WO2020122197A1 - ハニカムサンドイッチパネル、光学装置および人工衛星 - Google Patents

ハニカムサンドイッチパネル、光学装置および人工衛星 Download PDF

Info

Publication number
WO2020122197A1
WO2020122197A1 PCT/JP2019/048784 JP2019048784W WO2020122197A1 WO 2020122197 A1 WO2020122197 A1 WO 2020122197A1 JP 2019048784 W JP2019048784 W JP 2019048784W WO 2020122197 A1 WO2020122197 A1 WO 2020122197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
optical
mirror
honeycomb sandwich
sandwich panel
Prior art date
Application number
PCT/JP2019/048784
Other languages
English (en)
French (fr)
Inventor
友哉 服部
昇 川口
利崇 仲尾次
厚武 及川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19896831.5A priority Critical patent/EP3895886A4/en
Priority to JP2020530705A priority patent/JP6747635B1/ja
Priority to CN201980079724.0A priority patent/CN113165307A/zh
Priority to US17/311,363 priority patent/US11506865B2/en
Publication of WO2020122197A1 publication Critical patent/WO2020122197A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/181Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/198Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors with means for adjusting the mirror relative to its support

Definitions

  • the present disclosure relates to a honeycomb sandwich panel having a low thermal expansion coefficient, an optical device using the honeycomb sandwich panel, and a satellite equipped with the optical device.
  • the structural members of optical devices must be lightweight and have a low coefficient of thermal expansion.
  • the thermal expansion coefficient of its structural member needs to be smaller than that of an optical telescope installed on the earth. The reason is that, in outer space, a temperature change exceeding 100 degrees occurs when the sun light is received and when the sun light is not received.
  • the amount of thermal deformation an optical device can tolerate to achieve a given accuracy is the same for the same accuracy both on earth and in space.
  • An optical device used in outer space with a large temperature change requires a thermal expansion coefficient of the structural member of the optical device to be smaller than that of the optical device installed on the ground in order to have the same degree of thermal deformation as on the ground. ..
  • CFRP Carbon fiber reinforced plastic
  • Honeycomb sandwich panels made of CFRP have been proposed. In a CFRP manufactured honeycomb sandwich panel, both the core material and the skin material are manufactured by CFRP.
  • a structure has been proposed in which the core material is divided to change the density and the direction according to the magnitude and direction of the load (see Patent Document 1).
  • Patent Document 1 In order to have isotropy in which the coefficient of thermal expansion is the same regardless of the direction, a structure has been proposed in which a core material is made by stacking a plurality of tubular cells and the wall thickness between the cells is uniform (Patent Reference 2).
  • the honeycomb sandwich panel made of CFRP has a coefficient of thermal expansion of less than 10 ⁇ 6 [1/K].
  • the reflector of the optical telescope is required to support the reflector of the optical telescope with high accuracy.
  • the reflector by combining an axial support mechanism that supports the reflector in the direction of the optical axis and a lateral support mechanism that points in a plane perpendicular to the optical axis, the reflector as a whole has insufficient 6 degrees of freedom for spatial rigid body motion.
  • a mirror support mechanism that supports a mirror so that the condition is restrained.
  • the mirror support mechanism has a structure that can cope with a relative difference in coefficient of thermal expansion between the reflecting mirror and the mirror support mechanism (see, for example, Patent Document 4).
  • Patent No. 3902429 Japanese Patent Laid-Open No. 2005-028966 Patent No. 5574835 JP2012-185278
  • Honeycomb sandwich panels made of aluminum (sometimes abbreviated as aluminum) or CFRP have been used for the structural members of artificial satellites and optical devices mounted on artificial satellites.
  • Aluminum has low rigidity and strength, and has a large coefficient of thermal expansion. Therefore, aluminum is not suitable as a structural member of an optical device particularly for the purpose of optical observation.
  • CFRP has high rigidity and strength and a low coefficient of thermal expansion.
  • CFRP is more suitable than aluminum as a material for structural members of optical devices.
  • CFRP is often adopted as a structural member of an optical device for optical observation.
  • a honeycomb sandwich panel having an absolute value of thermal expansion coefficient smaller than the absolute value of thermal expansion coefficient obtained when using CFRP is desired.
  • the present disclosure aims to obtain a honeycomb sandwich panel having an absolute value of a thermal expansion coefficient smaller than an absolute value of a thermal expansion coefficient obtained when using CFRP.
  • the honeycomb sandwich panel according to the present disclosure has a first skin material that is a plate material that is made of a low expansion metal that is a metal whose absolute value of the thermal expansion coefficient is smaller than that of carbon fiber reinforced plastic, and is made of a low expansion metal,
  • a second skin material which is a plate material arranged so as to face the first skin material, and a plurality of cylinders having a hexagonal cross section are formed adjacent to each other and joined to the first skin material and the second skin material, And a core material made of carbon fiber reinforced plastic or low expansion metal.
  • FIG. 3 is a perspective view of the optical device according to the first embodiment.
  • 3 is a front view of the optical device according to the first embodiment.
  • FIG. 3 is a plan view of the optical device according to the first embodiment.
  • FIG. FIG. 3 is a right side view of the optical device according to the first embodiment.
  • 3 is a bottom view of the optical device according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the optical device according to the first embodiment.
  • FIG. FIG. 3 is a perspective view of a support beam used to support the reflecting mirror in the optical device according to the first embodiment.
  • FIG. 3 is a front view of a support beam used to support a reflecting mirror in the optical device according to the first embodiment.
  • FIG. 4 is a plan view of a support beam used to support a reflecting mirror in the optical device according to the first embodiment.
  • FIG. 6 is a right side view of a support beam used to support a reflecting mirror in the optical device according to the first embodiment.
  • FIG. 5 is a rear view of a support beam used to support a reflecting mirror in the optical device according to the first embodiment.
  • FIG. 3 is a perspective view of a reflecting mirror supported by a supporting beam in the optical device according to the first embodiment.
  • FIG. 3 is a front view of a reflecting mirror supported by a supporting beam in the optical device according to the first embodiment.
  • FIG. 6 is a right side view of a reflecting mirror supported by a supporting beam in the optical device according to the first embodiment.
  • FIG. 6 is a rear view of a reflecting mirror supported by a supporting beam in the optical device according to the first embodiment.
  • FIG. 6 is a bottom view of a reflecting mirror supported by a supporting beam in the optical device according to the first embodiment.
  • FIG. 3 is a perspective view of the honeycomb sandwich panel used in the optical device according to the first embodiment with a part of the skin material removed.
  • 7 is a front view of an artificial satellite equipped with the optical device according to the second embodiment.
  • FIG. 7 is an enlarged view of a portion connecting the optical device according to Embodiment 2 and an artificial satellite.
  • FIG. FIG. 6 is a conceptual cross-sectional view illustrating the internal configuration of the optical device according to the second embodiment.
  • FIG. 1 is a perspective view of the optical device according to the first embodiment.
  • 2 to 5 are a front view, a plan view, a right side view and a bottom view of the optical device.
  • FIG. 6 is a cross-sectional view taken along the line AA shown in FIG.
  • the reflector structure 50 which is an optical device, has a reflector 1 and a mirror support member 2.
  • the reflector structure 50 constitutes an optical telescope for observing celestial bodies and the like.
  • the mirror support member 2 is a member that supports the reflecting mirror 1.
  • the reflecting mirror 1 has a reflecting surface 3 that reflects the observation light that is the light used for observation, and a supported portion 4 that is provided in the center of the back surface that is the surface opposite to the reflecting surface.
  • the supported portion 4 is a member supported by the mirror supporting member 2.
  • the reflecting surface 3 has a circular outer shape and is a concave surface.
  • the supported portion 4 is a protrusion having a cylindrical outer shape.
  • On the tip end side of the protrusion there are provided supported surfaces 5 which are three planes parallel to the optical axis LX (shown in FIGS. 2 and 4) of the reflecting mirror 1.
  • the supported surface 5 is a rectangular flat surface having the same size and forms an angle of 120 degrees with each other.
  • the supported portion 4 has rotational symmetry every 120 degrees around the optical axis LX.
  • the mirror support member 2 is a structural member existing on the rear surface side of the reflecting mirror 1.
  • the reflecting mirror 1 and the mirror support member 2 can also be applied to optical equipment not used for observation.
  • the mirror support member 2 has a support substrate portion 6, a bearing portion 7, and a support opening portion 8.
  • the mirror support member 2 is provided with a support beam 9 and a beam fixing portion 10.
  • the support substrate portion 6 is a main body portion of the mirror support member 2.
  • the support substrate portion 6 is a panel-shaped member that is present on the back side of the reflecting mirror 1. When viewed from the direction of the optical axis LX, the support substrate portion 6 has a shape in which the upper and lower sides and the left and right sides of a circle larger than the reflecting mirror 1 are linearly cut. It can be said that the shape of the support substrate portion 6 is a shape in which four corners of a square are replaced with arcs. The ratio of the arc portion is about 35% of the length of one side of the square.
  • the bearing portion 7 is provided at the center of the two opposing sides of the main surface of the support substrate portion 6.
  • the bearing portion 7 has a shape protruding from the main surface.
  • the bearing portion 7 has a cylindrical shaft holding hole 11.
  • the shaft holding holes 11 of the two bearings 7 are provided so that their central axes coincide with each other and intersect the optical axis LX of the reflecting mirror 1.
  • the central axis of the shaft holding hole 11 is parallel to the main surface of the support substrate portion 6.
  • a cylindrical Y-axis member 12 (not shown) is inserted into each of the two shaft holding holes 11.
  • the central axis of the shaft holding hole 11 and the central axis of the Y-axis member 12 coincide with each other.
  • the central axis of the Y-axis member 12 is called the Y-axis.
  • the reflecting mirror structure 50 is rotatable around the Y-axis member 12, that is, the Y-axis.
  • the support opening 8, the support beam 9, and the beam fixing portion 10 are members for supporting the supported portion 4 of the reflecting mirror 1.
  • the support opening 8 is a cylindrical opening provided in the center of the main surface of the support substrate 6.
  • the mirror support member 2 has a support opening 8 which is a hole into which the supported portion 4 is inserted.
  • the support opening portion 8 is provided so as to penetrate the support substrate portion 6.
  • the inner surface of the cylindrical opening formed by the support opening 8 is referred to as a cylindrical surface 13.
  • the cylindrical surface 13 extends further to the back side than the portion corresponding to the disk-shaped support substrate portion 6.
  • the support opening 8 is annularly projected from the back surface of the support substrate 6.
  • Eight reinforcing ribs are provided at equal intervals in the annular portion of the support opening 8 extending from the back surface side of the support substrate 6 in the direction outward from the central axis of the cylindrical surface 13.
  • the supported portion 4 of the reflecting mirror 1 is inserted into the space surrounded by the cylindrical surface 13.
  • the supported portion 4 is supported by three support beams 9 in a space surrounded by the cylindrical surface 13.
  • Six beam fixing parts 10 are provided on the cylindrical surface 13.
  • the beam fixing unit 10 has a shape in which the base of a substantially right triangle having an apex angle of 60 degrees is replaced with an arc when viewed from the direction of the optical axis LX.
  • the beam fixing unit 10 has a beam connecting surface that is a plane parallel to the optical axis LX, an arc surface that contacts the cylindrical surface 13, and a plane parallel to the optical axis LX that contacts the adjacent beam fixing unit 10.
  • the surface that contacts the adjacent beam fixing portion 10 and the beam connection surface intersect at an angle of 60 degrees.
  • One end of the support beam 9 is connected to the beam connecting surface.
  • Two beam fixing parts 10 are arranged adjacent to each other.
  • the two beam fixing portions 10 are fixed to three positions on the cylindrical surface 13 in a state where they are connected so that the circular arc surfaces are continuous.
  • the ends of the two support beams 9 are connected to the two beam fixing portions 10 at each position.
  • the beam connecting surfaces of the two beam fixing portions 10 form an angle of 120 degrees with each other.
  • the beam fixing unit 10 is provided so as to have rotational symmetry every 120 degrees around the optical axis LX.
  • the two beam fixing parts 10 are provided on the cylindrical surface 13 at a position intersecting the Y axis.
  • the beam fixing portion 10 is provided at a position on the back side of the supported surface 5 in the direction of the optical axis LX. Both ends of the supporting beam 9 are respectively connected to the beam connecting surfaces of the two beam fixing portions 10 arranged on the cylindrical surface 13 at an angular interval of 120 degrees.
  • the supported portion 4 is supported by the support beam 9 in the space surrounded by the cylindrical surface 13, the length of the reflecting mirror structure 50 in the direction of the optical axis LX is shortened so that the mirror supporting member 2 supports the reflecting mirror 1. it can.
  • the supported portion 4 may be supported by the support beam 9 on the main surface side of the support substrate portion 6 without providing the support opening portion 8.
  • FIG. 7 is a perspective view of the support beam 9.
  • 8 to 11 are a front view, a plan view, a right side view, and a rear view of the support beam 9. Both ends of the supporting beam 9 are connected to the beam fixing portion 10, and the central portion thereof is connected to the supported surface 5.
  • the shape of the support beam 9 is such that the main part thereof exists on a substantially flat surface.
  • the portion of the support beam 9 that joins the supported surface 5 and supports the supported surface 5 is referred to as a mirror support portion 9A.
  • the mirror support portion 9A has a rectangular plate shape.
  • the mirror support portion 9A is fixed to the supported surface 5 with an adhesive.
  • Beam portions 9B are obliquely connected to both sides of the mirror support portion 9A.
  • the beam portion 9B is a rectangular plate having a width narrower than that of the mirror support portion 9A.
  • the mirror support portion 9A is thicker than the beam portion 9B.
  • the mirror support portion 9A and the beam portion 9B are connected so that the surface farther from the supported surface 5 becomes a flat surface. Therefore, the mirror support portion 9A projects to the supported surface 5 side from the beam portion 9B.
  • the two beam portions 9B are connected to the mirror support portion 9A at an angle farther from the reflecting mirror 1 than the mirror support portion 9A.
  • the beam portion 9B supports the mirror support portion 9A located near the back surface of the reflecting mirror 1 at a position far from the back surface.
  • the support beam 9 is a support member that has a mirror support portion 9 ⁇ /b>A and has both ends connected to the mirror support member 2 via the beam fixing portion 10.
  • a rectangular plate-shaped flange portion 9C is connected to the end of the beam portion 9B where the mirror support portion 9A is not connected so as to be orthogonal to the beam portion 9B.
  • the flange portion 9C is vertically connected to the beam portion 9B.
  • the flange portion 9C is fixed to the beam connecting surface of the beam fixing portion 10. Since the two beam fixing portions 10 are installed adjacent to each other, the flange portions 9C of the two support beams 9 are also adjacent to each other.
  • the flange portion 9C having a substantially rectangular parallelepiped shape has a surface in contact with the adjacent flange portion 9C.
  • the surface that contacts the adjacent flange portion 9C is formed by cutting out a portion including one ridgeline of the rectangular parallelepiped.
  • the surface that contacts the adjacent flange portion 9C forms an angle of 120 degrees with the surface that is fixed to the beam connecting surface.
  • the flange portions 9C have shapes that do not interfere with each other at the end portions on the side that contacts the adjacent flange portions 9C.
  • Approximately rectangular plate-shaped link portion 9D is connected to the two beam portions 9B in the vicinity of connection with the flange portion 9C.
  • the link portion 9D connects the flange portion 9C on the side farther from the back surface of the reflecting mirror 1 than the mirror support portion 9A.
  • the two beam portions 9B and the link portions 9D appear to have a substantially isosceles triangular outer shape.
  • the plate-shaped support beam 9 has appropriate elasticity. Therefore, the radial displacement of the portion where the mirror supporting portion 9A supports the supported surface 5 caused by the difference in thermal expansion coefficient between the reflecting mirror 1 and the mirror supporting member 2 can be absorbed by the bending of the support beam 9.
  • the support beam 9 can support the supported portion 4 without applying excessive stress to the supported portion 4 in response to expansion or contraction of the supported portion 4 in the radial direction.
  • the radial direction of the reflecting mirror 1 is a direction from the optical axis LX toward the outer periphery in a plane perpendicular to the optical axis LX. If the portion where the mirror support portion 9A supports the supported surface 5 can be moved in the radial direction according to the expansion or contraction of the supported portion 4 in the radial direction of the reflecting mirror 1, the beam portion 9B is not plate-shaped. Good. For example, both ends of the rod-shaped beam portion 9B may be rotatably held so that the mirror support portion 9A can be moved in the radial direction.
  • the support beam 9 has a structure in which the mirror support portion 9A is movable in the radial direction of the reflecting mirror 1. Even if the mirror support portion 9A moves in the radial direction, the center position of the supported portion 4 is fixed to the mirror support member 2.
  • the support beam 9 is plane-symmetric with respect to the center plane CS passing through the mirror support portion 9A.
  • the center plane CS passes through the center perpendicular to the rectangular mirror support portion 9A.
  • the center plane CS divides the link portion 9D into two on the lower side of the mirror support portion 9A in the drawing, and passes through the link portion 9D.
  • the two beam portions 9B have the same shape and are similarly connected to symmetrical positions of the mirror support portion 9A.
  • the two flange portions 9C have the same shape and are connected to the same position of the beam portion 9B at the same angle.
  • each support beam 9 In a state where the three support beams 9 support the supported portion 4, the optical axis LX of the reflecting mirror 1 exists on the center plane CS of each support beam 9.
  • the center plane CS of each support beam 9 is plane-symmetrical including not only the support beam 9 but also the supported portion 4 and the beam fixing portion 10.
  • the reflecting mirror 1 supported by the three supporting beams 9 is as shown in FIGS. 12 to 16.
  • 12 to 16 are a perspective view, a front view, a right side view, a rear view and a bottom view of the reflecting mirror 1 supported by the three support beams 9.
  • the reflecting mirror 1 is supported by a simple structure including three beam portions 9.
  • the supported surface 5 and the support beam 9 have a rotational symmetry of 120 degrees about the optical axis LX, and are plane symmetric about the center plane CS of the support beam 9. Therefore, the three support beams 9 can support the supported portion 4 such that the optical axis LX is arranged at the center of the equilateral triangle formed by the three support beams 9.
  • the support beam 9 need not be plane-symmetric.
  • the supported portion 4 and the optical axis LX can be arranged at predetermined positions by the three supporting beams 9.
  • the support beam 9 is plane-symmetric, it becomes easier to dispose the supported portion 4 and the optical axis LX at the determined positions.
  • the support opening portion 8, the support beam 9, and the beam fixing portion 10 constitute a mirror connecting portion that fixes the position of the supported portion 4 with respect to the supporting substrate portion 6 and connects the supported portion 4 to the supporting substrate portion 6.
  • the Y-axis member 12 is connected to the X-axis rotating member 14 (not shown).
  • the X axis is an axis that is perpendicular to the optical axis LX and is orthogonal to the Y axis.
  • the X-axis rotating member 14 can rotate around the X-axis.
  • the X-axis rotating member 14 has the same shape as the supporting substrate unit 6. When viewed from the direction of the optical axis LX, the X-axis rotating member 14 has a substantially similar shape that is slightly larger than the support substrate portion 6.
  • the X-axis rotating member 14 supports the Y-axis member 12 by means of two protrusions provided on the main surface side of the X-axis rotating member 14.
  • a protrusion connects to the Y-axis member 12 and supports the Y-axis member 12 on the back surface side of the portion where the bearing portion 7 is provided on the main surface side.
  • the distance between the Y-axis and the X-axis rotating member 14 is appropriately determined so that the reflecting mirror structure 50 can rotate about the Y-axis by a predetermined angle.
  • the X-axis rotating member 14 can be rotated around the X-axis by two X-axis members 15 (not shown) parallel to the X-axis.
  • a plate-shaped mirror base member 16 (not shown) having a projection that supports the X-axis member 15 is provided on the back side of the X-axis rotation member 14. The distance between the mirror base member 16 and the X axis is appropriately determined so that the X axis rotation member 14 can rotate about the X axis by a predetermined angle.
  • the mirror base member 16 is fixed to the structural member of the optical telescope.
  • the supporting substrate portion 6 and the bearing portion 7 are made of a honeycomb sandwich panel 20 made of metal having a low coefficient of thermal expansion so as to be lightweight and have a small coefficient of thermal expansion.
  • An Invar alloy is used as the metal having a low coefficient of thermal expansion.
  • “Zero Thermal Expansion Invar Alloy” manufactured by Shinpokoku Steel Co., Ltd. has an extremely low coefficient of thermal expansion of 0.06 ppm [1/K] (according to an article in the Nikkan Steel Newspaper on November 22, 2018). ).
  • the support opening 8, the support beam 9 and the beam fixing portion 10 are made of a low expansion metal. At least one of the support opening 8, the support beam 9, and the beam fixing portion 10 may be made of a material different from the low expansion metal.
  • FIG. 17 is a perspective view of the honeycomb sandwich panel with a part of the skin material removed.
  • the honeycomb sandwich panel 20 includes a first skin material 21, a core material 22 and a second skin material 23.
  • the first skin material 21 is a plate material serving as one surface of the honeycomb sandwich panel 20.
  • the second skin material 23 is a plate material that is arranged so as to face one surface and serves as the other surface. In the honeycomb sandwich panel 20 shown in FIG. 17, the first skin material 21 and the second skin material 23 are arranged in parallel.
  • the core material 22 is a member having a honeycomb structure.
  • the honeycomb structure is a structure in which a plurality of cylinders each having a hexagonal cross section (desirably a regular hexagon) are formed adjacent to each other.
  • the core material 22 is vertically bonded to the first skin material 21 and the second skin material 23 with an adhesive. Even if the two opposite sides of the six sides have different lengths from the other four sides, it is possible to fill the plane without gaps. Therefore, the core material may have a shape in which tubes having hexagonal cross sections are arranged adjacent to each other.
  • the mirror support member 2 is manufactured by using a honeycomb sandwich panel made of a low expansion metal. Therefore, the degree of expansion or contraction due to temperature change affecting the position of the reflecting mirror 1 can be made smaller than in the case of manufacturing with CFRP.
  • the Y-axis member 12, the X-axis rotating member 14, the X-axis member 15, and the mirror base member 16 also have a honeycomb sandwich panel made of a low expansion metal, or are made of a low expansion metal.
  • the mirror support member 2 may be manufactured using a honeycomb sandwich panel made of a material that is not a low expansion metal, or without using a honeycomb sandwich panel. The same applies to each of the Y-axis member 12, the X-axis rotating member 14, the X-axis member 15, and the mirror base member 16.
  • honeycomb sandwich panels made of CFRP are at least one of more labor, time and cost than using low expansion metals.
  • Adhesives and inserts are required to join CFRP honeycomb sandwich panels to each other and to join honeycomb sandwich panels and other members. Therefore, it is difficult to sufficiently increase the bonding strength of the CFRP honeycomb sandwich panel.
  • the absolute value of the thermal expansion coefficient that can be realized by CFRP is less than 10 ⁇ 6 and about 3 ⁇ 10 ⁇ 7 [1/K] or more.
  • the coefficient of thermal expansion of a low expansion glass material for example, ZERODUR (registered trademark) of SCHOTT Co., is 0 ⁇ 0.05 ⁇ 10 ⁇ 6 [1/K] in Class 1.
  • the coefficient of thermal expansion of CFRP which is the material of the mirror support member, is 5 times or more as large as that of a reflector made of a low expansion glass material having a coefficient of thermal expansion of less than 10 ⁇ 7 [1/K]. ..
  • a CFRP mirror support member When a CFRP mirror support member is used, a complicated structure is required in order to prevent the deformation of the CFRP mirror support member from being transmitted to the optical element.
  • CFRP When applying to optical devices used in outer space, CFRP has some points to be noted. Since CFRP is a high molecular organic material, it absorbs moisture. When CFRP is launched into orbit in a state of containing water, the water may evaporate and contract and deform in outer space. In addition, organic matter contained in CFRP may evaporate and contract and deform in outer space. The contraction deformation of the CFRP may change the dimensions of the structural member, change the relative position of the optical device, and reduce the observation accuracy. A gas (outgas) containing organic substances generated from CFRP may come into contact with the optical device, and the organic substance generated from CFRP may adhere to the optical device. Adhesion of organic matter may cause deterioration of observation accuracy.
  • Low-expansion metal has high rigidity and strength, and isotropic with respect to rigidity and thermal expansion. Also, the low expansion metal has a higher thermal conductivity than CFRP.
  • the mirror support member 2 can be manufactured by using a low expansion metal such as “zero thermal expansion Invar alloy” to realize a low thermal expansion coefficient of less than 10 ⁇ 7 . Therefore, the difference in thermal expansion coefficient between the support structure and the reflecting mirror is small, and the reflecting mirror 1 can be fixed to the mirror supporting member 2 by the three supporting beams 9.
  • the support beam 9 has a simple structure and can support optical devices such as the reflecting mirror 1. By manufacturing the structure for supporting the optical device with the low expansion metal, the amount of deformation can be suppressed and the weight can be reduced as compared with the case of using CFRP.
  • Low-expansion metal can be cut and welded. Since the low-expansion metal is a workable material, it is not necessary to consider the fiber direction and layer structure, which were necessary in the case of CFRP. In manufacturing an optical device, at least one of labor, time and cost can be improved as compared with the case of using CFRP.
  • the low expansion metal can be welded, which has higher strength than the adhesive. The low expansion metal is welded by a method that does not deform the honeycomb sandwich panel.
  • the first skin material and the second skin material may be made of a low expansion metal, and the core material may be made of CFRP.
  • the deformation of the honeycomb sandwich panel in which the first skin material and the second skin material were made of "zero thermal expansion Invar alloy” and the core material was made of CFRP with respect to temperature change was simulated by finite element analysis.
  • the honeycomb sandwich panel has a shape in which the first skin material and the second skin material are 100 mm ⁇ 100 mm in length (Y direction) and width (X direction) and a thickness of 1 mm.
  • the core material has a cell size of about 6 mm, a core material film thickness of about 0.03 mm, and a height (Z direction) of 20 mm.
  • the coefficient of thermal expansion is 5.0 ⁇ 10 ⁇ 8 [1/K] for “zero thermal expansion Invar alloy” and ⁇ 3.0 ⁇ 10 ⁇ 7 [1/K] for CFRP. And The temperature change is increased by 10 [K].
  • the displacement in the X direction and the Y direction is 5.0 ⁇ 10 ⁇ 5 [mm].
  • the displacement in the Z direction is 1.0 ⁇ 10 ⁇ 5 [mm].
  • the core material is made of CFRP
  • the displacement in the X direction is 4.92 ⁇ 10 ⁇ 5 [mm]
  • the displacement in the Y direction is 5.16 ⁇ 10 ⁇ 5 [mm]
  • the displacement in the Z direction is ⁇ It becomes 8.28 ⁇ 10 ⁇ 5 [mm].
  • the core material is made of CFRP, the core material undergoes wavy deformation, so the amount of displacement at the largest displacement was measured.
  • the low-expansion metallic honeycomb sandwich panel can be applied even when supporting an optical device different from the optical device having a reflecting mirror.
  • the mirror support member 2 supports the supported portion 4 of the reflector 1 with three support beams 9.
  • Three-point support beams 9 provide three-point support, and the mirror support member 2 can support the reflecting mirror 1 without overconstraining.
  • the supported portion 4 is supported by the three supported surfaces 5 in point symmetry with respect to the optical axis LX.
  • the support beam 9 supports the supported portion 4 symmetrically with respect to the center plane CS. Therefore, the support beam 9 or the mirror support member 2 does not prevent the reflecting mirror 1 from expanding or contracting in a point-symmetrical manner about the optical axis LX due to a temperature change.
  • the three supporting beams 9 similarly expand or contract, and thus the reflecting mirrors.
  • the stress acting on 1 is point-symmetric with respect to the optical axis LX at three points.
  • the stress acting on the reflecting mirror 1 exists on the center plane CS because it is symmetrical about the center plane CS passing through each of the three points.
  • the magnitude of the stress exerted by the three support beams 9 will be the same.
  • the position where the reflecting mirror 1 is supported by the three support beams 9 does not change due to the expansion or contraction of the mirror support member 2.
  • the reflection mirror 1 expands or contracts due to the expansion or contraction of the mirror support member 2
  • the reflection mirror 1 expands or contracts point-symmetrically about the optical axis LX.
  • the supported part 4 is located near the optical axis LX of the reflecting mirror 1. Therefore, even if there is expansion or contraction due to temperature change, the amount of expansion or contraction of the support beam 9 that supports the supported portion 4 can be made smaller than when the supported portion 4 supports near the outer edge of the reflecting mirror 1. .. Therefore, the stress due to the expansion or contraction applied to the reflecting mirror 1 and the supporting beam 9 also becomes small.
  • the support beam 9 and the mirror support member 2 from a low expansion metal, the expansion amount or the contraction amount can be further reduced, and the stress can be reduced. Even if the stress acting on the supported portion 4 changes, the stress does not affect the accuracy of the mirror surface of the reflecting surface 3 of the reflecting mirror 1 because the stress acts on three adjacent points.
  • the reflecting mirror structure 50 can cope with the relative difference in the coefficient of thermal expansion between the reflecting mirror 1 and the mirror supporting member 2, and has a simpler structure of three supporting beams 9 than the conventional structure.
  • the reflecting mirror 1 can be supported.
  • the supported surface does not have to be parallel to the optical axis LX of the reflecting mirror 1.
  • the supported surface does not have to be a flat surface.
  • a protrusion or a depression may be provided on the supported surface. It suffices that the supported surface be provided with rotational symmetry of 120 degrees around the optical axis LX.
  • the optical telescope including the reflecting mirror structure 50 can be used by being mounted on an artificial satellite.
  • acceleration is applied to the optical telescope and the like.
  • the support beam 9 can support the reflector even in situations where acceleration is applied.
  • the reflecting mirror 1 is in a posture in which the optical axis LX is parallel to the moving direction. That is, the acceleration at launch is generated in the direction parallel to the optical axis LX of the reflecting mirror 1.
  • the beam portion 9B of the support beam 9 is oblique to the direction in which acceleration is generated, and the beam portion 9B can generate stress with respect to acceleration. The above also applies to the other embodiments.
  • FIG. 18 is a front view of an artificial satellite equipped with the optical device according to the second embodiment.
  • FIG. 19 is an enlarged view of a portion where the optical device and the artificial satellite are connected.
  • FIG. 20 is a conceptual cross-sectional view illustrating the internal configuration of the optical device.
  • the artificial satellite 30 has a satellite body 31 and an optical telescope 32.
  • the optical telescope 32 is manufactured in consideration of a low coefficient of thermal expansion in a portion that affects the observation accuracy.
  • the satellite body 31 is manufactured without special consideration regarding thermal expansion.
  • the satellite body 31 has a connection panel section 33 for mounting the optical telescope 32.
  • the connection panel portion 33 is a flat plate-shaped member.
  • the connection panel portion 33 is manufactured by using a honeycomb sandwich panel made of a metal such as aluminum.
  • the optical telescope 32 has a structure in which a circular entrance 34 (shown in FIG. 20) is arranged on the side far from the satellite body 31, and the reflecting mirror 1 is arranged on the side close to the satellite body 31.
  • the side where the entrance 34 is present is called the tip side
  • the side connected to the satellite body 1 is called the base side.
  • the optical telescope 32 is roughly divided into a pedestal portion 35 and a lens barrel portion 36.
  • the pedestal portion 35 exists on the base side and is connected to the connection panel portion 33.
  • the reflecting mirror 1 is installed on the pedestal portion 35.
  • the lens barrel portion 36 is a member that surrounds an optical path 42 (illustrated in FIG. 20) through which observation light passes.
  • the lens barrel portion 36 is connected to the pedestal portion 35 on the base side.
  • the lens barrel 36 is connected vertically to the pedestal 35.
  • the lens barrel portion 36 has a lens barrel base portion 37, a lens barrel middle portion 38, a device holding portion 39, and an optical path cylindrical portion 40.
  • the shape of the lens barrel base 37 is a rectangular tube whose height is lower than its width.
  • the cross-sectional shape of the lens barrel base 37 is a regular octagon.
  • the lens barrel base 37 is fixed to the pedestal 35.
  • the lens barrel base 37 houses the reflecting mirror 1 therein.
  • the lens barrel base 37 has a flange on the tip side.
  • the lens barrel base 37 is manufactured using a honeycomb sandwich panel made of a low expansion metal.
  • the base side of the lens barrel middle section 38 is a regular octagonal prism having a flange.
  • the tip end side of the lens barrel middle portion 38 has a shape of only the upper half of the rectangular tube.
  • the optical path cylindrical portion 40 is connected to the lower side and the tip side of the lens barrel intermediate portion 38 in the figure.
  • the tip end side of the optical path cylindrical portion 40 is a cylinder.
  • the opening on the tip side of the cylinder is the entrance 34.
  • the base side of the optical path cylindrical portion 40 has a cylindrical shape of only the lower half so that the lens barrel intermediate portion 38 can be connected to the upper side.
  • the lens barrel intermediate portion 38 and the optical path cylindrical portion 40 are joined together so that no gap is generated between them.
  • a device holding section 39 is connected to the tip end side of the upper part of the lens barrel middle section 38.
  • the device holding portion 39 is present on the upper side of the optical path cylindrical portion 40 and on the tip side of the barrel intermediate portion 38.
  • the device holder 39 holds an optical device.
  • the lens barrel middle part 38 and the device holding part 39 are manufactured using a honeycomb sandwich panel made of a low expansion metal.
  • the optical path cylindrical portion 40 is made of aluminum.
  • the lens barrel base portion 37, the lens barrel intermediate portion 38, the device holding portion 39, and the optical path cylindrical portion 40 form a closed space in which observation light enters only from the entrance 34 by being joined to the pedestal portion 35.
  • An optical device is arranged in a closed space inside the lens barrel.
  • FIG. 20 only the slit 41 for splitting the observation light is shown.
  • Optical equipment such as a camera is also arranged inside the lens barrel. The light that has entered the inside of the barrel from the entrance 34 is reflected by the reflecting mirror 1. The light reflected by the reflecting mirror 1 is split by the slit 41. The separated light of a specific wavelength enters a camera (not shown), and the camera captures an image of the observation target.
  • the optical path 42 is a path that light follows from the entrance 34 to the slit 41. In FIG. 20, the optical path 42 is shown by a dashed line.
  • the optical path 42 does not change regardless of temperature.
  • the pedestal portion 35, the lens barrel base portion 37, the lens barrel intermediate portion 38, and the device holding portion 39 have a low thermal expansion coefficient whose absolute value is smaller than 1.0 ⁇ 10 ⁇ 7 [1/K]. It is manufactured using honeycomb sandwich panels made of expanded metal or members made of low expansion metal. Therefore, the change in the relative positional relationship between the reflecting mirror 1 and the slit 41 can be suppressed to be small even when there is a temperature change.
  • the focal position of the optical telescope 32 can be suppressed within a range in which the change can be tolerated even when there is a temperature change.
  • the position of the optical device other than the slit 41 with respect to the reflecting mirror 1 can be suppressed within a range in which the change is allowable even when there is a temperature change.
  • the change in the image obtained by observation can be reduced even when there is a temperature change.
  • an adjustment mechanism having a large stroke may be separately required in order to keep the focus position unchanged. Since it is a honeycomb sandwich panel, it can be made lightweight, and the amount of energy required when launching the artificial satellite 30 into outer space can be reduced.
  • the optical telescope 32 which is an optical device, has a plurality of optical devices and a structural member that supports the optical devices.
  • the reflecting mirror 1 and the slit 41 are examples of optical devices.
  • the pedestal portion 35 is a structural member that supports the mirror support member 2.
  • the mirror support member 2 is a structural member that supports the reflecting mirror 1.
  • the lens barrel portion 36 is a structural member that surrounds the optical path that is the path through which the observation light passes and that is connected to the pedestal portion 35 and that supports the slit 41. Although not shown in the figure, the lens barrel portion 36 supports optical devices in addition to the slit 41.
  • the mirror support member 2, the pedestal portion 35, and the lens barrel portion 36 are configured to include a honeycomb sandwich panel made of a low expansion metal.
  • the path through the structural member connecting the reflecting mirror 1 and the slit 41 is only a honeycomb sandwich panel made of a low expansion metal or a structural member made of a low expansion metal. Therefore, the change in the relative positional relationship between the reflecting mirror 1 and the slit 41 can be made within an allowable range with respect to the temperature change.
  • the optical device has three or more optical devices, a route passing through a structural member connecting one optical device to the other optical device for all combinations of selecting two optical devices from the plurality of optical devices.
  • the ratio of the honeycomb sandwich panel made of the low expansion metal or the portion made of the low expansion metal on the path may be equal to or more than the determined lower limit value.
  • the pedestal portion 35 is made of a low expansion metal
  • the connection panel portion 33 is made of a metal having a thermal expansion coefficient larger than that of the low expansion metal.
  • a structure for absorbing a difference in expansion amount or contraction amount between the connection panel portion 33 and the pedestal portion 35 caused by a temperature change will be described.
  • the pedestal portion 35 is connected to the connection panel 33 by a support mechanism having a rotational symmetry of 45 degrees with respect to its center.
  • a rectangular parallelepiped projection 43 is provided at the center of the tip end side of each outer surface of the pedestal portion 35 whose outer shape is a regular octagonal prism.
  • the protrusions 43 are fixed to the side surface of the pedestal portion 35 and the surface of the pedestal portion 35 formed of the honeycomb sandwich panel on which the skin material is projected.
  • the connection panel portion 33 is also provided with a prismatic protrusion 44.
  • One projection 43 is connected to the projections 44 on both sides thereof by one cylindrical rod 45.
  • the projection 43 is supported by the bipod structure (bipod) by the two rods 45 connected to the single projection 43.
  • the surface of the protrusion 43 to which one end of the rod 45 is fixed is a surface perpendicular to the outer surface of the pedestal portion 35.
  • the other end of the rod 45 is fixed to the side surface of the protrusion 44.
  • the side surface of the protrusion 44 to which the other end of the rod 45 is fixed is orthogonal to the plane parallel to the optical axis on which the rod 45 extends.
  • the protrusion 44 has a trapezoidal outer shape when viewed from a direction parallel to the optical axis.
  • the other end of the rod 45 may be fixed to the upper surface of the protrusion 44 (the surface where the protrusion 43 is present).
  • the pedestal portion 35 and the connection panel portion 33 are connected only by the rod 45. A space exists between the pedestal portion 35 and the connection panel portion 33.
  • Each of the eight protrusions 43 is connected to the adjacent protrusion 44 by two rods 45. There are 16 rods 45 in total.
  • the 16 rods 45, the eight projections 43, and the eight projections 44 allow the position of the optical telescope 32 with respect to the satellite body 31 to change due to temperature changes, and connect the optical telescope 32 to the satellite body 31. Configure the device connection.
  • the optical telescope 32 may be connected to the satellite body 31 while allowing the position of the optical telescope 32 with respect to the satellite body 31 to change due to temperature change.
  • both ends of the rod 45 there are provided reduced diameter portions 46 with a reduced diameter.
  • the portion of the rod 45 sandwiched between the reduced diameter portions 46 is called the main body portion.
  • the reduced diameter portions 46 on both sides have the same shape.
  • the cross section perpendicular to the axial direction of the rod 45 remains a concentric circular shape, and only the diameter decreases toward the end portion.
  • the diameter-reduced portion 46 increases in diameter as it approaches the end portion of the rod 45 after passing the point where the diameter is the minimum. Since the reduced diameter portion 46 is provided, the connection angle between the rod 45 and the protrusion 43 and the connection angle between the rod 45 and the protrusion 44 can be changed.
  • the rod 45 can constitute a truss structure in which the connection angle of the rod can be changed.
  • the 16 rods 45 form a truss.
  • the number of rods may be more or less than 16.
  • the cross section of the lens barrel does not have to be octagonal.
  • the length of the rod 45 is set to an appropriate length so that there is a space between the pedestal portion 35 and the connection panel 33 even when there is a temperature change.
  • the pedestal portion 35, the connection panel 33, the projections 43, and the projections 44 are provided with necessary and sufficient strength so as not to be deformed due to temperature change.
  • the reduced diameter portion 46 of the rod 45 slightly bends with respect to the main body portion when the temperature changes.
  • the material and shape of the rod 45 are manufactured so as to obtain necessary and sufficient strength so as not to be damaged even when bent.
  • connection panel 33 expands more than the pedestal part 35. It slightly bends at the reduced diameter portion 46 of the rod 45, and the angle of the body portion of the rod 45 with respect to the connection panel 33 becomes smaller.
  • connection panel 33 contracts more than the pedestal portion 35.
  • the reduced diameter portion 46 of the rod 45 slightly bends in the direction opposite to the case where the temperature rises, and the angle of the body portion of the rod 45 with respect to the connection panel 33 increases. In this way, the rod 45 absorbs the difference in the amount of expansion or contraction due to the difference in the coefficient of thermal expansion between the connection panel portion 33 and the pedestal portion 35.
  • the rod 45 is made of a material having the same or a slightly smaller coefficient of thermal expansion as the connection panel 33, the rod 45 itself expands and contracts, so that the bending angle at the reduced diameter portion 46 of the rod 45 is not changed. , It can be made smaller than when the rod 45 is made of a low expansion metal.
  • the structural member supporting the optical device By manufacturing the structural member supporting the optical device with a honeycomb sandwich panel manufactured with a low expansion metal or a member processed with a low expansion metal, a change in relative position between the optical devices with respect to a temperature change as compared with the case of using CFRP.
  • the amount can be reduced.
  • optical devices such as optical telescopes
  • changes in observation performance can be reduced even if there is a change in temperature.
  • a mechanism that does not affect the observation accuracy due to the change in the relative position between the optical devices due to the temperature change which is necessary in the optical device when the absolute value of the thermal expansion coefficient of the structural member is large, for example, focus position adjustment.
  • the optical device does not need to have a mechanism or the like.
  • Reflector structure (optical device) 1 Reflector (optical equipment) 2 Mirror support member (structural member) 3 Reflective surface 4 Supported part 5 Supported surface 6 Support substrate part (main body part) 7 Bearing 8 Support opening (mirror connection) 9 Support beam (support member, mirror connection part) 9A Mirror support part (mirror connection part) 9B Beam part 9C Flange part 9D Link part 10 Beam fixing part (mirror connection part) 11 Axis Holding Hole 12 Y Axis Member 13 Cylindrical Surface 14 X Axis Rotating Member 15 X Axis Member 16 Mirror Base Member 20 Honeycomb Sandwich Panel 21 First Skin Material 22 Core Material 23 Second Skin Material 30 artificial satellite 31 satellite body 32 optical telescope (optical device) 33 Connection panel 34 Inlet 35 Base (structural member) 36 Lens barrel (structural member) 37 lens barrel base 38 lens barrel intermediate portion 39 device holding portion 40 optical path cylindrical portion 41 slit (optical device) 42 optical path 43 protrusion (optical equipment connection part) 44 Protrusion (optical device connection part) 45 rod

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Telescopes (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

炭素繊維強化プラスチック(CFRP)を使用する場合に得られる熱膨張係数の絶対値よりも小さい熱膨張係数の絶対値を有するハニカムサンドイッチパネルを得る。 ハニカムサンドイッチパネル20は、熱膨張係数の絶対値がCFRPよりも小さい金属である低膨張金属で製造された板材である第1スキン材21と、低膨張金属で製造された、第1スキン材21と対向するように配置された板材である第2スキン材23と、断面が六角形である複数の筒を隣接して形成して第1スキン材21および第2スキン材23に接合した、CFRPまたは低膨張金属で製造されたコア材22とを備えた。

Description

ハニカムサンドイッチパネル、光学装置および人工衛星
 本開示は、低い熱膨張係数を有するハニカムサンドイッチパネル、ハニカムサンドイッチパネルを用いた光学装置、および光学装置を搭載した人工衛星に関する。
 航空宇宙分野や天文科学分野で用いられる光学装置、例えば光学望遠鏡の構造部材は、軽量で低い熱膨張係数である必要がある。熱膨張係数が大きい場合には、温度変化により、構造部材が許容幅を超えて変形する場合がある。構造部材が熱で許容幅を超えて変形することにより、例えば光学望遠鏡の光軸が指定された方向からずれる場合がある。あるいは、焦点位置が決められた位置からずれる場合がある。光軸を指定された方向に高精度で向け、かつ焦点位置を決められた位置で固定するためには、光学望遠鏡の構造部材は低い熱膨張係数を有する必要がある。また、光学望遠鏡をより高解像度にするには、例えば反射鏡を大型化する必要がある。大型化しても重量をできるだけ増加させないために、構造部材が軽量である必要がある。
 ハニカムサンドイッチパネルは、軽量で高い剛性が得られる構造部材として知られている。ハニカムサンドイッチパネルは、ハニカム構造を有するコア材と、コア材を両側から挟む板材(スキン材)とで構成される。ハニカム構造は、断面が六角形(正六角形が望ましい)の複数の筒が互いに平行に隙間なく配列された構造である。スキン材は、ハニカム構造に垂直にコア材と接続する。
 光学装置の構造部材は、軽量で低い熱膨張係数を有する必要がある。特に、宇宙空間における例えば人工衛星や宇宙機に搭載される光学望遠鏡では、その構造部材の熱膨張係数が地球上に設置される光学望遠鏡よりも小さい必要がある。その理由は、宇宙空間では、太陽の光を受ける場合と受けない場合で、百度を超える温度変化が発生するからである。光学望遠鏡が必要な精度で観測できるためには、光学望遠鏡の熱変形を許容できる範囲(許容幅)に抑える必要がある。光学装置が決められた精度を得るために許容できる熱変形の大きさは、同じ精度に対しては地上でも宇宙空間でも同じである。温度変化が大きい宇宙空間で使用される光学装置では、地上と同じ程度の熱変形であるためには、光学装置の構造部材の熱膨張係数が地上に設置される光学装置よりも小さい必要がある。
 炭素繊維強化プラスチック(carbon fiber reinforced plastic, CFRP)が、軽量で高い剛性を有する素材として知られている。CFRPで製造したハニカムサンドイッチパネルが、提案されている。CFRPで製造したハニカムサンドイッチパネルでは、コア材およびスキン材のどちらも、CFRPで製造する。荷重の大きさや方向に対応して、コア材を分割して密度と方向を変える構造が提案されている(特許文献1参照)。熱膨張係数が方向によらず同じになる等方性を持たせるため、コア材を管状のセルを複数重ねて作成し、セル間の璧厚がすべて均一である構造が提案されている(特許文献2参照)。CFRPで製造したハニカムサンドイッチパネルでは、10-6[1/K]未満である熱膨張係数を実現している。
 CFRPに負の熱膨張係数を持たせるために、コア用炭素繊維の編み込む方向や層の構成を工夫する方法が提案されている。また、スキン材の熱膨張係数を調整することで、ハニカムサンドイッチパネル全体の熱膨張係数の正負を相殺することも提案されている(特許文献3参照)。
 光学望遠鏡の反射鏡を高い精度で支持するためには、複雑な支持機構が必要である。例えば、反射鏡の光軸方向に支持するアキシャル支持機構と光軸に垂直な面内で指示するラテラル支持機構とを組み合わせて、反射鏡全体としては空間的な剛体運動の6自由度が過不足なく拘束される条件になるように支持する鏡支持機構が知られている。鏡支持機構は、反射鏡と鏡支持機構の間での熱膨張係数の相対的な差にも対応できる構造になっている(例えば、特許文献4参照)。
特許第3902429号 特開2005-028966 特許第5574835号 特開2012-185278
 人工衛星や人工衛星に搭載される光学装置の構造部材には、従来はアルミニウム(アルミと略す場合がある)やCFRPを材料としたハニカムサンドイッチパネルが使用されている。
 アルミは剛性および強度が低いうえ、熱膨張係数が大きい。そのため、アルミは、特に光学観測を目的とした光学装置の構造部材には適さない。一方で、CFRPは剛性および強度が高く、熱膨張係数も低い。CFRPは、アルミよりも光学装置の構造部材の材料に適している。CFRPは、光学観測を目的とした光学装置の構造部材としてよく採用されている。
 CFRPを使用する場合に得られる熱膨張係数の絶対値よりも小さい熱膨張係数の絶対値を有するハニカムサンドイッチパネルが望まれている。
 本開示は、CFRPを使用する場合に得られる熱膨張係数の絶対値よりも小さい熱膨張係数の絶対値を有するハニカムサンドイッチパネルを得ることを目的とする。
 本開示に係るハニカムサンドイッチパネルは、熱膨張係数の絶対値が炭素繊維強化プラスチックよりも小さい金属である低膨張金属で製造された板材である第1スキン材と、低膨張金属で製造された、第1スキン材と対向するように配置された板材である第2スキン材と、断面が六角形である複数の筒を隣接して形成して第1スキン材および第2スキン材に接合した、炭素繊維強化プラスチックまたは低膨張金属で製造されたコア材とを備えたものである。
 本開示によれば、CFRPを使用する場合に得られる熱膨張係数の絶対値よりも小さい熱膨張係数の絶対値を有するハニカムサンドイッチパネルを得ることができる。
実施の形態1に係る光学装置の斜視図である。 実施の形態1に係る光学装置の正面図である。 実施の形態1に係る光学装置の平面図である。 実施の形態1に係る光学装置の右側面図である。 実施の形態1に係る光学装置の底面図である。 実施の形態1に係る光学装置の断面図である。 実施の形態1に係る光学装置で反射鏡を支持するために使用する支持ビームの斜視図である。 実施の形態1に係る光学装置において反射鏡を支持するために使用する支持ビームの正面図である。 実施の形態1に係る光学装置において反射鏡を支持するために使用する支持ビームの平面図である。 実施の形態1に係る光学装置において反射鏡を支持するために使用する支持ビームの右側面図である。 実施の形態1に係る光学装置において反射鏡を支持するために使用する支持ビームの背面図である。 実施の形態1に係る光学装置において支持ビームで支持された反射鏡の斜視図である。 実施の形態1に係る光学装置において支持ビームで支持された反射鏡の正面図である。 実施の形態1に係る光学装置において支持ビームで支持された反射鏡の右側面図である。 実施の形態1に係る光学装置において支持ビームで支持された反射鏡の背面図である。 実施の形態1に係る光学装置において支持ビームで支持された反射鏡の底面図である。 実施の形態1に係る光学装置で使用されるハニカムサンドイッチパネルの一部のスキン材を除いた状態での斜視図である。 実施の形態2に係る光学装置が搭載された人工衛星の正面図である。 実施の形態2に係る光学装置と人工衛星とを接続する部分の拡大図である。 実施の形態2に係る光学装置の内部構成を説明する概念的な断面図である。
 実施の形態1.
 実施の形態1に係る光学装置について、図1から図6を参照して説明する。図1は、実施の形態1に係る光学装置の斜視図である。図2から図5は、光学装置の正面図、平面図、右側面図および底面図である。図6は、図3に示すA-A断面での断面図である。光学装置である反射鏡構造体50は、反射鏡1および鏡支持部材2を有する。反射鏡構造体50は、天体などを観測する光学望遠鏡を構成する。鏡支持部材2は、反射鏡1を支持する部材である。反射鏡1は、観測に使用する光である観測光を反射する反射面3、反射面の反対側の面である背面の中央に設けられた被支持部4を有する。被支持部4は、鏡支持部材2により支持される部材である。反射面3は、外形が円であり、凹面である。被支持部4は、外形が円筒状の突起である。突起の先端側には、反射鏡1の光軸LX(図2、図4に図示)に平行な3個の平面である被支持面5が設けられている。被支持面5は、同じ大きさの長方形の平面であり、互いに120度の角度をなす。被支持部4は、光軸LXの回りに120度ごとの回転対称性を有する。鏡支持部材2は、反射鏡1の背面の側に存在する構造部材である。反射鏡1と鏡支持部材2は、観測の用途に使用しない光学機器にも適用できる。
 鏡支持部材2は、支持基板部6、軸受部7、支持開口部8を有する。鏡支持部材2には、支持ビーム9およびビーム固定部10が設けられる。支持基板部6は、鏡支持部材2の本体部である。支持基板部6は、反射鏡1の背面側に存在するパネル状の部材である。支持基板部6は、光軸LXの方向から見ると、反射鏡1よりも大きな円の上下および左右を直線状に切り取った形状である。支持基板部6の形状は、正方形の4つの角を円弧に置き換えた形状とも言える。円弧の部分の割合は、正方形の1辺の長さの35%程度である。ここで、支持基板部6の反射鏡1が存在する側の面を主面と呼び、その反対側の面を背面と呼ぶ。軸受部7は、支持基板部6の主面の対向する2辺の中央部に設けられる。軸受部7は、主面から出る形状である。軸受部7は、円筒状の軸保持穴11を有する。2個の軸受部7の軸保持穴11は、その中心軸が一致し、反射鏡1の光軸LXと交差するように設けられる。軸保持穴11の中心軸は、支持基板部6の主面に対して平行である。2個の軸保持穴11にそれぞれ、円柱状のY軸部材12(図示せず)が挿入される。軸保持穴11の中心軸とY軸部材12の中心軸は、一致する。Y軸部材12の中心軸をY軸と呼ぶ。反射鏡構造体50は、Y軸部材12すなわちY軸の周りに回転可能である。
 支持開口部8、支持ビーム9およびビーム固定部10は、反射鏡1の被支持部4を支持するための部材である。支持開口部8は、支持基板部6の主面の中央に設けられた円筒状の開口部である。鏡支持部材2は、被支持部4が入る穴である支持開口部8を有する。支持開口部8は、支持基板部6を貫通して設けられる。支持開口部8が形成する円筒状の開口部の内面を、円筒面13と呼ぶ。円筒面13は、円盤状の支持基板部6に相当する部分よりも背面側にも延在する。支持開口部8は、支持基板部6の背面から環状に出る。支持基板部6の背面側から出ている支持開口部8の環状の部分には、円筒面13の中心軸から外側に向かう方向に8個の補強リブを等間隔に設けている。
 円筒面13で囲まれる空間に、反射鏡1の被支持部4が挿入される。被支持部4は、円筒面13で囲まれる空間に、3個の支持ビーム9により支持される。円筒面13には、6個のビーム固定部10が設けられる。ビーム固定部10は、光軸LXの方向から見ると60度の頂角を有する略直角三角形の底辺を円弧に置き換えた形状である。ビーム固定部10は、光軸LXに平行な平面であるビーム接続面と、円筒面13と接触する円弧面と、隣接するビーム固定部10と接触する光軸LXに平行な平面とを有する。隣接するビーム固定部10と接触する面およびビーム接続面は、60度の角度で交差する。ビーム接続面には、支持ビーム9の一端が接続する。
 2個のビーム固定部10が、互いに隣接して配置される。2個のビーム固定部10が、円弧面が連続するように接続する状態で円筒面13の3箇所に固定される。各箇所の2個のビーム固定部10には、2本の支持ビーム9の端部がそれぞれ接続する。2個のビーム固定部10が有するビーム接続面は、互いに120度の角度をなす。ビーム固定部10は、光軸LXの回りに120度ごとの回転対称性を有するように設けられる。2個のビーム固定部10は、Y軸と交差する位置の円筒面13に設けられる。ビーム固定部10は、被支持面5よりも光軸LXの方向において背面側の位置に設ける。支持ビーム9の両端は、120度の角度間隔で円筒面13に配置された2個のビーム固定部10のビーム接続面にそれぞれ接続する。
 円筒面13で囲まれる空間で支持ビーム9により被支持部4を支持するので、反射鏡構造体50の光軸LXの方向の長さを短くして、鏡支持部材2が反射鏡1を支持できる。支持開口部8を設けないで、支持基板部6の主面側で被支持部4を支持ビーム9により支持してもよい。
 支持ビーム9の構造を、図7から図11を参照して説明する。図7は、支持ビーム9の斜視図である。図8から図11は、支持ビーム9の正面図、平面図、右側面図、背面図である。支持ビーム9は、その両端がビーム固定部10に接続し、その中央部が被支持面5と接続する。支持ビーム9の形状は、主要部が略平面上に存在する形状である。被支持面5と接合して被支持面5を支持する支持ビーム9の部分を、鏡支持部9Aと呼ぶ。鏡支持部9Aは、長方形の板状である。鏡支持部9Aは、被支持面5に接着剤により固定される。鏡支持部9Aの両側には、ビーム部9Bが斜めに接続する。ビーム部9Bは、鏡支持部9Aよりも幅が細い長方形の板状である。鏡支持部9Aの厚さは、ビーム部9Bよりも厚い。鏡支持部9Aとビーム部9Bとは、被支持面5よりも遠い側の面が平面になるように接続する。そのため、鏡支持部9Aは、ビーム部9Bよりも被支持面5の側に出る。2本のビーム部9Bが、鏡支持部9Aよりも反射鏡1から遠くなる角度で鏡支持部9Aと接続する。ビーム部9Bは、反射鏡1の背面に近い位置にある鏡支持部9Aを背面から遠い位置で支持する。支持ビーム9は、鏡支持部9Aを有し、両端がビーム固定部10を介して鏡支持部材2に接続された支持部材である。
 ビーム部9Bの鏡支持部9Aが接続しない側の端には、長方形の板状のフランジ部9Cがビーム部9Bと直交するように接続する。フランジ部9Cは、ビーム部9Bに垂直に接続する。フランジ部9Cが、ビーム固定部10が有するビーム接続面に固定される。2個のビーム固定部10が隣接して設置されるので、2個の支持ビーム9のフランジ部9Cも隣接する。略直方体の形状を有するフランジ部9Cは、隣接するフランジ部9Cと接触する面を有する。隣接するフランジ部9Cと接触する面は、直方体の1本の稜線を含む部分を切り取って形成される。隣接するフランジ部9Cと接触する面は、ビーム接続面に固定される面に対して120度の角度をなす。このように、フランジ部9Cは、隣接するフランジ部9Cと接触する側の端部で、互いに干渉しないような形状を有する。
 2本のビーム部9Bには、フランジ部9Cと接続する付近で、略長方形の板状のリンク部9Dが接続する。リンク部9Dは、鏡支持部9Aよりも反射鏡1の背面から遠い側においてフランジ部9Cを結ぶ。2本のビーム部9Bとリンク部9Dは、正面から見ると外形が略二等辺三角形になるように見える。板状の支持ビーム9は、適度な弾性を有する。そのため、反射鏡1と鏡支持部材2の熱膨張係数の差により発生する鏡支持部9Aが被支持面5を支持する箇所の径方向の変位を、支持ビーム9がたわむことで吸収できる。つまり、被支持部4の径方向の膨脹または収縮に対応して、被支持部4に過度の応力を加えることなく、支持ビーム9が被支持部4を支持できる。反射鏡1の径方向は、光軸LXに垂直な平面において光軸LXから外周に向かう方向である。反射鏡1の径方向における被支持部4の膨脹または収縮に応じて鏡支持部9Aが被支持面5を支持する箇所を径方向に移動させることができれば、ビーム部9Bは板状でなくてもよい。例えば、棒状のビーム部9Bの両端を回転可能に保持するなどして、鏡支持部9Aを径方向に移動可能にしてもよい。支持ビーム9が、鏡支持部9Aが反射鏡1の径方向に移動可能な構造を有すればよい。なお、鏡支持部9Aが径方向に移動しても、被支持部4の中心の位置は、鏡支持部材2に対して固定される。
 支持ビーム9は、鏡支持部9Aを通る中心面CSに関して面対称である。中心面CSは、長方体状の鏡支持部9Aに垂直にその中心を通る。中心面CSは、鏡支持部9Aの図における下側でリンク部9Dを2分割して、リンク部9Dを通る。2本のビーム部9Bは同じ形状であり、鏡支持部9Aの対称な位置に同じように接続する。2本のフランジ部9Cは同じ形状であり、ビーム部9Bの同じ位置に同じ角度で接続する。
 3本の支持ビーム9が被支持部4を支持する状態では、各支持ビーム9の中心面CS上に反射鏡1の光軸LXが存在する。各支持ビーム9の中心面CSに関して、支持ビーム9だけでなく被支持部4およびビーム固定部10を含めて、面対称である。
 3本の支持ビーム9で支持された反射鏡1は、図12から図16のようになる。図12から図16は、3本の支持ビーム9で支持された反射鏡1の斜視図、正面図、右側面図、背面図および底面図である。図12から図16に示すように、反射鏡1を3本のビーム部9という簡素な構造で支持する。被支持面5および支持ビーム9が光軸LXの回りに120度の回転対称性を有し、かつ支持ビーム9の中心面CSの回りに面対称である。そのため、3本の支持ビーム9は、3本の支持ビーム9が形成する正三角形の中心に光軸LXが配置されるように、被支持部4を支持できる。支持ビーム9は、面対称でなくてもよい。指示ビーム9が面対称でない場合でも、3本の支持ビーム9により被支持部4および光軸LXを決められた位置に配置できる。支持ビーム9が面対称である場合の方が、被支持部4および光軸LXを決められた位置に配置することが容易になる。
 支持開口部8、支持ビーム9およびビーム固定部10は、支持基板部6に対する被支持部4の位置を固定して被支持部4を支持基板部6に接続する鏡接続部を構成する。
 Y軸部材12は、X軸回転部材14(図示せず)に接続する。X軸は、光軸LXに垂直な平面でY軸と直交する軸である。X軸回転部材14は、X軸の回りに回転可能である。X軸回転部材14は、支持基板部6と同様な形状である。X軸回転部材14は、光軸LXの方向から見ると、支持基板部6よりも少し大きいほぼ相似な形状である。X軸回転部材14は、X軸回転部材14の主面側に設けられた2個の突起によりY軸部材12を支持する。主面側に軸受部7が設けられている部分の背面側で、突起がY軸部材12に接続してY軸部材12を支持する。Y軸とX軸回転部材14との間の距離は、反射鏡構造体50がY軸の周りに決められた角度だけ回転可能になるように適切に決める。
 X軸回転部材14は、X軸に平行な2個のX軸部材15(図示せず)により、X軸の周りに回転可能である。X軸回転部材14の背面側には、X軸部材15を支持する突起を有する板状の鏡基底部材16(図示せず)が存在する。鏡基底部材16とX軸との間の距離は、X軸回転部材14がX軸の周りに決められた角度だけ回転可能になるように適切に決める。鏡基底部材16は、光学望遠鏡の構造部材に固定される。
 支持基板部6および軸受部7は、軽量でかつ熱膨張係数が小さくなるように、低い熱膨張係数を有する金属で製造されたハニカムサンドイッチパネル20で構成する。低い熱膨張係数を有する金属としては、インバー合金を使用する。例えば、新報国製鉄(株)が製造する「ゼロ熱膨張インバー合金」は、0.06ppm[1/K]という極めて低い熱膨張係数を有する(2018年11月22日付、日刊鉄鋼新聞の記事による)。熱膨張係数の絶対値が「ゼロ熱膨張インバー合金」より大きくても、炭素繊維強化プラスチック(CFRPと略す)よりも絶対値が小さい熱膨張係数を有する金属であれば、CFRPを使用する場合よりも熱膨張の影響を軽減した光学装置を得ることができる。この明細書では、光学装置を製造するために使用する、CFRPよりも低い熱膨張係数を有する金属を低膨張金属と呼ぶ。支持開口部8、支持ビーム9およびビーム固定部10は、低膨張金属で製造する。なお、支持開口部8、支持ビーム9およびビーム固定部10の何れか少なくとも1つを、低膨張金属とは異なる材料で製造してもよい。
 図17を参照して、ハニカムサンドイッチパネル20の構造を説明する。図17は、ハニカムサンドイッチパネルの一部のスキン材を除いた状態での斜視図である。ハニカムサンドイッチパネル20は、第1スキン材21、コア材22および第2スキン材23を有して構成される。第1スキン材21は、ハニカムサンドイッチパネル20の一方の面となる板材である。第2スキン材23は、一方の面に対向するように配置された他方の面となる板材である。図17に示すハニカムサンドイッチパネル20では、第1スキン材21と第2スキン材23とが平行になるように配置している。コア材22は、ハニカム構造を有する部材である。ハニカム構造は、断面が六角形(正六角形が望ましい)である複数の筒を隣接して形成した構造である。コア材22は、第1スキン材21および第2スキン材23に垂直に接着剤により接合される。なお、6辺の中で対向する2辺が他の4辺とは長さが異なる六角形でも平面を隙間なく埋めることができる。そのため、コア材は断面が六角形の筒が隣接して配置された形状であればよい。
 鏡支持部材2は、低膨張金属で製造されたハニカムサンドイッチパネルを使用して製造する。そのため、CFRPで製造する場合よりも、温度変化による膨張あるいは収縮が、反射鏡1の位置に影響する度合いを小さくできる。なお、Y軸部材12、X軸回転部材14、X軸部材15および鏡基底部材16も、低膨張金属で製造されたハニカムサンドイッチパネルを有して構成するか、あるいは低膨張金属で製造する。
 鏡支持部材2は、低膨張金属ではない材料によるハニカムサンドイッチパネルを使用して、あるいは、ハニカムサンドイッチパネルを使用しないで製造してもよい。Y軸部材12、X軸回転部材14、X軸部材15および鏡基底部材16の各々に関しても、同様である。
 CFRPの替わりに低膨張金属を使用することで、CFRPを使用する場合に発生する以下の課題を解決できる。
 CFRPを使用したハニカムサンドイッチパネルでは、繊維方向や層構造により剛性や熱膨張係数の性質が変化する。そのため、繊維方向や層構造を検討および調整した上でスキン材やコア材を製造する必要がある。結果として、CFRP製のハニカムサンドイッチパネルは、低膨張金属を使用する場合よりも、手間、時間およびコストの少なくとも1つが多くかかる。
 CFRP製のハニカムサンドイッチパネル同士、ハニカムサンドイッチパネルと他の部材を接合するには、接着剤やインサートによる必要がある。そのため、CFRP製のハニカムサンドイッチパネルは、接合強度を十分に高めることが難しい。
 CFRPで実現できる熱膨張係数の絶対値は、10-6未満で3×10-7[1/K]程度以上である。低膨張ガラス材料、例えばSCHOTT社のZERODUR(登録商標)の熱膨張係数は、クラス1で0±0.05×10-6[1/K]である。10-7[1/K]未満の熱膨張係数を有する低膨張ガラス材料で製造される反射鏡に対して、鏡支持部材の素材であるCFRPの熱膨張係数は5倍以上の大きさである。CFRP製の鏡支持部材を使用する場合には、CFRP製の鏡支持部材の変形を光学要素へ伝えないために、複雑な構造が必要である。
 宇宙空間で使用される光学装置に適用する場合には、CFRPはいくつか注意すべき点がある。CFRPは、高分子有機材料であるため、吸湿する。CFRPが水分を含んだ状態で軌道上へ打ち上げられると、宇宙空間で水分が蒸発して収縮変形する場合がある。また、宇宙空間でCFRPに含まれる有機物が蒸発し、収縮変形する場合がある。CFRPの収縮変形により構造部材の寸法が変化し、光学機器の相対位置が変化して、観測精度が低下する場合がある。CFRPから発生する有機物を含む気体(アウトガス)が光学機器に触れ、CFRPから発生した有機物が光学機器に付着する場合がある。有機物の付着は、観測精度の低下をもたらす場合がある。
 低膨張金属は、剛性や強度が高く、剛性および熱膨張性に関して等方性を有する。また、低膨張金属は、CFRPよりも高い熱伝導率を持つ。
 鏡支持部材2は、「ゼロ熱膨張インバー合金」などの低膨張金属を使用して製造することで、10-7未満という低い熱膨張係数を実現できる。そのため、支持構造と反射鏡の熱膨張係数の差が小さく、反射鏡1を3本の支持ビーム9で鏡支持部材2に固定することができる。支持ビーム9という簡単な構造で、反射鏡1などの光学機器を支持できる。光学機器を支持する構造を低膨張金属で製造することで、CFRPを使用する場合と比較して、小さな変形量に抑えかつ軽量にできる。
 低膨張金属は、切削や溶接なども可能である。低膨張金属は加工可能な素材であるため、CFRPの場合には必要であった繊維方向や層構造を考慮する必要がない。光学装置を製造する際に、CFRPを使用する場合より、手間、時間およびコストの少なくとも1つを改善できる。接続方法においては、低膨張金属は、接着剤に比べ強度が高い溶接を採用できる。なお、低膨張金属の溶接は、ハニカムサンドイッチパネルが変形しないような方法で実施する。
 ハニカムサンドイッチパネルは、第1スキン材および第2スキン材は低膨張金属で製造し、コア材はCFRPで製造してもよい。第1スキン材および第2スキン材が「ゼロ熱膨張インバー合金」製で、コア材をCFRP製のハニカムサンドイッチパネルの温度変化に対する変形を、有限要素解析によりシミュレーションした。ハニカムサンドイッチパネルの形状は、第1スキン材および第2スキン材が縦(Y方向)と横(X方向)が100mm×100mmで厚さ1mmの板材とする。コア材は、セルサイズを約6mm、コア材膜厚さを約0.03mm、高さ(Z方向)を20mmとする。熱膨張係数は、「ゼロ熱膨張インバー合金」が5.0×10-8[1/K]とし、CFRPが-3.0×10-7[1/K]
とする。温度変化は、10[K]の上昇とする。
 シミュレーションの結果、第1スキン材、第2スキン材およびコア材を「ゼロ熱膨張インバー合金」で製造した場合には、X方向およびY方向の変位は5.0×10-5[mm]で、Z方向の変位は1.0×10-5[mm]になる。コア材をCFRP製にした場合は、X方向の変位は4.92×10-5[mm]で、Y方向の変位は5.16×10-5[mm]で、Z方向の変位は-8.28×10-5[mm]になる。コア材をCFRP製にした場合は波打つような変形をするので、最も変位が大きい箇所での変位量を計測した。このシミュレーション結果は、第1スキン材および第2スキン材を「ゼロ熱膨張インバー合金」で製造する場合には、コア材をCFRPで製造した場合でもスキン材に平行な面内での熱膨張係数は、コア材も「ゼロ熱膨張インバー合金」で製造した場合と同程度になることを示している。
 反射鏡を有する光学機器とは異なる光学機器を支持する場合にも、低膨張金属性のハニカムサンドイッチパネルを適用できる。
 反射鏡構造体50では、鏡支持部材2が反射鏡1の被支持部4を、3本の支持ビーム9により支持する。3本の支持ビーム9による3点支持になり、過拘束にすることなく、鏡支持部材2は反射鏡1を支持できる。被支持部4を3個の被支持面5で、光軸LXに関して点対称に支持する。支持ビーム9は中心面CSに関して面対称に、被支持部4を支持する。そのため、温度変化により反射鏡1が光軸LXを中心に点対称に膨脹または収縮することを、支持ビーム9または鏡支持部材2が妨げることがない。また、熱膨張係数に差があるため、支持ビーム9および鏡支持部材2が反射鏡1に対して膨脹または収縮する場合でも、3本の支持ビーム9が同様に膨張または収縮するので、反射鏡1に作用する応力は、3点で光軸LXに対して点対称になる。さらに、3点のそれぞれを通る中心面CSに関して面対称になるので、反射鏡1に作用する応力は、中心面CS上に存在する。3個の支持ビーム9により加えられる応力の大きさは同じになる。その結果、鏡支持部材2の膨脹または収縮により、反射鏡1が3本の支持ビーム9で支持される位置は、変化しない。鏡支持部材2の膨脹または収縮により、反射鏡1が膨脹または収縮する場合には、反射鏡1が光軸LXを中心に点対称に膨脹または収縮する。
 被支持部4は、反射鏡1の光軸LXに近い位置に存在する。そのため、温度変化による膨脹または収縮があっても、被支持部4を支持する支持ビーム9の膨脹量または収縮量を、被支持部4が反射鏡1の外縁近くで支持する場合よりも小さくできる。そのため、反射鏡1および支持ビーム9に加えられる膨脹または収縮による応力も小さくなる。支持ビーム9および鏡支持部材2を低膨張金属製とすることで、膨張量または収縮量をさらに小さくでき、応力も小さくできる。被支持部4に作用する応力が変化しても、応力は近接した3点に作用するので、応力は反射鏡1の反射面3の鏡面の精度に影響を与えない。
 このように、反射鏡構造体50では、反射鏡1と鏡支持部材2の間での熱膨張係数の相対的な差に対応でき、かつ3本の支持ビーム9という従来よりも簡素な構造で反射鏡1を支持できる。
 被支持面は、反射鏡1の光軸LXに対して平行でなくてもよい。被支持面は、平面でなくてもよい。被支持面に、突起や窪みを設けてもよい。被支持面が光軸LXの回りに120度の回転対称性を有して設けられていればよい。
 反射鏡構造体50を含む光学望遠鏡は、人工衛星に搭載されて使用することができる。光学望遠鏡を搭載した人工衛星を打ち上げる際には、加速度が光学望遠鏡などに加えられる。支持ビーム9は、加速度が加えられる状況でも反射鏡を支持できる。打ち上げ時には、反射鏡1は、移動する方向に光軸LXが平行になる姿勢である。つまり、打ち上げ時の加速度は、反射鏡1の光軸LXに平行な方向に発生する。支持ビーム9のビーム部9Bは、加速度が発生する方向に斜めであり、加速度に対する応力をビーム部9Bが発生することができる。
 以上のことは、他の実施の形態にもあてはまる。
 実施の形態2.
 実施の形態2に係る光学装置を搭載した人工衛星を、図18から図20を参照して説明する。図18は、実施の形態2に係る光学装置を搭載した人工衛星の正面図である。図19は、光学装置と人工衛星とが接続する部分の拡大図である。図20は、光学装置の内部構成を説明する概念的な断面図である。
 人工衛星30は、衛星本体31と光学望遠鏡32とを有する。光学望遠鏡32は、観測精度に影響する部分は熱膨張係数が低くなるように考慮して製造している。衛星本体31は、熱膨張に関して特別な考慮はしないで製造する。衛星本体31は、光学望遠鏡32を搭載するための接続パネル部33を有する。接続パネル部33は、平面の板状部材である。接続パネル部33は、アルミニウムなどの金属で製造されたハニカムサンドイッチパネルを使用して製造する。
 光学望遠鏡32は、衛星本体31から遠い側に円形の入射口34(図20に図示)を配置し、衛星本体31に近い側に反射鏡1を配置する構造である。ここで、光学望遠鏡32に関して、入射口34が存在する側を先端側と呼び、衛星本体1と接続する側を基部側と呼ぶ。光学望遠鏡32は、大きく分けて、台座部35と鏡筒部36とで構成される。台座部35は、基部側に存在して、接続パネル部33に接続する。台座部35には、反射鏡1が設置される。鏡筒部36は、観測光が通る光路42(図20に図示)を囲む部材である。鏡筒部36は、基部側で台座部35に接続する。
 台座部35は、中心に貫通穴を有する円盤状の形状である。貫通穴には、観測した画像を衛星本体31の内部に配置された記憶装置に送る配線や、光学望遠鏡32を制御するための信号を伝える信号線などが通る。台座部35は、低膨張金属製のハニカムサンドイッチパネルを使用して製造する。台座部35に、反射鏡1の支持部材を固定する。反射鏡1は、光軸が向く方向が変更可能に支持部材に支持される。
 鏡筒部36は、台座部35に垂直に接続する。鏡筒部36は、鏡筒基部37、鏡筒中間部38、機器保持部39および光路円筒部40を有する。鏡筒基部37の形状は、幅に対して高さが低い角筒である。鏡筒基部37の断面の形状は、正八角形である。鏡筒基部37は、台座部35に固定される。鏡筒基部37は、反射鏡1をその内部に収納する。鏡筒基部37は、先端側にフランジを有する。鏡筒基部37は、低膨張金属製のハニカムサンドイッチパネルを使用して製造する。
 鏡筒中間部38の基部側は、フランジを有する正八角形の角筒である。鏡筒中間部38の先端側は、角筒の上側の半分だけの形状である。図18に示すように、鏡筒中間部38の図における下側および先端側には、光路円筒部40が接続する。光路円筒部40の先端側は、円筒である。円筒の先端側の開口が、入射口34である。光路円筒部40の基部側は、上側に鏡筒中間部38が接続できるように、下半分だけの円筒状である。鏡筒中間部38と光路円筒部40とは、間に隙間が発生しないように接合する。鏡筒中間部38の上部の先端側には、機器保持部39が接続する。機器保持部39は、光路円筒部40の上側かつ鏡筒中間部38の先端側に存在する。機器保持部39は、光学機器を保持する。鏡筒中間部38および機器保持部39は、低膨張金属製のハニカムサンドイッチパネルを使用して製造する。光路円筒部40は、アルミニウムで製造する。
 鏡筒基部37、鏡筒中間部38、機器保持部39および光路円筒部40は、台座部35と接合することで、入射口34だけから観測光が入る閉空間を形成する。鏡筒の内部の閉空間に、光学機器が配置される。図20では、観測光を分光するスリット41だけを示す。カメラなどの光学機器も、鏡筒の内部に配置される。入射口34から鏡筒部の内部に入った光は、反射鏡1で反射される。反射鏡1で反射された光は、スリット41で分光される。分光された特定波長の光が図示しないカメラに入り、観測対象の画像をカメラが撮影する。
 光路42は、入射口34からスリット41までの光がたどる経路である。図20に、光路42を一点鎖線で示す。光学望遠鏡では、温度によらず光路42が変化しないことが望ましい。光学望遠鏡32では、台座部35、鏡筒基部37、鏡筒中間部38および機器保持部39を、1.0×10-7[1/K]よりも絶対値が小さい熱膨張係数を有する低膨張金属で製造したハニカムサンドイッチパネルまたは低膨張金属で製造した部材を使用して製造している。そのため、反射鏡1とスリット41の相対的な位置関係の変化は、温度変化がある場合でも小さく抑えることができる。その結果、光学望遠鏡32の焦点位置は、温度変化がある場合でもその変化が許容できる範囲内に抑えることができる。スリット41以外の光学機器の反射鏡1に対する位置も、温度変化がある場合でも変化が許容できる範囲内に抑えることができる。その結果、観測で得られる画像の変化が、温度変化がある場合でも小さくできる。熱膨張係数が大きい素材で、反射鏡1やスリット41などの光学機器を支持する構造部材を製造する場合は、温度変化に対して光学機器の間の距離が変化して、焦点位置がずれる場合がある。焦点位置がずれると、例えばカメラで撮影する画像が不鮮明なものになる。熱膨張係数が大きい素材を使用する場合には、焦点位置を変化させないために、大きなストロークを有する調整機構などが別途、必要となる場合がある。ハニカムサンドイッチパネルなので、軽量にでき、人工衛星30を宇宙空間に打ち上げる際に必要なエネルギー量を小さくできる。
 光学装置である光学望遠鏡32は、複数の光学機器と、光学機器を支持する構造部材を有する。反射鏡1とスリット41が光学機器の例である。台座部35は、鏡支持部材2を支持する構造部材である。鏡支持部材2は、反射鏡1を支持する構造部材である。鏡筒部36は、観測光が通る経路である光路を囲み台座部35と接続された、スリット41を支持する構造部材である。図には示していないが、鏡筒部36はスリット41の他にも光学機器を支持する。
 鏡支持部材2、台座部35および鏡筒部36を、低膨張金属で製造されたハニカムサンドイッチパネルを含んで構成している。反射鏡1とスリット41を結ぶ構造部材を通る経路は、低膨張金属で製造されたハニカムサンドイッチパネルあるいは低膨張金属で製造された構造部材だけである。そのため、反射鏡1とスリット41との間の相対的な位置関係の変化を、温度変化に対して許容できる範囲以内にできる。光学機器の間の経路に、低膨張金属以外の素材で製造された構造部材が存在してもよい。光学機器の間の構造部材を通る経路において、低膨張金属で製造されたハニカムサンドイッチパネルあるいは低膨張金属された構造部材の割合が決められた下限値以上であればよい。光学装置が3個以上の光学機器を有する場合は、複数の光学機器の中から2個の光学機器を選択するすべての組み合わせに関して、一方の光学機器から他方の光学機器を結ぶ構造部材を通る経路のそれぞれが、経路上の低膨張金属で製造されたハニカムサンドイッチパネルまたは低膨張金属で製造された部分の割合が決められた下限値以上であるようにすればよい。
 台座部35は低膨張金属で製造しており、接続パネル部33は低膨張金属よりも熱膨張係数が大きい金属で製造している。温度変化で発生する接続パネル部33と台座部35の膨脹量あるいは収縮量の差を吸収する構造について説明する。台座部35は、その中心に対して45度の回転対称性を持つ支持機構により接続パネル33に接続する。外形が正八角柱である台座部35の各外側面の先端側中央には、直方体状の突起43を設ける。突起43は、ハニカムサンドイッチパネルで構成される台座部35の一方の面のスキン材を突出させた部分および台座部35の側面に、固定される。接続パネル部33にも、角柱状の突起44を設ける。1個の突起43は、その両側の突起44とそれぞれ1本の円柱状のロッド45で接続する。1個の突起43に接続する2本のロッド45により、突起43はバイポッド構造(二脚)で支持される。ロッド45の一端が固定される突起43の面は、台座部35の外側面に垂直な面である。ロッド45の他端が、突起44の側面に固定される。ロッド45の他端が固定される突起44の側面は、ロッド45が延在する光軸に平行な平面と直交する。突起44は、光軸に平行な方向から見ると台形の外形を有する。ロッド45の他端を、突起44の上面(突起43が存在する側の面)に固定してもよい。台座部35と接続パネル部33とは、ロッド45でだけ接続する。台座部35と接続パネル部33の間には、空間が存在する。
 8個の突起43のそれぞれは、2本のロッド45により隣接する突起44と接続する。ロッド45は、全部で16本になる。16本のロッド45、8個の突起43および8個の突起44は、衛星本体31に対する光学望遠鏡32の位置が温度変化によって変化することを許容して光学望遠鏡32を衛星本体31に接続する光学機器接続部を構成する。ロッド45による方法以外で、衛星本体31に対する光学望遠鏡32の位置が温度変化によって変化することを許容して光学望遠鏡32を衛星本体31に接続してもよい。
 ロッド45の両端部には、直径が細くなる縮径部46を設けている。縮径部46で挟まれるロッド45の部分を本体部と呼ぶ。両側の縮径部46は、同じ形状である。縮径部46では、ロッド45の軸方向に垂直な断面は同心な円形のまま、端部に向かって直径だけが小さくなる。縮径部46は、直径が最小となる点を過ぎると、ロッド45の端部に近づくにつれて直径が大きくなる。縮径部46を設けているので、ロッド45と突起43の接続角度、ロッド45と突起44との接続角度が変化できる。つまり、ロッド45により、ロッドの接続角度が変化可能であるトラス構造を構成できる。16本のロッド45は、トラスを構成する。ロッドの数は、16本より多くても少なくてもよい。鏡筒部の断面は八角形でなくてもよい。
 温度変化がある場合でも台座部35と接続パネル33との間に空間ができるように、ロッド45の長さは適切な長さにする。台座部35、接続パネル33、突起43および突起44には、温度変化に対して変形しないように、必要十分な強度を持たせる。ロッド45の縮径部46は、温度変化があると本体部に対して微小に曲がる。曲がっても破損しないように、ロッド45の材質や形状は必要十分な強度が得られるように製造する。
 宇宙空間で太陽光が照射されるなどして熱が与えられて温度が上昇すると、接続パネル33が台座部35よりも大きく膨張する。ロッド45の縮径部46で微小に曲がり、ロッド45の本体部の接続パネル33に対する角度が小さくなる。温度が低下すると、接続パネル33が台座部35よりも大きく収縮する。ロッド45の縮径部46で温度が上昇する場合と反対方向に微小に曲がり、ロッド45の本体部の接続パネル33に対する角度が大きくなる。このようにして、ロッド45が、接続パネル部33と台座部35との熱膨張率の差による膨脹量あるいは収縮量の差を吸収する。なお、ロッド45が、接続パネル33と同じか少し小さい熱膨張係数を有する材質で製造されている場合は、ロッド45自体が伸縮するので、ロッド45の縮径部46での曲がり角度の変化を、ロッド45が低膨張金属製である場合よりも小さくできる。
 光学機器を支持する構造部材を、低膨張金属で製造したハニカムサンドイッチパネルまたは低膨張金属を加工した部材で製造することで、CFRPを使用する場合よりも温度変化に対する光学機器間の相対位置の変化量を小さくできる。光学望遠鏡などの光学装置において、温度変化があっても観測性能の変化が小さくできる。また、構造部材の熱膨張係数の絶対値が大きい場合に光学装置で必要である、温度変化による光学機器間の相対位置の変化を観測精度に影響を与えないようにする機構、例えば焦点位置調整機構などを、光学装置が備えなくてもよくなる。
 各実施の形態の自由な組み合わせ、あるいは各実施の形態の変形や省略が可能である。
50 反射鏡構造体(光学装置)

 1 反射鏡(光学機器)
 2 鏡支持部材(構造部材)
 3 反射面
 4 被支持部
 5 被支持面
 6 支持基板部(本体部)
 7 軸受部
 8 支持開口部(鏡接続部)
 9 支持ビーム(支持部材、鏡接続部)
9A 鏡支持部(鏡接続部)
9B ビーム部
9C フランジ部
9D リンク部
10 ビーム固定部(鏡接続部)
11 軸保持穴
12 Y軸部材
13 円筒面
14 X軸回転部材
15 X軸部材
16 鏡基底部材

20 ハニカムサンドイッチパネル
21 第1スキン材
22 コア材
23 第2スキン材

30 人工衛星
31 衛星本体
32 光学望遠鏡(光学装置)
33 接続パネル部
34 入射口
35 台座部(構造部材)
36 鏡筒部(構造部材)
37 鏡筒基部
38 鏡筒中間部
39 機器保持部
40 光路円筒部
41 スリット(光学機器)
42 光路
43 突起(光学機器接続部)
44 突起(光学機器接続部)
45 ロッド(光学機器接続部)
46 縮径部

LX 光軸
CS 中心面

Claims (10)

  1.  熱膨張係数の絶対値が炭素繊維強化プラスチックよりも小さい金属である低膨張金属で製造された板材である第1スキン材と、
     前記低膨張金属で製造された、前記第1スキン材と対向するように配置された板材である第2スキン材と、
     断面が六角形である複数の筒を隣接して形成して前記第1スキン材および前記第2スキン材に接合した、炭素繊維強化プラスチックまたは前記低膨張金属で製造されたコア材とを備えたハニカムサンドイッチパネル。
  2.  前記低膨張金属の熱膨張係数の絶対値が10のマイナス7乗よりも小さい、請求項1に記載のハニカムサンドイッチパネル。
  3.  前記コア材が前記低膨張金属で製造された、請求項1または請求項2に記載のハニカムサンドイッチパネル。
  4.  前記第1スキン材と前記第2スキン材とが互いに平行に、前記コア材が前記第1スキン材および前記第2スキン材に垂直に接合するように配置され、前記コア材が正六角形である複数の筒を隣接して形成する、請求項1から請求項3の何れか1項に記載のハニカムサンドイッチパネル。
  5.  光を反射する反射鏡と、
     前記反射鏡を支持する、請求項1から請求項4の何れか1項に記載のハニカムサンドイッチパネルを含んで構成された鏡支持部材とを備えた光学装置。
  6.  前記反射鏡は、光を反射する反射面の反対側の面である背面に設けられて前記鏡支持部材に支持される被支持部を有し、
     前記鏡支持部材は、前記反射鏡の背面側に存在する本体部、前記被支持部の前記本体部に対する位置を固定して前記被支持部を前記本体部に接続する鏡接続部を有する、請求項5に記載の光学装置。
  7.  複数の光学機器と、
     前記光学機器を支持する、請求項1から請求項4の何れか1項に記載のハニカムサンドイッチパネルを含んで構成された構造部材とを備え、
     複数の前記光学機器の中から2個の前記光学機器を選択するすべての組み合わせに関して、一方の前記光学機器から他方の前記光学機器を結ぶ前記構造部材を通る経路のそれぞれは、前記経路上の前記ハニカムサンドイッチパネルまたは前記低膨張金属で製造された部分の割合が決められた下限値以上である、光学装置。
  8.  観測に使用する光である観測光を反射する前記光学機器である反射鏡と、
     前記反射鏡を支持する前記構造部材である鏡支持部材と、
     前記鏡支持部材を支持する前記構造部材である台座部と
     前記観測光が通る経路である光路を囲み前記台座部と接続された、前記光学機器を支持する前記構造部材である鏡筒部とを備えた、請求項7に記載の光学装置。
  9.  衛星本体と、
     請求項5から請求項8の何れか1項に記載の光学装置と、
     前記衛星本体に対する前記光学装置の位置が温度変化によって変化することを許容して前記光学装置を前記衛星本体に接続する光学機器接続部とを備えた人工衛星。
  10.  前記光学機器接続部が、トラスを構成する複数本のロッドを有する、請求項9に記載の人工衛星。
PCT/JP2019/048784 2018-12-13 2019-12-12 ハニカムサンドイッチパネル、光学装置および人工衛星 WO2020122197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19896831.5A EP3895886A4 (en) 2018-12-13 2019-12-12 HONEYCOMB SANDWICH PANEL, OPTICAL DEVICE AND ARTIFICIAL SATELLITE
JP2020530705A JP6747635B1 (ja) 2018-12-13 2019-12-12 ハニカムサンドイッチパネル、光学装置および人工衛星
CN201980079724.0A CN113165307A (zh) 2018-12-13 2019-12-12 蜂窝夹层面板、光学装置和人造卫星
US17/311,363 US11506865B2 (en) 2018-12-13 2019-12-12 Honeycomb sandwich panel, optical device, and artificial satellite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018233128 2018-12-13
JP2018-233128 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122197A1 true WO2020122197A1 (ja) 2020-06-18

Family

ID=71076483

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/048783 WO2020122196A1 (ja) 2018-12-13 2019-12-12 光学装置
PCT/JP2019/048784 WO2020122197A1 (ja) 2018-12-13 2019-12-12 ハニカムサンドイッチパネル、光学装置および人工衛星

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048783 WO2020122196A1 (ja) 2018-12-13 2019-12-12 光学装置

Country Status (6)

Country Link
US (2) US11391913B2 (ja)
EP (1) EP3895886A4 (ja)
JP (2) JP6747635B1 (ja)
CN (1) CN113165307A (ja)
DE (1) DE112019005629T5 (ja)
WO (2) WO2020122196A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022163804A1 (ja) * 2021-01-29 2022-08-04

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6747635B1 (ja) * 2018-12-13 2020-08-26 三菱電機株式会社 ハニカムサンドイッチパネル、光学装置および人工衛星
FR3117458B1 (fr) * 2020-12-16 2023-04-21 Thales Sa Dispositif de protection d’un instrument optique d’un satellite
CN113753271B (zh) * 2021-10-22 2023-02-24 中国科学院长春光学精密机械与物理研究所 一种空间太阳望远镜前置滤光镜支撑装置
CN114200634B (zh) * 2021-11-29 2024-03-15 北京空间机电研究所 一种空间相机指向反射镜组件
CN114060466B (zh) * 2021-12-02 2022-07-15 北京科技大学 一种轻质隔振金属复合飞轮支架及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471939U (ja) * 1977-10-28 1979-05-22
JPH1082797A (ja) * 1996-09-06 1998-03-31 Nippon Denshi Zairyo Kk プローブカード及びこれに用いられる補強材
JP2005028966A (ja) 2003-07-10 2005-02-03 Mitsubishi Electric Corp サンドイッチパネル及び反射鏡
WO2006021385A1 (en) * 2004-08-21 2006-03-02 Universite Catholique De Louvain Machinable metallic composites
JP3902429B2 (ja) 2001-09-12 2007-04-04 三菱電機株式会社 衛星搭載光学機器用ハニカムサンドイッチパネル
JP2012185278A (ja) 2011-03-04 2012-09-27 Mitsubishi Electric Corp 鏡支持機構
JP5574835B2 (ja) 2010-06-14 2014-08-20 三菱電機株式会社 ハニカムコアサンドイッチ構造体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841842A (en) * 1972-12-11 1974-10-15 Corning Glass Works Catalytic converter
DE3940924A1 (de) * 1989-12-12 1991-06-13 Zeiss Carl Fa Spiegelteleskop
RU1775316C (ru) * 1990-06-18 1992-11-15 Специальное Конструкторско-Технологическое Бюро "Луч" Способ изготовлени изделий из углепластика
JP2590713B2 (ja) * 1993-11-15 1997-03-12 日本電気株式会社 宇宙航行体搭載用反射鏡装置及びこの反射鏡装置の歪補正装置
JPH1114912A (ja) 1997-06-25 1999-01-22 Toshiba Corp 衛星搭載用望遠鏡装置
FR2773890B1 (fr) 1998-01-22 2001-11-23 Aerospatiale Ensemble integre et compact de montage isostatique et de correction de position d'un organe, tel qu'un miroir, d'un telescope spatial
JP2000121950A (ja) * 1998-10-14 2000-04-28 Mitsubishi Electric Corp 光学機器
DE19933248A1 (de) 1999-07-15 2001-02-15 Zeiss Carl Fa Athermalisiertes Teleskop
JP2003326622A (ja) * 2002-05-15 2003-11-19 Mitsubishi Electric Corp 高熱伝導ハニカムサンドイッチパネルおよびこれを備えた人工衛星用機器搭載パネル
JP2005024615A (ja) * 2003-06-30 2005-01-27 Canon Inc 曲率を有する反射部材とそれを用いた光学系
US8460777B2 (en) * 2008-10-07 2013-06-11 Alliant Techsystems Inc. Multifunctional radiation-hardened laminate
CN101975329B (zh) * 2010-10-27 2012-07-04 中国科学院西安光学精密机械研究所 一种带有铝蜂窝夹层和碳纤维蒙皮的支撑装置
JP6059420B2 (ja) 2011-03-25 2017-01-11 真人 佐々木 ミラーの製造方法
CN102162891A (zh) * 2011-04-20 2011-08-24 北京空间机电研究所 一种空间光学遥感器的次镜支撑结构
JP5836885B2 (ja) 2011-08-05 2015-12-24 三菱電機株式会社 先進グリッド構造体の製造方法、先進グリッド構造体、および先進グリッド構造体を適用した宇宙望遠鏡
DE102012213671A1 (de) 2012-08-02 2014-02-06 Carl Zeiss Smt Gmbh Spiegelanordnung für eine EUV-Lithographieanlage und Verfahren zur Herstellung derselben
US9958638B2 (en) * 2013-09-13 2018-05-01 Raytheon Company Optimal kinematic mount for large mirrors
DE102014202737A1 (de) * 2014-02-14 2015-08-20 Carl Zeiss Smt Gmbh Lagerelement und system zum lagern eines optischen elements
CN107531002B (zh) * 2015-05-08 2019-10-01 三菱瓦斯化学株式会社 蜂窝结构体及夹层结构体以及用于制造它们的蜂窝用基材
FR3036307B1 (fr) * 2015-05-22 2017-06-02 Halcyon Procede ameliore de fabrication d'une piece metallique du type sandwich presentant une forme non-developpable
CN105128412B (zh) * 2015-08-14 2017-12-26 大连理工大学 具有网格增强蜂窝芯体的夹芯结构
US9823459B2 (en) * 2015-09-29 2017-11-21 Raytheon Company High-stiffness structure for larger aperture telescope
CN106273793A (zh) * 2016-08-09 2017-01-04 吕大明 正交卡芯金属蜂窝板
WO2019116799A1 (ja) 2017-12-14 2019-06-20 三菱電機株式会社 鏡支持体及び鏡支持機構
CN108461925A (zh) * 2018-03-15 2018-08-28 浙江大学 一种单蒙皮格栅加强背筋高精度反射器
JP6747635B1 (ja) * 2018-12-13 2020-08-26 三菱電機株式会社 ハニカムサンドイッチパネル、光学装置および人工衛星

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471939U (ja) * 1977-10-28 1979-05-22
JPH1082797A (ja) * 1996-09-06 1998-03-31 Nippon Denshi Zairyo Kk プローブカード及びこれに用いられる補強材
JP3902429B2 (ja) 2001-09-12 2007-04-04 三菱電機株式会社 衛星搭載光学機器用ハニカムサンドイッチパネル
JP2005028966A (ja) 2003-07-10 2005-02-03 Mitsubishi Electric Corp サンドイッチパネル及び反射鏡
WO2006021385A1 (en) * 2004-08-21 2006-03-02 Universite Catholique De Louvain Machinable metallic composites
JP5574835B2 (ja) 2010-06-14 2014-08-20 三菱電機株式会社 ハニカムコアサンドイッチ構造体
JP2012185278A (ja) 2011-03-04 2012-09-27 Mitsubishi Electric Corp 鏡支持機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3895886A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022163804A1 (ja) * 2021-01-29 2022-08-04
JP7292541B2 (ja) 2021-01-29 2023-06-16 三菱電機株式会社 鏡支持機構および光学装置

Also Published As

Publication number Publication date
EP3895886A1 (en) 2021-10-20
JPWO2020122197A1 (ja) 2021-02-15
JP6747635B1 (ja) 2020-08-26
US20220026667A1 (en) 2022-01-27
WO2020122196A1 (ja) 2020-06-18
US11506865B2 (en) 2022-11-22
US20220026668A1 (en) 2022-01-27
DE112019005629T5 (de) 2021-07-29
US11391913B2 (en) 2022-07-19
JPWO2020122196A1 (ja) 2021-02-15
EP3895886A4 (en) 2022-01-19
CN113165307A (zh) 2021-07-23
JP6791461B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6747635B1 (ja) ハニカムサンドイッチパネル、光学装置および人工衛星
US11048062B2 (en) Methods and apparatus for deployable sparse-aperture telescopes
Woody et al. The CCAT 25m diameter submillimeter-wave telescope
Aglietti et al. Deployable optics for CubeSats
Ramsey et al. Optics for the imaging x-ray polarimetry explorer
Adams et al. Prototype schwarzschild-couder telescope for the cherenkov telescope array: Commissioning the optical system
Guo et al. Status and trends of the large aperture space optical remote sensor
JP7292541B2 (ja) 鏡支持機構および光学装置
JP7102802B2 (ja) 光学系支持機構
Cameron et al. Generation-X: mission and technology studies for an x-ray observatory vision mission
Asmolova et al. Optical analysis of a membrane photon sieve space telescope
US8455804B2 (en) Apparatus for adjusting optical mirrors
Boone et al. Development and testing of an actively controlled large-aperture Cassegrain Telescope for spacecraft deployment
MacEwen Separation of functions as an approach to development of large space telescope mirrors
Wilcox et al. Actuation for deformable thin-shelled composite mirrors
Baier et al. Large deployable telescopes—also for μm-wavelengths?
Marchiori et al. Scaling ALMA antenna to 50m and beyond: challenges and solutions
McClelland et al. Design Concept for the International X-Ray Observatory Flight Mirror Assembly
Zuo et al. Spontaneously deployable structure for space diffractive telescope
Pleimann Lightweight meter class optics for deployable optical arrays
Lehman et al. Precision segmented reflectors for space applications
JP2019157955A (ja) 保持機構、光学装置、人工衛星および宇宙航行体
Feinberg et al. Apertures for Segmented Coronagraph Design and Analysis (SCDA)
US7752956B2 (en) Multi-functional support structure
McIntosh Jr Classification and design of large laser mirrors

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530705

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019896831

Country of ref document: EP

Effective date: 20210713