WO2019119409A1 - 无人机及无人机控制方法 - Google Patents

无人机及无人机控制方法 Download PDF

Info

Publication number
WO2019119409A1
WO2019119409A1 PCT/CN2017/117976 CN2017117976W WO2019119409A1 WO 2019119409 A1 WO2019119409 A1 WO 2019119409A1 CN 2017117976 W CN2017117976 W CN 2017117976W WO 2019119409 A1 WO2019119409 A1 WO 2019119409A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
drone
main frame
pair
rotor power
Prior art date
Application number
PCT/CN2017/117976
Other languages
English (en)
French (fr)
Inventor
宋亮
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780020743.7A priority Critical patent/CN109071003A/zh
Priority to PCT/CN2017/117976 priority patent/WO2019119409A1/zh
Publication of WO2019119409A1 publication Critical patent/WO2019119409A1/zh
Priority to US16/908,390 priority patent/US20200324900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/26Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present application relates to the field of aircraft technology, and in particular, to a drone and a drone control method.
  • a drone is a non-manned aerial vehicle that is operated by a radio remote control device or remote control device to perform a mission.
  • drones have been developed and applied in many fields, such as civil, industrial, and military applications.
  • the common rotor drone realizes the flight of the drone through the rotation of the rotor power component.
  • the rotor drone has always had the disadvantages of low energy efficiency and low flight speed.
  • the present application provides a drone and drone control method that can improve energy efficiency and flight speed.
  • a drone includes: a main frame; a pair of front wings disposed on opposite sides of the main frame and capable of rotating in a front-rear direction with respect to the main frame a pair of rear wings disposed on opposite sides of the main frame and adjacent to a rear end of the main frame relative to the pair of front wings, the pair of rear wings being capable of being opposite to the host
  • the frame rotates in the front-rear direction; and a plurality of rotor power assemblies are mounted on the front wing and the rear wing.
  • a drone control method for controlling a drone including a main frame, a pair of front wings, a pair of rear wings, and a plurality of rotors a power assembly, a pair of front wings are disposed on opposite sides of the main frame, a pair of rear wings are disposed on opposite sides of the main frame, and are adjacent to the main frame relative to the pair of front wings End, a plurality of rotor power assemblies are mounted on the front wing and the rear wing, the drone control method comprising: controlling the front wing and the rear wing relative to the main frame Rotating in the front-rear direction and controlling the rotation of the rotor power assembly.
  • the drone of the present application includes a pair of front wings and a pair of rear wings that are rotatable relative to the main frame in the front-rear direction, and a plurality of rotor power assemblies that can be passed through the rotor power assembly, the front wing and the rear wing. Realize the flight of the drone in different postures, in which the drone can fly at high speed, thereby improving energy efficiency and flight speed.
  • FIG. 1 is a perspective view of an embodiment of a drone of the present application.
  • FIG. 2 is a schematic view showing the posture of the drone shown in FIG. 1 during take-off and landing.
  • FIG. 3 is a schematic view showing the attitude of the drone shown in FIG. 1 flying forward in the multi-rotor mode.
  • FIG. 4 is a schematic view showing the attitude of the drone shown in FIG. 1 flying leftward or rightward in the multi-rotor mode.
  • FIG. 5 is a schematic diagram of the attitude of the drone shown in FIG. 1 when it is required to increase the shooting angle of the camera in the multi-rotor mode.
  • Figure 6 is a schematic illustration of the attitude of the drone shown in Figure 1 flying forward in a high speed flight mode.
  • FIG. 7 is another schematic diagram of the attitude of the drone shown in FIG. 1 flying forward in the high speed flight mode.
  • Figure 8 is a perspective view showing the drone shown in Figure 7 from another angle.
  • Fig. 9 is a schematic view showing the attitude of the drone shown in Fig. 1 flying backward in the high speed flight mode.
  • the drone of the embodiment of the present application includes a main frame, a pair of front wings, a pair of rear wings, and a plurality of rotor power assemblies.
  • a pair of front wings are disposed on opposite sides of the main frame and are rotatable in the front-rear direction with respect to the main frame.
  • a pair of rear wings are disposed on opposite sides of the main frame and are adjacent to a rear end of the main frame relative to the pair of front wings.
  • a pair of rear wings are rotatable in the front-rear direction with respect to the main frame.
  • Multiple rotor power components mounted on the front and rear wings.
  • the drone of the present application includes a pair of front wings and a pair of rear wings that are rotatable relative to the main frame in the front-rear direction, and a plurality of rotor power assemblies that can be passed through the rotor power assembly, the front wing and the rear wing. Realize the flight of the drone in different postures, in which the drone can fly at high speed, thereby improving energy efficiency and flight speed.
  • the drone control method of the embodiment of the present application is used to control the drone.
  • the drone includes a main frame, a pair of front wings, a pair of rear wings, and a plurality of rotor power components.
  • a pair of front wings are disposed on opposite sides of the main frame.
  • a pair of rear wings are disposed on opposite sides of the main frame and are adjacent to a rear end of the main frame relative to the pair of front wings.
  • a plurality of rotor power assemblies are mounted to the front and rear wings.
  • the drone control method includes controlling the front and rear wings to rotate in the front-rear direction with respect to the main frame, and controlling the rotation of the rotor power assembly.
  • the UAV control method can control the rotor power components, the front wing and the rear wing to realize the flight of the drone in different postures. In some postures, the drone can be operated at high speed, thereby improving energy efficiency and flight speed.
  • FIG. 1 is a perspective view of an embodiment of the drone 10.
  • the drone 10 shown in FIG. 1 can be used for aerial photography, mapping, and monitoring, but is not limited thereto. In other embodiments, the drone 10 can also be used in agriculture, express delivery, providing network services, and the like.
  • the drone 10 includes a main frame 11, a pair of front wings 12, a pair of rear wings 13, and a plurality of rotor power assemblies 14-17.
  • the main chassis 11 may be referred to as a center rack or center body.
  • the main frame 11 is elongated and includes a front end 111 and a rear end 112 opposite the front end 111.
  • the front end 111 is the nose of the drone 10, and the rear end 112 is the tail of the drone 10.
  • the main frame 11 has a flat shape in which the width of the left and right sides is smaller than the height.
  • the main frame 11 may have other shapes.
  • the main frame 11 has a flat shape in which the width of the left and right sides is greater than the height.
  • a pair of front wings 12 are disposed on opposite sides of the main frame 11, and are rotatable relative to the main frame 11 in the front-rear direction.
  • the front wing 12 is mounted to the front end of the main frame 11.
  • a pair of front wings 12 are symmetrically disposed on the left and right sides of the main frame 11, and the pair of front wings 12 have the same shape.
  • the front wing 12 is generally plate-shaped and the front wing 12 tapers from its upper end to its lower end.
  • the upper and lower side edges of the front wing 12 are substantially perpendicular to the main frame 11.
  • the outer side of the front wing 12 away from the main frame 11 is substantially perpendicular to the upper side edge of the front wing 12.
  • the front wing 12 is stepped toward the inner side of the main frame 11, wherein the inner side of the lower portion of the front wing 12 is away from the main frame 11 from the inner side of the upper portion, and the opening 121 is formed between the lower portions of the pair of front wings 12. .
  • the front wing 12 can be other shapes and is not limited to the shapes shown in the figures.
  • a pair of front wings 12 may be rotated rearward relative to the main frame 11 or forward relative to the main frame 11.
  • the pair of front wings 12 rotate synchronously, the rotation direction and the angle are the same, and are always symmetrical with respect to the main frame 11.
  • a pair of front wings 12 are independently formed and assembled to the main frame 11 respectively.
  • a pair of front wings 12 are integrally formed and assembled together on the main frame 11.
  • a pair of rear wings 13 are disposed on opposite sides of the main frame 11, and are adjacent to the rear ends of the main frame 11 with respect to the pair of front wings 12.
  • the pair of rear wings 13 are rotatable relative to the main frame 11 in the front-rear direction.
  • a pair of rear wings 13 are mounted to the rear end of the main frame 11.
  • the distance from the junction of the front wing 12 to the main frame 11 to the junction of the rear wing 13 and the main frame 11 is greater than the upper edge to the lower edge of the front wing 12 and the rear wing 13 distance.
  • a pair of rear wings 13 are symmetrically disposed on the left and right sides of the main frame 11, and a pair of rear wings 12 have the same shape.
  • the shape of the rear wing 13 is the same as that of the front wing 12 and will not be described herein. In other embodiments, the rear wing 13 can be other shapes.
  • a pair of rear wings 13 can be rotated rearward relative to the main frame 11, or forward relative to the main frame 11.
  • the pair of rear wings 13 rotate synchronously, the rotation direction and the angle are the same, and are always symmetrical with respect to the main frame 11.
  • a pair of rear wings 13 are independently formed and assembled to the main frame 11 respectively.
  • a pair of rear wings 13 are integrally formed and assembled together on the main frame 11.
  • the drone 10 includes a front wing drive assembly 18 and a rear wing drive assembly 19 that are disposed on the main frame 11.
  • the front wing drive assembly 18 is coupled to the front wing 12 for driving the front wing 12 to be rotatable relative to the main frame 11 in the fore and aft direction.
  • the rear wing drive assembly 19 is coupled to the rear wing 13 for driving the rear wing 13 to be rotatable relative to the main frame 11 in the front-rear direction.
  • the front wing drive assembly 18 includes a front motor 181 (shown in FIG. 2), a front lead rod 182 coupled to the front motor 181, and a front gear 183 engaged with the front lead rod 182, the front gear 183 and The front wing 12 is connected.
  • the upper end of the front wing 12 can be fixedly coupled to the central shaft of the front gear 183.
  • the front motor 181 drives the front screw 182 to rotate, and drives the front gear 183 to rotate, thereby driving the front wing 12 to rotate.
  • the rear wing drive assembly 19 includes a rear motor 191, a rear threaded rod 192 coupled to the rear motor 191, and a rear gear 193 engaged with the rear threaded rod 192, the rear gear 193 and the rear wing 13 connection.
  • the rear motor 191 drives the screw 192 to rotate
  • the rear gear 193 is rotated to drive the rear wing 13 to rotate.
  • the lead rods 182, 192 and the gears 183, 193 function to resist wind when the drone 10 is flying.
  • the front lead screw 182 is located on the rear side of the front gear 183
  • the rear lead screw 192 is located on the front side of the rear gear 193.
  • the front wing 12 is directly coupled to the rotating shaft of the front motor 181, and the rotation of the rotating shaft of the front motor 181 drives the front wing 12 to rotate.
  • the rear wing 13 is directly connected to the rotating shaft of the rear motor 191, and the wing 13 is rotated by the rotating shaft of the rear motor 191.
  • front wing drive assembly 18 and rear wing drive assembly 19 include two motors that rotate in opposite directions, respectively. That is, the front wing drive assembly 18 includes two front motors 181 that rotate in opposite directions, and the rear wing drive assembly 19 includes two rear motors 191 that rotate in opposite directions.
  • One of the front motors 181 drives the front wing 12 to rotate forward, and the other front motor 181 drives the front wing 12 to rotate backward.
  • one of the rear motors 191 drives the rear wing 13 to rotate forward, and the other rear motor 191 drives the rear wing 13 to rotate backward.
  • the front wing drive assembly 18 and the rear wing drive assembly 19 each include a motor that is capable of forward and reverse rotation. That is, the front motor 181 can be rotated forward and reverse to drive the front wing 12 forward or backward.
  • the rear motor 191 can be rotated forward and reverse to drive the rear wing 13 forward or backward.
  • front wing drive assembly 18 and the rear wing drive assembly 19 may include other components and structures to drive the front machine.
  • the wing 12 and the rear wing 13 rotate.
  • a plurality of rotor power assemblies 14-17 are mounted to the front wing 12 and the rear wing 13.
  • the plurality of rotor power assemblies 14-17 have the same structure and shape.
  • the rotor power assembly 14 includes a rotor motor 141 and a rotor 142 mounted to the rotor motor 141.
  • the rotor motor 141 drives the rotor 142 to rotate.
  • the rotor 142 includes two blades, but is not limited thereto. In other embodiments, the rotor 142 can include three or more blades.
  • the plurality of rotor power assemblies 14-17 include a pair of front rotor power assemblies 14, 17 and a pair of rear rotor power assemblies 15, 16.
  • a pair of front rotor power assemblies 14, 17 are symmetrically mounted to a pair of front wings 12 with respect to the main frame 11, and a pair of rear rotor power assemblies 15, 16 are symmetrically mounted to a pair of rear wings 13 with respect to the main frame 11.
  • the front rotor power assemblies 14, 17 are mounted in the middle of the upper side edge of the front wing 12, and the rear rotor power assemblies 15, 16 are mounted in the middle of the upper side edge of the rear wing 13.
  • the distance of the front rotor power assemblies 14, 17 to the main frame 11 is equal to the distance of the rear rotor power assemblies 15, 16 to the main frame 11.
  • the rotational plane of the rotor power assembly 14-17 is perpendicular to the front wing 12 and the rear wing 13. That is, the plane of rotation of the rotor of the rotor power assembly 14-17 is perpendicular to the front wing 12 and the rear wing 13.
  • the drone 10 includes a plurality of legs 20 disposed at a lower portion of the front and rear wings 12, 13 respectively, and extending downward beyond the lower edges of the front and rear wings 12, 13.
  • the tripod 20 supports and cushions when the drone 10 takes off and land, and prevents the load of the front wing 12, the rear wing 13, the main frame 11, and the drone 10 from directly hitting the ground and being damaged.
  • the pair of legs 20 disposed at a lower portion of the pair of front wings 12 are symmetrical with respect to the main frame 11, and the pair of legs 20 disposed at a lower portion of the pair of rear wings 13 are opposed to the main frame 11 symmetry.
  • the distance between the stand 20 disposed at the lower portion of the front wing 12 and the main frame 11 is equal to the distance from the stand 20 disposed at the lower portion of the rear wing 13 to the main frame 11.
  • the stand 20 is located directly below the corresponding rotor power assembly 14-17, with the center axis of the stand 20 in line with the central axis of the corresponding rotor power assembly 14-17.
  • the stand 20 can be disposed at other locations in the lower portion of the front wing 12 and the rear wing 13.
  • the stand 20 is generally cylindrical, but is not limited thereto. In other embodiments, the stand 20 can be other shapes.
  • the drone 10 includes a load 21 mounted to the front end of the main frame 11, and the load 21 is located between the pair of front wings 12.
  • the load 21 includes a pan/tilt head 211 mounted to the main chassis 11 and a camera 212 mounted to the pan/tilt head 211.
  • the pan/tilt 211 is located in the opening 121 formed between the lower portions of the pair of front wings 12.
  • Camera 212 is located wholly or partially within opening 121.
  • FIG. 2 is a schematic diagram showing the attitude of the drone 10 when it takes off and land.
  • the front wing 12 and the rear wing 13 are perpendicular to the main frame 11.
  • the front wing 12 and the rear wing 13 are perpendicular to the upper side edge of the main frame 11.
  • the front wing 12 and the rear wing 13 extend vertically, and the plane of rotation of the rotor power assemblies 14-17 is parallel to the horizontal plane.
  • the front wing drive assembly 18 can drive the front wing 12 perpendicular to the main frame 11, and the rear wing drive assembly 19 can drive the rear wing 13 perpendicular to the main frame 11.
  • the lower end of the stand 20 is lower than the lower end of the load 21 to protect the load 21.
  • the drone 10 takes off and land in a multi-rotor mode, and can take off and land vertically, requiring a small field for take-off and landing.
  • the front wing 12 and the rear wing 13 may be perpendicular to the main frame 11.
  • the posture of the drone 10 may be the posture shown in FIG. 2.
  • the front and rear wings 12, 13 are perpendicular to the main frame 11, the rotor power assemblies 14 and 16 are rotated in opposite directions, and the rotor power assemblies 15 and 17 are rotated in the forward direction.
  • the rotor power assemblies 14-17 are maintained at a suitable rotational speed to offset the rotational torsional forces of the rotor power assemblies 14 and 16 from the rotational torsion forces of the rotor power assemblies 15 and 17, and the thrust of the plurality of rotor power assemblies 14-17 can be offset.
  • the gravity of the human machine 10 maintains the drone 10 in a hovering state.
  • Figure 3 is a schematic diagram showing the attitude of the drone 10 flying forward in the multi-rotor mode.
  • the front and rear wings 12, 13 are perpendicular to the main frame 11, the rotor power assemblies 14 and 16 are rotated in opposite directions, and the rotor power assemblies 15 and 17 are rotated in the forward direction.
  • the front rotor power assemblies 14 and 17 are decelerated and the rear rotor power assemblies 15 and 16 are accelerated to cause the drone 10 to tilt forward as a whole.
  • the thrust of the plurality of rotor power assemblies 14-17 can overcome the gravity of the drone 10 and produce a forward thrust that causes the drone 10 to fly forward.
  • the front rotor power assemblies 14 and 17 are accelerated, the rear rotor power assemblies 15 and 16 are decelerated, and the thrust of the plurality of rotor power assemblies 14-17 can overcome the gravity of the drone 10 and produce a rearward thrust, thereby rendering no The man machine 10 flies backwards.
  • Figure 4 is a schematic diagram showing the attitude of the drone 10 flying left or right in the multi-rotor mode.
  • the front and rear wings 12, 13 are perpendicular to the main frame 11, the rotor power assemblies 14 and 16 are rotated in opposite directions, and the rotor power assemblies 15 and 17 are rotated in the forward direction.
  • the rotor power assemblies 14 and 15 on the right side of the main frame 11 are accelerated, and the rotor power assemblies 16 and 17 on the left side of the main frame 11 are decelerated, and the thrust of the plurality of rotor power assemblies 14-17 can overcome the gravity of the drone 10, and The thrust to the left side of the drone 10 is generated, thereby causing the drone 10 to fly to the left.
  • the rotor power assemblies 14 and 15 on the right side of the main frame 11 are decelerated, the rotor power assemblies 16 and 17 on the left side of the main frame 11 are accelerated, and the thrust of the plurality of rotor power assemblies 14-17 can overcome the drone 10 Gravity, and produces a thrust to the right side of the drone 10, thereby causing the drone 10 to fly to the right.
  • the rotor power assemblies 14 and 16 rotate in opposite directions, the rotor power assemblies 15 and 17 rotate in the forward direction, the rotor power assemblies 14 and 16 accelerate, and the rotor power assemblies 15 and 17 decelerate,
  • the overall forward rotational torque of the machine 10 is greater than the reverse rotational torque, so that the drone 10 as a whole rotates forward in the plane of rotation of the rotor power assembly 14-17.
  • the rotor power assemblies 14 and 16 are decelerated, and the rotor power assemblies 15 and 17 are accelerated.
  • the overall reverse rotational torque of the drone 10 is greater than the forward rotational torque, so that the drone 10 is entirely at the plane of rotation of the rotor power assembly 14-17. Reverse rotation inside.
  • the drone 10 can hover, fly forward, fly backward, fly left, fly right, forward and reverse in a multi-rotor mode, and the drone 10 is flexible in operation.
  • FIG. 5 is a schematic illustration of another attitude of the drone 10 flying in a multi-rotor mode.
  • the front wing 12 and the rear wing 13 are inclined with respect to the main chassis 11, and the tilt directions are opposite.
  • the lower portion of the front wing 12 is inclined toward the rear end of the main frame 11, and the lower portion of the rear wing 13 is inclined toward the front end of the main frame 11.
  • the angles of inclination of the front wing 12 and the rear wing 13 with respect to the main frame 11 are the same.
  • the lower portion of the front wing 12 and the stand 20 are away from the pan 211 and the camera 212.
  • the front wing 12 and the stand 20 do not block the lens, thereby causing the camera 212.
  • the viewing angle is increased.
  • the drone 10 can hover, fly forward, fly backward, fly left or fly right in the attitude shown in FIG.
  • rotor power assemblies 14 and 16 rotate in opposite directions
  • rotor power assemblies 15 and 17 rotate in the forward direction
  • front rotor power assemblies 14 and 17 produce downward thrust
  • rear rotor power assembly 15 and 16 produces a downward thrust and also produces a rearward thrust.
  • the forward thrust of the front rotor power assemblies 14 and 17 and the rearward thrust of the rear rotor power assemblies 15 and 16 cancel each other out, and the downward thrust of the plurality of rotor power assemblies 14-17 collectively counteracts the gravity of the drone 10, thereby
  • the drone 10 is maintained in a hovering state.
  • Fig. 6 is a schematic view showing the posture of the drone 10 when flying at a high speed.
  • the front wing 12 and the rear wing 13 are inclined with respect to the main frame 11, and the tilt directions are the same.
  • "High speed” refers to the speed at which the drone 10 is flying in rotor mode.
  • the drone 10 needs to fly at a low speed, it can fly in the rotor mode shown in Figure 1-5.
  • the lower portion of the front wing 12 and the lower portion of the rear wing 13 are inclined rearward.
  • the front wing 12 and the rear wing 13 are inclined at the same angle with respect to the main frame 11.
  • the front wing drive assembly 18 drives the front wing 12 to lean forward, that is, the lower portion of the front wing 12 is tilted rearward, and the rear wing drive assembly After the 19 drive, the wing 13 is tilted forward, that is, the lower portion of the rear wing 13 is inclined rearward, and at the same time, the rotational speeds of the plurality of rotor power assemblies 14-17 are increased.
  • the forward tilting of the front wing 12 and the rear wing 13 can cause the rotor power assembly 14-17 to generate a forward thrust in the horizontal direction so that the drone 10 can be propelled forward.
  • the increase in the rotational speed of the plurality of rotor power assemblies 14-17 can compensate for the reduction in thrust in the vertical direction caused by the forward tilting of the front wing 12 and the rear wing 13, so that the gravity can be overcome to maintain the stability of the flying height.
  • the wings 12, 13 and the air form an effective angle of attack, and the air can provide most of the lift, so that the drone 10 can enter high speed flight mode.
  • the plurality of rotor power assemblies 14-17 primarily provide the forward thrust of the drone 10, and the lift formed by the cutting air of the front wing 12 and the rear wing 13 is primarily used to overcome gravity.
  • the drone 10 can be switched from a multi-rotor mode to a high speed flight mode.
  • the drone 10 can be switched from a high speed flight mode to a multi-rotor mode by rotating the front wing 12 and the rear wing 13 and reducing the rotational speed of the rotor power assemblies 14-17. This makes it easier to quickly switch between multi-rotor mode and high-speed flight mode, and the control strategy is simple.
  • Changing the angle of inclination of the front and rear wings 12 and/or the wings 13 and/or the speed of the rotor power assemblies 14-17 can change the flight speed of the drone 10. If the rotational speeds of the plurality of rotor power assemblies 14-17 are maintained, and the inclination angles of the front wing 12 and the rear wing 13 are reduced, the angle of attack of the front wing 12 and the rear wing 13 is increased, initially due to inertia. The reason for the drone 10 height will increase slightly.
  • the flying height of the drone 10 changes depends on the change in the flying speed and the change in the lift force that is commonly affected by the increase in the angle of attack of the front wing 12 and the rear wing 13. If the lift is lowered, the flying height of the drone 10 is lowered. If the lift becomes large, the flying height of the drone 10 becomes large.
  • the angle of attack of the front wing 12 and the rear wing 13 is reduced, initially without The human machine 10 will be lowered in height due to the decrease in lift.
  • the component of the rotor power assembly 14-17 in the horizontal direction is increased, and the flight resistance is reduced, thereby increasing the front wing 12 and the rear wing 13
  • the angle of inclination reduces the angle of attack of the front wing 12 and the rear wing 13 and ultimately increases the flight speed of the drone 10. Whether or not the flying height of the drone 10 changes depends on the increase in the flying speed of the drone 10 and the change in the lift generated by the reduction of the angle of attack of the front wing 12 and the rear wing 13 together.
  • the posture of the drone 10 shown in Figs. 7 and 8 is compared with the posture of the drone 10 shown in Fig. 6, and the front wing 12 and the rear wing 13 of the drone 10 in Figs.
  • the angle of inclination is large, the angle of attack of the front wing 12 and the rear wing 13 is small, and the powers of the front motor 181 and the rear motor 191 are mainly used to push the drone 10 forward, and the air resistance when flying forward is small.
  • the drone 10 shown in Figures 7 and 8 flies faster than the drone 10 shown in Figure 6 when the rotational speed of the rotor power assemblies 14-17 is constant. Therefore, the flying speed of the drone 10 can be improved, and the energy efficiency can be improved, so that high-speed, long-life flight can be realized.
  • the flying speed of the drone 10 will increase, and an increase in the flying speed will result in an increase in the lift force, which in turn will increase the flying height.
  • the rotational speeds of the plurality of rotor power assemblies 14-17 are reduced with the inclination angles of the front wing 12 and the rear wing 13 constant, the flying speed and height of the drone 10 may be lowered.
  • a flight control system may pass sensors (not shown) on the drone 10, such as a barometer, an airspeed meter, a GPS (Global Positioning System), an IMU ( Inertial Measurement Unit, etc., acquires the flight state of the drone 10, and controls the drone 10 by controlling the tilt angle of the front wing 12 and the rear wing 13 and/or the rotational speed of the rotor power assembly 14-17. Speed and/or altitude of flight.
  • the position of the lower end of the stand 20 and the wings 12, 13 is higher than the position of the top end of the camera 212, and the main frame 11 can be maintained in a horizontal state.
  • space is provided for the pan/tilt 211 and the camera 212, and the camera 212 can be effectively prevented from capturing the stand 20 and the front wing 12, effectively improving the shooting angle of the camera 212.
  • the rotational speed of the rotor power assembly 14-17 on the side of the drone 10 is increased, and the rotational speed of the other-side rotor power assembly 14-17 is lowered, so that the drone 10 occurs.
  • the rotational speeds of the rotor power components 14, 15 on the right side of the main frame 11 are increased, and the rotational speeds of the rotor power components 16, 17 on the left side of the main frame 11 are lowered, so that the drone 10 is left. turn.
  • the rifle when flying smoothly in the high-speed flight mode, the rotational speeds of the rotor power components 14, 15 on the right side of the main frame 11 are lowered, and the rotational speeds of the rotor power components 16, 17 on the left side of the main frame 11 are increased, so that the drone 10 is directed. Turn right.
  • the rifle can be controlled to rotate in the high-speed flight mode without the rudder, thereby simplifying the structure of the fuselage and reducing the weight.
  • Fig. 9 is a schematic view showing the posture of the unmanned aerial vehicle 10 when flying at a high speed.
  • the lower portion of the front wing 12 and the lower portion of the rear wing 13 are both inclined forward.
  • the front wing 12 and the rear wing 13 are inclined at the same angle with respect to the main frame 11.
  • the inclination angles of the front wing 12 and the rear wing 13 and the rotation speed of the rotor power assembly 14-17 are similar to those of the drone 10 when flying forward. Narration.
  • the UAV 10 of the embodiment of the present application rotates the front wing 12 and the rear wing 13 to different positions, so that the UAV 10 can fly not only at a high speed but also at a high speed, and the control is convenient and flexible.
  • the drone control method of the embodiment of the present application is used to control the drone.
  • the drone includes a main frame, a pair of front wings, a pair of rear wings, and a plurality of rotor power components.
  • a pair of front wings are disposed on opposite sides of the main frame, and a pair of rear wings are disposed on opposite sides of the main frame, and are close to the rear end of the main frame relative to the pair of front wings.
  • a plurality of rotor power assemblies are mounted to the front and rear wings.
  • the drone control method includes controlling the front and rear wings to rotate in the front-rear direction with respect to the main frame, and controlling the rotation of the rotor power assembly.
  • the drone control method can be used to control the drone 10 described above.
  • the rotation of the front and rear wings and the rotation of the rotor power assembly can be controlled simultaneously. Or you can control the rotation of the front and rear wings first, and then control the rotation of the rotor power components. Or you can control the rotation of the rotor power assembly first, and then control the rotation of the front and rear wings.
  • the direction and/or angle of rotation of the front and rear wings can be controlled.
  • the direction of rotation and/or the rotational speed of the rotor power assembly can be controlled.
  • the front and rear wings are controlled perpendicular to the main frame, and the speed of the rotor power components is controlled to cause the drone to take off or land.
  • the front and rear wings are controlled perpendicular to the main frame.
  • the drone can be controlled to hover, fly forward, fly backward, fly left, fly right, forward or reverse in multi-rotor mode when the front and rear wings are perpendicular to the main frame. .
  • the drone includes a pan/tilt mounted to the mainframe and a camera mounted to the pan/tilt.
  • the front wing and the rear wing can be controlled to be inclined with respect to the main frame, and the tilt directions are opposite.
  • the lower portion of the front wing can be controlled to tilt rearward, and the lower portion of the rear wing is tilted forward so that the lower portion of the front wing is away from the camera, avoiding the tripod-mounted camera at the bottom of the front wing and the front wing
  • the occlusion increases the angle at which the camera is photographed.
  • the rotation of the rotor power assembly can be controlled to hover, fly forward, fly backward, fly left or fly to the right.
  • the front and rear wings are controlled to be inclined with respect to the main frame, and the tilt directions are the same.
  • the front and rear wings can be controlled to be tilted at the same angle relative to the main frame.
  • the lower part of the control front wing and the lower part of the rear wing are tilted rearward.
  • the lower part of the front wing and the lower part of the rear wing are tilted forward.
  • the rotational speed of the plurality of rotor power components can be changed to change the flight speed of the drone. Or change the angle of inclination of the front and rear wings relative to the main frame and the rotational speed of the plurality of rotor power components to change the flight speed of the drone.
  • the flying height of the drone can also be changed by changing the angle of inclination of the front and rear wings relative to the main frame and/or the rotational speed of the plurality of rotor power assemblies.
  • the rotation speed of the rotor power component on one side of the main frame can be controlled differently from the rotation speed of the rotor power component on the other side of the main frame to change the drone The direction of flight.
  • the drone can be turned to one side of the low speed rotor power assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

一种无人机(10)以及无人机控制方法,无人机(10)包括主机架(11)、一对前机翼(12)、一对后机翼(13)和多个旋翼动力组件(14,15,16,17),一对前机翼(12)设置于所述主机架(11)的相对两侧,且能够相对于所述主机架(11)在前后方向上转动;一对后机翼(13)设置于所述主机架(11)的相对两侧,且相对于所述一对前机翼(12)靠近所述主机架(11)的后端;所述一对后机翼(13)能够相对于所述主机架(11)在前后方向上转动;多个旋翼动力组件(14,15,16,17),安装于所述前机翼(12)和所述后机翼(13)上。

Description

无人机及无人机控制方法 技术领域
本申请涉及飞行器技术领域,特别涉及一种无人机及无人机控制方法。
背景技术
无人机是一种由无线电遥控设备或者远程控制装置操纵以执行任务的非载人飞行器。近些年来,无人机在多个领域得到发展和应用,例如民用、工业应用和军事应用等。常见的旋翼无人机通过旋翼动力组件的旋转来实现无人机的飞行,然而旋翼无人机一直以来存在能效低、飞行速度低等缺点。
发明内容
本申请提供一种无人机和无人机控制方法,可以提高能效和飞行速度。
根据本申请实施例的一个方面,提供一种无人机包括:主机架;一对前机翼,设置于所述主机架的相对两侧,且能够相对于所述主机架在前后方向上转动;一对后机翼,设置于所述主机架的相对两侧,且相对于所述一对前机翼靠近所述主机架的后端,所述一对后机翼能够相对于所述主机架在前后方向上转动;及多个旋翼动力组件,安装于所述前机翼和所述后机翼上。
根据本申请实施例的另一个方面,提供一种无人机控制方法,用来 控制无人机,所述无人机包括主机架、一对前机翼、一对后机翼和多个旋翼动力组件,一对前机翼设置于所述主机架的相对两侧,一对后机翼设置于主机架的相对两侧,且相对于所述一对前机翼靠近所述主机架的后端,多个旋翼动力组件安装于所述前机翼和所述后机翼上,所述无人机控制方法包括:控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,且控制所述旋翼动力组件旋转。
本申请的无人机包括能够相对于主机架在前后方向转动的一对前机翼和一对后机翼,以及多个旋翼动力组件,可以通过旋翼动力组件、前机翼和后机翼来实现无人机不同姿态下的飞行,其中在一些姿态下可以使无人机高速飞行,从而提高能效和飞行速度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请无人机的一个实施例的立体示意图。
图2是图1所示的无人机起飞和降落时的姿态示意图。
图3是图1所示的无人机在多旋翼模式下向前飞的姿态示意图。
图4是图1所示的无人机在多旋翼模式下向左或向右飞的姿态示意图。
图5是图1所示的无人机在多旋翼模式下需增大相机的拍摄视角时的姿态示意图。
图6是图1所示的无人机在高速飞行模式下向前飞的一种姿态示意 图。
图7是图1所示的无人机在高速飞行模式下向前飞的另一种姿态示意图。
图8是图7所示的无人机从另一角度所示的立体示意图。
图9是图1所示的无人机在高速飞行模式下向后飞的一种姿态示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种 空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。
本申请实施例的无人机包括主机架、一对前机翼、一对后机翼和多个旋翼动力组件。一对前机翼设置于主机架的相对两侧,且能够相对于主机架在前后方向上转动。一对后机翼设置于主机架的相对两侧,且相对于一对前机翼靠近主机架的后端。一对后机翼能够相对于主机架在前后方向上转动。多个旋翼动力组件,安装于前机翼和后机翼上。本申请的无人机包括能够相对于主机架在前后方向转动的一对前机翼和一对后机翼,以及多个旋翼动力组件,可以通过旋翼动力组件、前机翼和后机翼来实现无人机不同姿态下的飞行,其中在一些姿态下可以使无人机高速飞行,从而提高能效和飞行速度。
本申请实施例的无人机控制方法,用来控制无人机。无人机包括主机架、一对前机翼、一对后机翼和多个旋翼动力组件。一对前机翼设置于主机架的相对两侧。一对后机翼设置于主机架的相对两侧,且相对于一对前机翼靠近主机架的后端。多个旋翼动力组件安装于前机翼和后机翼上。无人机控制方法包括:控制前机翼和后机翼相对于主机架在前后方向上转动,且控制旋翼动力组件旋转。无人机控制方法可以控制旋翼动力组件、前机翼和后机翼来实现无人机不同姿态下的飞行,其中在一些姿态下可以使无人机高速飞行,从而提高能效和飞行速度。
下面结合附图,对本申请的无人机和无人机控制方法进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1所示为无人机10的一个实施例的立体示意图。图1所示的无人机10可以用于航拍、测绘、监测,但不限于此。在其他一些实施例中,无人机10还可用于农业、快递送货、提供网络服务等。在本实施例中,无人机10包括主机架11、一对前机翼12、一对后机翼13和多个旋翼动力组件14-17。
在一些实施例中,主机架11可以称作中心机架或中心体。在图示实施例中,主机架11为纵长形,包括前端111和相对于前端111的后端112。前端111为无人机10的机头,后端112为无人机10的机尾。在图示实施例中,主机架11大致呈左右两侧的宽度小于高度的扁平状。在其他实施例中,主机架11可以呈其他形状,例如,主机架11大致呈左右两侧的宽度大于高度的扁平状。
一对前机翼12设置于主机架11的相对两侧,且能够相对于主机架11在前后方向上转动。在图示实施例中,前机翼12安装于主机架11的前端。一对前机翼12对称设置于主机架11的左右两侧,一对前机翼12的形状相同。在图示实施例中,前机翼12大致呈板状,前机翼12从其上端向下端逐渐变薄。前机翼12的上侧缘和下侧缘基本垂直于主机架11。前机翼12远离主机架11的外侧面大体上垂直于前机翼12的上侧缘。前机翼12靠近主机架11的内侧面呈台阶面,其中,前机翼12的下部的内侧面较上部的内侧面远离主机架11,一对前机翼12的下部之间形成有开口121。在其他实施例中,前机翼12可以是其他形状,并不限于图中所示的形状。
一对前机翼12可以相对于主机架11向后旋转,或相对于主机架11向前旋转。一对前机翼12同步旋转,旋转方向和角度相同,始终保持相对于主机架11相互对称。在一个实施例中,一对前机翼12独立成型,分别组装于主机架11上。在另一个实施例中,一对前机翼12一体成型,共同组装于主机架11上。
一对后机翼13设置于主机架11的相对两侧,且相对于一对前机翼12靠近主机架11的后端。一对后机翼13能够相对于主机架11在前后方向上转动。在图示实施例中,一对后机翼13安装于主机架11的后端。在一个实施例中,从前机翼12与主机架11的连接处到后机翼13与主机架11的连接处的距离大于前机翼12和后机翼13的上侧缘到下侧缘的距离。一对后机翼13对称设置于主机架11的左右两侧,一对后机翼12的形状相 同。在图示实施例中,后机翼13的形状与前机翼12的形状相同,在此不再赘述。在其他实施例中,后机翼13可以是其他形状。
类似于前机翼12,一对后机翼13可以相对于主机架11向后旋转,或相对于主机架11向前旋转。一对后机翼13同步旋转,旋转方向和角度相同,始终保持相对于主机架11相互对称。在一个实施例中,一对后机翼13独立成型,分别组装于主机架11上。在另一个实施例中,一对后机翼13一体成型,共同组装于主机架11上。
无人机10包括设置于主机架11的前机翼驱动组件18和后机翼驱动组件19。前机翼驱动组件18与前机翼12连接,用于驱动前机翼12能够相对于主机架11在前后方向上转动。后机翼驱动组件19与后机翼13连接,用于驱动后机翼13能够相对于主机架11在前后方向上转动。
在一个实施例中,前机翼驱动组件18包括前电机181(如图2所示)、与前电机181连接的前丝杆182和与前丝杆182啮合的前齿轮183,前齿轮183与前机翼12连接。前机翼12的上端可以与前齿轮183的中心轴固定连接。前电机181驱动前丝杆182转动,带动前齿轮183转动,从而带动前机翼12转动。类似于前机翼驱动组件18,后机翼驱动组件19包括后电机191、与后电机191连接的后丝杆192和与后丝杆192啮合的后齿轮193,后齿轮193与后机翼13连接。后电机191驱动后丝杆192转动,带动后齿轮193转动,从而带动后机翼13转动。丝杆182、192和齿轮183、193在无人机10飞行时起到抗风的作用。在图示实施例中,前丝杆182位于前齿轮183的后侧,后丝杆192位于后齿轮193的前侧。
在另一个实施例中,前机翼12与前电机181的转轴直接连接,前电机181的转轴转动带动前机翼12转动。后机翼13与后电机191的转轴直接连接,后电机191的转轴带动后机翼13转动。
在一个实施例中,前机翼驱动组件18和后机翼驱动组件19分别包 括转动方向相反的两个电机。即前机翼驱动组件18包括转动方向相反的两个前电机181,后机翼驱动组件19包括转动方向相反的两个后电机191。其中一个前电机181驱动前机翼12向前转,另一个前电机181驱动前机翼12向后转。类似地,其中一个后电机191驱动后机翼13向前转,另一个后电机191驱动后机翼13向后转。
在另一个实施例中,前机翼驱动组件18和后机翼驱动组件19分别包括能够正转和反转的一个电机。即前电机181可以正转和反转,来驱动前机翼12向前转或向后转。后电机191可以正转和反转,来驱动后机翼13向前转或向后转。
上述仅是前机翼驱动组件18和后机翼驱动组件19的例子,在其他一些实施例中,前机翼驱动组件18和后机翼驱动组件19可以包括其他元件和结构,来驱动前机翼12和后机翼13转动。
多个旋翼动力组件14-17安装于前机翼12和后机翼13上。在图示实施例中,多个旋翼动力组件14-17具有相同的结构和形状。以旋翼动力组件14为例,旋翼动力组件14包括旋翼电机141和安装于旋翼电机141的旋翼142。旋翼电机141驱动旋翼142旋转。在图示实施例中,旋翼142包括两个叶片,但不限于此。在其他实施例中,旋翼142可以包括三个或更多个叶片。
多个旋翼动力组件14-17包括一对前旋翼动力组件14、17和一对后旋翼动力组件15、16。一对前旋翼动力组件14、17相对于主机架11对称安装于一对前机翼12上,一对后旋翼动力组件15、16相对于主机架11对称安装于一对后机翼13上。在图示实施例中,前旋翼动力组件14、17安装于前机翼12的上侧缘中部位置,后旋翼动力组件15、16安装于后机翼13的上侧缘中部位置。在一个实施例中,前旋翼动力组件14、17到主机架11的距离与后旋翼动力组件15、16到主机架11的距离相等。在图示实施例中,旋翼动力组件14-17的旋转平面垂直于前机翼12和后机翼13。 即旋翼动力组件14-17的旋翼的旋转平面垂直于前机翼12和后机翼13。
无人机10包括多个脚架20,分别设置于前机翼12和后机翼13的下部,且向下延伸超出前机翼12和后机翼13的下侧缘。脚架20在无人机10起飞和降落时起支撑和缓冲作用,避免前机翼12、后机翼13、主机架11、无人机10的负载或其他部件直接撞地而损坏。在图示实施例中,设置于一对前机翼12下部的一对脚架20相对于主机架11对称,且设置于一对后机翼13下部的一对脚架20相对于主机架11对称。在图示实施例中,设置于前机翼12下部的脚架20到主机架11的距离与设置于后机翼13下部的脚架20到主机架11的距离相等。
在图示实施例中,脚架20位于对应的旋翼动力组件14-17的正下方,脚架20的中轴线与对应的旋翼动力组件14-17的中轴线在一条直线上。在其他实施例中,脚架20可以设置于前机翼12和后机翼13的下部其他位置。在图示实施例中,脚架20大致呈圆柱体,但不限于此。在其他实施例中,脚架20可以是其他形状。
无人机10包括安装于主机架11前端的负载21,负载21位于一对前机翼12之间。在图示实施例中,负载21包括安装于主机架11的云台211和安装于云台211的相机212。当前机翼12垂直于主机架11时,云台211位于一对前机翼12下部之间形成的开口121内。相机212全部或部分位于开口121内。
图2所示为无人机10起飞和降落时的姿态示意图。无人机10在起飞和降落时,前机翼12和后机翼13垂直于主机架11。在图示实施例中,前机翼12和后机翼13垂直于主机架11的上侧缘。主机架11水平放置时,前机翼12和后机翼13竖直延伸,旋翼动力组件14-17的旋转平面平行于水平面。前机翼驱动组件18可驱动前机翼12垂直于主机架11,后机翼驱动组件19可以驱动后机翼13垂直于主机架11。脚架20的下端低于负载21的下端,可以保护负载21。无人机10在多旋翼模式下起飞和降落,可 以垂直起降,起飞和降落需要的场地小。
无人机10在多旋翼模式下飞行时,前机翼12和后机翼13可以垂直于主机架11。无人机10在多旋翼模式下悬停时,无人机10姿态可以是图2所示的姿态。前机翼12和后机翼13垂直于主机架11,旋翼动力组件14和16反向旋转,旋翼动力组件15和17正向旋转。旋翼动力组件14-17维持在合适的转速,使旋翼动力组件14和16的旋转扭力与旋翼动力组件15和17的旋转扭力相互抵消,且使多个旋翼动力组件14-17的推力可以抵消无人机10的重力,从而使无人机10维持在悬停状态。
图3所示为无人机10在多旋翼模式下向前飞行的姿态示意图。前机翼12和后机翼13垂直于主机架11,旋翼动力组件14和16反向旋转,旋翼动力组件15和17正向旋转。前旋翼动力组件14和17减速,后旋翼动力组件15和16加速,使无人机10整体姿态前倾。多个旋翼动力组件14-17的推力可以克服无人机10的重力,并产生向前的推力,从而使无人机10向前飞行。
类似地,前旋翼动力组件14和17加速,后旋翼动力组件15和16减速,多个旋翼动力组件14-17的推力可以克服无人机10的重力,并产生向后的推力,从而使无人机10向后飞行。
图4所示为无人机10在多旋翼模式下向左或向右飞行的姿态示意图。前机翼12和后机翼13垂直于主机架11,旋翼动力组件14和16反向旋转,旋翼动力组件15和17正向旋转。位于主机架11右侧的旋翼动力组件14和15加速,位于主机架11左侧的旋翼动力组件16和17减速,多个旋翼动力组件14-17的推力可以克服无人机10的重力,并产生向无人机10左侧的推力,从而使无人机10向左飞行。
类似地,位于主机架11右侧的旋翼动力组件14和15减速,位于主机架11左侧的旋翼动力组件16和17加速,多个旋翼动力组件14-17的推 力可以克服无人机10的重力,并产生向无人机10右侧的推力,从而使无人机10向右飞行。
无人机10在多旋翼模式下旋转时,旋翼动力组件14和16反向旋转,旋翼动力组件15和17正向旋转,旋翼动力组件14和16加速,旋翼动力组件15和17减速,无人机10整体正向旋转扭力大于反向旋转扭力,使无人机10整体在旋翼动力组件14-17的旋转平面内正向旋转。
类似地,旋翼动力组件14和16减速,旋翼动力组件15和17加速,无人机10整体反向旋转扭力大于正向旋转扭力,使无人机10整体在旋翼动力组件14-17的旋转平面内反向旋转。
无人机10可以在多旋翼模式下悬停、向前飞、向后飞、向左飞、向右飞、正向旋转和反向旋转,无人机10的操作灵活。
图5所示为无人机10在多旋翼模式下飞行的另一姿态示意图。无人机10在多旋翼模式下飞行时,当需要增大相机212的拍摄视角时,前机翼12和后机翼13相对于主机架11倾斜,且倾斜方向相反。在图示实施例中,前机翼12的下部向主机架11的后端倾斜,后机翼13的下部向主机架11的前端倾斜。前机翼12和后机翼13相对于主机架11的倾斜角度相同。前机翼12的下部和脚架20远离云台211和相机212,相机212的镜头旋转至左侧和右侧时,前机翼12和脚架20不会对镜头产生遮挡,从而使相机212的拍摄视角增大。
无人机10可以在图5所示的姿态下悬停、向前飞行、向后飞行、向左飞行或向右飞行。悬停时,旋翼动力组件14和16反向旋转,旋翼动力组件15和17正向旋转,前旋翼动力组件14和17产生向下的推力,还产生向前的推力,后旋翼动力组件15和16产生向下的推力,还产生向后的推力。前旋翼动力组件14和17向前的推力和后旋翼动力组件15和16的向后的推力相互抵消,多个旋翼动力组件14-17的向下的推力共同抵消无 人机10的重力,从而使无人机10维持在悬停状态。
类似于图3所示姿态下的无人机10,无人机10在图5所示的姿态下向前飞时,前旋翼动力组件14和17减速,后旋翼动力组件15和16加速。向后飞时,前旋翼动力组件14和17加速,后旋翼动力组件15和16减速。
类似于图4所示姿态下的无人机10,无人机10在图5所示的姿态下向左飞时,旋翼动力组件14和15加速,旋翼动力组件16和17减速。向右飞时,旋翼动力组件14和15减速,旋翼动力组件16和17加速。
图6所示为无人机10高速向前飞行时的姿态示意图。当无人机10需高速飞行时,前机翼12和后机翼13相对于主机架11倾斜,且倾斜方向相同。“高速”指高于无人机10在旋翼模式下飞行的速度。无人机10需低速飞行时,可以在图1-5所示的旋翼模式下飞行。图6中,无人机10需高速向前飞行时,前机翼12的下部和后机翼13的下部均向后倾斜。前机翼12和后机翼13相对于主机架11倾斜的角度相同。
当无人机10需从悬停姿态切换到高速向前飞的姿态时,前机翼驱动组件18驱动前机翼12前倾,即前机翼12的下部向后倾斜,后机翼驱动组件19驱动后机翼13前倾,即后机翼13的下部向后倾斜,且同时增大多个旋翼动力组件14-17的转速。前机翼12和后机翼13前倾可以使旋翼动力组件14-17在水平方向上产生前进的推力,从而可以推动无人机10向前飞行。多个旋翼动力组件14-17的转速增大可以弥补因为前机翼12和后机翼13前倾导致的垂直方向的推力减小,从而可以克服重力,保持飞行高度的稳定。
当前机翼12和后机翼13的倾斜角度和旋翼动力组件14-17的转速达到一定程度时,机翼12、13和空气形成有效攻角,空气能够提供大部分的升力,使得无人机10可以进入高速飞行模式。此时多个旋翼动力组件 14-17主要提供无人机10前进的推力,前机翼12和后机翼13切割空气形成的升力主要用于克服重力。
通过转动前机翼12和后机翼13,并增大旋翼动力组件14-17的转速,可以使无人机10从多旋翼模式转换到高速飞行模式。另外,可以通过转动前机翼12和后机翼13,并减小旋翼动力组件14-17的转速,使无人机10从高速飞行模式转换到多旋翼模式。如此可以较方便地在多旋翼模式和高速飞行模式之间快速变换,控制策略简单。
改变前机翼12和后机翼13的倾斜角度和/或旋翼动力组件14-17的转速,可以使无人机10的飞行速度变化。如果维持多个旋翼动力组件14-17的转速不变,减小前机翼12和后机翼13的倾斜角度的话,前机翼12和后机翼13的攻角增大,刚开始因为惯性的原因,无人机10高度会稍有增加。然而前机翼12和后机翼13的攻角增大后,旋翼动力组件14-17在水平方向的分力减小,飞行阻力增大,因此减小前机翼12和后机翼13的倾斜角度,使前机翼12和后机翼13的攻角增大,最终会使无人机10的飞行速度降低。无人机10的飞行高度是否变化需看飞行速度的降低和前机翼12和后机翼13的攻角增大共同影响的升力的变化情况。若升力降低,无人机10的飞行高度下降。若升力变大,无人机10的飞行高度变大。
相反地,如果维持旋翼动力组件14-17的转速不变,增大前机翼12和后机翼13的倾斜角度的话,前机翼12和后机翼13的攻角减小,刚开始无人机10会因为升力减小导致高度降低。然而前机翼12和后机翼13的攻角减小后,旋翼动力组件14-17在水平方向的分力增大,飞行阻力减小,因此增大前机翼12和后机翼13的倾斜角度,使前机翼12和后机翼13的攻角减小,最终会使无人机10的飞行速度增加。无人机10的飞行高度是否变化需看无人机10的飞行速度的增加和前机翼12和后机翼13的攻角减小共同产生的升力的变化情况。
如图7和8所示的无人机10的姿态,相比较于图6所示的无人机 10的姿态,图7和8中无人机10的前机翼12和后机翼13的倾斜角度较大,前机翼12和后机翼13的攻角较小,前电机181和后电机191的动力主要用于推动无人机10向前飞行,向前飞行时的空气阻力较小。在旋翼动力组件14-17的转速不变时,图7和8所示的无人机10比图6所示的无人机10飞行得更快。因此可以提高无人机10的飞行速度,提高能效,如此能够实现高速、长续航飞行。
在高速飞行模式匀速飞行的状态下,如果维持前机翼12和后机翼13的倾斜角度不变,同时增加多个旋翼动力组件14-17的转速的话,无人机10前进的推力会增加,因此无人机10的飞行速度会增加,飞行速度的增加会导致升力的增加,进而使得飞行高度也会增加。相反地,如果在前机翼12和后机翼13的倾斜角度不变的情况下,降低多个旋翼动力组件14-17的转速的话,会使得无人机10的飞行速度和高度降低。
在一些实施例中,飞行控制系统(未图示)可以通过无人机10上的传感器(未图示),如气压计、空速计、GPS(Global Positioning System,全球定位系统)、IMU(Inertial Measurement Unit,惯性测量单元)等,采集无人机10的飞行状态,通过控制前机翼12和后机翼13的倾斜角度和/或旋翼动力组件14-17的转速来控制无人机10飞行的速度和/或高度。
在图7和8所示的无人机10在高速飞行模式下飞行时,脚架20和机翼12、13下端的位置比相机212的顶端位置高,主机架11可以维持在水平状态,如此在非常大的范围内为云台211和相机212让出了空间,可以有效避免相机212拍摄到脚架20和前机翼12,有效地提高相机212的拍摄视角。
在高速飞行模式下,当需要控制飞行方向时,增加无人机10一侧的旋翼动力组件14-17的转速,同时降低另外一侧旋翼动力组件14-17的转速,使无人机10发生转向。例如,在高速飞行模式下平稳飞行时,增加主机架11右侧的旋翼动力组件14、15的转速,降低主机架11左侧的旋翼动 力组件16、17的转速,使无人机10向左转。又例如,在高速飞行模式下平稳飞行时,降低主机架11右侧的旋翼动力组件14、15的转速,增加主机架11左侧的旋翼动力组件16、17的转速,使无人机10向右转。如此无需方向舵也可以控制无人机10在高速飞行模式下转向,从而简化机身结构,减轻重量。
图9所示为无人机10高速向后飞行时的姿态示意图。当无人机10需高速往后飞时,前机翼12的下部和后机翼13的下部均向前倾斜。前机翼12和后机翼13相对于主机架11倾斜的角度相同。无人机10高速向后飞时前机翼12和后机翼13的倾斜角度、旋翼动力组件14-17的转速等的控制与无人机10向前飞时的控制类似,在此不再赘述。本申请实施例的无人机10通过前机翼12和后机翼13转动到不同位置,实现无人机10不仅可以高速向前飞,也可以高速向后飞,控制方便且灵活。
本申请实施例的无人机控制方法,用来控制无人机。无人机包括主机架、一对前机翼、一对后机翼和多个旋翼动力组件。一对前机翼设置于主机架的相对两侧,一对后机翼设置于主机架的相对两侧,且相对于一对前机翼靠近主机架的后端。多个旋翼动力组件安装于前机翼和后机翼上。无人机控制方法包括:控制前机翼和后机翼相对于主机架在前后方向上转动,且控制旋翼动力组件旋转。无人机控制方法可以用来控制前文所述的无人机10。可以同时控制前机翼和后机翼的转动和旋翼动力组件的旋转。或者可以先控制前机翼和后机翼的转动,再控制旋翼动力组件的旋转。或者可以先控制旋翼动力组件的旋转,再控制前机翼和后机翼的转动。可以控制前机翼和后机翼的转动方向和/或角度。可以控制旋翼动力组件的旋转方向和/或转速。
在无人机起飞和降落时,控制前机翼和后机翼垂直于主机架,控制旋翼动力组件的转速使无人机起飞或降落。
在无人机在多旋翼模式下飞行时,控制前机翼和后机翼垂直于主机 架。可以在前机翼和后机翼垂直于主机架时,控制无人机在多旋翼模式下悬停、向前飞、向后飞、向左飞、向右飞、正向旋转或反向旋转。
在一个实施例中,无人机包括安装于主机架的云台和安装于云台的相机。在无人机在多旋翼模式下飞行时,当需要增大相机的拍摄角度时,可以控制前机翼和后机翼相对于主机架倾斜,且倾斜方向相反。在一个实施例中,可以控制前机翼的下部向后倾斜,后机翼的下部向前倾斜,使前机翼的下部远离相机,避免前机翼和前机翼底部设置的脚架对相机的遮挡,从而增大相机的拍摄角度。且可以控制旋翼动力组件的旋转来使无人机悬停、向前飞、向后飞、向左飞或向右飞。
当无人机需高速飞行时,控制前机翼和后机翼相对于主机架倾斜,且倾斜方向相同。可以控制前机翼和后机翼相对于主机架倾斜角度相同。当无人机需高速往前飞时,控制前机翼的下部和后机翼的下部均向后倾斜。当无人机需高速往后飞时,控制前机翼的下部和后机翼的下部均向前倾斜。在旋翼动力组件的旋转速度不变时,可以改变前机翼和后机翼相对于主机架的倾斜角度,来改变无人机的飞行速度。在前机翼和后机翼相对于主机架的倾斜角度不变时,可以改变多个旋翼动力组件的转速,来改变无人机的飞行速度。或者同时改变前机翼和后机翼相对于主机架的倾斜角度和多个旋翼动力组件的转速,来改变无人机的飞行速度。也可通过改变前机翼和后机翼相对于主机架的倾斜角度和/或多个旋翼动力组件的转速,来改变无人机的飞行高度。
在前机翼和后机翼相对于主机架的倾斜角度不变时,可以控制主机架一侧的旋翼动力组件的转速与主机架另一侧的旋翼动力组件的转速不同,来改变无人机的飞行方向。可以使无人机向转速低的旋翼动力组件的一侧转向。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。方法实施例和装置实施例互为补充。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (32)

  1. 一种无人机,其特征在于,其包括:
    主机架;
    一对前机翼,设置于所述主机架的相对两侧,且能够相对于所述主机架在前后方向上转动;
    一对后机翼,设置于所述主机架的相对两侧,且相对于所述一对前机翼靠近所述主机架的后端,所述一对后机翼能够相对于所述主机架在前后方向上转动;及
    多个旋翼动力组件,安装于所述前机翼和所述后机翼上。
  2. 根据权利要求1所述的无人机,其特征在于,所述无人机包括设置于所述主机架的前机翼驱动组件和后机翼驱动组件,所述前机翼驱动组件与所述前机翼连接,用于驱动所述前机翼能够相对于所述主机架在前后方向上转动,所述后机翼驱动组件与所述后机翼连接,用于驱动所述后机翼能够相对于所述主机架在前后方向上转动。
  3. 根据权利要求2所述的无人机,其特征在于,所述前机翼驱动组件包括前电机、与所述前电机连接的前丝杆和与所述前丝杆啮合的前齿轮,所述前齿轮与所述前机翼连接;所述后机翼驱动组件包括后电机、与所述后电机连接的后丝杆和与所述后丝杆啮合的后齿轮,所述后齿轮与所述后机翼连接。
  4. 根据权利要求2所述的无人机,其特征在于,所述前机翼驱动组件和所述后机翼驱动组件分别包括转动方向相反的两个电机。
  5. 根据权利要求1所述的无人机,其特征在于,所述多个旋翼动力组件包括一对前旋翼动力组件和一对后旋翼动力组件,所述一对前旋翼动力组件相对于所述主机架对称安装于所述一对前机翼上,所述一对后旋翼动力组件相对于所述主机架对称安装于所述一对后机翼上。
  6. 根据权利要求5所述的无人机,其特征在于,所述前旋翼动力组件 安装于所述前机翼的上侧缘中部位置,所述后旋翼动力组件安装于所述后机翼的上侧缘中部位置。
  7. 根据权利要求5所述的无人机,其特征在于,所述前旋翼动力组件到所述主机架的距离与所述后旋翼动力组件到所述主机架的距离相等。
  8. 根据权利要求5或6所述的无人机,其特征在于,所述旋翼动力组件的旋转平面垂直于所述前机翼和所述后机翼。
  9. 根据权利要求1所述的无人机,其特征在于,所述无人机包括多个脚架,分别设置于所述前机翼和所述后机翼的下部,且向下延伸超出所述前机翼和所述后机翼的下侧缘。
  10. 根据权利要求1所述的无人机,其特征在于,所述前机翼和所述后机翼在所述无人机起飞和降落时垂直于所述主机架。
  11. 根据权利要求1所述的无人机,其特征在于,所述无人机在多旋翼模式下飞行时,所述前机翼和所述后机翼垂直于所述主机架。
  12. 根据权利要求11所述的无人机,其特征在于,所述无人机包括安装于所述主机架前端的负载,所述负载位于所述一对前机翼之间。
  13. 根据权利要求12所述的无人机,其特征在于,所述负载包括安装于所述主机架的云台和安装于所述云台的相机。
  14. 根据权利要求13所述的无人机,其特征在于,所述一对前机翼的下部之间形成有开口,所述云台位于所述开口内。
  15. 根据权利要求13所述的无人机,其特征在于,所述无人机在多旋翼模式下飞行时,当需要增大相机的拍摄视角时,所述前机翼和所述后机翼相对于所述主机架倾斜,且倾斜方向相反。
  16. 根据权利要求15所述的无人机,其特征在于,所述前机翼的下部向所述主机架的后端倾斜,所述后机翼的下部向所述主机架的前端倾斜。
  17. 根据权利要求1所述的无人机,其特征在于,当所述无人机需高速飞行时,所述前机翼和所述后机翼相对于所述主机架倾斜,且倾斜方向相同。
  18. 根据权利要求17所述的无人机,其特征在于,所述前机翼和所述后机翼相对于所述主机架倾斜的角度相同。
  19. 根据权利要求17所述的无人机,其特征在于,当所述无人机需高速往前飞时,所述前机翼的下部和所述后机翼的下部均向后倾斜。
  20. 根据权利要求17所述的无人机,其特征在于,当所述无人机需高速往后飞时,所述前机翼的下部和所述后机翼的下部均向前倾斜。
  21. 一种无人机控制方法,用来控制无人机,所述无人机包括主机架、一对前机翼、一对后机翼和多个旋翼动力组件,一对前机翼设置于所述主机架的相对两侧,一对后机翼设置于主机架的相对两侧,且相对于所述一对前机翼靠近所述主机架的后端,多个旋翼动力组件安装于所述前机翼和所述后机翼上,所述无人机控制方法包括:控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,且控制所述旋翼动力组件旋转。
  22. 根据权利要求21所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,包括:在所述无人机起飞和降落时,控制所述前机翼和所述后机翼垂直于所述主机架。
  23. 根据权利要求21所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,包括:在所述无人机在多旋翼模式下飞行时,控制所述前机翼和所述后机翼垂直于所述主机架。
  24. 根据权利要求23所述的无人机控制方法,其特征在于,所述无人机包括安装于所述主机架的云台和安装于所述云台的相机;所述控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,包括:在所述无人机在多旋翼模式下飞行时,当需要增大相机的拍摄角度时,控制所述前机翼和所述后机翼相对于所述主机架倾斜,且倾斜方向相反。
  25. 根据权利要求24所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架倾斜,包括:控制所述前机 翼的下部向所述主机架的后端倾斜,所述后机翼的下部向所述主机架的前端倾斜。
  26. 根据权利要求21所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架在前后方向上转动,包括:当所述无人机需高速飞行时,控制所述前机翼和所述后机翼相对于所述主机架倾斜,且倾斜方向相同。
  27. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架倾斜,包括:控制所述前机翼和所述后机翼相对于所述主机架倾斜角度相同。
  28. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架倾斜,包括:当所述无人机需高速往前飞时,控制所述前机翼的下部和所述后机翼的下部均向后倾斜。
  29. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架倾斜,包括:当所述无人机需高速往后飞时,控制所述前机翼的下部和所述后机翼的下部均向前倾斜。
  30. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述前机翼和所述后机翼相对于所述主机架倾斜,包括:在所述旋翼组件的旋转速度不变时,改变所述前机翼和所述后机翼相对于所述主机架倾斜的角度,来改变所述无人机的飞行速度。
  31. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述旋翼动力组件旋转,包括:在所述前机翼和所述后机翼相对于所述主机架倾斜的角度不变时,改变所述多个旋翼动力组件的转速,来改变所述无人机的飞行速度。
  32. 根据权利要求26所述的无人机控制方法,其特征在于,所述控制所述旋翼动力组件旋转,包括:在所述前机翼和所述后机翼相对于所述主机架倾斜的角度不变时,控制所述主机架一侧的所述旋翼动力组件的转速与所述主机架另一侧的所述旋翼动力组件的转速不同,来改变所述无人 机的飞行方向。
PCT/CN2017/117976 2017-12-22 2017-12-22 无人机及无人机控制方法 WO2019119409A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780020743.7A CN109071003A (zh) 2017-12-22 2017-12-22 无人机及无人机控制方法
PCT/CN2017/117976 WO2019119409A1 (zh) 2017-12-22 2017-12-22 无人机及无人机控制方法
US16/908,390 US20200324900A1 (en) 2017-12-22 2020-06-22 Unmanned aerial vehicle and control method for unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/117976 WO2019119409A1 (zh) 2017-12-22 2017-12-22 无人机及无人机控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/908,390 Continuation US20200324900A1 (en) 2017-12-22 2020-06-22 Unmanned aerial vehicle and control method for unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019119409A1 true WO2019119409A1 (zh) 2019-06-27

Family

ID=64812391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117976 WO2019119409A1 (zh) 2017-12-22 2017-12-22 无人机及无人机控制方法

Country Status (3)

Country Link
US (1) US20200324900A1 (zh)
CN (1) CN109071003A (zh)
WO (1) WO2019119409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924340A (zh) * 2019-06-14 2022-01-11 大金工业株式会社 电化学器件用被压缩部件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11027837B2 (en) * 2016-07-01 2021-06-08 Textron Innovations Inc. Aircraft having thrust to weight dependent transitions
CN114423679A (zh) * 2019-04-25 2022-04-29 杰欧比飞行有限公司 垂直起降飞行器
CN110077586B (zh) * 2019-05-22 2023-10-13 福州大学 一种复合式飞行器及其控制方法
CN113911373B (zh) * 2021-11-12 2022-07-29 白城师范学院 一种工业无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204895858U (zh) * 2015-05-07 2015-12-23 张庆伟 垂直起降空中变体固定翼四轴无人机
CN105480416A (zh) * 2016-01-18 2016-04-13 南京信息工程大学 一种倾转旋翼无人机
KR101654544B1 (ko) * 2016-03-31 2016-09-06 주식회사 케바드론 착륙 및 보관 기능이 구비된 무인 항공기
CN106564349A (zh) * 2016-10-31 2017-04-19 广东工业大学 一种三栖无人机
CN106800089A (zh) * 2015-11-25 2017-06-06 中航贵州飞机有限责任公司 一种电动倾转三旋翼无人机
CN106915459A (zh) * 2017-03-23 2017-07-04 北京天宇新超航空科技有限公司 一种混合式倾转旋翼无人机
WO2017204592A1 (ko) * 2016-05-27 2017-11-30 주식회사 유비파이 무인항공기

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836121A (zh) * 2016-04-14 2016-08-10 宗涛 一种多功能旋翼飞行器
KR20190040136A (ko) * 2016-05-18 2019-04-17 에이캐럿큐브드 바이 에어버스 엘엘씨 승객 또는 화물 수송용 자율 조종 항공기
CN106114847B (zh) * 2016-06-27 2018-10-09 湖北航天飞行器研究所 一种垂直起降飞行器
CN106143896B (zh) * 2016-08-05 2018-08-31 朱幕松 直升快飞太阳能无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204895858U (zh) * 2015-05-07 2015-12-23 张庆伟 垂直起降空中变体固定翼四轴无人机
CN106800089A (zh) * 2015-11-25 2017-06-06 中航贵州飞机有限责任公司 一种电动倾转三旋翼无人机
CN105480416A (zh) * 2016-01-18 2016-04-13 南京信息工程大学 一种倾转旋翼无人机
KR101654544B1 (ko) * 2016-03-31 2016-09-06 주식회사 케바드론 착륙 및 보관 기능이 구비된 무인 항공기
WO2017204592A1 (ko) * 2016-05-27 2017-11-30 주식회사 유비파이 무인항공기
CN106564349A (zh) * 2016-10-31 2017-04-19 广东工业大学 一种三栖无人机
CN106915459A (zh) * 2017-03-23 2017-07-04 北京天宇新超航空科技有限公司 一种混合式倾转旋翼无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924340A (zh) * 2019-06-14 2022-01-11 大金工业株式会社 电化学器件用被压缩部件

Also Published As

Publication number Publication date
CN109071003A (zh) 2018-12-21
US20200324900A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US11851173B2 (en) Vertical take-off and landing (VTOL) winged air vehicle with complementary angled rotors
WO2019119409A1 (zh) 无人机及无人机控制方法
US10640207B2 (en) Tilt-prop aircraft
JP6086519B1 (ja) 配達用回転翼機
JP6567054B2 (ja) 傾斜翼付きマルチロータ
KR101554487B1 (ko) 멀티 로터 비행체
US9272784B2 (en) Vertical takeoff winged multicopter
US9296477B1 (en) Multi-rotor helicopter
US20200010182A1 (en) Pivoting wing system for vtol aircraft
JP3224172U (ja) 無人航空機
JP2010052713A (ja) 球形飛行機及びテールシッター機
US8844860B2 (en) Foldable rise and stare vehicle
KR102135285B1 (ko) 수직 이착륙 고정익 무인기
JP2017518217A (ja) 固定ロータ推力ベクタリング
BR112020020400A2 (pt) Veículo aéreo de manobrabilidade aprimorada e um método implementado para este propósito
US20190061935A1 (en) Air vehicle and method and apparatus for control thereof
US11628951B2 (en) Electronic component and aircraft with electronic component attached thereto
WO2018187844A1 (en) Dual flight mode aircraft
JP4702882B2 (ja) 小型回転翼機
WO2020035900A1 (ja) 回転翼機
Hayama et al. Trial production of variable pitch wing attached multicopter for power saving and long flight
JP2024036475A (ja) 飛行体
JP2020164120A (ja) ドローン及び飛行安定化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935731

Country of ref document: EP

Kind code of ref document: A1