WO2019127045A1 - 旋翼系统及无人飞行器 - Google Patents

旋翼系统及无人飞行器 Download PDF

Info

Publication number
WO2019127045A1
WO2019127045A1 PCT/CN2017/118747 CN2017118747W WO2019127045A1 WO 2019127045 A1 WO2019127045 A1 WO 2019127045A1 CN 2017118747 W CN2017118747 W CN 2017118747W WO 2019127045 A1 WO2019127045 A1 WO 2019127045A1
Authority
WO
WIPO (PCT)
Prior art keywords
hinge
blade
rotor system
rotating shaft
paddle
Prior art date
Application number
PCT/CN2017/118747
Other languages
English (en)
French (fr)
Inventor
陈晨
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780029129.7A priority Critical patent/CN109641653A/zh
Priority to PCT/CN2017/118747 priority patent/WO2019127045A1/zh
Publication of WO2019127045A1 publication Critical patent/WO2019127045A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/23Transmission of mechanical power to rotors or propellers with each propulsion means having an individual motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/32Rotors
    • B64C27/37Rotors having articulated joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • the present invention relates to the field of aircraft, and more particularly to a rotor system and an unmanned aerial vehicle.
  • unmanned aerial vehicles usually rely on power devices such as rotors to generate lift, thereby achieving operations such as take-off and landing, aerial hovering or forward flight.
  • the rotor has blades that are constantly rotating, and the blades are movable relative to the air as they rotate, thereby generating lift and maintaining the flight of the unmanned aerial vehicle.
  • the invention provides a rotor system and an unmanned aerial vehicle, which are relatively stable during flight and are not easy to generate vibration.
  • the present invention provides a rotor system for an unmanned aerial vehicle comprising a rotating shaft and a blade rotatable about the rotating shaft, and a first connecting assembly, the first connecting assembly being disposed on the rotating shaft and the blade The first connecting assembly is for swinging the blades up and down relative to the plane of rotation of the blades.
  • the present invention provides an unmanned aerial vehicle comprising a body and at least two rotor systems as described above, the rotor system being disposed on the body.
  • the rotor system and the unmanned aerial vehicle of the present invention are applied to an unmanned aerial vehicle.
  • the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating Between the shaft and the blade, the first connecting assembly is for swinging the blade up and down relative to the plane of rotation of the blade.
  • the blades in the rotor system can swing up and down with respect to the plane of rotation, thereby compensating for the change of the lift force, and improving the imbalance of the lift of the preceding blade and the trailing blade when the UAV is flying at a high speed, thereby effectively reducing the flight time.
  • the vibrations improve the structure of the unmanned aerial vehicle and the operational reliability of the load.
  • FIG. 1 is a schematic structural view of a rotor system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic plan view of another rotor system according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of a third type of rotor system according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a fourth type of rotor system according to Embodiment 4 of the present invention.
  • Figure 5 is a schematic structural view of a fifth type of rotor system according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 6 of the present invention.
  • FIG. 1 is a schematic structural view of a rotor system according to a first embodiment of the present invention.
  • the rotor system provided in this embodiment is applied to an unmanned aerial vehicle.
  • the rotor system may specifically include a rotating shaft 1 and a blade 2 rotatable about the rotating shaft, and further includes a first connecting component 3,
  • a connecting assembly 3 is provided between the rotating shaft 1 and the paddle 2 for engaging the paddle 2 to swing up and down with respect to the plane of rotation of the blade 2.
  • the rotor system is usually installed on the multi-rotor unmanned aerial vehicle to provide lift for the unmanned aerial vehicle, so that the unmanned aircraft can perform operations such as take-off, hover and air flight.
  • the rotor system may be capable of rotating the rotating shaft 1 and the blades 2 rotatable about the rotating shaft 1. When the blade 2 rotates, the surrounding air is cut, and the lift force can be generated under the action of the air pressure difference between the upper and lower surfaces of the blade 2, thereby realizing the flight of the unmanned aerial vehicle.
  • the rotating shaft 1 of the rotor system is generally a vertical or nearly vertical rotating shaft
  • the blade 2 is generally disposed at an end position of the rotating shaft 1, for example, a tip end of the rotating shaft 1.
  • the blade 2 is rotated in this way, it is possible to generate a lift in the vertical direction or in the approximate vertical direction, thereby driving the unmanned aerial vehicle to fly in the air.
  • the unmanned aerial vehicle using the rotor system is usually a multi-rotor aircraft, that is, using a plurality of rotor systems to simultaneously provide lift for the unmanned aerial vehicle, the structure of the single rotor system is relatively simple, and generally cannot achieve periodic variable pitch, etc. operating. At this time, the flight operations such as pitching and steering of the UAV are realized by adjusting the blade rotation speed of different rotor systems.
  • a first connecting assembly 3 is further disposed between the rotating shaft 1 and the blade 2, and the first connecting assembly 3 has a certain degree of freedom on the vertical surface, so that the blade 2 can pass through the first connecting component
  • the connection between 3 and the rotating shaft 1 is free to move up and down. In this way, the blade 2 can swing up and down with respect to its own plane of rotation, that is to say, the tip of the blade 2 in the rotor system is not always maintained at the same level with respect to the root of the blade 2, but can be different the height of.
  • the blades 2 of the rotor system rotate around the rotating shaft 1 in a horizontal plane or an approximately horizontal plane, and when the unmanned aerial vehicle performs a high-speed forward flight, the blade 2 rotates to rotate.
  • the blade 2 rotates to rotate.
  • the part of the blade is the leading blade and the leading blade
  • the opposite blade is located on the other side of the rotating shaft 1, so that the direction of its rotation is opposite to the forward flying speed of the UAV, and the partial blade is the trailing blade.
  • the forward blades and the trailing blades in the rotor system have different relative velocities with respect to the forward flow, and the lift generated by the blades is related to the air flow, thus The forward and trailing blades will also produce different amounts of lift. Since the rotor system 2 in this embodiment can float up and down with respect to its own rotation plane during flight, when the blade 2 floats up and down, it will exhibit different angles of attack with respect to the airflow.
  • the forward blade when the blade 2 rotates to a position where the blade speed is in the same direction as the forward direction of the UAV, that is, when the blade is a forward blade, since the relative speed between the airflow and the airflow becomes larger, the forward blade is subjected to The lift of the airflow is also greater.
  • the forward blade Under the connection of the first connecting component 3, the forward blade will swing upward with respect to the original plane of rotation of the blade 2, and at this time, the angle of attack of the preceding blade becomes Small, and thus the lift will be reduced accordingly, thus compensating for the original increased lift, which reduces the extent of the lift.
  • the blades 2 in the rotor system can swing up and down with respect to the plane of rotation, thereby compensating for changes in lift, and improving the forward and trailing blades of the UAV during high-speed flight.
  • the uneven lift phenomenon effectively reduces the vibration during flight, thereby improving the structure of the unmanned aerial vehicle and the reliability of the load.
  • the first connecting component 3 may comprise a flapping hinge connected between the rotating shaft 1 and the blade 2, and the plane of rotation of the blade 2 about the axis of the flapping hinge relative to the blade 2 Swing up and down.
  • the flapping hinge is an articulated structure having an articulated shaft and a rotating shaft 1 coupled to the hinge shaft and capable of relative rotation about the axis of the hinge shaft and the paddle 2.
  • the rotating shaft 1 and the blade 2 are connected together by the hinge shaft and are not separable, so that the blade 2 can be fixed on the rotating shaft 1; at the same time, the structure of the flapping hinge can restrict the blade 2 to make the blade 2 can only conditionally move relative to the rotating shaft 1.
  • the axial direction of the flapping hinge is limited to the horizontal direction.
  • the blade 2 of the rotor system is constrained to move up and down about the axis of the flapping hinge, i.e., up and down with respect to the plane of rotation of the blade 2, so that the blade 2 can be realized by the connection of the flapping hinge.
  • the axis of the flapping hinge and the plane of rotation of the blade 2 are generally at the same height.
  • the rotating shaft 1 is generally an axis disposed in a vertical direction or an approximately vertical direction, in order to provide a flapping hinge on the rotating shaft 1, the rotating shaft 1 may be provided with a paddle 11 which is connected to the paddle 11 and the paddle Between the roots of the leaves 2.
  • the paddle 11 is usually disposed at the end position of the rotating shaft 1 and can be used to connect with the root of the blade 2 through the flapping hinge.
  • the paddle 11 is provided with a center hole and the end of the rotating shaft 1 is provided. Passing through the center hole to achieve the connection between the paddle 11 and the rotating shaft 1, and the paddle 11 itself may have a structure for connecting the paddle 2 or the flapping hinge, etc., to realize the paddle 2 and the paddle 11 Between the installations.
  • the flapping hinge in this embodiment is generally disposed between the paddle 11 and the root of the paddle 2.
  • the paddle 11 is usually directly connected to the root of the blade 2, and no flapping hinge is provided. Therefore, the rotor system in this embodiment and the conventional UAV rotor are in addition to the waving hinge.
  • the other structures of the rotor system are similar.
  • the flapping hinge includes a first hinge base 31 and a first hinge member 32, and the first hinge base 31 and the first hinge member 32 are rotatably connected by the horizontal rotation shaft 33, One of the first hinge base 31 and the first hinge 32 is coupled to the paddle 11 and the other is coupled to the root of the blade 2.
  • the first hinge base 31 and the first hinge member 32 are configured to match each other in shape.
  • the first hinge base 31 may be provided with a groove opening toward the first hinge member 32, and the first hinge member 32 may have an insertion portion projecting into the groove interior, and the groove wall and the insertion portion of the groove Corresponding through holes are opened, so that the horizontal rotating shaft 33 can penetrate into the through holes and connect the first hinge base 31 and the first hinge member 32 together.
  • the first hinge member 32 since the groove and the insertion portion are connected to the horizontal rotating shaft 33 through the through hole, the first hinge member 32 is rotatable relative to the first hinge base 31 about the horizontal rotating shaft 33, and drives the paddle 2 to swing up and down.
  • the first hinge base 31 and the first hinge member 32 may also be other structures rotatably connected by the horizontal shaft 33, and will not be described herein.
  • first hinge base 31 and the first hinge member 32 is connected to the paddle 11 and the other is connected to the root of the blade 2, which may be the first hinge base 31 and the paddle 11
  • the first hinge member 32 and the blade 2 root are connected, and the first hinge base 31 and the blade 2 root portion may be connected, and the first hinge member 32 and the paddle base 11 are connected.
  • first hinge base 31 and the paddle base 11 are generally connected, and the first hinge member 32 and the blade 2 root are connected for description.
  • the horizontal axis of rotation 33 in the flapping hinge is typically a shaft having a damping.
  • the horizontal shaft has damping, when the blade is rotated, the resistance in the opposite direction is generated, thereby restricting the movement of the flapping hinge and slowing the blade swing.
  • the frequency and intensity can effectively improve the stability of the rotor system when rotating, and ensure the flight safety of the unmanned aerial vehicle.
  • the damping arrangement of the horizontal shaft 33 also has various types.
  • a damping pad (not shown) is disposed on the joint surface between the first hinge base 31 and the first hinge member 32. Damping pads can generally be damped by high friction on the surface or by high damping materials themselves.
  • the damping spacer disposed on the joint surface between the first hinge base 31 and the first hinge member 32 can provide a certain frictional force or other damping on the joint surface, thereby slowing down the first hinge base 31 and the first hinge member
  • the rotation force between 32 increases the stability of the blade 2 when swinging by the flapping hinge, and the structure of the damping pad is generally simple, and the overall structural complexity and weight of the horizontal shaft 33 can be effectively reduced.
  • a damper (not shown) is disposed between the first hinge base 31 and the first hinge member 32, and the damper has a volume that can vary with the rotation of the flap hinge.
  • the cavity is filled with a damping medium.
  • the damper may be a split structure composed of different components, for example, one component at one end of the damper includes a hollow cavity body, and another component at the other end of the damper may extend into the cavity body, and The cavity is moved along the length of the cavity, and the cavity is filled with a damping medium, so that the damper can form a structure with a variable distance between the ends.
  • the dampers are respectively connected to the first hinge base 31 and the first hinge member 32.
  • the distance between the two ends of the damper is Corresponding shortening or elongation, and the damping medium filled inside the damper cavity can be deformed correspondingly by compression, thereby providing a certain damping buffer for the rotation between the first hinge base 31 and the first hinge member 32. , slowing the speed of rotation and the strength of rotation between the two.
  • the rotor system may usually include a limit portion.
  • the limit portion is used to limit the range of oscillation of the blade 2 relative to the plane of rotation of the blade.
  • the range of oscillation of the blade 2 relative to the plane of rotation of the blade 2 is typically ⁇ 90° under the restriction of the limit.
  • the limiting portion may also have various structures and forms.
  • the limiting portion may be a structure such as a protrusion blocking the swinging path of the blade 2, or may be disposed on the axis of the first connecting component 3. The card is stuck.
  • the number of the blade 2 and the first connecting component 3 in the rotor system is usually plural, and the blade 2 and the first connecting component 3 have a one-to-one correspondence.
  • the plurality of blades are respectively connected to the rotating shaft 1 through the corresponding first connecting component.
  • the number of blades 2 in a rotor system is typically 2-4.
  • the number of the blades 2 in one rotor system may be two, and the two blades are symmetrically disposed on both sides of the rotating shaft 1 to form a symmetrical aerodynamic layout.
  • the blade 2 in the rotor system is connected to the rotating shaft 1 through the first connecting assembly 3, the blade can be made by adjusting the first connecting member 3 when the unmanned aircraft is parked and transported in the ground. 2 Rotate up or down to the state of folding with the rotating shaft 1, thereby reducing the overall size of the UAV for transportation and storage.
  • the rotor system may further include a drive motor 4, and the drive motor 4 is coupled to the rotary shaft 1 and used to drive the rotation of the rotary shaft 1, thereby rotating the blade 2 and pushing the airflow to generate lift. Realize the flight of unmanned aerial vehicles.
  • the rotor system is applied to an unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating shaft and the blade
  • the first connecting assembly is for swinging the blades up and down relative to the plane of rotation of the blades.
  • the blades in the rotor system can swing up and down with respect to the plane of rotation, thereby compensating for the change of the lift force, and improving the imbalance of the lift of the preceding blade and the trailing blade when the UAV is flying at a high speed, thereby effectively reducing the flight time.
  • the vibrations improve the structure of the unmanned aerial vehicle and the operational reliability of the load.
  • FIG. 2 is a top plan view of another rotor system according to Embodiment 2 of the present invention.
  • the basic structure and working principle of the rotor system in this embodiment are similar to those of the rotor system in the first embodiment, except that the first connecting component in the rotor system in the embodiment and the first embodiment are the same.
  • the first connection assembly has a different mounting angle. Specifically, as shown in FIG. 2, in the rotor system of this embodiment, the horizontal rotation axis 33 of the flapping hinge in the first connecting component 3 and the longitudinal direction of the blade 2 are not perpendicular to each other, but There is an angle between each other.
  • a certain stagger angle is formed between the axial direction of the horizontal rotating shaft 33 in the flapping hinge and the longitudinal direction of the blade 2, and thus the blade 2 is inclined with respect to the flapping hinge.
  • the root of the blade 2 does not rotate on a vertical plane with respect to the horizontal shaft 33, but forms a slanting interleaving with the horizontal shaft 33. Conical surface.
  • the angle of attack when the paddle 33 swings up and down corresponds to the vector sum between the angle at which the blade 2 itself oscillates and the angle between the blade 2 and the horizontal axis of the flapping hinge, so that the angle of attack of the blade 2 is further lowered.
  • increase increase the compensation effect of the blade angle of attack on the lift, reduce the vibration of the blade 2 and improve the flight quality of the unmanned aerial vehicle, and ensure that the onboard load of the unmanned aerial vehicle can work normally and stably.
  • the rotor system is applied to an unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating shaft and the blade
  • the first connecting component is configured to swing the blade up and down relative to the plane of rotation of the blade, and a certain stagger angle is formed between the axial direction of the horizontal rotating shaft of the flapping hinge and the longitudinal direction of the blade in the first connecting component, so that The angle of attack of the blade is further reduced or increased, the compensation effect of the blade angle of attack on the lift is improved, the vibration of the blade is reduced and the flight quality of the unmanned aerial vehicle is improved, and the on-board load of the unmanned aerial vehicle can be ensured to work normally and stably.
  • the first connecting assembly 3 may include a flexible connecting member 34 that is coupled between the rotating shaft 1 and the paddle 2.
  • the flexible connecting member 34 is usually made of a flexible material, and thus can be deformed by stretching, offset or torsion within a certain range. Accordingly, the position of the structure to which the flexible connecting member 34 is connected will also follow. It has changed.
  • a flexible connecting member 34 is provided between the rotating shaft 1 and the blade 2, instead of the horizontal hinge structure, the blade 2 can be oriented in the direction indicated by the arrow in FIG. 4, that is, relative to the plane of rotation of the blade 2. Swing, thereby adjusting the angle of attack of the blade 2 itself, and reducing the vibration caused by the imbalance of the rising force of the rotor system.
  • a limit or guiding structure may be provided, so that the flexible connecting member 34 can only be deformed in the vertical direction, and the flexible connecting member 34 is similar to the rigid body in other directions. Movement mode.
  • the deformation direction of the flexible connecting member 34 may not be limited, so that the flexible connecting member 34 can also be deformed in other directions, and the deformation in other directions can improve the aerodynamic performance of the rotor system.
  • the flexible connector 34 may be a rubber member. Since the rubber member has a certain rigidity and elasticity, it is possible to cause the blade 2 to swing up and down with respect to its own plane of rotation by its own deformation while supporting the blade 2, and can be quickly reset after the swing.
  • the flexible connecting member 34 made of rubber can connect the blade 2 and the rotating shaft 1, and can swing the blade 2 up and down with respect to its own plane of rotation.
  • the flexible connecting member 34 may also be other flexible members commonly used by those skilled in the art, such as a steel wire structure, a silicone rubber member, or a flexible member of a composite structure, and the like, which will not be described herein.
  • the rotor system is applied to an unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating shaft and the blade
  • the first connection assembly is for swinging the blade up and down relative to the plane of rotation of the blade, and the first connection assembly includes a flexible connector. Therefore, the flexible connecting member can use its own deformation to generate the up and down swing with respect to the plane of rotation, thereby compensating for the change of the lift force, and improving the unbalanced lift of the forward blade and the trailing blade when the UAV is flying at a high speed. Effectively reduce the vibration during flight, thereby improving the structure of the unmanned aerial vehicle and the reliability of the load.
  • FIG. 4 is a schematic structural view of a fourth type of rotor system according to Embodiment 4 of the present invention.
  • the connecting members that can be rotated in other directions can be added on the basis of the foregoing first to third embodiments, thereby improving the aerodynamic performance of the rotor system.
  • the rotor system in this embodiment is further provided with a second connecting component 5 between the rotating shaft 1 and the blade 2, and the second connecting component 5 is used for The blade 2 can be swung along the plane of rotation of the blade.
  • the second connecting member 5 can cause the rotating shaft 1 and the blade 2 to rotate relative to each other in a direction parallel to the plane of rotation of the blade. Similar to the operation of the first connecting component 3, the second connecting component 5 has a certain degree of freedom in the horizontal or near-horizontal direction, so that the blade 2 can be connected to the rotating shaft 1 by means of the connection of the second connecting component 5, and The front and rear swings are performed along the plane of rotation of the blade 2 with respect to the rotating shaft 1. At this time, the tip of the blade 2 moves forward and backward with the root of the blade 2 as a fulcrum.
  • the forward blade and the trailing blade will be affected differently by the forward flow.
  • the resistance during the advancement is increased, so that under the action of the second connecting member 5, the blade 2 will oscillate rearward with respect to the rotational axis, so that the sweepback angle of the blade 2 is increased.
  • the length of the cross section of the blade 2 in the airflow direction is also increased, and the speed of the blade tip is lower than the speed of the blade root, thereby equivalent to reducing the angle of attack of the blade 2.
  • the blade 2 swings forward with respect to the rotating axis, and the blade tip leads the blade root. At this time, the blade tip speed is higher than the blade root velocity, and thus corresponds to the blade.
  • the angle of attack of 2 increases. In this way, the angle of attack variation of the blade 2 can compensate for the imbalance of the lift, thereby reducing the vibration of the blade 2 during flight, improving the flight quality of the unmanned aerial vehicle, and the operational reliability of the structure and load of the unmanned aerial vehicle.
  • the second connecting component 5 may include a shimmy hinge.
  • the oscillating hinge is coupled between the rotating shaft 1 and the blade 2, and the blade 2 can swing back and forth along the axis of rotation of the blade 2 about the axis of the oscillating hinge.
  • the swinging hinge is also an articulated structure, and the rotating shaft 1 and the blade 2 can be connected by the swinging hinge, and the structure of the swinging hinge can restrict the blade 2 to make the blade 2 can only conditionally move relative to the axis of the pendulum hinge.
  • the axial direction of the shimmy hinge is limited to be along the vertical direction.
  • the blade 2 of the rotor system will move back and forth along the plane of rotation of the blade 2, and it will appear ahead or lag with respect to the blade without the oscillating hinge. Effect.
  • the blade 2 can not only oscillate up and down with respect to the plane of rotation, but also can swing along its own rotation plane under the connection of the oscillating hinge, thereby reducing vibration caused by unbalanced lift and improving flight quality and handling performance of the unmanned aerial vehicle. And improve the reliability of the work of the load.
  • the swinging hinge and the swinging hinge are disposed at the same time between the rotating shaft 1 and the blade 2, the swinging hinge can be disposed between the swinging hinge and the paddle 11 of the rotating shaft 1; The hinge is placed between the flapping hinge and the blade. In this embodiment, the swinging hinge is disposed between the swinging hinge and the paddle as an example.
  • the oscillating hinge may include a second hinge base 51 and a second hinge 52, and the second hinge base 51 and the second hinge 52 pass through the vertical shaft 53. Rotatable connection, one of the second hinge base 51 and the second hinge 52 is connected to the pendulum hinge, and the other is connected to the base of the paddle 11 or the blade 2. Since the swing hinge is disposed between the flapping hinge and the paddle in this embodiment, the second hinge base 51 and the second hinge 52 are connected to the root of the paddle 2.
  • the second hinge base 51 and the second hinge 52 may also be in a shape matching structure.
  • the specific structure, relative position and connection relationship of the second hinge base 51 and the second hinge member 52 are similar to the first hinge base 31 and the first hinge member 32 in the flap hinge, except that the two are mainly The direction of the shaft is set differently, so it will not be described here.
  • the specific connecting structure of the shimmy hinge may be connected to the first hinge base 31 and the rotating shaft 1, and the second hinge base 51 is connected.
  • the second hinge 52 is connected to the root of the blade 2.
  • the second hinge base 51 and the first hinge member 32 can be directly formed into a unitary structure. At this time, the joint strength and rigidity between the shim joint and the flapping joint are high, and the reliability of the rotor system is good.
  • the vertical rotating shaft 53 in the oscillating hinge can also be a damped rotating shaft, which can be damped in a similar manner to the horizontal rotating shaft in the swinging hinge, and will not be described herein.
  • the oscillating hinge may also have a limiting portion or a limiting structure similar to the waving hinge, and the specific structure and form thereof are similar to the limiting portion in the waving hinge, and details are not described herein again.
  • the rotor system is applied to an unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating shaft and the blade Meanwhile, the first connecting assembly is for swinging the blade up and down with respect to the plane of rotation of the blade, and further a second connecting assembly for swinging the blade along the plane of rotation of the blade is provided between the rotating shaft and the blade.
  • the blade can not only oscillate up and down with respect to the plane of rotation, but also can oscillate along its own rotation plane under the connection of the oscillating hinge, thereby further reducing the vibration caused by unbalanced lift and improving the flight quality and handling performance of the unmanned aerial vehicle. And improve the reliability of the work of the load.
  • FIG. 5 is a schematic structural diagram of a fifth type of rotor system according to Embodiment 5 of the present invention.
  • the overall structure and working principle of the rotor system in this embodiment are similar to those of the rotor system in the foregoing fourth embodiment, except that the second connecting component in the embodiment adopts a non-hinge manner to realize the blade along the blade.
  • the second connecting assembly 5 includes a flexible connecting member 54 that is coupled between the paddle 11 and the paddle 2.
  • the first connecting component 3 in this embodiment can be connected in the form of a hinge or a non-hinge. In the embodiment, the first connecting component 3 is a non-hinged flexible member.
  • the flexible connecting member 54 is generally made of a flexible material, and thus can be deformed by stretching, offset or torsion within a certain range, and correspondingly, the flexible connecting member 54 is connected. The position of the structure will also change.
  • a flexible connecting member 54 is provided between the rotating shaft 1 and the blade 2, which can replace the vertical hinge structure so that the blade can be not only along a plane of rotation perpendicular to the plane of rotation of the blade 2.
  • the direction is oscillated up and down, and the blade 2 can also be swung back and forth along the plane of rotation of the blade 2, thereby adjusting the angle of attack of the blade 2 itself, and reducing the vibration caused by the imbalance of the lift force of the rotor system.
  • the deformation direction of the flexible connecting member 54 can be restricted, for example, by setting a limit or guiding structure, so that the flexible connecting member 54 can only be deformed in the horizontal direction, and in other directions, the flexible connecting member 54 is similar to the rigid body. Movement mode.
  • the deformation direction of the flexible connecting member 54 may not be restricted, so that the flexible connecting member 54 can also be deformed in other directions.
  • the first connecting component 3 and the second connecting component 5 can all pass the same
  • the flexible connectors are connected and the torsion and deformation are respectively generated in the horizontal and vertical directions to respectively achieve the up and down swing of the blades 2 and the forward and backward swings, thereby improving the aerodynamic performance of the rotor system.
  • the flexible connecting member 54 in the second connecting component 5 can also be a rubber member or other flexible members commonly used by those skilled in the art, such as a steel wire structure, a silicone material, and a flexible structure. Pieces, etc., will not be described here.
  • the rotor system is applied to an unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft, and further includes a first connecting component, and the first connecting component is disposed on the rotating shaft and the blade
  • the first connecting assembly is configured to swing the blade up and down relative to the plane of rotation of the blade, and further a second connecting component is provided between the rotating shaft and the blade for swinging the blade along the plane of rotation of the blade,
  • the second connection assembly includes a flexible connector.
  • the blade can be swung along the plane of rotation of the blade through the flexible connecting member, thereby further reducing the vibration caused by the unbalanced lift and improving the flight of the unmanned aerial vehicle on the basis of allowing the blade to swing up and down with respect to the plane of rotation of the blade. Quality and handling performance, and improve the reliability of the load.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle according to Embodiment 6 of the present invention.
  • the unmanned aerial vehicle 200 provided in this embodiment specifically includes a body 101 and at least two rotor systems 100 in the first to sixth embodiments.
  • the rotor system 100 is disposed on the body 101. In this manner, the rotor system 100 can provide the UAV 200 with takeoff and landing and flight lift by rotation of the blades.
  • the specific structure, function, and working principle of the rotor system 100 have been described in detail in the foregoing embodiments, and are not described herein again.
  • the body 101 includes a body 1011 and an arm 1012.
  • One end of the arm 1012 is coupled to the body 1011, and the other end of the arm 1012 is used to set the rotor system 100.
  • the rotor system 100 is far from the body 1011, so that it does not interfere with the body 1011, and the safety is good.
  • the unmanned aerial vehicle specifically includes a body and at least two rotor systems, and the rotor system is disposed on the body; the rotor system is applied to the unmanned aerial vehicle, and the rotor system specifically includes a rotating shaft and a blade rotatable about the rotating shaft. Further included is a first connection assembly disposed between the rotating shaft and the blade, the first coupling assembly for oscillating the blade up and down relative to the plane of rotation of the blade.
  • the blades in the rotor system can swing up and down with respect to the plane of rotation, thereby compensating for the change of the lift, and improving the imbalance of the lift of the forward and the trailing blades when the UAV is flying at a high speed.
  • the phenomenon effectively reduces the vibration during flight, thereby improving the structure of the unmanned aerial vehicle and the reliability of the load.

Abstract

一种旋翼系统及无人飞行器。该旋翼系统(100),应用于无人飞行器(200),其包括旋转轴(1)和可绕所述旋转轴(1)转动的桨叶(2),还包括第一连接组件(3),第一连接组件(3)设置在旋转轴(1)桨叶(2)之间,第一连接组件(3)用于使桨叶(2)可相对桨叶(2)的旋转平面上下摆动。具有该旋翼系统的无人飞行器飞行时较为平稳,不易产生振动。

Description

旋翼系统及无人飞行器 技术领域
本发明涉及飞行器领域,尤其涉及一种旋翼系统及无人飞行器。
背景技术
随着科技的不断进步,无人飞行器等智能设备越来越多的应用在了人们的工作和生活中。
目前,无人飞行器通常依靠旋翼等动力装置产生升力,从而实现起降、空中悬停或者前飞等操作。具体的,旋翼具有不断旋转的桨叶,桨叶在旋转时,能够相对于空气运动,从而产生升力,维持无人飞行器的飞行。
然而,当无人飞行器进行高速前飞等操作时,由于机体本身具有一定的前行速度,所以旋翼中的前行桨叶和后行桨叶相对于前方来流会具有不同的速度,因而产生不同的升力。这样在周期性的升力差作用下,会产生较大的振动,影响无人飞行器的正常飞行和工作。
发明内容
本发明提供一种旋翼系统及无人飞行器,飞行时较为平稳,不易产生振动。
第一方面,本发明提供一种旋翼系统,应用于无人飞行器,包括旋转轴和可绕旋转轴转动的桨叶,还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动。
第二方面,本发明提供一种无人飞行器,包括机体和至少两个如上所述的旋翼系统,旋翼系统设置在机体上。
本发明的旋翼系统及无人飞行器,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可 相对桨叶的旋转平面上下摆动。这样旋翼系统中的桨叶能够相对于旋转平面上下摆动,从而对升力的变化进行补偿,改善无人飞行器高速飞行时前行桨叶和后行桨叶的升力不均衡的现象,有效减少飞行时的振动,从而提高无人飞行器的机体结构以及负载的工作可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的旋翼系统的结构示意图;
图2是本发明实施例二提供的另一种旋翼系统的俯视示意图;
图3是本发明实施例三提供的第三种旋翼系统的结构示意图;
图4是本发明实施例四提供的第四种旋翼系统的结构示意图;
图5是本发明实施例五提供的第五种旋翼系统的结构示意图;
图6是本发明实施例六提供的一种无人飞行器的结构示意图。
附图标记说明:
1—旋转轴;2—桨叶;3—第一连接组件;4—驱动电机;5—第二连接组件;21—桨座;31—第一铰接基座;32—第一铰接件;33—水平转轴;34、54—柔性连接件;51—第二铰接基座;52—第二铰接件;53—竖直转轴;100—旋翼系统;101—机体;200—无人飞行器;1011—机身;1012—机臂。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
图1是本发明实施例一提供的旋翼系统的结构示意图。如图1所示,本实施例提供的旋翼系统,应用于无人飞行器中,旋翼系统具体可以包括旋转轴1和可绕旋转轴转动的桨叶2,此外还包括第一连接组件3,第一连接组件3设置在旋转轴1和桨叶2之间,第一连接组件3用于使桨叶2可相对桨叶2的旋转平面上下摆动。
其中,旋翼系统通常设置在多旋翼的无人飞行器上,用于为无人飞行器提供升力,使无人飞行器实现起降、悬停和空中飞行等操作。具体的,旋翼系统可以能够旋转的旋转轴1以及可绕旋转轴1转动的桨叶2。桨叶2转动时,对周边的空气进行切割,并可在桨叶2上下表面气流压差的作用下产生升力,从而实现无人飞行器的飞行。
具体的,旋翼系统的旋转轴1通常为竖直或者接近竖直方向的转轴,而桨叶2一般设置在旋转轴1的端部位置,例如是旋转轴1的顶端等。这样桨叶2旋转时,能够产生沿着竖直方向或者近似竖直方向的升力,从而驱动无人飞行器在空中飞行。
需要说明的是,由于应用旋翼系统的无人飞行器通常为多旋翼飞行器,即利用多个旋翼系统同时为无人飞行器提供升力,因而单个旋翼系统的结构较为简单,一般不能实现周期性变距等操作。此时,无人飞行器的俯仰、转向等飞行操作均通过调整不同旋翼系统的桨叶旋转速度而实现。
在旋翼系统中,旋转轴1和桨叶2之间还设置有第一连接组件3,第一连接组件3在竖直面上具有一定的自由度,因而可以让桨叶2通过第一连接组件3的连接而与旋转轴1之间实现上下自由移动。这样,桨叶2即可相对于自身的旋转平面上下摆动,也就是说,旋翼系统中桨叶2的末梢相对于桨叶2的根部并不总是维持在同一水平面上,而是可具有不同的高度。
旋翼系统在旋转产生升力时,旋翼系统的桨叶2会绕着旋转轴1在水平面或者近似水平面的方向旋转,而当无人飞行器进行高速前飞等操作时,随着桨叶2旋转至旋转轴1的不同方位和角度,总会存在一部分桨叶2绕旋转轴1的转动速度与无人飞行器的前飞速度同向,该部分桨叶即为前行桨叶,而与前行桨叶相对的桨叶位于旋转轴1另一侧,因而其转动的速度方向是和无人飞行器的前飞速度是反向的,该部分桨叶则为后行桨 叶。由于机体本身具有一定的前行速度,所以旋翼系统中的前行桨叶和后行桨叶相对于前方的来流就会具有不同的相对速度,而桨叶所产生的升力和气流有关,因而前行桨叶和后行桨叶也就会相应的产生不同大小的升力。而由于本实施例中的旋翼系统在飞行过程中,桨叶2能够相对于自身的旋转平面上下浮动,因而桨叶2上下浮动时,会相对于气流呈现出不同的迎角。
其中,当桨叶2转动至桨叶速度与无人飞行器前行速度方向同向的位置,也就是成为前行桨叶时,由于和气流之间的相对速度变大,所以前行桨叶受到的气流升力也就越大,此时,在第一连接组件3的连接作用下,前行桨叶会相对于桨叶2原先的旋转平面向上摆动,此时,前行桨叶的迎角变小,因而受到的升力会相应减小,从而对原先增大的升力进行了补偿,减弱了升力变大的幅度。
而当桨叶2的桨叶速度与无人飞行器前行的速度方向反向,也就是向后转动时,由于桨叶2和气流的相对速度减小,所以后行桨叶受到的气流升力会减小。此时,在第一连接组件3的连接作用下,后行桨叶因升力减小而相对于桨叶2的旋转平面向下摆动。此时,后行桨叶的迎角会变大,从而提升了受到的升力,减弱了原先升力减小的幅度。
这样,通过第一连接组件3的连接,旋翼系统中的桨叶2能够相对于旋转平面上下摆动,从而对升力的变化进行补偿,改善无人飞行器高速飞行时前行桨叶和后行桨叶的升力不均衡的现象,有效减少飞行时的振动,从而提高无人飞行器的机体结构以及负载的工作可靠性。
作为其中一种可能的结构形式,第一连接组件3可以包括挥舞铰,挥舞铰连接在旋转轴1和桨叶2之间,且桨叶2绕挥舞铰的轴线相对于桨叶2的旋转平面上下摆动。
具体的,挥舞铰为铰接结构,其具有铰接轴,以及被铰接轴所连接,并可绕铰接轴的轴线实现相对旋转的旋转轴1以及桨叶2。其中,旋转轴1和桨叶2被铰接轴连接在一起而不可分离,能够让桨叶2固定在旋转轴1上;而同时,挥舞铰的结构又可以对桨叶2进行限制,使桨叶2只能有条件的相对于旋转轴1进行运动。
通常的,挥舞铰的轴线方向被限制为水平方向。这样,由于挥舞铰的 限制,旋翼系统的桨叶2被限制为绕挥舞铰的轴线呈上下移动,即相对于桨叶2的旋转平面上下摆动,这样通过挥舞铰的连接,桨叶2能够实现相对于自身旋转平面上下摆动的效果,从而减少因升力不均衡引起的振动,提高无人飞行器的飞行品质及操控性能,并提高负载的工作可靠性。
进一步的,挥舞铰的轴线和桨叶2的旋转平面一般处于相同高度。这样桨叶2通过挥舞铰连接在旋转轴1上时,挥舞铰不会改变桨叶2的原先位置和气动结构,对于桨叶2造成的影响最小。
而由于旋转轴1通常为沿竖直方向或者近似竖直方向设置的轴,为了在旋转轴1上设置挥舞铰,旋转轴1上可以设置有桨座11,挥舞铰连接在桨座11和桨叶2的根部之间。
具体的,桨座11通常设置在旋转轴1的端部位置,并可用于通过挥舞铰与桨叶2的根部连接,例如是桨座11上设置有中心孔,并让旋转轴1的端部穿过中心孔,从而实现桨座11与旋转轴1之间的连接,而桨座11本身可具有用于连接桨叶2或挥舞铰的连接部等结构,以实现桨叶2与桨座11之间的安装。
这样,本实施例中的挥舞铰,一般设置在桨座11与桨叶2的根部之间。而传统的无人飞行器的旋翼结构中,桨座11通常直接和桨叶2根部相连,而并未设置挥舞铰,因此本实施例中的旋翼系统与传统的无人飞行器旋翼在除了挥舞铰外,旋翼系统的其它结构均较为类似。
具体的,作为挥舞铰的一种可选的结构,挥舞铰包括第一铰接基座31和第一铰接件32,第一铰接基座31和第一铰接件32通过水平转轴33可转动连接,第一铰接基座31和第一铰接件32中的一者和桨座11连接,另一者和桨叶2的根部连接。
其中,第一铰接基座31和第一铰接件32为形状相互匹配的结构。例如,第一铰接基座31上可以设置开口朝向第一铰接件32的凹槽,而第一铰接件32可以具有可伸入凹槽内部的插入部,且凹槽的槽壁与插入部上开设有对应的通孔,这样水平转轴33即可穿入通孔中,并将第一铰接基座31和第一铰接件32连接在一起。此时,由于凹槽和插入部之间通过通孔与水平转轴33连接,所以第一铰接件32能够绕着水平转轴33相对第一铰接基座31转动,并带动桨叶2上下摆动。此外,第一铰接基座31和 第一铰接件32也可以为其它通过水平转轴33可转动连接的结构,此处不再赘述。
需要说明的是,第一铰接基座31和第一铰接件32中的一者和桨座11连接,另一者和桨叶2根部连接,既可以是第一铰接基座31和桨座11连接,第一铰接件32和桨叶2根部连接,也可以是第一铰接基座31和桨叶2根部连接,第一铰接件32和桨座11连接。以下为叙述方便,如无特殊说明的话,一般均以第一铰接基座31和桨座11连接,第一铰接件32和桨叶2根部连接进行说明。
依靠挥舞铰连接桨叶2与桨座11时,由于桨叶2自身需要通过和气流的相对作用而产生升力,为了避免依靠挥舞铰连接的桨叶2在自身重力和气流升力的作用下产生大幅度的剧烈摆动,挥舞铰中的水平转轴33通常为具有阻尼的转轴。这样桨叶在相对于自身旋转平面上下摆动时,由于水平转轴具有阻尼,因而在桨叶的带动下转动时,会产生反方向的阻力,从而让挥舞铰的活动受到限制,减缓了桨叶摆动的频率和剧烈程度,能够有效提高旋翼系统转动时的稳定性,保证无人飞行器的飞行安全。
其中,水平转轴33的阻尼设置方式也具有多种。在一种可选的阻尼方式中,第一铰接基座31和第一铰接件32之间的结合面上设置有阻尼垫片(图中未示出)。阻尼垫片一般可以通过表面较高的摩擦力实现阻尼或者自身由高阻尼材料构成。设置在第一铰接基座31与第一铰接件32之间结合面上的阻尼垫片能够在结合面上提供一定的摩擦力或者其它阻尼,从而减缓第一铰接基座31和第一铰接件32之间的转动力度,从而提高桨叶2依靠挥舞铰摆动时的稳定性,且阻尼垫片的结构一般较为简单,能够有效减小水平转轴33的整体结构复杂度及重量。
而在另一种可选的阻尼方式中,第一铰接基座31和第一铰接件32之间设置有阻尼器(图中未示出),阻尼器具有体积可随挥舞铰的转动而变化的腔体,腔体内填充有阻尼介质。一般的,阻尼器可以为由不同部件组成的分体式结构,例如位于阻尼器一端的一个部件中包括有中空腔体,而位于阻尼器另一端的另一个部件可伸入该腔体内部,并沿腔体长度方向移动,同时腔体内部填充有阻尼介质,这样,阻尼器即可形成两端之间距离可变的结构。阻尼器分别与第一铰接基座31以及第一铰接件32连接,在 第一铰接基座31与第一铰接件32之间相对转动至不同角度时,阻尼器的两端之间的距离会相应的缩短或者伸长,而阻尼器腔体内部所填充的阻尼介质即可相应的进行压缩等形变,从而为第一铰接基座31和第一铰接件32之间的转动提供一定的阻尼缓冲,减缓两者之间的转动速度和转动力度。
而为了让旋翼系统中的桨叶2在无人飞行器的飞行过程中不产生幅度过大的上下摆动,或者是在悬停状态下下垂幅度过大,旋翼系统中通常还可以包括限位部,限位部用于限制桨叶2相对于桨叶旋转平面的摆动范围。通常在限位部的限制下,桨叶2相对于桨叶2的旋转平面的摆动范围为±90°。
一般的,限位部也可以具有多种结构及形式,例如,限位部可以为阻挡在桨叶2的摆动路径上的凸起等结构,或者是在第一连接组件3的轴线上所设置的卡突等。
此外,为了保证桨叶转动时能够提供足够的升力,在旋翼系统中的桨叶2和第一连接组件3的数量通常为多个,且桨叶2和第一连接组件3为一一对应关系,而多个桨叶分别通过对应的第一连接组件与旋转轴1实现连接。
一般的,为了简化整个旋翼系统的结构,一个旋翼系统中的桨叶2的数量通常为2-4个。
进一步的,一个旋翼系统中的桨叶2的数量通常可以为两个,且两个桨叶对称设置在旋转轴1两侧,以形成对称的气动布局。
此外,由于旋翼系统中的桨叶2通过第一连接组件3与旋转轴1之间实现连接,因而当无人飞行器为地面停放以及运输状态时,可以通过调节第一连接组件3而让桨叶2向上或向下转动至与旋转轴1折叠的状态,从而缩小无人飞行器的整体尺寸,便于运输及存放。
为了驱动桨叶2旋转,可选的,旋翼系统中还可以包括驱动电机4,驱动电机4和旋转轴1连接并用于驱动旋转轴1旋转,从而让桨叶2旋转并推动气流产生升力,以实现无人飞行器的飞行。
本实施例中,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设 置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动。这样旋翼系统中的桨叶能够相对于旋转平面上下摆动,从而对升力的变化进行补偿,改善无人飞行器高速飞行时前行桨叶和后行桨叶的升力不均衡的现象,有效减少飞行时的振动,从而提高无人飞行器的机体结构以及负载的工作可靠性。
实施例二
图2是本发明实施例二提供的另一种旋翼系统的俯视示意图。本实施例中的旋翼系统,其基本结构和工作原理均与前述实施例一中的旋翼系统类似,不同之处在于,本实施例中的旋翼系统中的第一连接组件和实施例一中的第一连接组件具有不同的安装角度。具体的,如图2所示,本实施例中的旋翼系统,其第一连接组件3中的挥舞铰的水平转轴33与桨叶2的长度方向之间并不是呈相互垂直的关系,而是彼此之间具有夹角。
因此,挥舞铰中的水平转轴33的轴线方向与桨叶2长度方向之间形成一定的交错角度,因而桨叶2相对于挥舞铰为倾斜状态。当旋翼系统中的桨叶2在气流的升力作用下上下摆动时,桨叶2的根部相对于水平转轴33并不是在一个竖直面上进行转动,而是形成一个与水平转轴33倾斜交错的圆锥面。这样由于水平转轴33与桨叶2之间存在夹角,因而桨叶2实际上是倾斜摆动的。相应的,桨叶33上下摆动时的迎角相当于桨叶2自身摆动的角度与桨叶2和挥舞铰的水平转轴的夹角之间的矢量和,从而使得桨叶2的迎角进一步降低或者增大,提升桨叶迎角对升力的补偿效果,减少桨叶2的振动并提升无人飞行器的飞行品质,保障无人飞行器的机上负载能够正常稳定的工作。
本实施例中,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动,且第一连接组件中挥舞铰的水平转轴的轴线方向与桨叶长度方向之间形成一定的交错角度,这样能够使得桨叶的迎角进一步降低或者增大,提升桨叶迎角对升力的补偿效果,减少桨叶的振动并提升无人飞行器的飞行品质,保障无人飞行器的机上负载能够正常稳定的工作。
实施例三
图3是本发明实施例三提供的第三种旋翼系统的结构示意图。本实施例中的旋翼系统,其基本结构和工作原理与前述实施例一或二中的旋翼系统类似,不同之处在于,本实施例中的第一连接组件采用非铰链方式实现桨叶与旋转轴之间的转动连接。如图3所示,本实施例中的旋翼系统中,第一连接组件3可以包括柔性连接件34,柔性连接件34连接在旋转轴1和桨叶2之间。
具体的,柔性连接件34通常采用柔性材料制成,因而自身能够在一定的范围内产生拉伸、偏移或扭转等形变,相应的,柔性连接件34所连接的结构的位置也就会随之发生变化。因而,在旋转轴1和桨叶2之间设置柔性连接件34,可以替代水平铰链结构,让桨叶2能够如图4中的箭头所示方向,也就是相对于桨叶2的旋转平面上下摆动,从而调整桨叶2自身的迎角,减少因旋翼系统上升力不均衡而引起的振动等现象。
其中,为了对柔性连接件34的形变方向进行限制,可以设置限位或者引导结构,让柔性连接件34只能在竖直方向上产生形变,而其它方向上让柔性连接件34类似于刚体的运动方式。此外,也可以不对柔性连接件34的形变方向进行限制,从而让柔性连接件34在其它方向上也能产生形变,并依靠其它方向上的形变改善旋翼系统的气动性能。
具体的,柔性连接件34可以为橡胶件。由于橡胶件具有一定的刚性和弹性,因而能够在对桨叶2进行支撑的同时,利用自身的形变而让桨叶2产生相对于自身旋转平面的上下摆动,并能够在摆动之后迅速复位。因而,橡胶制成的柔性连接件34能够连接桨叶2与旋转轴1,且可以让桨叶2相对于自身的旋转平面上下摆动。
此外,柔性连接件34也可以为其它本领域技术人员常用的柔性件,例如钢丝结构、硅胶件或者是复合结构的柔性件等,此处不再赘述。
本实施例中,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动,且第一连接组件包括柔性连接件。因而柔性连接件能够利用自 身的形变让产生相对于旋转平面的上下摆动,从而对升力的变化进行补偿,改善无人飞行器高速飞行时前行桨叶和后行桨叶的升力不均衡的现象,有效减少飞行时的振动,从而提高无人飞行器的机体结构以及负载的工作可靠性。
实施例四
图4是本发明实施例四提供的第四种旋翼系统的结构示意图。本实施例中的旋翼系统,可以在前述实施例一至三的基础上,再加入可在其它方向上实现转动的连接件,从而改善旋翼系统的气动性能。具体的,如图4所示,本实施例中的旋翼系统除了第一连接组件3外,在旋转轴1和桨叶2之间还设置有第二连接组件5,第二连接组件5用于使桨叶2可沿桨叶旋转平面摆动。
具体的,第二连接组件5可以让旋转轴1和桨叶2在沿与桨叶旋转平面平行的方向产生相对转动。和第一连接组件3的工作方式类似,第二连接组件5在水平面或者近似水平面的方向具有一定的自由度,因而桨叶2依靠第二连接组件5的连接可以与旋转轴1连接,并可相对于旋转轴1沿桨叶2的旋转平面前后摆动。此时,桨叶2的末梢会以桨叶2的根部为支点前后移动。
当无人飞行器高速飞行时,前行桨叶和后行桨叶会分别受到前方来流的不同影响。对于前行桨叶而言,前行时的阻力增加,因而在第二连接组件5的作用下,桨叶2会相对于旋转轴向后摆动,使桨叶2的后掠角增加。此时,桨叶2在气流方向上的剖面的长度也得以增加,且桨叶末梢的速度低于桨叶根部的速度,从而相当于减小了桨叶2的迎角。而对于后行桨叶而言,桨叶2相对于旋转轴向前摆动,桨叶末梢会领先于桨叶根部,此时,桨叶末梢的速度高于桨叶根部速度,因而相当于桨叶2的迎角增加。这样,桨叶2的迎角变化可以补偿升力的失衡,从而减少桨叶2在飞行中的振动,提升无人飞行器的飞行品质,以及无人飞行器的机体结构和负载的工作可靠性。
可选的,第二连接组件5可以包括摆振铰。摆振铰连接在旋转轴1和桨叶2之间,且桨叶2可以绕着摆振铰的轴线沿着桨叶2的旋转平面前后 摆动。
具体的,和挥舞铰类似,摆振铰同样为铰接结构,旋转轴1和桨叶2之间可以依靠摆振铰实现连接,且摆振铰的结构可以对桨叶2进行限制,使桨叶2只能有条件的相对于摆振铰的轴线进行运动。
通常的,摆振铰的轴线方向被限制为沿着竖直方向。此时,在摆振铰的限制下,旋翼系统的桨叶2会沿着桨叶2的旋转平面而前后移动,相对于没有设置摆振铰的桨叶而言,就会呈现出超前或滞后的效果。这样桨叶2不仅能够相对于旋转平面上下摆动,还可以在摆振铰的连接作用下沿着自身旋转平面摆动,从而减少因升力不均衡引起的振动,提高无人飞行器的飞行品质及操控性能,并提高负载的工作可靠性。
可选的,由于旋转轴1和桨叶2之间同时设置有挥舞铰和摆振铰,因而可以将摆振铰设置在挥舞铰和旋转轴1的桨座11之间;或者是将摆振铰设置在挥舞铰和桨叶之间。本实施例中,以摆振铰设置在挥舞铰和桨座之间为例进行说明。
具体的,作为摆振铰的一种可选的结构,摆振铰可以包括第二铰接基座51和第二铰接件52,第二铰接基座51和第二铰接件52通过竖直转轴53可转动连接,第二铰接基座51和第二铰接件52中的一者和摆振铰连接,另一者连接在桨座11或者桨叶2的根部上。由于本实施例中,摆振铰设置在挥舞铰和桨座之间,所以第二铰接基座51和第二铰接件52会与桨叶2的根部相连。
和挥舞铰的具体结构类似,第二铰接基座51和第二铰接件52之间也可以为形状相互匹配的结构。其中,第二铰接基座51与第二铰接件52的具体结构、相对位置和连接关系均和挥舞铰中的第一铰接基座31以及第一铰接件32类似,不同之处主要在于两者的转轴设置方向不同,因此此处不再赘述。
具体的,当摆振铰设置在挥舞铰和旋转轴1的桨座11之间时,摆振铰的具体连接结构可以为第一铰接基座31和旋转轴1连接,第二铰接基座51和第一铰接件32连接,第二铰接件52和桨叶2的根部连接。这样挥舞铰和摆振铰即可依次连接在旋翼系统的旋转轴1与桨叶2之间。
进一步的,作为一种可选的方式,可以直接将第二铰接基座51和第 一铰接件32制成一体式结构。此时,摆振铰和挥舞铰之间具有较高的连接强度和刚度,旋翼系统的可靠性较好。
此外,摆振铰中的竖直转轴53也可以为阻尼转轴,其实现阻尼的方式可以和挥舞铰中的水平转轴类似,此处不再赘述。
可选的,摆振铰也可以具有与挥舞铰类似的限位部或限位结构,其具体结构和形式同样和挥舞铰中的限位部类似,此处不再赘述。
本实施例中,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动,此外在旋转轴和桨叶之间还设置有用于使桨叶可沿桨叶旋转平面摆动的第二连接组件。这样桨叶不仅能够相对于旋转平面上下摆动,还可以在摆振铰的连接作用下沿着自身旋转平面摆动,从而进一步减少因升力不均衡引起的振动,提高无人飞行器的飞行品质及操控性能,并提高负载的工作可靠性。
实施例五
图5是本发明实施例五提供的第五种旋翼系统的结构示意图。本实施例中的旋翼系统的整体结构和工作原理均与前述实施例四中的旋翼系统类似,不同之处在于,本实施例中的第二连接组件采用了非铰链方式实现桨叶沿桨叶旋转平面的前后摆动。如图5所示,本实施例中,第二连接组件5包括柔性连接件54,柔性连接件54连接在桨座11和桨叶2之间。而本实施例中的第一连接组件3既可以采用铰接形式,也可以采用非铰形式进行连接,本实施例中以第一连接组件3为非铰接的柔性件形式为例进行说明。
具体的,和前述实施例二类似,柔性连接件54通常采用柔性材料制成,因而自身能够在一定的范围内产生拉伸、偏移或扭转等形变,相应的,柔性连接件54所连接的结构的位置也就会随之发生变化。因而,如图6中的箭头所示,在旋转轴1和桨叶2之间设置柔性连接件54,可以替代竖直铰链结构,让桨叶不仅能够沿着垂直于桨叶2的旋转平面的方向上下摆动,也让桨叶2能够沿着桨叶2的旋转平面前后摆动,从而调整桨叶2自 身的迎角,减少因旋翼系统上升力不均衡而引起的振动等现象。
其中,可以对柔性连接件54的形变方向进行限制,例如是设置限位或者引导结构,让柔性连接件54只能在水平方向上产生形变,而其它方向上让柔性连接件54类似于刚体的运动方式。或者,也可以不对柔性连接件54的形变方向进行限制,从而让柔性连接件54在其它方向上也能产生形变,此时,可以让第一连接组件3和第二连接组件5均通过同一个柔性连接件进行连接,并使该柔性连接件分别在水平方向和竖直方向上产生扭转和形变,以分别实现桨叶2的上下摆动以及前后摆动,从而改善旋翼系统的气动性能。
具体的,和第一连接组件3类似,第二连接组件5中的柔性连接件54同样可以为橡胶件或者是其它本领域技术人员常用的柔性件,例如钢丝结构、硅胶件、复合结构的柔性件等,此处不再赘述。
本实施例中,旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动,此外在旋转轴和桨叶之间还设置有用于使桨叶可沿桨叶旋转平面摆动的第二连接组件,且第二连接组件包括有柔性连接件。这样可以通过柔性连接件实现桨叶沿桨叶旋转平面的摆动,从而在让桨叶相对于桨叶旋转平面上下摆动的基础上,进一步减少因升力不均衡引起的振动,提高无人飞行器的飞行品质及操控性能,并提高负载的工作可靠性。
实施例六
图6是本发明实施例六提供的一种无人飞行器的结构示意图。如图6所示,本实施例提供的无人飞行器200,具体包括机体101和至少两个实施例一至六中的旋翼系统100,旋翼系统100设置在机体101上。这样,旋翼系统100即可通过桨叶的旋转而为无人飞行器200提供起降和飞行的升力。其中,旋翼系统100的具体结构、功能和工作原理均已在前述实施例中进行了详细说明,此处不再赘述。
具体的,本实施例中的无人飞行器200中,机体101包括机身1011和机臂1012,机臂1012的一端和机身1011连接,机臂1012的另一端用 于设置旋翼系统100。这样旋翼系统100距离机身1011较远,因而不会和机身1011发生干涉,安全性较好。
本实施例中,无人飞行器具体包括机体和至少两个旋翼系统,旋翼系统设置在机体上;旋翼系统应用于无人飞行器中,旋翼系统具体包括旋转轴和可绕旋转轴转动的桨叶,此外还包括第一连接组件,第一连接组件设置在旋转轴和桨叶之间,第一连接组件用于使桨叶可相对桨叶的旋转平面上下摆动。这样无人飞行器在飞行时,旋翼系统中的桨叶能够相对于旋转平面上下摆动,从而对升力的变化进行补偿,改善无人飞行器高速飞行时前行桨叶和后行桨叶的升力不均衡的现象,有效减少飞行时的振动,从而提高无人飞行器的机体结构以及负载的工作可靠性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (47)

  1. 一种旋翼系统,应用于无人飞行器,包括旋转轴和可绕所述旋转轴转动的桨叶,其特征在于,还包括第一连接组件,所述第一连接组件设置在所述旋转轴和所述桨叶之间,所述第一连接组件用于使所述桨叶可相对所述桨叶的旋转平面上下摆动。
  2. 根据权利要求1所述的旋翼系统,其特征在于,所述第一连接组件包括挥舞铰,所述挥舞铰连接在所述旋转轴和所述桨叶之间,且所述桨叶绕所述挥舞铰的轴线相对于所述桨叶的旋转平面上下摆动。
  3. 根据权利要求2所述的旋翼系统,其特征在于,所述挥舞铰的轴线和所述桨叶的旋转平面处于相同高度。
  4. 根据权利要求2或3所述的旋翼系统,其特征在于,所述旋转轴上设置有桨座,所述挥舞铰连接在所述桨座和所述桨叶的根部之间。
  5. 根据权利要求4所述的旋翼系统,其特征在于,所述挥舞铰包括第一铰接基座和第一铰接件,所述第一铰接基座和所述第一铰接件通过水平转轴可转动连接,所述第一铰接基座和所述第一铰接件中的一者和所述桨座连接,另一者和所述桨叶的根部连接。
  6. 根据权利要求5所述的旋翼系统,其特征在于,所述第一铰接基座和所述桨座连接,所述第一铰接件用于和所述桨叶的根部连接。
  7. 根据权利要求5所述的旋翼系统,其特征在于,所述挥舞铰的水平转轴与所述桨叶的长度方向具有夹角。
  8. 根据权利要求5-7任一项所述的旋翼系统,其特征在于,所述水平转轴为具有阻尼的转轴。
  9. 根据权利要求8所述的旋翼系统,其特征在于,所述第一铰接基座和所述第一铰接件之间的结合面上设置有阻尼垫片。
  10. 根据权利要求8所述的旋翼系统,其特征在于,所述第一铰接基座和所述第一铰接件之间设置有阻尼器,所述阻尼器具有体积可随所述挥舞铰的转动而变化的腔体,所述腔体内填充有阻尼介质。
  11. 根据权利要求2或3所述的旋翼系统,其特征在于,还包括限位部,所述限位部用于限制所述桨叶相对于所述桨叶的旋转平面的摆动范围,所述桨叶相对于所述桨叶的旋转平面的摆动范围为±90°。
  12. 根据权利要求1所述的旋翼系统,其特征在于,所述第一连接组件包括柔性连接件,所述柔性连接件连接在所述旋转轴和所述桨叶之间。
  13. 根据权利要求12所述的旋翼系统,其特征在于,所述柔性连接件为橡胶件。
  14. 根据权利要求5-7任一项所述的旋翼系统,其特征在于,所述旋转轴和所述桨叶之间还设置有第二连接组件,所述第二连接组件用于使所述桨叶可沿所述桨叶的旋转平面摆动。
  15. 根据权利要求14所述的旋翼系统,其特征在于,所述第二连接组件包括摆振铰。
  16. 根据权利要求15所述的旋翼系统,其特征在于,所述摆振铰设置在所述挥舞铰和所述桨座之间;或者,所述摆振铰设置在所述挥舞铰和所述桨叶之间。
  17. 根据权利要求16所述的旋翼系统,其特征在于,所述摆振铰包括第二铰接基座和第二铰接件,所述第二铰接基座和所述第二铰接件通过竖直转轴可转动连接,所述第二铰接基座和所述第二铰接件中的一者和所述摆振铰连接,另一者连接在所述桨座或者所述桨叶的根部上。
  18. 根据权利要求17所述的旋翼系统,其特征在于,所述第一铰接基座和所述旋转轴连接,所述第二铰接基座和所述第一铰接件连接,所述第二铰接件和所述桨叶的根部连接。
  19. 根据权利要求18所述的旋翼系统,其特征在于,所述第二铰接基座和所述第一铰接件为一体式结构。
  20. 根据权利要求14所述的旋翼系统,其特征在于,所述第二连接组件包括柔性连接件,所述柔性连接件连接在所述桨座和所述桨叶之间。
  21. 根据权利要求1-3任一项所述的旋翼系统,其特征在于,所述桨叶和所述第一连接组件的数量为多个,且多个所述桨叶分别通过对应的所述第一连接组件与所述旋转轴连接。
  22. 根据权利要求21所述的旋翼系统,其特征在于,所述桨叶的数量为两个,且两个所述桨叶对称设置在所述旋转轴两侧。
  23. 根据权利要求1-3任一项所述的旋翼系统,其特征在于,还包括驱动电机,所述驱动电机和所述旋转轴连接并用于驱动所述旋转轴旋转。
  24. 一种无人飞行器,其特征在于,包括机体和至少两个旋翼系统,所述旋翼系统设置在所述机体上;
    所述旋翼系统应用于无人飞行器,包括旋转轴和可绕所述旋转轴转动的桨叶,还包括第一连接组件,所述第一连接组件设置在所述旋转轴和所述桨叶之间,所述第一连接组件用于使所述桨叶可相对所述桨叶的旋转平面上下摆动。
  25. 根据权利要求24所述的无人飞行器,其特征在于,所述第一连接组件包括挥舞铰,所述挥舞铰连接在所述旋转轴和所述桨叶之间,且所述桨叶绕所述挥舞铰的轴线相对于所述桨叶的旋转平面上下摆动。
  26. 根据权利要求25所述的无人飞行器,其特征在于,所述挥舞铰的轴线和所述桨叶的旋转平面处于相同高度。
  27. 根据权利要求25或26所述的无人飞行器,其特征在于,所述旋转轴上设置有桨座,所述挥舞铰连接在所述桨座和所述桨叶的根部之间。
  28. 根据权利要求27所述的无人飞行器,其特征在于,所述挥舞铰包括第一铰接基座和第一铰接件,所述第一铰接基座和所述第一铰接件通过水平转轴可转动连接,所述第一铰接基座和所述第一铰接件中的一者和所述桨座连接,另一者和所述桨叶的根部连接。
  29. 根据权利要求28所述的无人飞行器,其特征在于,所述第一铰接基座和所述桨座连接,所述第一铰接件用于和所述桨叶的根部连接。
  30. 根据权利要求28所述的无人飞行器,其特征在于,所述挥舞铰的水平转轴与所述桨叶的长度方向具有夹角。
  31. 根据权利要求28-30任一项所述的无人飞行器,其特征在于,所述水平转轴为具有阻尼的转轴。
  32. 根据权利要求31所述的无人飞行器,其特征在于,所述第一铰接基座和所述第一铰接件之间的结合面上设置有阻尼垫片。
  33. 根据权利要求31所述的无人飞行器,其特征在于,所述第一铰接基座和所述第一铰接件之间设置有阻尼器,所述阻尼器具有体积可随所述挥舞铰的转动而变化的腔体,所述腔体内填充有阻尼介质。
  34. 根据权利要求25或26所述的无人飞行器,其特征在于,还包括限位部,所述限位部用于限制所述桨叶相对于所述桨叶的旋转平面的摆动 范围,所述桨叶相对于所述桨叶的旋转平面的摆动范围为±90°。
  35. 根据权利要求24所述的无人飞行器,其特征在于,所述第一连接组件包括柔性连接件,所述柔性连接件连接在所述旋转轴和所述桨叶之间。
  36. 根据权利要求35所述的无人飞行器,其特征在于,所述柔性连接件为橡胶件。
  37. 根据权利要求28-30任一项所述的无人飞行器,其特征在于,所述旋转轴和所述桨叶之间还设置有第二连接组件,所述第二连接组件用于使所述桨叶可沿所述桨叶的旋转平面摆动。
  38. 根据权利要求37所述的无人飞行器,其特征在于,所述第二连接组件包括摆振铰。
  39. 根据权利要求38所述的无人飞行器,其特征在于,所述摆振铰设置在所述挥舞铰和所述桨座之间;或者,所述摆振铰设置在所述挥舞铰和所述桨叶之间。
  40. 根据权利要求39所述的无人飞行器,其特征在于,所述摆振铰包括第二铰接基座和第二铰接件,所述第二铰接基座和所述第二铰接件通过竖直转轴可转动连接,所述第二铰接基座和所述第二铰接件中的一者和所述摆振铰连接,另一者连接在所述桨座或者所述桨叶的根部上。
  41. 根据权利要求40所述的无人飞行器,其特征在于,所述第一铰接基座和所述旋转轴连接,所述第二铰接基座和所述第一铰接件连接,所述第二铰接件和所述桨叶的根部连接。
  42. 根据权利要求41所述的无人飞行器,其特征在于,所述第二铰接基座和所述第一铰接件为一体式结构。
  43. 根据权利要求37所述的无人飞行器,其特征在于,所述第二连接组件包括柔性连接件,所述柔性连接件连接在所述桨座和所述桨叶之间。
  44. 根据权利要求24-26任一项所述的无人飞行器,其特征在于,所述桨叶和所述第一连接组件的数量为多个,且多个所述桨叶分别通过对应的所述第一连接组件与所述旋转轴连接。
  45. 根据权利要求44所述的无人飞行器,其特征在于,所述桨叶的 数量为两个,且两个所述桨叶对称设置在所述旋转轴两侧。
  46. [根据细则26改正05.03.2018] 
    根据权利要求24-26任一项所述的无人飞行器,其特征在于,还包括驱动电机,所述驱动电机和所述旋转轴连接并用于驱动所述旋转轴旋转。
  47. [根据细则26改正05.03.2018] 
    根据权利要求24-26任一项所述的无人飞行器,其特征在于,所述机体包括机身和机臂,所述机臂的一端和所述机身连接,所述机臂的另一端用于设置所述旋翼系统。
PCT/CN2017/118747 2017-12-26 2017-12-26 旋翼系统及无人飞行器 WO2019127045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780029129.7A CN109641653A (zh) 2017-12-26 2017-12-26 旋翼系统及无人飞行器
PCT/CN2017/118747 WO2019127045A1 (zh) 2017-12-26 2017-12-26 旋翼系统及无人飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118747 WO2019127045A1 (zh) 2017-12-26 2017-12-26 旋翼系统及无人飞行器

Publications (1)

Publication Number Publication Date
WO2019127045A1 true WO2019127045A1 (zh) 2019-07-04

Family

ID=66052328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118747 WO2019127045A1 (zh) 2017-12-26 2017-12-26 旋翼系统及无人飞行器

Country Status (2)

Country Link
CN (1) CN109641653A (zh)
WO (1) WO2019127045A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834984A (zh) * 2022-11-21 2023-03-21 国网四川省电力公司达州供电公司 一种便携式有限空间巡检仪
CN117419885A (zh) * 2023-12-19 2024-01-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871968B (zh) * 2023-01-28 2023-05-30 江苏新扬新材料股份有限公司 一种倾转旋翼无人机旋翼桨毂结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146294A (ja) * 2001-11-08 2003-05-21 Fuji Heavy Ind Ltd フレックスビーム
CN105059536A (zh) * 2015-08-07 2015-11-18 胡家祺 变螺距旋翼装置以及多旋翼飞行器
US20160167779A1 (en) * 2014-12-11 2016-06-16 Airbus Helicopters Laminated ball joint connection device between a rotorcraft rotor blade and a lead/lag damper of said blade
CN206358352U (zh) * 2016-12-30 2017-07-28 中航维拓(天津)科技有限公司 一种基于复合材料的油动多旋翼柔性旋翼系统
CN107140202A (zh) * 2017-05-12 2017-09-08 上海寅翅智能科技有限公司 一种离心式挥舞铰旋翼头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613319B1 (fr) * 1987-03-30 1989-06-30 Aerospatiale Dispositif de palier combine pour rotor de giravion, et rotor equipe d'un tel dispositif de palier
CN102417034B (zh) * 2011-11-15 2013-11-06 南京航空航天大学 横列式刚性旋翼桨叶直升机
DE102013021884B4 (de) * 2013-09-06 2015-08-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Unbemanntes schwebefähiges Fluggerät
CN106143899B (zh) * 2016-06-29 2018-10-23 上海未来伙伴机器人有限公司 变距旋翼及包括该变距旋翼的多旋翼飞行器及其飞行方法
CN107187591A (zh) * 2017-05-27 2017-09-22 昆山优尼电能运动科技有限公司 便携式无人机、桨叶转动组件、转动系统及其组装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146294A (ja) * 2001-11-08 2003-05-21 Fuji Heavy Ind Ltd フレックスビーム
US20160167779A1 (en) * 2014-12-11 2016-06-16 Airbus Helicopters Laminated ball joint connection device between a rotorcraft rotor blade and a lead/lag damper of said blade
CN105059536A (zh) * 2015-08-07 2015-11-18 胡家祺 变螺距旋翼装置以及多旋翼飞行器
CN206358352U (zh) * 2016-12-30 2017-07-28 中航维拓(天津)科技有限公司 一种基于复合材料的油动多旋翼柔性旋翼系统
CN107140202A (zh) * 2017-05-12 2017-09-08 上海寅翅智能科技有限公司 一种离心式挥舞铰旋翼头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834984A (zh) * 2022-11-21 2023-03-21 国网四川省电力公司达州供电公司 一种便携式有限空间巡检仪
CN115834984B (zh) * 2022-11-21 2024-01-30 国网四川省电力公司达州供电公司 一种便携式有限空间巡检仪
CN117419885A (zh) * 2023-12-19 2024-01-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台
CN117419885B (zh) * 2023-12-19 2024-03-19 中国空气动力研究与发展中心低速空气动力研究所 一种剪刀式尾桨风洞试验台

Also Published As

Publication number Publication date
CN109641653A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
US8287237B2 (en) Step-over blade-pitch control system
US8690096B2 (en) Aircraft with dual flight regimes
US7204453B2 (en) Rotor and aircraft passively stable in hover
US8424798B2 (en) Aircraft with helicopter rotor, thrust generator and assymetric wing configuration
US8123483B2 (en) To rotorcraft rotors fitted with inter-blade dampers
US20100258671A1 (en) Aircraft having helicopter rotor and front mounted propeller
WO2019127045A1 (zh) 旋翼系统及无人飞行器
CN103085970A (zh) 主动螺旋桨旋翼稳定系统
CN110171568A (zh) 一种可悬停扑翼飞行器
CN109515704B (zh) 基于摆线桨技术的涵道卷流旋翼飞行器
US7494320B2 (en) Rotor for passively stable helicopter
US8911209B2 (en) Helicopter, rotor thereof, and control method thereof
EP2982597B1 (en) Tail spar spring
US6986642B2 (en) Extreme mu rotor
JP6784391B2 (ja) コンパウンドヘリコプタ
KR101121126B1 (ko) 블레이드의 항력 운동을 감소시키기 위한 블레이드 및 항력 운동을 감소시키는 방법
US2949965A (en) Rotor hub
US20070095973A1 (en) Aircraft having a helicopter rotor and an inclined front mounted propeller
US2670051A (en) Aircraft lifting rotor and pitch control mechanism therefor
EP3446972B1 (en) Low moment rotor hub
CN207360566U (zh) 一种可实现螺旋桨周期倾斜变距的自动倾斜器
US10654558B2 (en) Rotor hub with enforced collective coning
CN212829047U (zh) 一种旋翼无人机的螺旋桨基座及旋翼无人机
US20180186447A1 (en) Rotor Assembly with High Lock-Number Blades
CN107226198A (zh) 一种可实现螺旋桨周期倾斜变距的自动倾斜器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936082

Country of ref document: EP

Kind code of ref document: A1