * 2017-04-13 2017-07-14 南京航空航天大学 一种万向铰涵道双旋翼飞行器
CN108945420B (zh) * 2018-08-15 2023-08-04 东北大学 一种基于无人机的四轴倾转旋翼机构及倾转方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB171533A (en) * 1920-09-06 1921-11-24 Charles Tuckfield Feathering propeller for flying machines, and automatic means of actuating same
FR1442487A (fr) * 1965-05-05 1966-06-17 Nord Aviation Hélice multipales repliable
CN101314409A (zh) * 2008-07-10 2008-12-03 周武双 燕式倾转旋翼机
CN205098469U (zh) * 2015-10-26 2016-03-23 深圳智航无人机有限公司 倾转旋翼机
CN205396518U (zh) * 2016-02-29 2016-07-27 无锡觅睿恪科技有限公司 无人机的折叠臂组件
CN107031828A (zh) * 2016-06-27 2017-08-11 Mmp有限公司 一种无人机
CN108750081A (zh) * 2018-06-05 2018-11-06 中国人民解放军国防科技大学 倾转四旋翼变形飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102673664B1 (ko) 2023-09-01 2024-06-11 주식회사 네스앤텍 무인 비행체의 접이식 구조체

Also Published As

Publication number Publication date
CN110641680B (zh) 2021-07-23
CN110641680A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
US11851173B2 (en) Vertical take-off and landing (VTOL) winged air vehicle with complementary angled rotors
US7946526B2 (en) Rotary-wing vehicle system
WO2018090790A1 (zh) 一种旋翼控制机构和双旋翼无人机
WO2020134136A1 (zh) 一种无人飞行器
WO2018098993A1 (zh) 一种螺旋桨双轴矢量伺服变向装置及垂直起降固定翼无人机
WO2020125523A1 (zh) 可折叠多旋翼无人机
WO2021190216A1 (zh) 全景摄像无人机
US20170197712A1 (en) Compliant engine nacelle for aircraft
WO2020119731A1 (zh) 机身平衡无人机及其控制方法
CN106167092B (zh) 一种共轴直升机及其旋翼系统
WO2019119409A1 (zh) 无人机及无人机控制方法
JP7244084B2 (ja) 電子部品及び当該電子部品を取り付けた飛行体
WO2019127045A1 (zh) 旋翼系统及无人飞行器
WO2020156078A1 (zh) 一种倾转旋翼无人机及其机翼组件
KR101884903B1 (ko) 무인비행체
CN112693605B (zh) 一种扑翼飞行器
CN212172538U (zh) 全景摄像无人机
CN212172513U (zh) 可折叠防护无人机
JP2020175713A (ja) マルチローター航空機
CN109987221A (zh) 一种无人机
CN111284682A (zh) 可折叠防护无人机
CN217320741U (zh) 一种飞行稳定的四旋翼无人机
CN202538354U (zh) 一种模型的平衡锤加ccpm控制方式的操纵机构和直升机模型
WO2022226933A1 (zh) 垂直起降固定翼无人飞行器
CN205340116U (zh) 飞行玩偶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19899541

Country of ref document: EP

Kind code of ref document: A1