WO2020122320A1 - Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication - Google Patents

Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication Download PDF

Info

Publication number
WO2020122320A1
WO2020122320A1 PCT/KR2019/002017 KR2019002017W WO2020122320A1 WO 2020122320 A1 WO2020122320 A1 WO 2020122320A1 KR 2019002017 W KR2019002017 W KR 2019002017W WO 2020122320 A1 WO2020122320 A1 WO 2020122320A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
stainless steel
ferritic stainless
low
content
Prior art date
Application number
PCT/KR2019/002017
Other languages
English (en)
Korean (ko)
Inventor
정일찬
임진우
유한진
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201980081706.6A priority Critical patent/CN113166891A/zh
Priority to JP2021532855A priority patent/JP7174853B2/ja
Priority to EP19897222.6A priority patent/EP3875627A4/fr
Publication of WO2020122320A1 publication Critical patent/WO2020122320A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a low-Cr ferrite-based stainless steel, and more particularly, to a low-Cr ferrite-based stainless steel capable of securing moldability while having high temperature strength and high temperature oxidation resistance.
  • Ferritic stainless steel has excellent corrosion resistance even with a small amount of expensive alloying elements, and has a higher price competitiveness than austenitic stainless steel.
  • 9 to 14% of low-Cr ferritic stainless steel is more cost-competitive, and is used in exhaust system parts (Muffler, Ex-manifold, Collector cone, etc.) corresponding to the exhaust gas temperature range of room temperature to 800°C.
  • Embodiments of the present invention by optimizing the content of Ci, Si, Sn to utilize solid solution strengthening and precipitation strengthening, without increasing the Cr content or adding Nb high temperature strength and high temperature oxidation resistance corresponding to high Cr ferritic stainless steel It is intended to provide a low-Cr ferritic stainless steel having a moldability and a method for manufacturing the same.
  • Low Cr ferritic stainless steel excellent in moldability and high temperature properties according to an embodiment of the present invention, by weight, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9 to 14%, Ti: 0.1 to 0.3%, Cu: 0.3 to 0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, including the remaining Fe and unavoidable impurities, Expressions (1) and (2) are satisfied.
  • Si, Cu, and Sn mean the content (% by weight) of each element.
  • Ni: 0.3% or less, P: 0.04% or less, and S: 0.002% or less may be further included.
  • it may include 0.03% by weight or more of the Cu precipitation phase having a size of 1 to 500 nm in the matrix structure.
  • 900 °C high temperature strength may be 12 MPa or more.
  • the elongation may be 30% or more.
  • a method of manufacturing a low-Cr ferritic stainless steel having excellent moldability and high temperature properties according to an embodiment of the present invention, by weight, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9 to 14%, Ti: 0.1 to 0.3%, Cu: 0.3 to 0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, containing the remaining Fe and unavoidable impurities
  • Si, Cu, and Sn mean the content (% by weight) of each element.
  • the cold-rolled annealed steel sheet may include 0.09% by weight or more of a Cu precipitation phase having a size of 1 to 500 nm in the matrix structure.
  • the high temperature strength of 900°C of the cold rolled annealed steel sheet may be 14.5 MPa or more.
  • the cold rolled steel sheet may satisfy the following formula (3).
  • the low-Cr ferritic stainless steel according to the embodiment of the present invention can increase the high-temperature strength by 30% or more compared to the existing by distributing the fine Cu precipitation phase at the same time as the solid solution strengthening effect of Si and Cu, and the surface thickening of Si and Sn Thereby, high temperature oxidation resistance can also be improved.
  • the high temperature strength characteristics may be more excellent.
  • 1 is a graph showing the correlation between high temperature properties according to equations (1) and (3) of the present invention.
  • Low Cr ferritic stainless steel excellent in moldability and high temperature properties according to an embodiment of the present invention, by weight, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9 to 14%, Ti: 0.1 to 0.3%, Cu: 0.3 to 0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, including the remaining Fe and unavoidable impurities, Expressions (1) and (2) are satisfied.
  • Si, Cu, and Sn mean the content (% by weight) of each element.
  • the present inventors have obtained various findings as a result of various studies to improve high temperature strength and high temperature oxidation resistance of low cost low Cr ferritic stainless steel.
  • Nb is added to the ferritic stainless steel for exhaust system for high temperature strength, and Nb is not a preferred development direction because the raw material cost is relatively high and causes the manufacturing cost to increase.
  • substituted solid solution strengthening elements are effective to increase high temperature strength. Particularly, when a substituted solid solution strengthening element is added, the larger the difference in weight and atomic radius compared to Fe and Cr, the greater the solid solution strengthening effect.
  • alloy elements such as Si, Cu, Sn, etc. are located far away from Fe and Cr, and because there are differences in weight and atomic radius, it is judged that it can be substituted for the existing Nb, and component optimization was performed to increase the high temperature strength. .
  • the Cr content is generally increased, but Cr is also not a desirable development direction because the raw material cost is high and causes the manufacturing cost to increase.
  • certain elements when exposed to high temperature for a long time, certain elements must be densely concentrated on the surface to suppress the formation of Fe-oxide film.
  • Si, Cu, and Sn candidates were selected as elements that can be concentrated on the surface, and component optimization was performed for high temperature oxidation resistance.
  • the present invention must satisfy the component system conditions and equations as follows.
  • Low Cr ferritic stainless steel excellent in moldability and high temperature properties according to an embodiment of the present invention, by weight, C: 0.005 to 0.015%, N: 0.005 to 0.015%, Si: 0.5 to 1.5%, Mn: 0.1 to 0.5%, Cr: 9 to 14%, Ti: 0.1 to 0.3%, Cu: 0.3 to 0.8%, Al: 0.01 to 0.05%, Sn: 0.005 to 0.15%, remaining Fe and unavoidable impurities.
  • the content of C is 0.005 to 0.015%.
  • the content of N is 0.005 to 0.015%.
  • the concentration of N in the steel exceeds 0.015%, the concentration of solid solution N reaches the limit, and it combines with Cr, and a Cr 2 N precipitate is generated, thereby deteriorating the high temperature oxidation resistance due to local Cr depletion in the base.
  • the content of N is limited to the range of 0.005 to 0.015%.
  • the content of Si is 0.5 to 1.5%.
  • Si is a solid solution strengthening element for increasing the high temperature strength, and at the same time, a Si-rich oxide film is formed on the surface layer to increase the high temperature oxidation resistance.
  • Si content is limited as above.
  • the content of Mn is 0.1 to 0.5%.
  • Mn is an imperative that is inevitably contained in steel, and serves to stabilize austenite.
  • Mn content in the low-Cr ferritic stainless steel exceeds 0.5%, austenite reverse transformation occurs during annealing after hot rolling or cold rolling, which adversely affects elongation. Therefore, the content of Mn is limited as above.
  • the content of Cr is 9 to 14%.
  • Cr is an essential element added in the formation of an anti-oxidative passivation film in stainless steel.
  • the Cr content should be added more than 9%.
  • the present invention is intended to develop a low-cost steel with reduced Cr, so the upper limit is limited to 14%. More preferably, it may range from 10.5 to 12.5%.
  • the content of Ti is 0.1 to 0.3%.
  • Ti must be added at least 0.1% in order to increase the corrosion resistance of the weld. Ti combines with C and N to form Ti(C,N) precipitates to lower the amount of solid solution C and N, and serves to suppress the formation of Cr depletion layer. However, when the Ti content exceeds 0.3%, the Ti component in the surface layer reacts with oxygen to cause yellow discoloration. Therefore, the Ti content is limited as above.
  • the content of Cu is 0.3 to 0.8%.
  • Cu is a solid solution strengthening element that replaces Nb and contributes to high temperature strength.
  • Cu when Cu generates fine precipitates through appropriate heat treatment, it can be expected that additional high-temperature strength increases due to the precipitation strengthening effect. Therefore, 0.5% or more is added. However, if too much Cu is added, the high temperature hot workability may be impaired, so the amount is limited to 0.8% or less.
  • the content of Al is 0.01 to 0.05%.
  • Al is an element added for deoxidation during steelmaking operations.
  • Al content exceeds 0.05%, Al in the surface layer reacts with oxygen to form a non-uniform oxide layer, which adversely affects high temperature oxidation resistance. Therefore, the Al content is limited as above.
  • the content of Sn is 0.005 to 0.15%.
  • Sn is a solid solution strengthening element for increasing high temperature strength, and at the same time, forming a Sn-rich oxide film on the surface layer increases the high temperature oxidation resistance.
  • a minimum Sn content of at least 0.005% should be added.
  • the upper limit of the Sn content is limited to 0.15% or less.
  • Ni: 0.3% or less, P: 0.04% or less, and S: 0.002% or less may be further included.
  • Ni is 0.3% or less.
  • Ni may contain 0.01% or more as an imperatively contained impurity in the steel, and serves to stabilize austenite.
  • austenite reverse transformation occurs during annealing heat treatment after hot rolling or cold rolling, which adversely affects elongation. Therefore, the content of Ni is limited as above.
  • P The content of P is 0.04% or less.
  • P is an unavoidable impurity contained in the steel, so it causes grain boundary corrosion during pickling or inhibits hot workability, so its content is adjusted to 0.04% or less.
  • S The content of S is 0.002% or less.
  • S is an unavoidable impurity contained in the steel and is segregated at the grain boundaries, hindering the hot workability, so its content is limited to 0.002% or less.
  • the rest of the ferritic stainless steel excluding the alloy elements described above, is made of Fe and other unavoidable impurities.
  • the low-Cr ferritic stainless steel excellent in moldability and high temperature characteristics according to an embodiment of the present invention may satisfy the following formulas (1) to (3).
  • High temperature strength is usually affected by solid solution strengthening and precipitation strengthening.
  • Cu and Si are representative solid solution strengthening elements, so it is preferable to add them to increase the high temperature strength.
  • the high temperature strength is increased more effectively due to the precipitation strengthening effect.
  • the Si content is increased, Cu has a lower solid solubility limit, so that precipitation of the Cu precipitation phase becomes easier. Accordingly, it is possible to deposit 0.03% by weight or more of the Cu precipitation phase having a size of 1 to 500 nm in the matrix structure. Therefore, the Cu+Si content is controlled in a range of 1.3% or more.
  • the low Cr ferritic stainless steel according to the present invention may exhibit a high temperature strength at 900°C of 12 MPa or more.
  • Si, Cu, and Sn alloy elements each have a positive effect on high temperature strength or high temperature oxidation resistance, but the material is too hard, resulting in poor elongation and poor formability.
  • the elongation of 30% or more can be secured to prevent the moldability deterioration. Therefore, in order to secure material processability, the relationship between Si, Cu, and Sn contents is controlled in the above range.
  • the method of manufacturing a low-Cr ferritic stainless steel excellent in moldability and high temperature characteristics of the present invention can be manufactured as a cold rolled steel sheet through a normal manufacturing process, and includes the above-described alloy component composition and satisfies equations (1) to (3). Cold-annealing the ferritic stainless steel cold-rolled steel sheet; And rapidly cooling to a temperature range of 450 to 550°C to maintain for 5 minutes or more.
  • a slab containing the above-described alloy component composition may be hot-rolled, annealed and heat-treated by hot-rolled hot-rolled steel sheet, and cold-rolled to produce a cold-rolled steel sheet.
  • the cold rolled steel sheet can be maintained for at least 5 minutes by quenching to a temperature range of 450 to 550° C. after a normal recrystallization heat treatment in the cold rolling annealing process. Through the cooling and maintenance, precipitation of a Cu precipitation phase in the same component system can be increased, and high temperature strength can be further improved.
  • the cold-rolled annealed steel sheet may include 0.09% by weight or more of a Cu precipitation phase having a size of 1 to 500 nm in the matrix structure, and a high temperature strength of 900°C may be 14.5 MPa or more.
  • a 20 mm bar sample was prepared with the alloy component meter shown in Table 1 below by utilizing a stainless steel lab scale melting and ingot production facility. After reheating at 1,200°C, hot rolling was performed to 6 mm, followed by hot rolling annealing at 1,100°C, cold rolling to 2.0 mm, and annealing heat treatment at 1,100°C. After heat treatment only for some invention examples, it was quenched to 500° C., held for about 7 minutes, and then air-cooled to produce cold-rolled annealed steel sheets.
  • the fraction of Cu precipitation phase was measured for each cold rolled annealed steel sheet, and it was confirmed whether discoloration occurred after 1 hour at 500°C. In addition, it was shown in Table 2 by measuring the high temperature strength at 900 °C and elongation at room temperature.
  • Comparative Examples 1 to 3 the content of Si and Sn was less than that of the Ti content, so the formula (3) was unsatisfactory, and high-temperature discoloration occurred because the Si and Sn-rich oxide films on the surface layer were not sufficiently formed.
  • Comparative Example 4 since the Cu content was low and the Si content was high, the expression (3) was satisfied, so no discoloration occurred, and it was confirmed that the high temperature oxidation resistance according to the expression (3) was secured.
  • Inventive Example 1 satisfies the component system composition of the present invention and equations (1) and (2). Discoloration occurred at a high temperature, but satisfying Equation (1), a Cu precipitate precipitated 0.05% by weight and showed a high temperature strength of 12 MPa or more. In addition, it was confirmed that the elongation was measured to be 33.3% while ensuring high temperature strength by satisfying Equation (2), and thus excellent moldability.
  • Inventive Examples 2 to 4 optimized Si, Cu, and Sn contents to satisfy all of the formulas (1) to (3), thus exhibiting high temperature strength of 13.5 MPa or higher and elongation of 30.8% or higher, and high temperature discoloration did not occur.
  • Inventive Examples 5 to 7 show that not only the formulas (1) to (3) were satisfied by optimizing the contents of Si, Cu, and Sn, but a cooling schedule was applied after heat treatment according to the present invention.
  • the elongation was secured to 30.3% or more, and as a result of rapid quenching and holding time after heat treatment, a fine Cu precipitated phase precipitated more than 0.09% by weight, and the high temperature strength was higher than 14.6 MPa.
  • Inventive Examples 5 and 6 exhibited high temperature strength of 15 MPa or more.
  • 1 is a graph showing the values of equations (1) and (3) of the embodiments according to the present invention. 1, it can be confirmed the correlation of the equations (1) and (3) for high temperature strength and high temperature oxidation resistance.
  • the ferritic stainless steel according to the present invention can increase the high temperature characteristics of existing steel types by 30% or more without increasing Cr content and adding Nb, thereby reducing raw material costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Acier inoxydable ferritique à faible teneur en Cr ayant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication. Des modes de réalisation de la présente invention peuvent fournir : de l'acier inoxydable ferritique à faible teneur en Cr, qui a une résistance à température élevée et une résistance à l'oxydation à température élevée excellentes et garantit une aptitude au formage, correspondant à de l'acier inoxydable ferritique à teneur élevée en Cr sans augmentation de la quantité de Cr ni ajout de Nb, par l'optimisation des quantités de Ci, Si et Sn et l'utilisation d'un renforcement de solution solide et d'un renforcement de précipitation ; et son procédé de fabrication.
PCT/KR2019/002017 2018-12-10 2019-02-20 Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication WO2020122320A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980081706.6A CN113166891A (zh) 2018-12-10 2019-02-20 具有优异的可成型性和高温特性的低Cr铁素体不锈钢及其制造方法
JP2021532855A JP7174853B2 (ja) 2018-12-10 2019-02-20 成形性及び高温特性に優れた低Crフェライト系ステンレス鋼及びその製造方法
EP19897222.6A EP3875627A4 (fr) 2018-12-10 2019-02-20 Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180158651A KR102168829B1 (ko) 2018-12-10 2018-12-10 성형성 및 고온 특성이 우수한 저Cr 페라이트계 스테인리스강 및 그 제조방법
KR10-2018-0158651 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020122320A1 true WO2020122320A1 (fr) 2020-06-18

Family

ID=71076099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002017 WO2020122320A1 (fr) 2018-12-10 2019-02-20 Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication

Country Status (5)

Country Link
EP (1) EP3875627A4 (fr)
JP (1) JP7174853B2 (fr)
KR (1) KR102168829B1 (fr)
CN (1) CN113166891A (fr)
WO (1) WO2020122320A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326046B1 (ko) * 2019-12-19 2021-11-15 주식회사 포스코 고온 특성 및 성형성이 향상된 저Cr 페라이트계 스테인리스강 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159487A (ja) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp 耐銹性に優れた高純度フェライト系ステンレス鋼およびその製造方法
CN102277538A (zh) * 2011-07-27 2011-12-14 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢板及其制造方法
KR20140083726A (ko) * 2012-12-26 2014-07-04 주식회사 포스코 고온 내산화 및 내응축수 부식특성이 우수한 자동차 배기계용 알루미늄 도금 스테인리스강 및 그 제조방법
JP2017048417A (ja) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法
KR20170101262A (ko) * 2015-01-19 2017-09-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 가열 후 내식성이 우수한 배기계 부재용 페라이트계 스테인리스강

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385032C (zh) * 2006-02-17 2008-04-30 山西太钢不锈钢股份有限公司 中铬含铜铁素体抗菌抗皱不锈钢板带及其制造方法
CN104870674B (zh) * 2012-12-24 2018-01-30 Posco公司 具有优良的耐冷凝液腐蚀性、成型性和抗高温氧化性的用于汽车排气系统的铁素体不锈钢及其制造方法
KR101485641B1 (ko) * 2012-12-24 2015-01-22 주식회사 포스코 내응축수 부식특성 및 성형성이 우수한 자동차 배기계용 페라이트계 스테인리스강 및 그 제조방법
JP6006660B2 (ja) * 2013-02-26 2016-10-12 新日鐵住金ステンレス株式会社 耐酸化性および耐食性に優れた自動車排気系部材用省合金型フェライト系ステンレス鋼
CN104046917B (zh) * 2013-03-13 2016-05-18 香港城市大学 富Cu纳米团簇强化的超高强度铁素体钢及其制造方法
CN104109809B (zh) * 2014-06-20 2018-11-06 宝钢不锈钢有限公司 一种高成形性低铬铁素体不锈钢及制造方法
JP6566678B2 (ja) * 2015-03-26 2019-08-28 日鉄ステンレス株式会社 バーリング加工部端面の耐食性に優れるフェライト系ステンレス鋼板の製造方法
KR101676193B1 (ko) * 2015-10-22 2016-11-15 주식회사 포스코 저크롬 페라이트계 스테인리스 냉연강판의 산세 방법
JP6261640B2 (ja) * 2016-03-30 2018-01-17 新日鐵住金ステンレス株式会社 加工性に優れた排気部品用フェライト系ステンレス鋼板、鋼管およびその製造方法
JP6519023B2 (ja) * 2016-05-17 2019-05-29 Jfeスチール株式会社 厨房機器用フェライト系ステンレス鋼およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159487A (ja) * 2008-12-09 2010-07-22 Nippon Steel & Sumikin Stainless Steel Corp 耐銹性に優れた高純度フェライト系ステンレス鋼およびその製造方法
CN102277538A (zh) * 2011-07-27 2011-12-14 山西太钢不锈钢股份有限公司 一种含锡铁素体不锈钢板及其制造方法
KR20140083726A (ko) * 2012-12-26 2014-07-04 주식회사 포스코 고온 내산화 및 내응축수 부식특성이 우수한 자동차 배기계용 알루미늄 도금 스테인리스강 및 그 제조방법
KR20170101262A (ko) * 2015-01-19 2017-09-05 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 가열 후 내식성이 우수한 배기계 부재용 페라이트계 스테인리스강
JP2017048417A (ja) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875627A4 *

Also Published As

Publication number Publication date
EP3875627A1 (fr) 2021-09-08
CN113166891A (zh) 2021-07-23
EP3875627A4 (fr) 2022-03-16
JP7174853B2 (ja) 2022-11-17
KR102168829B1 (ko) 2020-10-22
KR20200071212A (ko) 2020-06-19
JP2022513747A (ja) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2019112144A1 (fr) Acier inoxydable austénitique non magnétique ayant une excellente résistance à la corrosion et procédé pour le fabriquer
WO2020101227A1 (fr) Acier inoxydable austénitique non magnétique et son procédé de fabrication
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l'oxydation à haute température et procédé de fabrication associé
WO2020101226A1 (fr) Acier inoxydable austénitique non magnétique à haute résistance et son procédé de fabrication
WO2018117477A1 (fr) Acier inoxydable duplex ayant d'excellentes caractéristiques de résistance à la corrosion et d'usinabilité et procédé de fabrication de celui-ci
WO2019039768A1 (fr) Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène
WO2017052005A1 (fr) Acier inoxydable ferritique et son procédé de fabrication
WO2017111251A1 (fr) Acier inoxydable austénitique présentant des propriétés de résistance au fluage et une résistance à la traction améliorées et son procédé de fabrication
WO2020122320A1 (fr) Acier inoxydable ferritique à faible teneur en cr présentant une aptitude au formage et des propriétés à température élevée excellentes, et son procédé de fabrication
WO2020130279A1 (fr) Acier inoxydable à haute résistance mécanique
WO2020111546A1 (fr) Acier inoxydable ferritique ayant une résistance à la corrosion améliorée et son procédé de fabrication
WO2020060051A1 (fr) Tôle d'acier inoxydable ferritique laminée à chaud et non recuite ayant une excellente solidité au choc, et son procédé de fabrication
WO2016105092A1 (fr) Acier inoxydable à base de ferrite et procédé pour le fabriquer
WO2019124729A1 (fr) Acier inoxydable ferritique utilitaire possédant une excellente aptitude au façonnage à chaud et son procédé de fabrication
WO2019132226A1 (fr) Acier duplex pauvre à aptitude au pliage améliorée et procédé de fabrication associé
WO2021125564A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de fabrication
WO2017209431A1 (fr) Acier inoxydable austénitique présentant une résistance à la corrosion et une aptitude au façonnage améliorées et son procédé de production
WO2020060050A1 (fr) Acier inoxydable à base de ferrite présentant une excellente aptitude au traitement et une résistance élevée à la température et procédé pour le fabriquer
WO2017111250A1 (fr) Acier inoxydable duplex pauvre ayant une résistance à la corrosion et une usinabilité améliorées et procédé de fabrication s'y rapportant
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
WO2017111437A1 (fr) Acier inoxydable duplex pauvre et son procédé de fabrication
WO2024135997A1 (fr) Acier inoxydable ferritique pour applications de construction et son procédé de production
WO2022131503A1 (fr) Acier inoxydable ferritique présentant une excellente résistance à la chaleur et son procédé de fabrication
WO2020111859A1 (fr) Plaque d'acier pour applications à haute température ayant une excellente résistance à haute température, et son procédé de fabrication
WO2018117489A1 (fr) Acier inoxydable à base de ferrite ayant une ténacité et une résistance aux acides excellentes et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897222

Country of ref document: EP

Effective date: 20210601