WO2020122647A1 - 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품 - Google Patents

딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품 Download PDF

Info

Publication number
WO2020122647A1
WO2020122647A1 PCT/KR2019/017619 KR2019017619W WO2020122647A1 WO 2020122647 A1 WO2020122647 A1 WO 2020122647A1 KR 2019017619 W KR2019017619 W KR 2019017619W WO 2020122647 A1 WO2020122647 A1 WO 2020122647A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
dip molding
parts
latex
latex composition
Prior art date
Application number
PCT/KR2019/017619
Other languages
English (en)
French (fr)
Inventor
정용석
권원상
김지현
오승환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190162685A external-priority patent/KR102384394B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980017988.3A priority Critical patent/CN111886281B/zh
Priority to US16/978,084 priority patent/US11834568B2/en
Priority to JP2020544779A priority patent/JP7045474B2/ja
Priority to MYPI2020004607A priority patent/MY193791A/en
Publication of WO2020122647A1 publication Critical patent/WO2020122647A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex

Definitions

  • the present invention relates to a latex composition for dip molding, and more particularly, to a latex composition for dip molding, a method for manufacturing the same, and a molded article manufactured therefrom.
  • Disposable rubber gloves are increasingly used in various fields such as the household, food industry, electronics industry, and medical field.
  • natural rubber latex was dip molded to make disposable gloves, but some users had protein allergy problems such as pain or rash. Because of this problem, disposable gloves made of dip molding of nitrile-based latex have been spotlighted in recent years instead of natural rubber latex.
  • Glove companies that manufacture nitrile-based rubber gloves using nitrile-based latex are constantly striving to increase productivity and lower defect rates.
  • One of the methods of reducing the defective rate of gloves is a method of manufacturing gloves through a double dip molding method.
  • a syneresis phenomenon occurs in a molded product manufactured by primary dip molding, which degrades the stability of latex during secondary dip molding.
  • coagulation agulation, agglutination, flocculation, agglomeration, or coalescence
  • sedimentation occurs at the bottom of the latex, and the coagulation product is coagulated or pinholes in the final manufactured dip molded product.
  • To increase the defect rate Due to this, there arises a problem of reducing the tensile strength and elongation of the latex glove as the final product.
  • the present invention improves stability by increasing synergistic time during dip molding, including a phenolic emulsifier, when manufacturing a carboxylic acid-modified nitrile-based copolymer latex composition, and at the same time, tensile strength of dip-molded products such as gloves produced therefrom. It is an object of the present invention to provide a latex composition for dip molding, a method for manufacturing the dip molded product, and a dip molded article molded therefrom to improve the strength and lower the modulus to improve the fit.
  • the present invention is a latex composition for dip molding comprising a carboxylic acid-modified nitrile-based copolymer latex and a phenolic emulsifier, wherein the phenolic emulsifier is modified with carboxylic acid
  • a latex composition for dip molding comprising 0.08 parts by weight to 6 parts by weight (based on solid content) based on 100 parts by weight of the solid content of the nitrile copolymer latex.
  • the present invention comprises the steps of preparing a carboxylic acid-modified nitrile-based copolymer latex (S10); And mixing the prepared carboxylic acid-modified nitrile-based copolymer latex with a phenolic emulsifier (S20), wherein the (S20) step is based on 100 parts by weight of the carboxylic acid-modified nitrile-based copolymer latex, the phenol-based It provides a method for producing a latex composition for dip molding that is to mix the emulsifier 0.08 parts by weight to 6 parts by weight.
  • the present invention provides a molded article comprising a layer derived from a latex composition for dip molding.
  • the latex composition for dip molding according to the present invention has improved stability and increased syneresis time, whereby a dip molded article such as a glove is manufactured using it, has excellent workability and tensile strength, and improved fit due to reduced modulus. It has the effect.
  • the term'monomer-derived repeating unit' may refer to a component, a structure derived from a monomer, or a substance itself, and in a specific example, upon polymerization of a polymer, a monomer to be introduced participates in a polymerization reaction and is repeated in the polymer. It may mean a unit.
  • the term'latex' may mean that the polymer or copolymer polymerized by polymerization is present in a dispersed form in water, and for example, a polymer on rubber or a copolymer on rubber polymerized by emulsion polymerization. It may mean that the fine particles are present in a colloidal state dispersed in water.
  • the term'derived layer' may refer to a layer formed from a polymer or copolymer, and in a specific example, when manufacturing a dip molded article, the polymer or copolymer is attached, fixed, and/or polymerized on a dip mold to form a polymer or It may mean a layer formed from a copolymer.
  • crosslinking unit derived from a crosslinking agent' may refer to a component, a structure, or a substance itself originating from a compound, and a crosslinking agent composition functions and reacts to perform crosslinking in a polymer or in a polymer formed by reaction. It may mean a cross-linking part (cross linking part).
  • alkyl' in the present invention is a linear or branched saturated monovalent hydrocarbon of carbon atoms, such as methyl, ethyl, propyl, 2-propyl, n-butyl, iso-butyl, tert-butyl, pentyl, hexyl, dodecyl, etc. It may mean, and may include that which is substituted by a substituent as well as unsubstituted.
  • cycloalkyl' in the present invention is cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, decahydronaphthalenyl, adamantanyl, norbornyl (ie Bicyclo [2,2,1] hept-5-enyl) and the like, wherein at least one hydrogen atom of the alkyl group as defined above is saturated or unsaturated non-aromatic monovalent monocyclic, bicyclic or cyclic of a hydrocarbon. It may mean that it is substituted with a tricyclic hydrocarbon, and it may mean that it includes not only unsubstituted but also substituted by a substituent.
  • the term'aryl' may mean that one or more hydrogen atoms of the alkyl group as defined above are substituted with an aryl group, such as phenyl, naphthalenyl, fluorenyl, and the like, as well as unsubstituted substituents. It may mean to include those substituted by.
  • alkenyl' refers to a linear or linear carbon atom, such as ethenyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, pentenyl, 5-hexenyl, dodecenyl, etc. It may mean a branched monovalent hydrocarbon, and alkenyl may be bonded through a carbon atom containing a carbon-carbon double bond or through a saturated carbon atom, and unsubstituted as well as substituted by a substituent. It can mean to include.
  • the term'(meth)acrylate' may mean that both acrylate and methacrylate are possible.
  • the latex composition for dip molding according to the present invention may include a carboxylic acid nitrile copolymer latex and a phenolic emulsifier.
  • the phenol-based emulsifier may be represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently hydrogen; Or a substituted or unsubstituted linear or branched alkyl having 1 to 30 carbon atoms, 1 to 20 carbon atoms, or 1 to 10 carbon atoms, wherein at least one of R 1 to R 3 is substituted or unsubstituted carbon atoms 1 to 30 carbon atoms linear or branched alkyl, R is hydrogen; Polymerizable functional groups; An alkoxy group having 1 to 30 carbon atoms, 1 to 20 carbon atoms, or 1 to 10 carbon atoms; Inorganic or organic salts; Nonionic group; Or halogen, m is an integer from 1 to 20, 1 to 10, or 1 to 5, and n is an integer from 1 to 100, 4 to 80, or 8 to 25.
  • Substituents which may be substituted for the linear or branched alkyl include linear or branched alkyl having 1 to 30 carbon atoms, 1 to 20 carbon atoms, or 1 to 10 carbon atoms; Cycloalkyl having 3 to 30 carbon atoms, 3 to 20 carbon atoms, or 6 to 10 carbon atoms; Aryl having 6 to 30 carbon atoms, 6 to 20 carbon atoms, and 6 to 10 carbon atoms; And it may be one or more selected from the group consisting of halogen.
  • the alkyl may be methyl, ethyl, propyl, 2-propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, dodecyl, and the like.
  • the cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, decahydronaphthalenyl, adamantanyl, norbornyl (ie, bicyclo [2, 2,1] hept-5-enyl) and the like.
  • the aryl may be phenyl, naphthalenyl, fluorenyl, and the like.
  • the polymerizable functional group is (meth)acrylate; Alkyl (meth)acrylates having 1 to 30 carbon atoms, 1 to 20 carbon atoms, or 1 to 10 carbon atoms; And it may be one or more selected from the group consisting of alkenyl (meth) acrylate having 2 to 30 carbon atoms, 2 to 20 carbon atoms, 2 to 10 carbon atoms.
  • the alkoxy group may be methoxy, ethoxy, protoxy, isobutylmethoxy, butoxy, and the like.
  • the inorganic or organic salt is phosphonate (-PO 3 -M + ), phosphate (PO 4 -M + ), sulfate (SO 4 -M + ), sulfonate (SO 3 -M + ), carboxylate ( COO-M + ).
  • the nonionic group may be a hydroxyl group (-OH), cyanide (-CN), carboxylic acid group (-COOH), amide group (-CONH 2 ), or the like.
  • the halogen may be F, Cl, Br, I, and the like.
  • R 1 , R 2 and R 3 are each independently hydrogen, butyl, tert-butyl, isobutyl, And so on.
  • the phenol-based emulsifier may be represented by the following formula (2).
  • R is hydrogen; Polymerizable functional groups; An alkoxy group having 1 to 10 carbon atoms; Inorganic or organic salts; Nonionic group; Or halogen, n is an integer from 1 to 100, 4 to 80, or 8 to 25.
  • the polymerizable functional group is (meth)acrylate; Alkyl (meth)acrylates having 1 to 30 carbon atoms, 1 to 20 carbon atoms, or 1 to 10 carbon atoms; And it may be one or more selected from the group consisting of alkenyl (meth) acrylate having 2 to 30 carbon atoms, 2 to 20 carbon atoms, 2 to 10 carbon atoms.
  • the alkyl (meth)acrylate is methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, Heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like.
  • the alkenyl (meth)acrylate may be vinyl (meth)acrylate, allyl (meth)acrylate, 1,1-dimethylpropenyl (meth)acrylate 3,3-dimethylbutenyl (meth)acrylate, etc. .
  • the polymerizable functional groups are acryl, methacryl, acrylamido, methacrylamido, diallylamino, allyl ether, vinyl ether, ⁇ -alkenyl, maleinido, styrenyl, and ⁇ - It may be one or more selected from the group consisting of alkyl styrenyl groups.
  • the content of the phenolic emulsifier (based on solid content) is 0.06 parts by weight to 7 parts by weight, 0.1 parts by weight to 5.5 parts by weight, or 0.1 based on 100 parts by weight of the carboxylic acid-modified nitrile copolymer latex (based on solid content). It may be from 4 parts by weight to 4 parts by weight, and within this range, syneresis time of the latex composition for dip molding increases to improve stability as well as to reduce the modulus, so that the fit of the molded article manufactured using the latex composition for dip molding is reduced. This has an excellent effect.
  • the number average molecular weight of the phenol-based emulsifier may be 250 g/mol to 30,000 g/mol or 300 g/mol to 20,000 g/mol, and the dispersion in the solvent is excellent in this range, so that the carboxylic acid-modified nitrile copolymer
  • the stability of the latex is improved, the synergy time of the latex composition for dip molding is increased, and not only the stability is improved, but also the modulus is reduced, so that a molded article manufactured using the latex composition for dip molding has an excellent effect.
  • the phenolic emulsifier contains a hydrophilic group, so it is soluble in water and can be easily mixed and dispersed, and is fixed to the surface of particles in the latex, thereby improving the stability of the latex.
  • the composition for dip molding containing the same serves to slow the film formation when producing a sex product. It has the effect of increasing the synergy time.
  • the phenol-based emulsifier included in the dip molding latex composition is not a component derived from the production of a carboxylic acid-modified nitrile copolymer, but when the dip molding latex composition is prepared, It may be an emulsifier derived from the addition and mixing of the carboxylic acid-modified nitrile-based copolymer, and may be different from the emulsifier input when the carboxylic acid-modified nitrile-based copolymer is prepared.
  • the phenolic emulsifier contained in the dip molding latex composition is mixed with the prepared carboxylic acid-modified nitrile copolymer latex to increase the synergistic time of the produced sex product, and stress (modulus) It has the effect of improving.
  • the latex composition for dip molding contains a phenol-based emulsifier derived from the addition of a phenol-based emulsifier as an emulsifier when preparing the carboxylic acid-modified nitrile-based copolymer latex, the carboxylic acid-modified nitrile-based copolymer Since the particles in the latex are small, syneresis time may be reduced.
  • the latex composition for dip molding may further include an alkali soluble emulsion (Alkali Soluble Emulsion, ASE) thickener.
  • Alkali Soluble Emulsion, ASE alkali Soluble Emulsion
  • the alkali-soluble emulsion thickener may be a copolymer comprising a repeating unit derived from an ethylenically unsaturated acid monomer and a repeating unit derived from an ethylenically unsaturated acid ester monomer.
  • the alkali-soluble emulsion thickener may be represented by Formula 3 below.
  • R 1 to R 5 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an aryl group having 6 to 12 carbon atoms, a heteroaryl group having 2 to 6 carbon atoms, It represents an ester group, a carboxyl group, a sulfonic acid group or an acid anhydride group, and x and y are each independently an integer selected from 1 to 10000.
  • the "*” may mean a linking position or repeating groups between repeat units in the copolymer.
  • “*” may be hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R 1 and R 2 each represent hydrogen
  • R 3 and R 4 each represent hydrogen or a methyl group
  • R 5 represents an alkyl group having 1 to 4 carbon atoms
  • x and y are respectively. It is an integer independently selected from 10 to 1000.
  • the formula (3) is shown by sequentially describing repeating units repeated with integers of x and y for convenience of description, but due to this, the form of the copolymer represented by the formula (3) is x And it is not limited to the form of a block copolymer in which each of the repeating units repeated with an integer of y is sequentially block, and a random copolymer with each of the repeating units repeated with an integer of x and y randomly distributed in the copolymer It may be included.
  • the ethylenically unsaturated acid monomer is an ethylenically unsaturated acid monomer containing acidic groups such as a carboxyl group, a sulfonic acid group, and an acid anhydride group, consisting of polycarboxylic acid anhydride, ethylenically unsaturated sulfonic acid monomer, and ethylenically unsaturated polycarboxylic acid partial ester monomer It may include one or more selected from the group.
  • the ethylenically unsaturated carboxylic acid monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid, and the polycarboxylic acid anhydride is maleic anhydride and citraconic anhydride. It includes at least one selected from the group consisting of acids, the ethylenically unsaturated sulfonic acid monomer includes styrene sulfonic acid, and the ethylenically unsaturated polycarboxylic acid partial ester monomer is monobutyl fumarate, monobutyl maleate and mono-2-maleic acid It may include one or more selected from the group consisting of hydroxy propyl.
  • the ethylenically unsaturated acid monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid, and more specifically, the ethylenically unsaturated acid monomer may be methacrylic acid.
  • the ethylenically unsaturated acid ester monomer may include one or more selected from the group consisting of methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • the ethylenically unsaturated acid ester monomer may be ethyl acrylate.
  • the weight average molecular weight of the copolymer contained in the alkali-soluble emulsion thickener may be 500 g/mol to 2,000,000 g/mol.
  • the weight average molecular weight of the copolymer contained in the alkali-soluble emulsion thickener may be 15,000 g/mol to 100,000 g/mol or 20,000 g/mol to 100,000 g/mol.
  • the copolymer contained in the alkali-soluble emulsion thickener has a weight average molecular weight within the above range, so that a stable latex composition for dip molding can be prepared.
  • the content of the alkali-soluble emulsion thickener (based on solids) is 0.01 parts by weight to 1.5, 0.05 parts by weight to 1.0 parts by weight or 0.08 parts by weight to 0.5 parts by weight based on 100 parts by weight of the carboxylic acid-modified nitrile-based copolymer latex (based on solids). It can be wealth. Within this range, the viscosity of the composition is increased to improve workability, and to improve the physical properties of the formed dip molded product, and also to improve the quality.
  • the solid content concentration of the alkali-soluble emulsion thickener may be 5% to 15% by weight.
  • the solid content concentration of the alkali-soluble emulsion thickener may range from 7% by weight to 13% by weight, 8% by weight to 12% by weight, or 9% by weight to 11% by weight.
  • the carboxylic acid-modified nitrile-based copolymer in the carboxylic acid-modified nitrile-based copolymer latex is a repeating unit derived from a conjugated diene-based monomer, a repeating unit derived from an ethylenically unsaturated nitrile-based monomer, and an ethylenically unsaturated acid monomer.
  • the derived repeating unit may be included.
  • the conjugated diene-based monomer forming a repeating unit derived from the conjugated diene-based monomer is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3 -Butadiene, 1,3-pentadiene and isoprene may be one or more selected from the group consisting of, specific examples, 1,3-butadiene or isoprene, and more specifically, 1,3-butadiene.
  • the content of the repeating unit derived from the conjugated diene-based monomer may be 40% to 89% by weight, 45% to 80% by weight, or 50% to 78% by weight relative to the total content of the carboxylic acid-modified nitrile-based copolymer, within this range, the dip molded article molded from the latex composition for dip molding containing the carboxylic acid-modified nitrile-based copolymer is flexible, has excellent feel and fit, and has excellent oil resistance and tensile strength.
  • the ethylenically unsaturated nitrile monomer forming a repeating unit derived from the ethylenically unsaturated nitrile monomer is acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloronitrile and ⁇ -It may be at least one selected from the group consisting of cyano ethyl acrylonitrile, and may be, for example, acrylonitrile and methacrylonitrile, and more specifically, acrylonitrile.
  • the content of the repeating unit derived from the ethylenically unsaturated nitrile-based monomer may be 10% by weight to 50% by weight, 15% by weight to 45% by weight, or 20% by weight to 40% by weight relative to the total content of the carboxylic acid-modified nitrile-based copolymer.
  • the dip molded article formed from the latex composition for dip molding containing the carboxylic acid-modified nitrile-based copolymer is flexible, has excellent feel and wear, and has excellent oil resistance and tensile strength.
  • the ethylenically unsaturated acid monomer forming a repeating unit derived from the ethylenically unsaturated acid monomer may be an ethylenically unsaturated monomer containing an acidic group such as a carboxyl group, sulfonic acid group, or acid anhydride group, Specific examples include ethylenic unsaturated acid monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid; Polycarboxylic acid anhydrides such as maleic anhydride and citraconic anhydride; Ethylenically unsaturated sulfonic acid monomers such as styrene sulfonic acid; It may be at least one selected from the group consisting of ethylenically unsaturated poly carboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, and mono-2-hydroxy propyl maleate, and more specifically
  • Itaconic acid, maleic acid and fumaric acid may be at least one selected from the group consisting of, and more specifically, methacrylic acid.
  • the ethylenically unsaturated acid monomer may be used in the form of a salt such as an alkali metal salt or an ammonium salt during polymerization.
  • the content of the repeating unit derived from the ethylenically unsaturated acid monomer may be 0.1% to 15% by weight, 0.5% to 9% by weight, or 1% to 8% by weight relative to the total content of the carboxylic acid-modified nitrile-based copolymer, , In this range, the dip molded article molded from the latex composition for dip molding containing the carboxylic acid-modified nitrile-based copolymer is flexible, has excellent fit, and has excellent resistance and tensile strength.
  • the carboxylic acid-modified nitrile-based copolymer latex is an ethylenically unsaturated monomer in addition to a repeating unit derived from a conjugated diene-based monomer, a repeating unit derived from an ethylenically unsaturated nitrile-based monomer, and a repeating unit derived from an ethylenically unsaturated acid monomer.
  • the derived repeating unit may be optionally further included.
  • the ethylenically unsaturated monomer forming the repeating unit derived from the ethylenically unsaturated monomer includes a vinyl aromatic monomer selected from the group consisting of styrene, aryl styrene, and vinyl naphthalene; Fluoroalkyl vinyl ethers such as fluoro ethyl vinyl ether; (Meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethylol (meth)acrylamide, N-methoxy methyl (meth)acrylamide, and N-propoxy methyl (meth)acrylamide Ethylenically unsaturated amide monomer selected from the group consisting of; Non-conjugated diene monomers such as vinyl pyridine, vinyl norbornene, dicyclo pentadiene and 1,4-hexadiene; Methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)
  • the repeating unit content derived from the ethylenically unsaturated monomer may be within 20% by weight, 0.01% by weight to 20% by weight, or 0.01% by weight to 15% by weight relative to the total content of the carboxylic acid-modified nitrile-based copolymer, and within this range
  • the dip molded product formed from the latex composition for dip molding containing the carboxylic acid-modified nitrile-based copolymer has excellent tactile and fit feeling and excellent tensile strength.
  • the carboxylic acid-modified nitrile copolymer latex may have a glass transition temperature of -50 °C to -15 °C, -47 °C to -15 °C, or -45 °C to -20 °C, within this range, the tensile strength of the molded article dip-molded from the latex composition for dip molding containing the carboxylic acid-modified nitrile-based copolymer latex is prevented from deteriorating and cracking in tensile properties, such as tensile strength, and there is less stickiness, so there is an excellent fit effect.
  • the glass transition temperature may be measured using a differential scanning calorimetry.
  • the average particle diameter of the carboxylic acid-modified nitrile-based copolymer particles in the carboxylic acid-modified nitrile-based copolymer latex is 50 nm to 500 nm, 80 nm to 300 nm, or 100 nm to 150 It may be nm, the viscosity of the carboxylic acid-modified nitrile-based copolymer latex is not increased within this range, a carboxylic acid-modified nitrile-based copolymer latex can be prepared at a high concentration, and dip from the latex composition for dip molding containing the same It has an excellent effect of tensile properties such as tensile strength of the molded article. In addition, excellent film formation speed within the above range has an effect of excellent syneresis characteristics.
  • the average particle diameter may be measured using a laser scattering analyzer (Nicomp).
  • the dip molding latex composition may further include additives such as a vulcanizing agent, an ionic crosslinking agent, a pigment, a vulcanizing catalyst, a filler, and a pH adjusting agent, if necessary.
  • additives such as a vulcanizing agent, an ionic crosslinking agent, a pigment, a vulcanizing catalyst, a filler, and a pH adjusting agent, if necessary.
  • the latex composition for dip molding has, for example, a solid content (concentration) of 5% to 40% by weight, 8% to 35% by weight, or 10% to 33% by weight It may be, and within this range, the efficiency of transport of latex is excellent, and an increase in latex viscosity is prevented, and thus, storage stability is excellent.
  • the latex composition for dip molding may have a pH of 8 to 12, 9 to 11, or 9.3 to 11, and has excellent effects in processability and productivity when manufacturing a dip molded product within this range.
  • the pH of the latex composition for dip molding may be adjusted by the introduction of the pH adjusting agent described above.
  • the pH adjusting agent may be, for example, 1% to 5% by weight of potassium hydroxide aqueous solution, or 1% to 5% by weight of ammonia water.
  • the method for preparing the latex composition for dip molding comprises the steps of preparing a carboxylic acid-modified nitrile-based copolymer latex (S10); And mixing the prepared carboxylic acid-modified nitrile-based copolymer latex with a phenol-based emulsifier (S20).
  • the method for producing a latex composition for dip molding according to the present invention comprises a polymer containing a carboxylic acid-modified nitrile-based copolymer by polymerizing a monomer mixture containing a conjugated diene-based monomer, an ethylenically unsaturated nitrile-based monomer, and an ethylenically unsaturated acid monomer. Preparing the acid-modified nitrile-based copolymer latex; And adding and mixing a phenol-based emulsifier to the prepared carboxylic acid-modified nitrile-based copolymer latex.
  • the step (S20) may further include an alkali-soluble emulsion thickener. That is, in the step (S20), the prepared carboxylic acid-modified nitrile-based copolymer latex may be introduced and mixed with a phenol-based emulsifier and an alkali-soluble emulsion thickener. At this time, the type and content of the alkali-soluble emulsion thickener may be the same as described above.
  • polymerization of the carboxylic acid-modified nitrile-based copolymer may be carried out by emulsion polymerization. The polymerization may be carried out by polymerization of the monomer mixture, and each monomer included in the monomer mixture may be introduced in the type and content of the above-mentioned monomers, and may be introduced in batches or continuously.
  • the monomer mixture may be introduced into the polymerization reactor at the same time prior to polymerization, and may be carried out by first introducing some of the monomer mixture into the polymerization reactor, and injecting the residual monomer mixture after the polymerization is started.
  • the monomer mixture is divided into inputs, when a repeat unit derived from a monomer derived from each monomer in the carboxylic acid-modified nitrile-based copolymer is formed, the distribution of monomers due to a difference in reaction rate for each monomer can be uniformized. Thereby, accordingly, there is an effect of improving the balance between the properties of the dip molded product prepared using a carboxylic acid-modified nitrile-based copolymer.
  • the polymerization of the carboxylic acid-modified nitrile-based copolymer may be carried out in the presence of an emulsifier, polymerization initiator, activator, and molecular weight modifier.
  • the emulsifier is, for example, at least one selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants and amphoteric surfactants.
  • the emulsifier is, for example, at least one selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants and amphoteric surfactants.
  • Specific examples may be one or more anionic surfactants selected from the group consisting of alkylbenzenesulfonates, aliphatic sulfonates, higher alcohol sulfate ester salts, ⁇ -olefin sulfonate salts and alkyl ether sulfate ester salts.
  • the emulsifier may be added in an amount of 0.3 parts by weight to 10 parts by weight, 0.8 parts by weight to 8 parts by weight, or 1.5 parts by weight to 8 parts by weight based on 100 parts by weight of the total amount of the monomer mixture, and polymerization stability is within this range. It is excellent and has a small amount of foaming, so it is easy to manufacture molded products.
  • the polymerization initiator may be, for example, an oxidation-reduction initiator and a thermal initiator.
  • the oxidation-reduction initiator may include one or two or more selected from the group consisting of sodium disulfite, sodium sulfite, isoascorbic acid, and sodium formaldehyde sulfoxylate.
  • ascorbic acid may be used.
  • the oxidation-reduction initiator may be 0.001 parts by weight to 5.0 parts by weight, 0.01 parts by weight to 4.0 parts by weight, or 0.05 to 3.0 parts by weight based on 100 parts by weight of the total content of the monomer mixture, and maintain the polymerization rate at an appropriate level within this range. It has the effect.
  • the thermal initiators include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate and hydrogen peroxide; t-butyl peroxide, cumene hydro peroxide, p-mentanhydro peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyl peroxide, octanoyl peroxide, dibenzoyl peroxide Organic peroxides such as oxide, 3,5,5-trimethylhexanol peroxide and t-butyl peroxy isobutylate; Azobis isobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and azobis isobutyrate (butyl acid) methyl.
  • inorganic peroxides such as sodium persulfate, potassium per
  • the thermal initiator may be 0.01 parts by weight to 2.0 parts by weight, 0.02 parts by weight to 1.5 parts by weight, or 0.05 to 1.0 parts by weight based on 100 parts by weight of the total content of the monomer mixture, and when used together with the oxidation-reduction initiator within this range It has the effect of maintaining the polymerization rate at an appropriate level.
  • the activator is sodium formaldehyde, sulfoxylate, sodium ethylenediamine teraacetate, ferrous sulfate, dextrose, It may be one or more selected from the group consisting of sodium pyrrolate and sodium sulfite.
  • the activator may be added in an amount of 0.01 parts by weight to 2.0 parts by weight, 0.02 parts by weight to 1.5 parts by weight, or 0.05 parts by weight to 1.0 parts by weight based on 100 parts by weight of the total amount of the monomer mixture, and polymerization rate within this range There is an effect that can be maintained at an appropriate level.
  • the molecular weight modifier is, for example, ⁇ -methylstyrene dimer; mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan and octyl mercaptan; Halogenated hydrocarbons such as carbon tetrachloride, methylene chloride and methylene bromide; It may be one or two or more selected from the group consisting of sulfur-containing compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylxanthogen disulfide, and more specifically mercaptans.
  • sulfur-containing compounds such as tetraethyl thiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylxanthogen disulfide, and more specifically mercaptans.
  • the molecular weight modifier may be added in an amount of 0.1 parts by weight to 2 parts by weight, 0.2 parts by weight to 1.5 parts by weight, or 0.3 parts by weight to 1.0 parts by weight based on 100 parts by weight of the total amount of the monomer mixture, and polymerization stability within this range. This is excellent, and when manufacturing a molded article after polymerization, there is an effect of excellent physical properties of the molded article.
  • the polymerization of the carboxylic acid-modified nitrile-based copolymer may be carried out in water, specifically, deionized water, as a medium, and to secure polymerization ease, a chelating agent, a dispersing agent, if necessary It may be carried out by further including additives such as pH adjusting agent, deoxidizing agent, particle size adjusting agent, anti-aging agent and oxygen scavenger.
  • the emulsifier, polymerization initiator, molecular weight modifier, additives, etc. may be introduced into the polymerization reactor in a batch or divided manner, such as the monomer mixture, or may be continuously introduced at each input.
  • the polymerization of the carboxylic acid-modified nitrile-based copolymer may be carried out at a polymerization temperature of 10 °C to 90 °C, 20 °C to 80 °C, or 25 °C to 75 °C, which There is an excellent effect of latex stability within the range.
  • the method for preparing a carboxylic acid-modified nitrile-based copolymer latex may include the step of obtaining a carboxylic acid-modified nitrile-based copolymer latex by terminating the polymerization reaction. End of the polymerization reaction of the carboxylic acid-modified nitrile-based copolymer may be carried out at a time when the polymerization conversion rate is 90% or more, 91% or more, or 92% to 99.9%, and is added to the addition of a polymerization terminator, a pH adjusting agent, and an antioxidant. It can be carried out by.
  • the method for preparing a carboxylic acid-modified nitrile-based copolymer latex may further include a step of removing unreacted monomers by a deodorization concentration process after the reaction is completed.
  • the step of injecting and mixing the phenol-based emulsifier in the prepared carboxylic acid-modified nitrile-based copolymer latex, dip molding for dip molding from the carboxylic acid-modified nitrile-based copolymer latex It may be a step for preparing a latex composition for.
  • the type and content of the phenolic emulsifier may be the same as described above.
  • the phenolic emulsifier may be different from the emulsifier introduced during the polymerization described above.
  • the phenol-based emulsifier is mixed with the prepared carboxylic acid-modified nitrile-based copolymer latex to increase syneresis time and improve stress (modulus).
  • the carboxylic acid-modified nitrile-based copolymer latex was used. Problems in which the syneresis time decreases due to small particles may occur.
  • the alkali-soluble emulsion thickener in the step of adding and mixing the phenol-based emulsifier to the prepared carboxylic acid-modified nitrile-based copolymer latex, further comprises an acidic acid (acid) of the alkali-soluble emulsion thickener
  • the group is neutralized and swollen while interacting with water, thereby increasing the viscosity of the latex composition for dip molding to further increase the syneresis time, and by mixing with a phenolic emulsifier, stress (modulus) By reducing the can improve the fit.
  • the tensile strength of a molded article manufactured from the latex composition for dip molding may be increased to improve physical properties of the molded article.
  • a molded article comprising the layer derived from the latex composition for dip molding.
  • the molded article may be a dip molded article manufactured by dipping the latex composition for dip molding, or may be a molded article comprising a layer derived from a latex composition for dip molding formed from a latex composition for dip molding by dip molding.
  • the molded article manufacturing method for molding the molded article may include immersing the dip molding latex composition by a direct immersion method, an anode adhesion immersion method, a teag adhesion immersion method, etc. It can be carried out by the adhesion immersion method, in which case there is an advantage that can obtain a dip molded article of a uniform thickness.
  • the method for manufacturing the molded product may include attaching a coagulant to the dip molding mold (S100); Dipping a latex composition for dip molding in a dip molding frame to which the coagulant is attached to form a layer derived from a latex composition for dip molding, that is, a dip molding layer (S200); And heating the dip molding layer to crosslink the latex composition for dip molding (S300).
  • a coagulant to the dip molding mold (S100); Dipping a latex composition for dip molding in a dip molding frame to which the coagulant is attached to form a layer derived from a latex composition for dip molding, that is, a dip molding layer (S200); And heating the dip molding layer to crosslink the latex composition for dip molding (S300).
  • the (S100) step is a step of attaching a coagulant to the surface of the dip molding frame by dipping the dip molding frame in a coagulant solution to form a coagulant in the dip molding frame, wherein the coagulant solution is added to water, alcohol or a mixture thereof.
  • the content of the coagulant in the coagulant solution may be 5% to 50% by weight, 7% to 45% by weight, or 10% to 40% by weight relative to the total content of the coagulant solution.
  • the coagulant is, for example, a metal halide such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; Nitrates such as barium nitrate, calcium nitrate and zinc nitrate; Acetates such as barium acetate, calcium acetate and zinc acetate; And it may be one or more selected from the group consisting of sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate, and specifically, calcium chloride or calcium nitrate.
  • a metal halide such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride
  • Nitrates such as barium nitrate, calcium nitrate and zinc nitrate
  • Acetates such as barium acetate, calcium acetate and zinc acetate
  • sulfates such as calcium sulfate, magnesium sulfate and aluminum sulfate, and specifically, calcium chloride or
  • the (S200) step may be a step of forming a dip molding layer in a dip molding frame by immersing and taking out a dip molding frame to which a coagulant is attached to form a dip molding layer in a latex composition for dip molding according to the present invention.
  • the (S300) step may be a step of crosslinking the latex composition for dip molding by heating the dip molding layer formed on the dip molding frame in order to obtain a dip molded product.
  • the dip molded layer crosslinked by the heat treatment can be peeled off from the dip mold to obtain a dip molded product.
  • the molded article may be a surgical glove, an examination glove, an industrial glove, and a household glove, a condom, a catheter, or a health care product.
  • 1,3-butadiene 65 100 parts by weight of the monomer mixture consisting of 5% by weight and 5% by weight of methacrylic acid, 2.5 parts by weight of alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan and 140 parts by weight of ion-exchanged water were added and heated to 38°C.
  • the average particle diameter and glass transition temperature of the prepared carboxylic acid-modified nitrile-based copolymer latex were measured.
  • the average particle diameter measured by a laser scattering analyzer (Nicomp) is 120 nm, and the glass transition temperature measured by a differential scanning calorimetry is -30 °C.
  • a coagulant solution was prepared by mixing 15 parts by weight of calcium nitrate, 84.5 parts by weight of distilled water, and 0.5 parts by weight of a wetting agent (Teric 320, Huntsman Corporation, Australia).
  • a hand-shaped ceramic mold was immersed in the prepared coagulant solution for 1 minute, then taken out and dried at 80° C. for 4 minutes to apply the coagulant to the hand-shaped mold.
  • the mold coated with the coagulant was immersed in the obtained latex composition for dip molding for 1 minute, then taken out and dried at 80°C for 3 minutes. Subsequently, it was immersed in water for 3 minutes, leached, and the mold was dried at 80°C for 3 minutes, and then crosslinked at 130°C for 20 minutes. The cross-linked dip molding layer was peeled off from the hand-shaped mold to obtain a glove-shaped dip molded article.
  • Example 1 when preparing the latex composition for dip molding, except that 0.1 parts by weight (based on solid content) of an alkali-soluble emulsion thickener was added to 100 parts by weight of the obtained carboxylic acid-modified nitrile copolymer latex (based on solid content) was carried out in the same manner as in Example 1.
  • the alkali-soluble emulsion thickener is a Sterocoll® FD alkali-soluble emulsion thickener of BASF, comprising a copolymer represented by the following formula 5 (x and y are 10 to 1000, respectively), and distilled water to a solid content concentration of 10% by weight. The diluted one was used.
  • Example 6 it was carried out in the same manner as in Example 6, except that the alkali soluble emulsion thickener was added in 0.2 parts by weight (based on solids) instead of 0.1 parts by weight (based on solids).
  • Example 1 in preparing the latex composition for dip molding, a phenolic emulsifier was not used, and the same method as in Example 1 was performed.
  • Example 1 when preparing the latex composition for dip molding, ELOTANT ESLO2026(Sodium lauryl ether sulfate, SLES) was carried out in the same manner as in Example 1, except that it was added in 1.0 part by weight.
  • 1,3-butadiene 65 100 parts by weight of a monomer mixture consisting of 5% by weight and 5% by weight of methacrylic acid, 2.5 parts by weight of sodium alkyl benzene sulfonate, 0.5 parts by weight of t-dodecyl mercaptan, 140 parts by weight of ion-exchanged water, and a phenol-based formula (4)
  • Emulsifier (n 16) (Stepan Company, POLYSTEP® TSP-16) 0.5 parts by weight was added and heated to 38°C.
  • the average particle diameter and glass transition temperature of the prepared carboxylic acid-modified nitrile-based copolymer latex were measured.
  • the average particle diameter measured by a laser scattering analyzer (Nicomp) is 120 nm, and the glass transition temperature measured by a differential scanning calorimetry is -30 °C.
  • a coagulant solution was prepared by mixing 15 parts by weight of calcium nitrate, 84.5 parts by weight of distilled water, and 0.5 parts by weight of a wetting agent (Teric 320, Huntsman Corporation, Australia).
  • a hand-shaped ceramic mold was immersed in the prepared coagulant solution for 1 minute, then taken out and dried at 80° C. for 4 minutes to apply the coagulant to the hand-shaped mold.
  • the mold coated with the coagulant was immersed in the obtained latex composition for dip molding for 1 minute, then taken out and dried at 80°C for 3 minutes. Subsequently, it was immersed in water for 3 minutes, leached, and the mold was dried at 80°C for 3 minutes, and then crosslinked at 130°C for 20 minutes. The cross-linked dip molding layer was peeled off from the hand-shaped mold to obtain a glove-shaped dip molded article.
  • Examples 1 to 7 according to the present invention include a phenol-based emulsifier in a dip molding latex composition, it can be confirmed that the stress is lowered without deteriorating tensile strength, as well as a synergy. It was confirmed that the sheath was greatly increased. For this reason, when dipping with the latex composition for dip molding according to the present invention, workability is improved, and the fit of the manufactured dip molded article is improved.
  • the latex composition for dip molding further includes an alkali-soluble emulsion thickener in addition to a phenolic emulsifier, it was confirmed that tensile strength and syneresis were significantly increased.
  • Comparative Example 1 which did not include a phenolic emulsifier, it was confirmed that the tensile strength and syneresis were lowered.
  • Comparative Examples 5 and 6 using a conventional emulsifier other than the phenolic emulsifier according to the present invention confirmed that both tensile strength, stress, and syneresis were lowered.
  • the phenol-based emulsifier according to the present invention was not added after completion of the polymerization of the carboxylic acid-modified nitrile-based copolymer latex, but also Comparative Example 7 introduced at the time of polymerization of the carboxylic-acid-modified nitrile-based copolymer was also lowered in both tensile strength and stress. I was able to confirm it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 딥 성형용 라텍스 조성물에 관한 것으로, 보다 상세하게는 카르본산 변성 니트릴계 공중합체 라텍스 및 페놀계 유화제를 포함하는 딥 성형용 라텍스 조성물에 있어서, 상기 페놀계 유화제는 카르본산 변성 니트릴계 공중합체 라텍스의 고형분 100 중량부에 대하여, 0.08 중량부 내지 6 중량부(고형분 기준)를 포함하는 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 제조된 성형품을 제공한다.

Description

딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
관련출원과의 상호인용
본 출원은 2018년 12월 13일자 한국특허출원 제10-2018-0161343호 및 2019년 12월 09일자 한국특허출원 제10-2019-0162685호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 딥 성형용 라텍스 조성물에 관한 것으로, 보다 상세하게는 상기 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 제조된 성형품에 관한 것이다.
일회용 고무 장갑은 가사, 식품 산업, 전자 산업, 의료 분야 등 다양한 분야에서 사용량이 증가하고 있다. 과거에는 천연고무 라텍스를 딥 성형하여 일회용 장갑을 만들었으나 일부 사용자들에게 통증이나 발진 등의 단백질 알레르기 문제가 발생하였다. 이러한 문제 때문에 최근에는 천연고무 라텍스를 대신하여 니트릴계 라텍스의 딥 성형으로 만든 일회용 장갑이 각광을 받고 있다.
현재 니트릴계 라텍스를 이용한 니트릴계 고무장갑을 제조하는 장갑 업체들은 생산성을 높이고 불량률을 낮추기 위해 지속적으로 노력하고 있다. 장갑의 불량률을 줄이는 방법 중의 하나는 이중 딥 성형방법을 통하여 장갑을 제조하는 방법이다. 그러나, 이중 딥 성형방법은 1차 딥 성형에 의해 제조된 성형품에서 시너리시스(syneresis) 현상이 발생하여, 이를 2차 딥 성형시 라텍스의 안정성을 떨어뜨린다. 라텍스 조성물의 안정성이 낮을 경우, 응고물(coagulation, agglutination, flocculation, agglomeration 또는 coalescence)이 발생하여 라텍스 하부에 침전이 발생하고, 상기 응고물은 최종 제조된 딥 성형품에 응고물이 묻거나 핀홀을 발생시켜 불량률을 증가시킨다. 이로 인해, 최종 제품인 라텍스 장갑의 인장강도와 신장력을 감소시키는 문제가 발생한다.
한편, 장갑을 사용하는 데에 있어 사용자가 고려하는 점 중 하나는 착용감이다. 그러나, 니트릴계 고무장갑의 경우, 천연 고무로 제조된 장갑에 비하여 모듈러스(modulus)가 상대적으로 높아 착용감이 천연고무로 제조된 장갑에 비해 좋지 못한 상황이다.
따라서 장갑제조 과정에서 상기 시너리시스 문제를 해결하고, 낮은 모듈러스로 편안한 착용감을 주는 딥 성형용 라텍스 조성물이 필요한 실정이다.
본 발명에서 해결하고자 하는 과제는, 상기 발명의 배경이 되는 기술에서 언급한 문제들을 해결하기 위하여, 딥 성형용 라텍스 조성물을 이용하여 딥 성형 시에 시너리스 시간이 증가되어 안정성이 개선되고, 이로부터 제조된 장갑 등의 딥 성형품의 물성을 동등 또는 그 이상 수준으로 유지시키는 것이다.
즉, 본 발명은 카르본산 변성 니트릴계 공중합체 라텍스 조성물 제조 시, 페놀계 유화제를 포함하여 딥 성형 시에 시너리스 시간이 증가되어 안정성이 개선됨과 동시에, 이로부터 제조된 장갑 등의 딥 성형품의 인장강도를 향상시키고, 모듈러스를 낮추어 착용감을 개선시킨 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 딥 성형품를 제공하는 것을 목적으로 한다.
상기의 과제를 해결하기 위한 본 발명의 일 실시예에 따르면, 본 발명은 카르본산 변성 니트릴계 공중합체 라텍스 및 페놀계 유화제를 포함하는 딥 성형용 라텍스 조성물에 있어서, 상기 페놀계 유화제는 카르본산 변성 니트릴계 공중합체 라텍스의 고형분 100 중량부에 대하여, 0.08 중량부 내지 6 중량부(고형분 기준)를 포함하는 딥 성형용 라텍스 조성물을 제공한다.
또한, 본 발명은 카르본산 변성 니트릴계 공중합체 라텍스를 제조하는 단계(S10); 및 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스와 페놀계 유화제를 혼합하는 단계(S20)를 포함하고, 상기 (S20) 단계는 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부에 대하여, 상기 페놀계 유화제 0.08 중량부 내지 6 중량부를 혼합하는 것인 딥 성형용 라텍스 조성물 제조방법을 제공한다.
또한, 본 발명은 딥 성형용 라텍스 조성물 유래층을 포함하는 성형품을 제공한다.
본 발명에 따른 딥 성형용 라텍스 조성물은 안정성이 개선되어 시너리시스 시간 증가로 인해, 이를 이용하여 장갑 등의 딥 성형품을 제조하는 경우, 작업성 및 인장강도가 우수하고, 모듈러스 감소로 인해 착용감이 개선되는 효과가 있다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선을 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명에서 용어 '단량체 유래 반복단위'는 단량체로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있고, 구체적인 예로, 중합체의 중합 시, 투입되는 단량체가 중합 반응에 참여하여 중합체 내에서 이루는 반복단위를 의미하는 것일 수 있다.
본 발명에서 용어 '라텍스'는 중합에 의해 중합된 중합체 또는 공중합체가 물에 분산된 형태로 존재하는 것을 의미할 수 있고, 구체적인 예로, 유화 중합에 의해 중합된 고무 상의 중합체 또는 고무 상의 공중합체의 미립자가 콜로이드 상태로 물에 분산된 형태로 존재하는 것을 의미할 수 있다.
본 발명에서 용어 '유래층'은 중합체 또는 공중합체로부터 형성된 층을 나타내는 것일 수 있고, 구체적인 예로, 딥 성형품 제조 시, 중합체 또는 공중합체가 딥 성형틀 상에서 부착, 고정, 및/또는 중합되어 중합체 또는 공중합체로부터 형성된 층을 의미하는 것일 수 있다.
본 발명에서 용어 '가교제 유래 가교부'는 화합물로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있고, 가교제 조성물이 작용 및 반응하여 형성된 중합체 내, 또는 중합체 간 가교(cross linking) 역할을 수행하는 가교부(cross linking part)를 의미하는 것일 수 있다.
본 발명에서 용어 '알킬'은 메틸, 에틸, 프로필, 2-프로필, n-부틸, 이소-부틸, tert-부틸, 펜틸, 헥실, 도데실 등과 같이, 탄소 원자의 선형 또는 분지형 포화 1가 탄화수소를 의미할 수 있고, 비치환된 것뿐만 아니라 치환기에 의해 치환된 것도 포함하는 것을 의미할 수 있다.
본 발명에서 용어 '시클로알킬'은 시클로프로필, 시클로부틸, 시클로펜틸, 시클로펜테닐, 시클로헥실, 시클로헥세닐, 시클로헵틸, 시클로옥틸, 데카하이드로나프탈레닐, 아다만타닐, 노르보닐 (즉, 바이시클로 [2,2,1] 헵트-5-에닐) 등과 같이, 상기 정의된 알킬기의 수소원자의 1개 이상이 고리 탄화수소의 포화된 또는 불포화된 비방향족 1가 모노시클릭, 바이시클릭 또는 트리시클릭 탄화수소로 치환되어 있는 것을 의미할 수 있고, 비치환된 것뿐만 아니라 치환기에 의해 치환된 것도 포함하는 것을 의미할 수 있다.
본 발명에서 용어 '아릴'은 페닐, 나프탈레닐, 플루오레닐 등과 같이, 상기 정의된 알킬기의 수소원자의 1개 이상이 아릴기로 치환되어 있는 것을 의미할 수 있고, 비치환된 것뿐만 아니라 치환기에 의해 치환된 것도 포함하는 것을 의미할 수 있다.
본 발명에서 용어 '알케닐'는 에테닐, 1-프로페닐, 2-프로페닐, 2-부테닐, 3-부테닐, 펜테닐, 5-헥세닐, 도데세닐 등과 같이, 탄소 원자의 선형 또는 분지형 1가 탄화수소를 의미할 수 있고, 알케닐은 탄소-탄소 이중결합을 포함하는 탄소 원자를 통해 또는 포화된 탄소 원자를 통해 결합될 수 있으며, 비치환된 것뿐만 아니라 치환기에 의해 치환된 것도 포함하는 것을 의미할 수 있다.
본 발명에서 용어 '(메타)아크릴레이트'는 아크릴레이트와 메타크릴레이트 둘 다 가능함을 의미할 수 있다.
본 발명에 따른 딥 성형용 라텍스 조성물은 카르본산 니트릴계 공중합체 라텍스 및 페놀계 유화제를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 유화제는 하기 화학식 1로 표시되는 것일 수 있다.
[화학식 1]
Figure PCTKR2019017619-appb-img-000001
상기 화학식 1에서, R 1, R 2 및 R 3 는 각각 독립적으로, 수소; 또는 치환 또는 비치환된 탄소수 1 내지 탄소수 30, 탄소수 1 내지 탄소수 20, 또는 탄소수 1 내지 탄소수 10의 선형 또는 분지형 알킬이되, R 1 내지 R 3 중 적어도 1개 이상은 치환 또는 비치환된 탄소수 1 내지 탄소수 30의 선형 또는 분지형 알킬이고, R은 수소; 중합 가능한 작용기; 탄소수 1 내지 탄소수 30, 탄소수 1 내지 탄소수 20, 또는 탄소수 1 내지 탄소수 10의 알콕시기; 무기 또는 유기염; 비이온성기; 또는 할로겐이며, m은 1 내지 20, 1 내지 10, 또는 1 내지 5의 정수이고, n은 1 내지 100, 4 내지 80, 또는 8 내지 25의 정수이다.
상기 선형 또는 분지형 알킬에 치환될 수 있는 치환기는, 탄소수 1 내지 탄소수 30, 탄소수 1 내지 탄소수 20 또는 탄소수 1 내지 탄소수 10의 선형 또는 분지형 알킬; 탄소수 3 내지 탄소수 30, 탄소수 3 내지 탄소수 20 또는 탄소수 6 내지 탄소수 10의 시클로알킬; 탄소수 6 내지 탄소수 30, 탄소수 6 내지 탄소수 20, 탄소수 6 내지 탄소수 10의 아릴; 및 할로겐으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 알킬은 메틸, 에틸, 프로필, 2-프로필, 부틸, 이소부틸, tert-부틸, 펜틸, 헥실, 도데실 등일 수 있다.
상기 시클로알킬은 시클로프로필, 시클로부틸, 시클로펜틸, 시클로펜테닐, 시클로헥실, 시클로헥세닐, 시클로헵틸, 시클로옥틸, 데카하이드로나프탈레닐, 아다만타닐, 노르보닐 (즉, 바이시클로 [2,2,1] 헵트-5-에닐) 등일 수 있다.
상기 아릴은 페닐, 나프탈레닐, 플루오레닐 등일 수 있다.
상기 중합 가능한 작용기는 (메타)아크릴레이트; 탄소수 1 내지 탄소수 30, 탄소수 1 내지 탄소수 20 또는 탄소수 1 내지 탄소수 10의 알킬 (메타)아크릴레이트; 및 탄소수 2 내지 탄소수 30, 탄소수 2 내지 탄소수 20, 탄소수 2 내지 탄소수 10의 알케닐 (메타)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 알콕시기는 메톡시, 에톡시, 프로톡시, 이소부틸메톡시, 부톡시 등일 수 있다.
상기 무기 또는 유기염은 포스포네이트(-PO 3-M +), 포스페이트(PO 4-M +), 설페이트(SO 4-M +), 설포네이트(SO 3-M +), 카르복실레이트(COO-M +) 등일 수 있다. 이 때, M +는, H +, Na +, NH 4 +, K +, Li + 등일 수 있다.
상기 비이온성기는 수산기(-OH), 시안화(-CN), 카르복실산기(-COOH), 아미드기(-CONH 2) 등일 수 있다.
상기 할로겐은 F, Cl, Br, I 등일 수 있다.
구체적인 예로, 상기 R 1, R 2 및 R 3는 각각 독립적으로, 수소, 부틸, tert-부틸, 이소부틸,
Figure PCTKR2019017619-appb-img-000002
등 일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 유화제는 하기 화학식 2로 표시되는 것일 수 있다.
[화학식 2]
Figure PCTKR2019017619-appb-img-000003
상기 화학식 2에서, R은 수소; 중합 가능한 작용기; 탄소수 1 내지 탄소수 10의 알콕시기; 무기 또는 유기염; 비이온성기; 또는 할로겐이며, n은 1 내지 100, 4 내지 80, 또는 8 내지 25의 정수이다.
상기 중합 가능한 작용기는 (메타)아크릴레이트; 탄소수 1 내지 탄소수 30, 탄소수 1 내지 탄소수 20 또는 탄소수 1 내지 탄소수 10의 알킬 (메타)아크릴레이트; 및 탄소수 2 내지 탄소수 30, 탄소수 2 내지 탄소수 20, 탄소수 2 내지 탄소수 10의 알케닐 (메타)아크릴레이트로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 알킬 (메타)아크릴레이트는 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 프로필 (메타)아크릴레이트, 부틸 (메타)아크릴레이트, 펜틸 (메타)아크릴레이트, 헥실 (메타)아크릴레이트, 헵틸 (메타)아크릴레이트, 옥틸 (메타)아크릴레이트, 2-에틸헥실 (메타)아크릴레이트 등일 수 있다.
상기 알케닐 (메타)아크릴레이트는 비닐 (메타)아크릴레이트, 알릴 (메타)아크릴레이트, 1,1-디메틸프로펜일 (메타)아크릴레이트 3,3-디메틸부텐일 (메타)아크릴레이트 등일 수 있다.
또 다른 예로, 상기 중합 가능한 작용기는 아크릴로, 메타크릴로, 아크릴아미도, 메타크릴아미도, 디알릴아미노, 알릴 에테르, 비닐 에테르, α-알케닐, 말레이니도, 스티레닐, 및 α-알킬 스티레닐기로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 페놀계 유화제의 함량(고형분 기준)은, 상기 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부(고형분 기준)에 대하여, 0.06 중량부 내지 7 중량부, 0. 1 중량부 내지 5.5 중량부 또는 0.1 중량부 내지 4 중량부일 수 있고, 이 범위 내에서 딥 성형용 라텍스 조성물의 시너리시스 시간이 증가하여 안정성이 개선될 뿐만 아니라, 모듈러스가 감소되어 상기 딥 성형용 라텍스 조성물을 사용하여 제조된 성형품의 착용감이 우수한 효과가 있다.
상기 페놀계 유화제의 수평균 분자량은, 250 g/mol 내지 30,000 g/mol 또는 300 g/mol 내지 20,000 g/mol일 수 있고, 이 범위 내에서 용매에서 분산이 우수하여 카르본산 변성 니트릴계 공중합체 라텍스의 안정성을 향상시키고, 딥 성형용 라텍스 조성물의 시너리시스 시간이 증가하여 안정성이 개선될 뿐만 아니라, 모듈러스가 감소되어 상기 딥 성형용 라텍스 조성물을 사용하여 제조된 성형품의 착용감이 우수한 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 유화제는 친수성기를 포함하고 있어 물에 잘 녹고 혼합 및 분산이 용이할 수 있으며, 라텍스 내 입자의 표면에 고착되어 있어 라텍스의 안정성을 향상시키는 효과가 있다.
한편, 상기 페놀계 유화제가 상기 화학식 2로 표시되는 페놀계 유화제와 같이 친수성기 뿐만 아니라 부피가 큰 벤젠 고리를 포함할 경우, 이를 포함하는 딥 성형용 조성물로 성평품 제조 시, 필름 형성을 늦추는 역할을 하여 시너리시스 시간을 증가시켜주는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 딥 성형용 라텍스 조성물에 포함되는 페놀계 유화제는 카르본산 변성 니트릴계 공중합체 제조 시 유래된 성분이 아니라, 상기 딥 성형용 라텍스 조성물 제조 시, 제조된 카르본산 변성 니트릴계 공중합체에 추가 투입 및 혼합함으로부터 유래된 유화제일 수 있으며, 카르본산 변성 니트릴계 공중합체 제조 시에 투입되는 유화제와 상이한 것일 수 있다.
본 발명의 일 실시예에 따르면, 딥 성형용 라텍스 조성물에 포함되는 페놀계 유화제가 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 혼합되어, 제조된 성평품의 시너리시스 시간을 증가시키고, 응력(모듈러스)을 개선시키는 효과가 있다. 반면, 본 발명과 달리 딥 성형용 라텍스 조성물이 카르본산 변성 니트릴계 공중합체 라텍스의 제조 시 유화제로 페놀계 유화제를 투입한 것으로부터 유래된 페놀계 유화제를 포함하는 경우, 카르본산 변성 니트릴계 공중합체 라텍스 내 입자가 작게 제조되어 시너리시스 시간이 감소하는 문제가 발생될 수 있다.
본 발명의 일 실시예에 따르면, 상기 딥 성형용 라텍스 조성물은 알칼리 용해성 에멀젼(Alkali Soluble Emulsion, ASE) 증점제를 더 포함할 수 있다.
상기 알칼리 용해성 에멀젼 증점제는 에틸렌성 불포화산 단량체 유래 반복단위 및 에틸렌성 불포화산 에스테르 단량체 유래 반복단위를 포함하는 공중합체일 수 있다. 예를 들어, 상기 알칼리 용해성 에멀젼 증점제는 하기 화학식 3으로 표시될 수 있다.
[화학식 3]
Figure PCTKR2019017619-appb-img-000004
상기 화학식 3에서, R 1 내지 R 5는 각각 독립적으로, 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 3의 알콕시기, 탄소수 6 내지 12의 아릴기, 탄소수 2 내지 6을 갖는 헤테로아릴기, 에스테르기, 카르복실기, 술폰산기 또는 산무수물기를 나타내며, x 및 y는 각각 독립적으로 1 내지 10000으로부터 선택된 정수이다.
또한, 상기 "*"는 공중합체 내의 반복단위 사이의 연결 위치, 또는 말단기를 의미할 수 있다. 상기 "*"가 공중합체의 말단기인 경우 "*"는 수소 또는 탄소수 1 내지 4의 알킬기일 수 있다.
보다 구체적으로, 상기 화학식 3에서, R 1 및 R 2는 각각 수소를 나타내고, R 3 및 R 4는 각각 수소 또는 메틸기를 나타내고, R 5는 탄소수 1 내지 4의 알킬기를 나타내며, x 및 y는 각각 독립적으로 10 내지 1000으로부터 선택된 정수이다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식 3은 기재의 편의상 x 및 y의 정수로 반복되는 반복단위를 순차적으로 기재하여 나타내었으나, 이로 인하여 상기 화학식 3으로 표시되는 공중합체의 형태가 x 및 y의 정수로 반복되는 각 반복단위들이 순차적으로 블록을 이루는 블록 공중합체의 형태로 한정되는 것은 아니고, x 및 y의 정수로 반복되는 각 반복단위들이 공중합체 내 랜덤하게 분포된 랜덤 공중합체도 포함하는 것일 수 있다.
상기 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기 및 산무수물기 등의 산성기를 포함하는 에틸렌성 불포화산 단량체로서, 폴리 카르본산 무수물, 에틸렌성 불포화 술폰산 단량체 및 에틸렌성 불포화 폴리 카르본산 부분 에스테르 단량체로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 예를 들어, 상기 에틸렌성 불포화 카르본산 단량체는, 아크릴산, 메타크릴산, 이타콘산, 말레인산 및 푸마르산으로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 상기 폴리 카르본산 무수물은 무수말레산 및 무수시트라콘산으로 이루어진 군으로부터 선택된 1종 이상을 포함하고, 상기 에틸렌성 불포화 술폰산 단량체는 스티렌 술폰산을 포함하며, 상기 에틸렌성 불포화 폴리 카르본산 부분 에스테르 단량체는 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로 상기 에틸렌성 불포화산 단량체는, 아크릴산, 메타크릴산, 이타콘산, 말레인산및 푸마르산으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 더욱 구체적인 예로 상기 에틸렌성 불포화산 단량체는, 메타크릴산일 수 있다.
상기 에틸렌성 불포화산 에스테르 단량체는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트 및 부틸 아크릴레이트로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 보다 구체적인 예로 상기 에틸렌성 불포화산 에스테르 단량체는 에틸 아크릴레이트일 수 있다.
상기 알칼리 용해성 에멀젼 증점제 내에 포함된 공중합체의 중량평균 분자량은 500 g/mol 내지 2,000,000 g/mol일 수 있다. 예를 들어, 상기 알칼리 용해성 에멀젼 증점제 내에 포함된 공중합체의 중량평균 분자량은 15,000 g/mol 내지 100,000 g/mol 또는 20,000 g/mol 내지 100,000 g/mol일 수 있다. 상기 알칼리 용해성 에멀젼 증점제 내에 포함된 공중합체는 상기 범위 내의 중량평균 분자량을 가짐으로써, 안정한 딥 성형용 라텍스 조성물을 제조할 수 있다.
상기 알칼리 용해성 에멀젼 증점제의 함량(고형분 기준)은 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부(고형분 기준)에 대하여, 0.01 중량부 내지 1.5, 0.05 중량부 내지 1.0 중량부 또는 0.08 중량부 내지 0.5 중량부일 수 있다. 이 범위 내에서 조성물의 점도를 상승시켜, 작업성을 향상시키고, 이를 이용하여 형성된 딥 성형품의 물성 향상과 더불어 품질 또한 향상시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 알칼리 용해성 에멀젼 증점제의 고형분 농도는 5 중량% 내지 15 중량%일 수 있다. 예를 들어, 상기 알칼리 용해성 에멀젼 증점제의 고형분 농도는 7 중량% 내지 13 중량%, 8 중량% 내지 12 중량% 또는 9 중량% 내지 11 중량% 범위일 수 있다. 상기 범위 내의 고형분 농도를 가지는 알칼리 용해성 에멀젼 증점제를 카르본산 변성 니트릴계 공중합체 라텍스와 혼합하여 딥 성형용 라텍스 조성물을 제조할 경우, 카르본산 변성 니트릴계 공중합체 라텍스와의 안정성이 우수하고, 알칼리 용해성 에멀젼 증점제가 잘 섞이지 않고 응집되는 것을 방지할 수 있다.
본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체 라텍스 내 카르본산 변성 니트릴계 공중합체는 공액디엔계 단량체 유래 반복단위, 에틸렌성 불포화 니트릴계 단량체 유래 반복단위 및 에틸렌성 불포화산 단량체 유래 반복단위를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체 유래 반복단위를 형성하는 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 2-에틸-1,3-부타디엔, 1,3-펜타디엔 및 이소프렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로, 1,3-부타디엔 또는 이소프렌일 수 있으며, 보다 구체적인 예로, 1,3-부타디엔일 수 있다.
상기 공액디엔계 단량체 유래 반복단위의 함량은 카르본산 변성 니트릴계 공중합체 전체 함량에 대하여 40 중량% 내지 89 중량%, 45 중량% 내지 80 중량%, 또는 50 중량% 내지 78 중량%일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체를 포함하는 딥 성형용 라텍스 조성물로부터 성형된 딥 성형품이 유연하고, 촉감 및 착용감이 우수함과 동시에, 내유성 및 인장강도가 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 에틸렌성 불포화 니트릴계 단량체 유래 반복단위를 형성하는 에틸렌성 불포화 니트릴계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 후마로니트릴, α-클로로니트릴 및 α-시아노 에틸 아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로, 아크릴로니트릴 및 메타크릴로니트릴일 수 있으며, 보다 구체적인 예로, 아크릴로니트릴일 수 있다.
상기 에틸렌성 불포화 니트릴계 단량체 유래 반복단위의 함량은 카르본산 변성 니트릴계 공중합체 전체 함량에 대하여 10 중량% 내지 50 중량%, 15 중량% 내지 45 중량%, 또는 20 중량% 내지 40 중량%일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체를 포함하는 딥 성형용 라텍스 조성물로부터 성형된 딥 성형품이 유연하고, 촉감 및 착용감이 우수함과 동시에, 내유성 및 인장강도가 우수한 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 에틸렌성 불포화산 단량체 유래 반복단위를 형성하는 에틸렌성 불포화산 단량체는 카르복실기, 술폰산기, 산무수물기와 같은 산성기를 함유하는 에틸렌성 불포화 단량체일 수 있고, 구체적인 예로 아크릴산, 메타크릴산, 이타콘산, 말레인산 및 푸마르산 등과 같은 에틸렌성 불포화산 단량체; 무수말레산 및 무수 시트라콘산 등과 같은 폴리 카르본산 무수물; 스티렌 술폰산과 같은 에틸렌성 불포화 술폰산 단량체; 푸마르산 모노부틸, 말레인산 모노부틸 및 말레인산 모노-2-히드록시 프로필 등과 같은 에틸렌성 불포화 폴리 카르본산 부분 에스테르(partial ester) 단량체로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 보다 구체적인 예로 아크릴산, 메타크릴산, 이타콘산, 말레인산 및 푸마르산으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 더욱 구체적인 예로 메타크릴산일 수 있다. 상기 에틸렌성 불포화산 단량체는 중합 시, 알칼리 금속염 또는 암모늄염 등과 같은 염의 형태로 사용될 수 있다.
상기 에틸렌성 불포화산 단량체 유래 반복단위의 함량은 카르본산 변성 니트릴계 공중합체 전체 함량에 대하여 0.1 중량% 내지 15 중량%, 0.5 중량% 내지 9 중량%, 또는 1 중량% 내지 8 중량% 일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체를 포함하는 딥 성형용 라텍스 조성물로부터 성형된 딥 성형품이 유연하고, 착용감이 우수함과 동시에, 내성성 및 인장강도가 우수한 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체 라텍스는 공액디엔계 단량체 유래 반복단위, 에틸렌성 불포화 니트릴계 단량체 유래 반복단위 및 에틸렌성 불포화산 단량체 유래 반복단위 외에 에틸렌성 불포화 단량체 유래 반복단위를 선택적으로 더 포함할 수 있다.
상기 에틸렌성 불포화 단량체 유래 반복단위를 형성하는 상기 에틸렌성 불포화 단량체는 스티렌, 아릴 스티렌, 및 비닐 나프탈렌으로 이루어진 그룹으로부터 선택된 비닐 방향족 단량체; 플루오로(fluoro) 에틸 비닐 에테르 등의 플루오로알킬비닐 에테르; (메타)아크릴아미드, N-메틸올 (메타)아크릴아미드, N,N-디메틸올(메타)아크릴아미드, N-메톡시 메틸(메타)아크릴아미드, 및 N-프로폭시 메틸(메타)아크릴아미드로 이루어진 군으로부터 선택된 에틸렌성 불포화 아미드 단량체; 비닐 피리딘, 비닐 노보넨, 디시클로 펜타디엔, 1,4-헥사디엔 등의 비공액 디엔 단량체; (메타)아크릴산 메틸, (메타)아크릴산 에틸, (메타)아크릴산 부틸, (메타)아크릴산-2-에틸헥실, (메타)아크릴산 트리 플루오로 에틸, (메타)아크릴산 테트라 플루오로 프로필, 말레인산 디부틸, 푸마르산 디부틸, 말레인산 디에틸, (메타)아크릴산 메톡시메틸, (메타)아크릴산 에톡시에틸, (메타)아크릴산 메톡시에톡시에틸, (메타)아크릴산시아노메틸, (메타)아크릴산 2-시아노에틸, (메타)아크릴산 1-시아노프로필, (메타)아크릴산 2-에틸-6-시아노헥실, (메타)아크릴산 3-시아노프로필, (메타)아크릴산 히드록시에틸, (메타)아크릴산 히드록시프로필, 글리시딜 (메타)아크릴레이트, 및 디메틸아미노 에틸(메타)아크릴레이트로 이루어진 군으로부터 선택된 에틸렌성 불포화카르본산 에스테르 단량체로 이루어진 군으로부터 선택된 1 종 이상일 수 있다.
상기 에틸렌성 불포화 단량체 유래 반복단위 함량은 카르본산 변성 니트릴계 공중합체 전체 함량에 대하여 20 중량% 이내, 0.01 중량% 내지 20 중량%, 또는 0.01 중량% 내지 15 중량%일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체를 포함하는 딥 성형용 라텍스 조성물로부터 성형된 딥 성형품의 촉감 및 착용감이 우수함과 동시에, 인장강도가 우수한 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체 라텍스는 유리전이온도가 -50 ℃ 내지 -15 ℃, -47 ℃ 내지 -15 ℃ 또는 -45 ℃ 내지 -20 ℃일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형된 성형품의 인장 강도 등 인장 특성의 저하 및 균열 발생을 방지하면서도, 끈적임이 적어 착용감이 우수한 효과가 있다. 상기 유리전이온도는 시차 주사 열량계(Differential Scanning Calorimetry)를 이용하여 측정된 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체 라텍스 내의 카르본산 변성 니트릴계 공중합체 입자의 평균 입경은 50 nm 내지 500 nm, 80 nm 내지 300 nm, 또는 100 nm 내지 150 nm일 수 있고, 이 범위 내에서 상기 카르본산 변성 니트릴계 공중합체 라텍스의 점도가 상승되지 않아 카르본산 변성 니트릴계 공중합체 라텍스를 고농도로 제조할 수 있고, 이를 포함하는 딥 성형용 라텍스 조성물로부터 딥 성형된 성형품의 인장 강도 등 인장 특성이 우수한 효과가 있다. 또한, 상기 범위 내에서 필름 형성 속도가 우수하여 시너리시스 특성이 우수한 효과가 있다. 상기 평균 입경은 레이저 분산 분석기(Laser Scattering Analyzer, Nicomp)를 이용하여 측정된 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 딥 성형용 라텍스 조성물은 필요에 따라, 가황제, 이온성 가교제, 안료, 가황촉매, 충전재, pH 조절제 등의 첨가제를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 딥 성형용 라텍스 조성물은 일례로 고형분 함량(농도)가 5 중량% 내지 40 중량%, 8 중량% 내지 35 중량%, 또는 10 중량% 내지 33 중량%일 수 있고, 이 범위 내에서 라텍스 운송의 효율이 우수하고, 라텍스 점도의 상승을 방지하여 저장 안정성이 뛰어난 효과가 있다.
또 다른 예로, 상기 딥 성형용 라텍스 조성물은 pH가 8 내지 12, 9 내지 11, 또는 9.3 내지 11일 수 있고, 이 범위 내에서 딥 성형품 제조 시 가공성 및 생산성이 뛰어난 효과가 있다. 상기 딥 성형용 라텍스 조성물의 pH는 앞서 기재한 pH 조절제의 투입에 의해 조절될 수 있다. 상기 pH 조절제는 일례로 1 중량% 내지 5 중량% 농도의 수산화칼륨 수용액, 또는 1 중량% 내지 5 중량% 농도의 암모니아수일 수 있다.
한편, 본 발명에 따른 상기 딥 성형용 라텍스 조성물 제조방법은 카르본산 변성 니트릴계 공중합체 라텍스를 제조하는 단계(S10); 및 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스와 페놀계 유화제를 혼합하는 단계(S20)를 포함하여 제조될 수 있다.
즉, 본 발명에 따른 딥 성형용 라텍스 조성물 제조방법은 공액디엔계 단량체, 에틸렌성 불포화 니트릴계 단량체 및 에틸렌성 불포화산 단량체를 포함하는 단량체 혼합물을 중합시켜 카르본산 변성 니트릴계 공중합체를 포함하는 카르본산 변성 니트릴계 공중합체 라텍스를 제조하는 단계; 및 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 페놀계 유화제를 투입 및 혼합하는 단계를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계에서, 알칼리 용해성 에멀젼 증점제를 더 포함할 수 있다. 즉, 상기 (S20) 단계는, 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 페놀계 유화제 및 알칼리 용해성 에멀젼 증점제를 투입 및 혼합하는 것일 수 있다. 이 때, 상기 알칼리 용해성 에멀젼 증점제의 종류 및 함량은 앞서 언급한 바와 동일할 수 있다. 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체의 중합은 유화 중합에 의해 실시될 수 있다. 상기 중합은 상기 단량체 혼합물의 중합에 의해 실시될 수 있고, 상기 단량체 혼합물에 포함되는 각 단량체는 앞서 언급한 단량체의 종류 및 함량으로 투입될 수 있고, 일괄 투입, 또는 연속적으로 투입할 수 있다.
한편, 상기 중합 시, 단량체 혼합물은 중합에 앞서 동시에 중합 반응기에 투입할 수도 있고, 단량체 혼합물 중 일부를 중합 반응기에 1차 투입하고, 중합 개시 후 잔여 단량체 혼합물을 투입하는 등에 의해 실시될 수 있다. 상기와 같이, 단량체 혼합물을 분할하여 투입하는 경우, 카르본산 변성 니트릴계 공중합체 내 각 단량체로부터 유래된 단량체 유래 반복단위가 형성될 때, 각 단량체 별 반응 속도 차이에 의한 단량체의 분포를 균일화할 수 있고, 이에 따라, 카르본산 변성 니트릴계 공중합체를 이용하여 제조된 딥 성형품의 물성 간의 밸런스를 향상시키는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체의 중합은 유화제, 중합 개시제, 활성화제 및 분자량 조절제 등의 존재 하에 실시될 수 있다.
상기 카르본산 변성 니트릴계 공중합체의 중합이 유화제를 포함하여 실시되는 경우, 상기 유화제는 일례로 음이온성 계면활성제, 비이온성 계면활성제, 양이온성 계면활성제 및 양성 계면활성제로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 알킬벤젠술폰산염, 지방족 술폰산염, 고급 알코올 황산 에스테르염, α-올레핀 술폰산염 및 알킬 에테르 황산 에스테르염으로 이루어진 군으로부터 선택된 1종 이상의 음이온성 계면활성제일 수 있다. 또한, 상기 유화제는 단량체 혼합물 전체 함량 100 중량부에 대하여 0.3 중량부 내지 10 중량부, 0.8 중량부 내지 8 중량부, 또는 1.5 중량부 내지 8 중량부로 투입될 수 있고, 이 범위 내에서 중합 안정성이 우수하고, 거품 발생량이 적어 성형품의 제조가 용이한 효과가 있다.
또한, 상기 카르본산 변성 니트릴계 공중합체의 중합이 중합 개시제를 포함하여 실시되는 경우, 상기 중합 개시제는 일례로 산화-환원 개시제 및 열 개시제일 수 있다. 상기 산화-환원 개시제는 이아황산 나트륨, 아황산 나트륨, 이소아스코르브산, 나트륨 포름알데히드 술폭실레이트로 이루어진 군으로부터 선택된 1종 또는 2종 이상 포함할 수 있으며, 구체적인 예로, 아스코르브산이 사용될 수 있다. 상기 산화-환원 개시제는 단량체 혼합물 전체 함량 100 중량부에 대하여 0.001 중량부 내지 5.0 중량부, 0.01 중량부 내지 4.0 중량부 또는 0.05 내지 3.0 중량부일 수 있고, 이 범위 내에서 중합 속도를 적정 수준으로 유지할 수 있는 효과가 있다.
상기 열 개시제는 과황산나트륨, 과황산칼륨, 과황산암모늄, 과인산칼륨 및 과산화수소 등의 무기과산화물; t-부틸 퍼옥사이드, 큐멘 하이드로 퍼옥사이드, p-멘탄하이드로 퍼옥사이드, 디-t-부틸 퍼옥사이드, t-부틸쿠밀 퍼옥사이드, 아세틸 퍼옥사이드, 이소부틸 퍼옥사이드, 옥타노일 퍼옥사이드, 디벤조일 퍼옥사이드, 3,5,5-트리메틸헥산올 퍼옥사이드 및 t-부틸 퍼옥시 이소 부틸레이트 등의 유기 과산화물; 아조비스 이소부티로니트릴, 아조비스-2,4-디메틸발레로니트릴, 아조비스시클로헥산카르보니트릴 및 아조비스 이소 낙산(부틸산)메틸로 이루어진 군으로부터 선택된 1종 또는 2종 이상 포함할 수 있고, 구체적인 예로 무기 과산화물일 수 있으며, 보다 구체적인 예로 과황산칼륨이 사용될 수 있다. 상기 열 개시제는 단량체 혼합물 전체 함량 100 중량부에 대하여 0.01 중량부 내지 2.0 중량부, 0.02 중량부 내지 1.5 중량부 또는 0.05 내지 1.0 중량부일 수 있고, 이 범위 내에서 상기 산화-환원 개시제와 함께 사용될 경우 중합 속도를 적정 수준으로 유지할 수 있는 효과가 있다.
또한, 상기 카르본산 변성 니트릴계 공중합체의 중합이 활성화제를 포함하여 실시되는 경우, 상기 활성화제는 소디움포름알데히드, 설폭실레이트, 소디움에틸렌디아민 테르라아세테이트, 황산 제1철, 덱스트로오스, 피롤린산나트륨 및 아황산나트륨으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 또한, 상기 활성화제는 단량체 혼합물 전체 함량 100 중량부에 대하여 0.01 중량부 내지 2.0 중량부, 0.02 중량부 내지 1.5 중량부, 또는 0.05 중량부 내지 1.0 중량부로 투입될 수 있고, 이 범위 내에서 중합 속도를 적정 수준으로 유지할 수 있는 효과가 있다.
또한, 상기 카르본산 변성 니트릴계 공중합체의 중합이 분자량 조절제를 포함하여 실시되는 경우, 상기 분자량 조절제는 일례로 α-메틸스티렌다이머; t-도데실머캅탄, n-도데실머캅탄 및 옥틸머캅탄 등과 같은 머캅탄류; 사염화탄소, 염화메틸렌 및 브롬화메틸렌 등과 같은 할로겐화 탄화수소; 테트라에틸 티우람 다이설파이드, 디펜타메틸렌 티우람 다이설파이드 및 디이소프로필크산토겐 다이설파이드 등과 같은 황 함유 화합물로 이루어진 군으로부터 선택된 1종 또는 2종 이상일 수 있고, 구체적인 예로 머캅탄류이며, 보다 더 구체적인 예로 t-도데실머캅탄일 수 있다. 또한, 상기 분자량 조절제는 단량체 혼합물 전체 함량 100 중량부에 대하여 0.1 중량부 내지 2 중량부, 0.2 중량부 내지 1.5 중량부, 또는 0.3 중량부 내지 1.0 중량부로 투입될 수 있고, 이 범위 내에서 중합 안정성이 우수하고, 중합 후 성형품 제조 시, 성형품의 물성이 뛰어난 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체의 중합은 매질로서 물, 구체적인 예로 탈이온수에서 실시될 수 있고, 중합 용이성 확보를 위해, 필요에 따라 킬레이트제, 분산제, pH 조절제, 탈산소제, 입경 조절제, 노화 방지제 및 산소 포착제 등과 같은 첨가제를 더 포함하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 유화제, 중합 개시제, 분자량 조절제, 첨가제 등은 상기 단량체 혼합물과 같이 중합 반응기에 일괄 투입, 또는 분할 투입될 수 있고, 각 투입 시 연속적으로 투입될 수도 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체의 중합은 10 ℃ 내지 90 ℃, 20 ℃ 내지 80 ℃, 또는 25 ℃ 내지 75 ℃의 중합 온도에서 실시될 수 있고, 이 범위 내에서 라텍스 안정성이 뛰어난 효과가 있다.
한편, 본 발명의 일 실시예에 따르면, 상기 카르본산 변성 니트릴계 공중합체 라텍스 제조방법은 중합 반응을 종료하여 카르본산 변성 니트릴계 공중합체 라텍스를 수득하는 단계를 포함할 수 있다. 상기 카르본산 변성 니트릴계 공중합체의 중합 반응의 종료는 중합 전환율이 90% 이상, 91% 이상 또는 92% 내지 99.9%인 시점에서 실시될 수 있고, 중합 정지제, pH 조절제 및 산화방지제의 첨가에 의해 실시될 수 있다. 또한, 상기 카르본산 변성 니트릴계 공중합체 라텍스 제조방법은, 상기 반응 종료 후, 탈취 농축공정에 의한 미반응 단량체 제거 단계를 더 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 페놀계 유화제를 투입하고 혼합하는 단계는, 카르본산 변성 니트릴계 공중합체 라텍스로부터, 딥 성형을 위한 딥 성형용 라텍스 조성물을 제조하기 위한 단계일 수 있다. 이 때, 페놀계 유화제의 종류 및 함량은 앞서 기재한 바와 동일한 것일 수 있다. 또한, 페놀계 유화제는 앞서 기재한 중합 시 투입되는 유화제와 상이한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 페놀계 유화제는 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 혼합되어, 시너리시스 시간을 증가시키고, 응력(모듈러스)을 개선시키는 효과가 있다. 반면, 페놀계 유화제를 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 혼합시키는 것이 아니라, 카르본산 변성 니트릴계 공중합체 라텍스 제조 시에 페놀계 유화제를 투입한 경우에는 카르본산 변성 니트릴계 공중합체 라텍스 내 입자가 작아져 시너리시스 시간이 감소하는 문제가 발생될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스에 페놀계 유화제를 투입하고 혼합하는 단계에서, 알칼리 용해성 에멀젼 증점제를 더 포함함으로써 알칼리 용해성 에멀젼 증점제의 산기(acid group)가 검화(neutralize)되어 물과 상호작용하면서 팽윤되고, 이를 통해 딥 성형용 라텍스 조성물의 점도를 상승시켜 시너리시스 시간을 보다 증가시킬 수 있으며, 페놀계 유화제와 함께 혼합함으로써, 응력(모듈러스)을 저하시켜 착용감을 개선할 수 있다. 또한, 상기 딥 성형용 라텍스 조성물로부터 제조된 성형품의 인장강도가 증가하여 성형품의 물성을 개선시킬 수 있다.
본 발명에 따르면, 상기 딥 성형용 라텍스 조성물 유래층을 포함하는 성형품이 제공된다. 상기 성형품은 상기 딥 성형용 라텍스 조성물을 딥 성형하여 제조된 딥 성형품일 수 있고, 딥 성형에 의해 딥 성형용 라텍스 조성물로부터 형성된 딥 성형용 라텍스 조성물 유래층을 포함하는 성형품일 수 있다. 상기 성형품을 성형하기 위한 성형품 제조방법은 상기 딥 성형용 라텍스 조성물을 직접 침지법, 양극(anode) 응착 침지법, 티그(Teague) 응착 침지법 등에 의해 침지시키는 단계를 포함할 수 있고, 구체적인 예로 양극 응착 침지법에 의해 실시될 수 있으며, 이 경우 균일한 두께의 딥 성형품을 수득할 수 있는 이점이 있다.
구체적인 예로 상기 성형품 제조방법은 딥 성형틀에 응고제를 부착시키는 단계(S100); 상기 응고제가 부착된 딥 성형틀에 딥 성형용 라텍스 조성물을 침지하여 딥 성형용 라텍스 조성물 유래층, 즉 딥 성형층을 형성시키는 단계(S200); 및 상기 딥 성형층을 가열하여 상기 딥 성형용 라텍스 조성물을 가교시키는 단계(S300)를 포함할 수 있다.
상기 (S100) 단계는 딥 성형틀에 응고제를 형성시키기 위하여 딥 성형틀을 응고제 용액에 담가 딥 성형틀의 표면에 응고제를 부착시키는 단계로, 상기 응고제 용액은 응고제를 물, 알코올 또는 이들의 혼합물에 용해시킨 용액으로, 응고제 용액 내의 응고제의 함량은 응고제 용액 전체 함량에 대하여 5 중량% 내지 50 중량%, 7 중량% 내지 45 중량%, 또는 10 중량% 내지 40 중량%일 수 있다. 상기 응고제는 일례로 바륨 클로라이드, 칼슘 클로라이드, 마그네슘 클로라이드, 아연 클로라이드 및 알루미늄 클로라이드 등과 같은 금속 할라이드; 바륨 나이트레이트, 칼슘 나이트레이트 및 아연 나이트레이트 등과 같은 질산염; 바륨 아세테이트, 칼슘 아세테이트 및 아연 아세테이트 등과 같은 아세트산염; 및 칼슘 설페이트, 마그네슘 설페이트 및 알루미늄 설페이트 등과 같은 황산염으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 칼슘 클로라이드 또는 칼슘 나이트레이트일 수 있다.
또한, 상기 (S200) 단계는 딥 성형층을 형성시키기 위하여 응고제를 부착시킨 딥 성형틀을 본 발명에 따른 딥 성형용 라텍스 조성물에 침지하고, 꺼내어 딥 성형틀에 딥 성형층을 형성시키는 단계일 수 있다.
또한, 상기 (S300) 단계는 딥 성형품을 수득하기 위하여 딥 성형틀에 형성된 딥 성형층을 가열하여 상기 딥 성형용 라텍스 조성물을 가교시켜 경화를 진행하는 단계일 수 있다.
이후, 가열 처리에 의해 가교된 딥 성형층을 딥 성형틀로부터 벗겨내어 딥 성형품을 수득할 수 있다.
본 발명의 일 실시예에 따르면, 상기 성형품은 수술용 장갑, 검사용 장갑, 산업용 장갑 및 가정용 장갑 등과 같은 장갑, 콘돔, 카테터, 또는 건강 관리용품일 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예
실시예 1
<카르본산 변성 니트릴계 공중합체 라텍스 제조>
온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 반응기에 아크릴로니트릴 30 중량%, 1,3-부타디엔 65 중량% 및 메타크릴산 5 중량%로 구성된 단량체 혼합물 100 중량부, 알킬 벤젠 술폰산 나트륨 2.5 중량부, t-도데실 머캅탄 0.5 중량부 및 이온교환수 140 중량부를 투입하고 38 ℃까지 승온시켰다. 승온된 후 중합개시제인 과황산칼륨 0.3 중량부를 넣고 중합 전화율이 95%인 시점에서 소디움 디메틸디티오 카바메이트 0.1 중량부를 투입하여 중합을 정지시켰다. 이어서, 탈취 공정을 통해 일정량의 미반응 단량체를 제거하였고, 암모니아수 0.5 중량부, 산화방지제 0.5 중량부 및 소포제 0.1 중량부를 첨가하여 고형분 농도 45 중량%, pH 8.5의 카르본산 변성 니트릴계 공중합체 라텍스를 수득하였다.
상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스의 평균 입경 및 유리전이온도를 측정하였다. 레이저 분산 분석기(Laser Scattering Analyzer, Nicomp)로 측정한 평균 입경은 120 nm이며, 시차 주사 열량계(Differential Scanning Calorimetry)로 측정한 유리전이온도는 -30 ℃이다.
<딥 성형용 라텍스 조성물 제조>
상기 수득된 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부(고형분 기준)에 증류수에 5%로 희석된 하기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부(고형분 기준의 유효성분 함량), 증류수에 3% 희석된 수산화칼륨 용액 2.0 중량부 및 2차 증류수를 투입하여 고형분 농도 20 중량%, pH 10의 딥 성형용 라텍스 조성물을 수득하였다.
[화학식 4]
Figure PCTKR2019017619-appb-img-000005
<딥 성형품 제조>
칼슘 나이트레이트 15 중량부, 증류수 84.5 중량부, 습윤제(Teric 320, Huntsman Corporation, Australia) 0.5 중량부를 혼합하여 응고제 용액을 제조하였다. 상기 제조된 응고제 용액에 손 모양의 세라믹 몰드를 1 분간 담그고, 꺼낸 후 80 ℃에서 4 분간 건조하여 응고제를 손 모양의 몰드에 도포시켰다.
그 후, 응고제가 도포된 몰드를 상기 수득한 딥 성형용 라텍스 조성물에 1 분간 담그고, 꺼낸 후 80 ℃에서 3 분간 건조한 하였다. 이어서, 물에 3 분간 담가 리칭(leaching)하였고, 다시 몰드를 80 ℃에서 3 분간 건조한 후, 130 ℃에서 20분간 가교시켰다. 가교된 딥 성형층을 손 모양의 몰드로부터 벗겨내어 장갑 형태의 딥 성형품을 수득하였다.
실시예 2
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 0.5 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 3
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 1.0 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 4
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 4.0 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 5
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 상기 화학식 4로 표시되는 페놀계 유화제(n=25)(Stepan Company, POLYSTEP® TSP-2580) 1.0 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 6
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 수득된 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부(고형분 기준)에 알칼리 용해성 에멀젼 증점제를 0.1 중량부(고형분 기준) 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. 이 때, 상기 알칼리 용해성 에멀젼 증점제는 하기 화학식 5(x 및 y는 각각 10 내지 1000)로 표시되는 공중합체를 포함하는 BASF 사의 Sterocoll® FD 알칼리 용해성 에멀젼 증점제를 고형분 농도가 10 중량%가 되도록 증류수를 이용하여 희석한 것을 사용하였다.
[화학식 5]
Figure PCTKR2019017619-appb-img-000006
실시예 7
상기 실시예 6에서, 알칼리 용해성 에멀젼 증점제를 0.1 중량부(고형분 기준) 대신 0.2 중량부(고형분 기준)로 투입한 것을 제외하고는 상기 실시예 6과 동일한 방법으로 실시하였다.
비교예 1
실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 페놀계 유화제를 사용하지 않고, 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 2
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 0.01 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 3
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 0.05 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 4
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 10 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 5
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 Triton X-100 0.5 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 6
상기 실시예 1에서, 딥 성형용 라텍스 조성물 제조 시, 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.1 중량부 대신 ELOTANT ESLO2026(Sodium lauryl ether sulfate, SLES) 1.0 중량부로 투입한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 7
<카르본산 변성 니트릴계 공중합체 라텍스 제조>
온도계, 냉각기, 질소가스의 인입구 및 단량체, 유화제, 중합반응 개시제를 연속적으로 투입할 수 있도록 장치된 10L 고압 반응기를 질소로 치환한 후, 반응기에 아크릴로니트릴 30 중량%, 1,3-부타디엔 65 중량% 및 메타크릴산 5 중량%로 구성된 단량체 혼합물 100 중량부, 알킬 벤젠 술폰산 나트륨 2.5 중량부, t-도데실 머캅탄 0.5 중량부, 이온교환수 140 중량부 및 상기 화학식 4로 표시되는 페놀계 유화제(n=16)(Stepan Company, POLYSTEP® TSP-16) 0.5 중량부를 투입하고 38 ℃까지 승온시켰다. 승온된 후 중합개시제인 과황산칼륨 0.3 중량부를 넣고 중합 전화율이 95%인 시점에서 소디움 디메틸디티오 카바메이트 0.1 중량부를 투입하여 중합을 정지시켰다. 이어서, 탈취 공정을 통해 일정량의 미반응 단량체를 제거하였고, 암모니아수 0.5 중량부, 산화방지제 0.5 중량부 및 소포제 0.1 중량부를 첨가하여 고형분 농도 45 중량%, pH 8.5의 카르본산 변성 니트릴계 공중합체 라텍스를 수득하였다.
상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스의 평균 입경 및 유리전이온도를 측정하였다. 레이저 분산 분석기(Laser Scattering Analyzer, Nicomp)로 측정한 평균 입경은 120 nm이며, 시차 주사 열량계(Differential Scanning Calorimetry)로 측정한 유리전이온도는 -30 ℃이다.
<딥 성형용 라텍스 조성물 제조>
상기 수득된 카르본산 변성 니트릴계 공중합체 라텍스 100 중량부(고형분 기준)에 증류수에 3% 수산화칼륨 용액 2.0 중량부 및 2차 증류수를 투입하여 고형분 농도 20 중량%, pH 10의 딥 성형용 라텍스 조성물을 수득하였다.
<딥 성형품 제조>
칼슘 나이트레이트 15 중량부, 증류수 84.5 중량부, 습윤제(Teric 320, Huntsman Corporation, Australia) 0.5 중량부를 혼합하여 응고제 용액을 제조하였다. 상기 제조된 응고제 용액에 손 모양의 세라믹 몰드를 1 분간 담그고, 꺼낸 후 80 ℃에서 4 분간 건조하여 응고제를 손 모양의 몰드에 도포시켰다.
그 후, 응고제가 도포된 몰드를 상기 수득한 딥 성형용 라텍스 조성물에 1 분간 담그고, 꺼낸 후 80 ℃에서 3 분간 건조한 하였다. 이어서, 물에 3 분간 담가 리칭(leaching)하였고, 다시 몰드를 80 ℃에서 3 분간 건조한 후, 130 ℃에서 20분간 가교시켰다. 가교된 딥 성형층을 손 모양의 몰드로부터 벗겨내어 장갑 형태의 딥 성형품을 수득하였다.
실험예
상기 실시예 1 내지 7 및 비교예 1 내지 7에서 제조된 각각의 딥 성형품의 물성을 비교하기 위해 인장강도, 300% 및 500%에서의 응력, 및 시너리시스를 측정하여 하기 표 1 및 2에 나타내었다.
* 인장강도(MPa), 신장율 300%에서의 응력(MPa) 및 신장율 500%에서의 응력(MPa): EN 455-2에 준하여 덤벨형상의 시편을 제작하였다. 이어서 이 시편을 신장속도 500mm/분으로 끌어당기고, 신장율이 각각 300%, 500% 일 때의 응력, 파단시의 인장강도를 측정하였다.
* 시너리시스(sec): 시너리시스 시간을 확인하기 위해 응고제가 도포된 몰드를 상기 실시예 및 비교예의 딥 성형용 라텍스 조성물에 1 분간 담근 후 끌어올려, 120 ℃의 온도에서 4 분간 건조한 후 물에 3분간 다시 담갔다. 이후, 120 ℃의 온도에서 4 분간 건조 시 물방울이 떨어지는 시간을 확인하였다. 시너리시스 시간이 증가할수록 시너리시스 특성이 우수함을 나타낸다.
구분 실시예
1 2 3 4 5 6 7
인장강도(MPa) 36.1 35.2 36.9 36.4 40.4 36.7 37.2
300% 모듈러스(MPa) 4.11 3.87 3.60 2.98 3.91 4.12 4.18
500% 모듈러스(MPa) 10.29 9.91 9.22 8.31 9.66 10.38 10.45
시너리시스(sec) 133 194 275 360 이상 252 360 이상 360 이상
구분 비교예
1 2 3 4 5 6 7
인장강도(MPa) 33.9 35.2 36.1 22.8 34.2 32.1 34.3
300% 모듈러스(MPa) 4.20 4.25 4.18 2.15 4.12 4.72 4.19
500% 모듈러스(MPa) 10.68 10.55 10.49 8.20 10.29 11.62 10.25
시너리시스(sec) 103 99 109 360 이상 62 41 150
상기 표 1 및 2를 참조하면, 본 발명에 따른 실시예 1 내지 7은 딥 성형용 라텍스 조성물에 페놀계 유화제를 포함할 경우, 인장강도의 저하 없이 응력이 낮아지는 것을 확인할 수 있을 뿐만 아니라, 시너리시스가 크게 증가된 것을 확인할 수 있었다. 이로 인해, 본 발명에 따른 딥 성형용 라텍스 조성물로 딥 성형 시, 작업성이 향상되고, 제조된 딥 성형품의 착용감이 개선되었다.
특히, 딥 성형용 라텍스 조성물에 페놀계 유화제와 더불어 알칼리 용해성 에멀젼 증점제를 더 포함하는 경우 인장 강도 및 시너리시스가 현저히 증가된 것을 확인할 수 있었다.
반면, 페놀계 유화제를 포함하지 않는 비교예 1의 경우, 인장강도 및 시너리시스가 저하되는 것을 확인할 수 있었다.
또한, 본 발명에 따른 페놀계 유화제를 포함하더라도, 페놀계 유화제 함량이 적정 범위를 벗어난 비교예 2 내지 4는 인장강도 또는 시너리시스가 저하되는 것을 확인할 수 있었다.
또한, 본 발명에 따른 페놀계 유화제가 아닌 통상의 유화제를 사용한 비교예 5 및 6은 인장강도, 응력 및 시너리시스가 모두 저하되는 것을 확인할 수 있었다.
또한, 본 발명에 따른 페놀계 유화제를 카르본산 변성 니트릴계 공중합체 라텍스 중합 완료 후 투입하는 것이 아니라, 카르본산 변성 니트릴계 공중합체 라텍스 중합 시에 투입한 비교예 7 역시 인장강도 및 응력이 모두 저하되는 것을 확인할 수 있었다.

Claims (14)

  1. 카르본산 변성 니트릴계 공중합체 라텍스 및 페놀계 유화제를 포함하는 딥 성형용 라텍스 조성물에 있어서,
    상기 페놀계 유화제는 카르본산 변성 니트릴계 공중합체 라텍스의 고형분 100 중량부에 대하여, 0.08 중량부 내지 6 중량부(고형분 기준)를 포함하는 딥 성형용 라텍스 조성물.
  2. 제1항에 있어서,
    상기 페놀계 유화제는 하기 화학식 1로 표시되는 것인 딥 성형용 라텍스 조성물.
    [화학식 1]
    Figure PCTKR2019017619-appb-img-000007
    상기 화학식 1에서, R 1, R 2 및 R 3은 각각 독립적으로, 수소; 또는 치환 또는 비치환된 탄소수 1 내지 탄소수 30의 선형 또는 분지형 알킬이되, R 1 내지 R 3 중 적어도 1개 이상은 치환 또는 비치환된 탄소수 1 내지 탄소수 30의 선형 또는 분지형 알킬이고, R은 수소; 중합 가능한 작용기; 탄소수 1 내지 탄소수 30의 알콕시기; 무기 또는 유기염; 비이온성기; 또는 할로겐이며, m은 1 내지 20의 정수이고, n은1 내지 100의 정수이다.
  3. 제2항에 있어서,
    상기 R 1, R 2 및 R 3은 각각 독립적으로, 수소; 또는 치환 또는 비치환된 탄소수 1 내지 탄소수 10의 선형 또는 분지형 알킬이되, R 1 내지 R 3 중 적어도 1개 이상은 치환 또는 비치환된 탄소수 1 내지 탄소수 30의 선형 또는 분지형 알킬이고, R은 수소; 중합 가능한 작용기; 탄소수 1 내지 탄소수 10의 알콕시기; 무기 또는 유기염; 비이온성기; 또는 할로겐이며, m은 1 내지 5의 정수이고, n은 8 내지 25의 정수인 딥 성형용 라텍스 조성물.
  4. 제2항에 있어서,
    상기 선형 또는 분지형 알킬에 치환될 수 있는 치환기는, 탄소수 1 내지 탄소수 30의 선형 또는 분지형 알킬; 탄소수 3 내지 탄소수 30의 시클로알킬; 탄소수 6 내지 탄소수 30의 아릴; 및 할로겐으로 이루어진 군에서 선택되는 1종 이상인 딥 성형용 라텍스 조성물.
  5. 제1항에 있어서,
    상기 페놀계 유화제는 하기 화학식 2로 표시되는 것인 딥 성형용 라텍스 조성물.
    [화학식 2]
    Figure PCTKR2019017619-appb-img-000008
    상기 화학식 2에서, R은 수소; 중합 가능한 작용기; 탄소수 1 내지 탄소수 10의 알콕시기; 무기 또는 유기염; 비이온성기; 또는 할로겐이며, n은 1 내지 100의 정수이다.
  6. 제5항에 있어서,
    상기 중합 가능한 작용기는 (메타)아크릴레이트; 탄소수 1 내지 탄소수 30의 알킬 (메타)아크릴레이트; 및 탄소수 2 내지 탄소수 30의 알케닐 (메타)아크릴레이트로 이루어진 군에서 선택되는 1종 이상인 딥 성형용 라텍스 조성물.
  7. 제1항에 있어서,
    상기 페놀계 유화제는 카르본산 변성 니트릴계 공중합체 라텍스의 고형분 100 중량부에 대하여, 0.1 중량부 내지 4 중량부(고형분 기준)를 포함하는 딥 성형용 라텍스 조성물.
  8. 제1항에 있어서,
    상기 페놀계 유화제의 수평균 분자량은 200 g/mol 내지 50,000 g/mol인 것인 딥 성형용 라텍스 조성물.
  9. 제1항에 있어서,
    상기 딥 성형용 라텍스 조성물은 알칼리 용해성 에멀젼 증점제를 더 포함하는 것인 딥 성형용 라텍스 조성물.
  10. 제9항에 있어서,
    상기 알칼리 용해성 에멀젼 증점제는 카르본산 변성 니트릴계 공중합체 라텍스의 고형분 100 중량부에 대하여, 0.01 중량부 내지 1.5 중량부(고형분 기준)로 포함되는 것인 딥 성형용 라텍스 조성물.
  11. 제9항에 있어서,
    상기 알칼리 용해성 에멀젼 증점제는 에틸렌성 불포화산 단량체 유래 반복단위 및 에틸렌성 불포화산 에스테르 단량체 유래 반복단위가 포함된 공중합체를 포함하는 것인 딥 성형용 라텍스 조성물.
  12. 카르본산 변성 니트릴계 공중합체 라텍스를 제조하는 단계(S10); 및
    상기 제조된 카르본산 변성 니트릴계 공중합체 라텍스와 페놀계 유화제를 혼합하는 단계(S20)를 포함하고,
    상기 (S20) 단계는 카르본산 변성 니트릴계 공중합체 라텍스 고형분 100 중량부에 대하여, 상기 페놀계 유화제 0.08 중량부 내지 6 중량부(고형분 기준)를 혼합하는 것인 딥 성형용 라텍스 조성물 제조방법.
  13. 제12항에 있어서,
    상기 (S20) 단계에서, 알칼리 용해성 에멀젼 증점제를 더 혼합하는 것인 딥 성형용 라텍스 조성물 제조방법.
  14. 제1항 내지 제11항 중 어느 한 항에 따른 딥 성형용 라텍스 조성물 유래층을 포함하는 성형품.
PCT/KR2019/017619 2018-12-13 2019-12-12 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품 WO2020122647A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980017988.3A CN111886281B (zh) 2018-12-13 2019-12-12 用于浸渍成型的胶乳组合物、该胶乳组合物的制备方法和由所述胶乳组合物成型的制品
US16/978,084 US11834568B2 (en) 2018-12-13 2019-12-12 Latex composition for dip-forming, method for preparing the composition and article formed by the composition
JP2020544779A JP7045474B2 (ja) 2018-12-13 2019-12-12 ディップ成形用のラテックス組成物、その製造方法およびこれにより成形された成形品
MYPI2020004607A MY193791A (en) 2018-12-13 2019-12-12 Latex composition for dip molding, method for manufacturing same, and molded product molded from same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0161343 2018-12-13
KR20180161343 2018-12-13
KR1020190162685A KR102384394B1 (ko) 2018-12-13 2019-12-09 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
KR10-2019-0162685 2019-12-09

Publications (1)

Publication Number Publication Date
WO2020122647A1 true WO2020122647A1 (ko) 2020-06-18

Family

ID=71076544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017619 WO2020122647A1 (ko) 2018-12-13 2019-12-12 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품

Country Status (1)

Country Link
WO (1) WO2020122647A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110778A (ko) * 2009-01-16 2011-10-07 로디아 오퍼레이션스 결빙-해동 안정성을 가진 라텍스 바인더, 수성 코팅 및 페인트, 및 그의 사용 방법
JP2014145031A (ja) * 2013-01-29 2014-08-14 Sanyo Chem Ind Ltd 乳化重合用乳化剤
KR20170041092A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
KR20170047880A (ko) * 2015-10-26 2017-05-08 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR20180093763A (ko) * 2017-02-14 2018-08-22 금호석유화학 주식회사 전도성 장갑 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110110778A (ko) * 2009-01-16 2011-10-07 로디아 오퍼레이션스 결빙-해동 안정성을 가진 라텍스 바인더, 수성 코팅 및 페인트, 및 그의 사용 방법
JP2014145031A (ja) * 2013-01-29 2014-08-14 Sanyo Chem Ind Ltd 乳化重合用乳化剤
KR20170041092A (ko) * 2015-10-06 2017-04-14 주식회사 엘지화학 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
KR20170047880A (ko) * 2015-10-26 2017-05-08 주식회사 엘지화학 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
KR20180093763A (ko) * 2017-02-14 2018-08-22 금호석유화학 주식회사 전도성 장갑 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2016064173A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2019112312A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2015030533A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스 조성물 및 이를 포함하는 딥 성형품
WO2013077585A1 (ko) 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2010035955A2 (ko) 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
WO2010143912A2 (ko) 딥 성형용 라텍스, 딥 성형용 조성물, 딥 성형물 제조방법 및 그 방법에 의해 제조된 딥 성형물
WO2014142424A1 (ko) 카르본산 변성 니트릴계 공중합체 조성물 및 이로부터 제조된 딥 성형품
WO2018043984A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2020116793A1 (ko) 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
WO2018048121A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2018048122A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2017090882A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이의 제조방법, 이를 포함하는 딥 성형용 라텍스 조성물 및 딥 성형품
WO2013109033A1 (ko) 딥 성형용 라텍스 조성물
WO2016105112A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품
WO2021201418A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2021060743A1 (ko) 그라프트 중합체의 제조방법
WO2021201414A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2021201417A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2017069433A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품
WO2021201416A1 (ko) 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품
WO2020122647A1 (ko) 딥 성형용 라텍스 조성물, 이의 제조방법 및 이로부터 성형된 성형품
WO2019112306A1 (ko) 딥 성형품, 딥 성형용 라텍스 조성물 및 이들의 제조방법
WO2020101182A1 (ko) 코어-쉘 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2017090881A1 (ko) 딥 성형용 라텍스 조성물 및 이로부터 제조된 딥 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020544779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896435

Country of ref document: EP

Kind code of ref document: A1