WO2020121582A1 - 飛翔体 - Google Patents

飛翔体 Download PDF

Info

Publication number
WO2020121582A1
WO2020121582A1 PCT/JP2019/028386 JP2019028386W WO2020121582A1 WO 2020121582 A1 WO2020121582 A1 WO 2020121582A1 JP 2019028386 W JP2019028386 W JP 2019028386W WO 2020121582 A1 WO2020121582 A1 WO 2020121582A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
flying
object according
flying object
propulsion
Prior art date
Application number
PCT/JP2019/028386
Other languages
English (en)
French (fr)
Inventor
嶋 英志
誠司 堤
圭一郎 藤本
Original Assignee
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人宇宙航空研究開発機構 filed Critical 国立研究開発法人宇宙航空研究開発機構
Priority to CN201980082271.7A priority Critical patent/CN113165737B/zh
Priority to JP2020559698A priority patent/JP7181643B2/ja
Priority to US17/413,896 priority patent/US11794891B2/en
Publication of WO2020121582A1 publication Critical patent/WO2020121582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • B64C39/066Aircraft not otherwise provided for having disc- or ring-shaped wings having channel wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/02Tailplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • B64U30/14Variable or detachable wings, e.g. wings with adjustable sweep detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C2009/005Ailerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2211/00Modular constructions of airplanes or helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/20Vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/40Empennages, e.g. V-tails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to a flying object equipped with a multi-copter mechanism.
  • a flying object equipped with a rotary wing machine called a drone is used (see Patent Document 1).
  • a flying body includes a multicopter mechanism having a plurality of rotary blades.
  • the multi-copter mechanism enables vertical takeoff and landing. For this reason, the flying body equipped with a rotary wing machine is widely used for aerial photography, investigation of building equipment, and the like.
  • an object of the present invention is to provide a flying object having a multi-copter mechanism, which has both functions of vertical takeoff and landing and horizontal cruise, and has excellent cruise performance.
  • a flying body includes a propulsion section and a body section.
  • the propulsion unit has a rotating shaft extending in the first direction and a thrust generating mechanism provided at both ends of the rotating shaft, and generates a propulsive force for flying in the air.
  • the body portion is hung on the propulsion portion below the rotation shaft, has a center of gravity at a position below the rotation shaft, is configured to be rotatable around the rotation shaft, and is capable of accommodating luggage.
  • a flying vehicle having both functions of vertical takeoff and landing and horizontal cruise and having excellent cruise performance is provided.
  • FIG. 1A is a schematic top view of the flying object according to the present embodiment.
  • FIG. 2B is a schematic side view of the flying object according to the present embodiment.
  • FIG. 1A is a schematic top view of the flying object according to the present embodiment.
  • FIG. 2B is a schematic side view of the flying object according to the present embodiment.
  • FIG. 8 is another schematic side view of the flying object according to the present embodiment. It is a typical side view showing an example of operation in a flying object of this embodiment. It is a typical side view showing an example of operation in a flying object of this embodiment.
  • FIG. 6A is a schematic top view of a flying object according to Modification Example 1.
  • FIG. 2B is a schematic side view of the flying object according to the first modification.
  • FIG. 11 is a schematic top view of a flying object according to Modification Example 2.
  • FIG. 10A is a schematic top view of a flying object according to Modification 3.
  • FIG. 6B is a schematic side view of a flying object according to Modification 3.
  • FIG. 10A is a schematic top view of a flying object according to Modification 4.
  • FIG. 6B is a schematic side view of a flying object according to Modification 4.
  • FIG. 10A is a schematic top view of a flying object according to Modification 5.
  • FIG. 6B is a schematic side view of a flying object according to Modification 5.
  • FIG. 10A is a schematic top view of a flying object according to Modification 6.
  • FIG. 10B is a schematic side view of a flying object according to Modification 6.
  • FIG. 10A is a schematic top view of a flying object according to Modification 6.
  • FIG. 9A is a schematic top view of a flying object according to Modification 7.
  • FIG. 6B is a schematic side view of a flying object according to Modification 7.
  • FIG. 10A is a schematic top view of a flying object according to Modification 8.
  • FIG. 10B is a schematic side view of a flying object according to Modification 8.
  • FIG. 14C is a schematic diagram for explaining an example of the operation of the flying object according to Modification 8.
  • FIG. 9A is a schematic top view of a flying object according to Modification 9.
  • FIG. 10B is a schematic side view of a flying object according to Modification 9.
  • FIG. 16 is a schematic side view showing an example of an operation in a flying object according to Modification 9.
  • FIG. 1A is a schematic top view of the flying object according to the present embodiment.
  • FIG. 1B is a schematic side view of the flying object according to the present embodiment.
  • FIG. 2A is a schematic top view of the flying object according to the present embodiment.
  • FIG. 2B is a schematic side view of the flying object according to the present embodiment.
  • FIGS. 1A and 1B show a state in which the rotating surface of the propeller included in the propulsion unit 10 is parallel to the ground in the flying body 1A that is stationary on the ground.
  • FIGS. 1A and 1B show a state in which the rotating surface of the propeller included in the propulsion unit 10 is parallel to the ground in the flying body 1A that is stationary on the ground.
  • FIGS. 1A and 1B show a state in which the rotating surface of the propeller included in the propulsion unit 10 is parallel to the ground in the flying body 1A that is stationary on the ground.
  • FIGS. 1A and 1B show a state in which the rotating surface of the propeller included in the propulsion unit 10 is parallel to the ground in the flying body 1A that is stationary on the ground.
  • b show a state in which the plane of rotation is vertical to the ground in the flying vehicle 1A that travels horizontally.
  • the flying vehicle 1A is a multi-copter type flying vehicle having both functions of vertical takeoff and landing and horizontal cruise.
  • the flying vehicle 1A can store luggage in the body portion 20, and may be an unmanned flying vehicle or a manned flying vehicle.
  • the flying vehicle 1A includes a propulsion unit 10 and a body unit 20.
  • the propulsion unit 10 will be described.
  • the propulsion unit 10 generates propulsive force for flying in the air in the flying vehicle 1A.
  • the propulsion unit 10 has a function of suspending the body unit 20.
  • the propulsion unit 10 includes a base body 100, a rotating shaft 110, and a thrust generating mechanism 120.
  • the base body 100 is a block-shaped support body that supports the rotating shaft 110.
  • the base body 100 contacts and is fixed to the body portion 20.
  • the fixing means include an opportunistic means such as bolting and clamping, a means utilizing magnetic force and electrostatic force, and the like.
  • the rotary shaft 110 penetrates the base body 100.
  • the rotating shaft 110 extends in the X-axis direction (first direction).
  • the rotary shaft 110 is configured to be freely rotatable with respect to the base body 100.
  • a sliding member such as a bearing is provided between the rotary shaft 110 and the base 100, or a sliding layer is coated on a contact surface of the rotary shaft 110 in contact with the base 100.
  • Lubricant oil is applied between the rotating shaft 110 and the base body 100 as needed.
  • the propulsion unit 10 may be provided with a control function (for example, a hydraulic brake) that controls the movement of the rotating shaft 110 that is freely rotatable. That is, the rotation shaft 110 freely rotates in the base body 100 when released from this control function.
  • the thrust generating mechanism 120 is, for example, a propeller mechanism. Hereinafter, the thrust generating mechanism 120 will be described as the "propeller mechanism 120".
  • the propeller mechanism 120 is provided at both ends 110e of the rotary shaft 110.
  • the propeller mechanism 120 is configured to be a point target with the center 111 of the rotating shaft 110 as a reference.
  • the propeller mechanism 120 has an arm portion 125 (first arm portion), a propeller portion 121 (first propeller portion), and a propeller portion 122 (second propeller portion) on one side of the body portion 20.
  • the propeller mechanism 120 has an arm portion 126 (second arm portion), a propeller portion 123 (third propeller portion), and a propeller portion 124 (fourth propeller portion) on the other side of the body portion 20.
  • the propeller section 121 and the propeller section 122 are attached to one end 110e of the rotary shaft 110 via an arm section 125.
  • the propeller portion 123 and the propeller portion 124 are attached to the other end 110e of the rotary shaft 110 via an arm portion 126.
  • the propeller portion 121 and the propeller portion 122 are arranged in parallel, and the propeller portion 123 and the propeller portion 124 are arranged in parallel.
  • the arm portion 125 has a plate-shaped main trunk portion 125t and a branch portion 125b branched from the main trunk portion 125t.
  • Each of the propeller portion 121 and the propeller portion 122 is fixed to the branch portion 125b.
  • the arm portion 126 has a plate-shaped main trunk portion 126t and a branch portion 126b branched from the main trunk portion 126t.
  • Each of the propeller portion 123 and the propeller portion 124 is fixed to the branch portion 126b.
  • the respective rotation surfaces of the propeller section 121, the propeller section 122, the propeller section 123, and the propeller section 124 are in the same plane.
  • the propeller shafts of the propeller portion 121, the propeller portion 122, the propeller portion 123, and the propeller portion 124 extend in the same direction.
  • Each of the propeller part 121, the propeller part 122, the propeller part 123, and the propeller part 124 is independently controlled, and each emits the same propulsive force or each emits different propulsive force.
  • Each of the propeller section 121, the propeller section 122, the propeller section 123, and the propeller section 124 is a ducted fan.
  • each of the propeller part 121, the propeller part 122, the propeller part 123, and the propeller part 124 has a propeller 120p and a cylindrical duct 120d surrounding the propeller 120p.
  • the central axis of the propeller 120p coincides with the central axis of the duct 120d. Further, since the propeller 120p is surrounded by the duct 120d, the muffling action of the duct 120d works.
  • the propeller mechanism Since the propeller portion 121 and the propeller portion 122 are pivotally supported by the rotating shaft 110 via the arm portion 125, and the propeller portion 123 and the propeller portion 124 are pivotally supported by the rotating shaft 110 via the arm portion 126, the propeller mechanism.
  • the rotation shaft 120 and the rotation shaft 110 can freely rotate about the rotation shaft 110 as a central axis.
  • the rotation surface of the propeller mechanism 120 becomes substantially parallel to the ground (FIGS. 1(a) and 1(b)). Further, when the flying vehicle 1A travels horizontally, the rotation surface of the propeller mechanism 120 becomes substantially vertical to the ground (FIGS. 2A and 2B).
  • the central axis of the duct 120d becomes substantially parallel to the ground.
  • the duct 120d functions as a wing portion.
  • the main surface of the main trunk portion 125t of the arm portion 125 is substantially flush with the main surface of the base body 100, and the main surface of the main trunk portion 126t of the arm portion 126 is substantially flush with the main surface surface of the base body 100.
  • a part of the arm portions 125 and 126 functions as a wing portion.
  • auxiliary blade 120a (third auxiliary blade) is provided behind the duct 120d included in each of the propeller portion 121, the propeller portion 122, the propeller portion 123, and the propeller portion 124.
  • the propulsion unit 10 includes a function of generating attitude control force, a sensor required for navigation/guidance/control, a computer, and the like. From the ground, signals required for the attitude control function and navigation/guidance/control are transmitted to the propulsion unit 10.
  • the body section 20 is suspended from the propulsion section 10 below the rotary shaft 110.
  • the body portion 20 has a center of gravity 201 at a position below the rotation shaft 110.
  • the center of gravity 201 is located directly below the center 111 of the rotating shaft 110. Since the body part 20 is suspended from the propulsion part 10 and the upper part of the body part 20 is fixed to the base body 100, the body part 20 is also configured to be freely rotatable around the rotation axis 110.
  • the body portion 20 has a shape in which the X-axis direction is the lateral direction and the Y-axis direction (second direction) orthogonal to the X-axis direction is the longitudinal direction.
  • the outer shape of the body portion 20 is designed so as to have an optimum air resistance against an oncoming air flow.
  • the outer shape of the body portion 20 is a streamline type having a longitudinal direction in the Y-axis direction, a torpedo type, or the like.
  • the center of gravity 201 of the body portion 20 is located directly below the center 111 of the rotating shaft 110, even if the flying body 1A rises vertically from the ground, the body portion 20 is suspended from the propulsion portion 10 while being suspended. Keep horizontal.
  • the direction in which the vehicle travels horizontally is the front of the flying object, and the opposite direction is backward.
  • the body portion 20 is provided with a vertical tail 210 and horizontal tails 211 and 212 behind the propulsion unit 10.
  • Each of the horizontal stabilizers 211 and 212 is provided with an auxiliary wing 213 (first auxiliary wing) behind them.
  • the body portion 20 has a power source 220 such as a battery for supplying electric power to the propeller mechanism.
  • the power supply 220 is installed in the body portion 20 so that it can automatically slide in any of the X-axis direction, the Y-axis direction, and the Z-axis direction, for example.
  • the power supply 220 is slid in any of the X axis direction, the Y axis direction, and the Z axis direction. To do.
  • the position of the center of gravity 201 can be returned to the original position.
  • a skid 230 for wearing clothes is attached to the lower part of the body part 20 so that the body part 20 does not directly contact the ground.
  • the skids 230 for example, are arranged in a pair in the X-axis direction and extend parallel to the Y-axis direction.
  • the skid 230 may be of a type that can be retracted into the body portion 20.
  • FIG. 3 is another schematic side view of the flying object according to the present embodiment.
  • the body portion 20 is configured to be detachable from the propulsion portion 10.
  • the base body 100 of the propulsion unit 10 contacts the mounting portion 202 provided on the upper portion of the body portion 20, and then the base body 100 is fixed to the mounting portion 202. Further, the base body 100 can be detached from the mounting portion 202.
  • the attachment/detachment may be performed manually or automatically by a signal from the outside.
  • the propeller mechanism 120 of the propulsion unit 10 changes direction to a vertical posture or a horizontal posture, and the propulsive force generated by the propulsion unit 10 causes the body unit 20 to take off and land in a vertical posture, and the body unit 20 is in a horizontal posture and is horizontal. Go around.
  • the vertical posture of the thrust generating mechanism represented by the propeller mechanism 120 means that the axial direction of the thrust shaft of the thrust generating mechanism (direction in which the thrust acts) is parallel to the vertical direction.
  • the horizontal posture is a state in which the axial direction of the thrust shaft is orthogonal to the vertical direction.
  • the vertical posture of the propeller mechanism 120 is a state in which the propeller surface is vertical to the vertical direction
  • the horizontal posture is a state in which the propeller surface is parallel to the vertical direction. Even if the propeller mechanism 120 takes a vertical posture or a horizontal posture, the body portion 20 of the flying vehicle 1A maintains the horizontal posture.
  • 4A to 5B are schematic side views showing an example of the operation of the flying object of the present embodiment.
  • FIG. 4A shows a state in which the flying vehicle 1A vertically takes off from the ground.
  • the longitudinal direction (Y-axis direction) of the body portion 20 and the rotation surface of the propeller mechanism 120 are substantially parallel to each other.
  • the propulsive force acting perpendicularly to the ground by the propulsion unit 10 exceeds the gravity of the flying vehicle 1A, the flying vehicle 1A takes off from the ground.
  • the propulsion force generated by each of the propeller section 121, the propeller section 122, the propeller section 123, and the propeller section 124 is set to be substantially the same, for example. Further, even after takeoff, the body portion 20 freely rotates around the rotation axis 110, and the center of gravity 201 of the body portion 20 is located below the rotation axis 110. Therefore, the body portion 20 is leveled by gravity. Stay in the state.
  • the center of gravity 201 of the body portion 20 overlaps the center 111 of the rotating shaft 110. In this case, once the body portion 20 is tilted about the rotating shaft 110 for some reason, the moment forces between the front and rear of the body portion 20 centering on the rotating shaft 110 are balanced and the body portion 20 is Can't return to level. In the flying body 1A, the center of gravity 201 of the body portion 20 is located below the rotation axis 110, so that the body portion 20 always maintains a horizontal state due to gravity.
  • propulsion force B generated by each of the propeller unit 122 and the propeller unit 124 is increased (propulsion force B) greater than the propulsion force (propulsion force A) generated by each of the propeller unit 121 and the propeller unit 123 (propulsion force).
  • Force A ⁇ Propulsion B).
  • a rotation moment about the rotating shaft 110 acts on the propeller mechanism 120, and the propeller mechanism 120 starts free rotation about the rotating shaft 110 together with the rotating shaft 110.
  • the propeller mechanism 120 rotates counterclockwise about the rotation shaft 110 and starts to change its orientation. This state is shown in FIG.
  • the body portion 20 freely rotates around the rotating shaft 110, and the center of gravity 201 of the body portion 20 is located below the rotating shaft 110, so that the body portion 20 maintains a horizontal state due to gravity. To do.
  • the propelling force generated by the propeller mechanism 120 acts diagonally on the ground due to the change in the direction of the propeller mechanism 120, the flying vehicle 1A starts moving forward while rising.
  • the propulsion force generated by the propulsion unit 10 works in the horizontal direction with respect to the ground, and the flying vehicle 1A makes a horizontal cruise. Also at this time, the body portion 20 freely rotates around the rotating shaft 110, and the center of gravity 201 of the body portion 20 is located below the rotating shaft 110, so that the body portion 20 maintains a horizontal state due to gravity. To do.
  • Propulsive force B Propulsive force
  • This state is shown in FIG.
  • the propulsion force is inferior to the gravity of the flying vehicle 1A. Lower the force and land the flying vehicle 1A on the ground.
  • the propeller mechanism 120 is turned so that the propulsive force is directed toward the front of the body portion 20. Good.
  • the duct 120d or the arm portions 125 and 126 exert a lift force on the flying vehicle 1A.
  • the propeller part 121, the propeller part 122, the propeller part 123, and the propeller part 124 are provided with the auxiliary wings 120a, lift force is also generated by the auxiliary wings 120a.
  • the body portion 20 is designed to have an optimum air resistance (low resistance) with respect to the air flow.
  • the propeller mechanism 120 freely rotates about the rotating shaft 110 to change its direction. Therefore, a complicated rotation mechanism (for example, a tilt rotor) forcibly changing the direction of the propeller mechanism 120 in the flying object 1A. Mechanism) is not required. Therefore, the flying body 1A becomes light in weight.
  • a complicated rotation mechanism for example, a tilt rotor
  • the body portion 20 itself maintains a horizontal state around the rotation axis 110. For this reason, a complicated control technique for constantly maintaining the body portion 20 horizontally during takeoff/landing and horizontal cruise is not required.
  • the flying vehicle 1A when the flying vehicle 1A travels horizontally, the propeller mechanism 120 is less likely to be loaded, and the flying vehicle 1A can earn a long cruising range with low power. Further, since the flying vehicle 1A does not require a complicated rotating mechanism, the number of failures is reduced, and the reliability in takeoff/landing and horizontal cruise is improved.
  • a horizontal stabilizer attached to the body portion 20. Due to 211 and 212, a force that suppresses the moment force acts on the body portion 20.
  • the auxiliary wings 213 attached to the horizontal stabilizers 211 and 212 cause vibrations.
  • a canceling moment force can be applied to the body portion 20.
  • the body portion 20 can maintain a stable horizontal state during horizontal traveling. Further, since the body portion 20 always maintains the horizontal direction during take-off and landing and during horizontal traveling, for example, the flying vehicle 1A can transport, for example, precision machinery, cracks, valuables, liquids, etc. without anxiety.
  • the flying vehicle 1A for example, if the auxiliary blade 120a attached to the propeller portion 121 and the propeller portion 122 is tilted to the upper side and the auxiliary blade 120a attached to the propeller portion 123 and the propeller portion 124 is tilted to the lower side, it is easy. Further, rolling motion (motion around the front-rear axis of the body portion 20) becomes possible.
  • the flying vehicle 1A has both vertical takeoff and landing functions and horizontal cruise functions, and has excellent cruise performance.
  • FIG. 6A is a schematic top view of a flying object according to Modification Example 1.
  • FIG. 6B is a schematic side view of the flying object according to the first modification.
  • the propeller mechanism 120 has no duct.
  • the propeller mechanism 120 of the flying vehicle 1B has arm portions 125c and 125d and propellers 121p and 122p on one side of the body portion 20. Further, the propeller mechanism 120 has arm portions 126c and 126d and propellers 123a and 124p on the other side of the body portion 20.
  • the arm portions 125c and 125d may be collectively referred to as a first arm portion, and the arm portions 126c and 126d may be collectively referred to as a second arm portion.
  • the propeller 121p is attached to one end 110e of the rotating shaft 110 via a plate-shaped arm portion 125c.
  • the propeller 122p is attached to one end 110e of the rotating shaft 110 via a plate-shaped arm portion 125d.
  • the propeller 123p is attached to the other end 110e of the rotating shaft 110 via a plate-shaped arm portion 126c.
  • the propeller 124p is attached to the other end 110e of the rotating shaft 110 via a plate-shaped arm portion 126d.
  • the propeller 121p and the propeller 122p are juxtaposed, and the propeller 123p and the propeller 124p are juxtaposed in the direction orthogonal to the X-axis direction.
  • the rotation planes of the propeller 121p, the propeller 122p, the propeller 123p, and the propeller 124p are in the same plane.
  • Each of the propeller 121p, the propeller 122p, the propeller 123p, and the propeller 124p is independently controlled, and each emits the same propulsive force or each emits different propulsive force.
  • the flying body 1B since no duct is provided, further weight reduction is realized. As a result, the load on the propeller mechanism 120 is further reduced. Further, in the flying object 1B, when the rotation surface of the propeller becomes substantially vertical to the ground, the main surfaces of the arm portions 125c, 125d, 126c, 126d become substantially parallel to the ground. Accordingly, the arm portions 125c, 125d, 126c, 126d function as wings, and lift is obtained by the arm portions 125c, 125d, 126c, 126d.
  • the auxiliary wings 127 are provided on each of the arm portions 125c, 125d, 126c, 126d. This allows the flying body 1B to easily perform a rolling motion.
  • FIG. 7 is a schematic top view of a flying object according to Modification 2.
  • the propeller section is added in comparison with the flying vehicle 1A.
  • the propeller mechanism 120 of the flying vehicle 1C has two propeller portions 121 and two propeller portions 122 on one side of the body portion 20 via a plate-shaped arm portion 125. Further, the propeller mechanism 120 has two propeller parts 123 and two propeller parts 124 on the other side of the body part 20 via a plate-shaped arm part 126.
  • a propeller section 121 and a propeller section 122 are arranged in parallel, and a propeller section 123 and a propeller section 124 are arranged in parallel in a direction orthogonal to the X-axis direction.
  • the two propeller parts 121 are arranged in parallel in the X-axis direction, and the two propeller parts 122 are arranged in parallel in the X-axis direction.
  • the two propeller parts 123 are arranged in parallel in the X-axis direction, and the two propeller parts 124 are arranged in parallel in the X-axis direction.
  • the adjacent propeller parts are connected to each other between the ducts 120d.
  • the propulsion force generated by the propeller mechanism 120 is further increased. Further, even if one of the propeller parts fails, the adjacent propeller parts in the X-axis direction function as an auxiliary propeller part that assists the failed propeller part.
  • FIG. 8A is a schematic top view of a flying object according to Modification 3.
  • FIG. 8B is a schematic side view of a flying object according to Modification 3.
  • a leg portion 128 for wearing and wearing is provided in a flying vehicle 1D shown in FIGS. 8(a) and 8(b).
  • the leg portions 128 are attached to the respective ducts 120d and extend in the direction opposite to the direction in which the propulsive force acts.
  • the leg 128 functions as a landing leg that replaces the skid 230 on the ground. Further, since the leg portion 128 is provided directly on the duct 120d, the free rotation of the propeller mechanism 120 is forcibly suppressed by the leg portion 128 on the ground after landing. For example, even if the projectile 1D is placed in an environment such as a strong wind, the propeller mechanism 120 does not rotate freely.
  • FIG. 9A is a schematic top view of a flying object according to Modification 4.
  • FIG. 9B is a schematic side view of a flying object according to Modification 4. 9A and 9B, a part of the body portion 20 is omitted.
  • the shield plate 125s is installed on the main trunk portion 125t of the arm portion 125, and the shield plate 126s is installed on the main trunk portion 126t of the arm portion 126.
  • the base body 100 is provided with a shield plate 101 on the side of the arm portion 125, and is provided with a shield plate 102 on the side of the arm portion 126.
  • the shield plate 125s and the shield plate 101 are adjacent to each other, and the shield plate 126s and the shield plate 102 are adjacent to each other.
  • the shield plate 125s and the shield plate 101 are formed between the arm portion 125 and the base body 100, and the shield plate 126s and the shield plate 102 are formed between the arm portion 126 and the base body 100.
  • the flow of air is suppressed between the surface of each of the arm portions 125 and 126 and the surface of the base body 100.
  • the flow of air is suppressed between the respective surfaces of the arm portions 125 and 126 and the surface of the base body 100 due to the interposition of the shielding plates 125s, 126s, 101, and 102, so that the lift force is reduced and the resistance is increased. Is suppressed.
  • FIG. 10A is a schematic top view of a flying object according to Modification 5.
  • FIG. 10B is a schematic side view of a flying object according to Modification 5.
  • a fan 240 is provided on the body portion 20 behind the propulsion unit 10.
  • the fan 240 is provided between the vertical stabilizers 210a and 210b arranged in parallel.
  • the fan 240 exerts a rotational force that causes the body portion 20 to rotate around the rotation axis 110.
  • the horizontal attitude can be more easily maintained by the appropriate propulsive force of the fan 240. Further, since the fan 240 is installed in the body portion 20, the body portion 20 exerts a sound deadening effect.
  • FIG. 11A is a schematic top view of a flying object according to Modification 6.
  • FIG. 11B is a schematic side view of a flying object according to Modification 6.
  • a carrier 30 having legs 302 is connected to the base body 100 below the propulsion unit 10.
  • the carrier 30 has an assembly structure framed by a plurality of arms 304.
  • the carrier 30 has an accommodation space 303 in which luggage and the like can be loaded.
  • a power source 220 is arranged below the accommodation space 303. Further, the center of gravity 301 of the carrier 30 including the power source 220 is located immediately below the center 111 of the rotating shaft 110.
  • a windbreak plate 35 having a curved surface convex toward the front.
  • the windbreak plate 35 is supported by the carrier 30 and the base 100, for example.
  • the arm portion 31 extends from the base body 100 to the rear of the flying object 1G.
  • a vertical tail 210 and horizontal tails 211 and 212 are provided at the end of the arm portion 31.
  • the flying vehicle 1G has both functions of vertical takeoff and landing and horizontal cruise, and has excellent cruise performance.
  • FIG. 12A is a schematic top view of a flying object according to Modification 7.
  • FIG. 12B is a schematic side view of a flying object according to Modification 7.
  • a part of the vertical cross section of the body portion 20 along the Y-axis direction is configured as an inverted camber type.
  • the fuselage rear part 250 behind the propulsion unit 10 has an inverted camber shape in which the bottom of the vertical cross section along the Y-axis direction is warped.
  • FIG. 13A is a schematic top view of a flying object according to Modification 8.
  • FIG. 13B is a schematic side view of a flying object according to Modification 8.
  • FIG. 13C is a schematic diagram for explaining an example of the operation of the flying object according to Modification 8.
  • the parallel link mechanism 40 in order to explain the parallel link mechanism 40, the propulsion unit 10 other than the base body 100 is not shown.
  • the parallel link mechanism 40 and its periphery are mainly shown.
  • the flying body 1I includes a parallel link mechanism 40 between the body portion 20 and the propulsion portion 10.
  • the parallel link mechanism 40 has a pair of rotary shafts 401 and 402, a pair of rotary shafts 403 and 404, and a plurality of arms 410.
  • the rotary shafts 401 and 402 penetrate the base body 100 in the X-axis direction.
  • the rotating shafts 401 and 402 extend in the X-axis direction.
  • the rotating shafts 401 and 402 are arranged in the Y-axis direction.
  • the rotating shafts 403 and 404 penetrate the body portion 20 in the X-axis direction.
  • the rotating shafts 403 and 404 extend in the X-axis direction.
  • the rotating shafts 403 and 404 are arranged in the Y-axis direction.
  • the spacing between the rotary shafts 403 and 404 in the Y-axis direction is the same as the spacing between the rotary shafts 401 and 402 in the Y-axis direction.
  • Each of the rotating shafts 401 and 402 freely rotates within the base body 100.
  • Each of the rotating shafts 403 and 404 freely rotates within the body portion 20.
  • a plurality of arms 410 connect between both ends of the rotary shaft 401 and both ends of the rotary shaft 403, and between both ends of the rotary shaft 402 and both ends of the rotary shaft 404.
  • Each of the plurality of arms 410 is arranged in parallel with each other. The length of each of the plurality of arms 410 is the same.
  • the base body 100 has a degree of freedom in the front-back direction of the body portion 20, that is, in the Y-axis direction. Then, the body portion 20 is hung on the base body 100 via the parallel link mechanism 40.
  • the action of the parallel link mechanism 40 works effectively when the suppressing force of the pitching moments by the horizontal stabilizers 211 and 21 becomes less effective, especially during low-speed horizontal cruise.
  • FIG. 14A is a schematic top view of a flying object according to Modification 9.
  • FIG. 14B is a schematic side view of a flying object according to Modification 9.
  • FIG. 15 is a schematic side view showing an example of the operation of the flying object according to Modification 9.
  • the propeller mechanism 120 of the flying vehicle 1J is attached to both ends 110e of the rotating shaft 110.
  • the propeller mechanism 120 is a point target with the center 111 as a reference.
  • the propeller mechanism 120 includes arm portions 129a and 129b, a propeller portion 121, and a propeller portion 122 on one side of the body portion 20, and arm portions 129a and 129b and a propeller portion on the other side of the body portion 20. It has 123 and the propeller part 124.
  • the arm portion 129a extends in a substantially straight line in front of the body portion 20 from both ends 110e.
  • the arm portion 129b extends from the both ends 110e to the rear of the body portion 20 in a substantially linear shape. That is, the arm portion 129a and the arm portion 129b are bifurcated from both ends 110e.
  • the propeller section 121 and the propeller section 122 are arranged side by side in a direction orthogonal to the X-axis direction.
  • the propeller portion 123 and the propeller portion 124 are arranged side by side in a direction orthogonal to the X-axis direction.
  • the propeller portion 121 is fixed to one end 110e of the rotating shaft 110 via an arm portion 129a.
  • the propeller portion 122 is fixed to one end 110e of the rotating shaft 110 via an arm portion 129b.
  • the propeller portion 123 is fixed to the other end 110e of the rotating shaft 110 via an arm portion 129a.
  • the propeller portion 124 is fixed to the other end 110e of the rotating shaft 110 via an arm portion 129b.
  • the fence 130 is an annular body in which a strip-shaped plate material is annular, and, for example, a pair of fence portions 130a extending substantially parallel to the X-axis direction, and a pair of fence portions 130b substantially orthogonal to the X-axis direction, It has the fence part 130c which connects the fence part 130a and the fence part 130b.
  • the fence parts 130a and 130b are flat plates, and the fence part 130c is distorted.
  • the width of the fence 130 is W1 (width in the direction parallel to the propeller surface)
  • the width W1 is configured to be wider than the thickness of each of the propeller portions 121 to 124.
  • each of the propeller portions 121 to 124 is surrounded by the fence 130.
  • the fence 130 also functions as a duct that collectively surrounds the propeller portions 121 to 124.
  • FIG. 15 shows an example of a flying body 1J traveling horizontally.
  • FIG. 15 is a side view of a flying object 1J that is traveling horizontally.
  • the fence 130 rotates around the rotation axis 110, and the body portion 20 is surrounded by the fence 130. That is, the fence portions 130a are located above and below the body portion 20. At this time, the plate surfaces of the upper and lower fence portions 130a are substantially parallel to the horizontal traveling direction, and the upper and lower fence portions 130a act as the main wings of the flying body 1J to generate lift on the flying body 1J.
  • the fence 130 since the fence 130 collectively surrounds the propeller portions 121 to 124, the volume of the duct (that is, the fence 130) is reduced as compared with the configuration in which the duct is attached to each of the propeller portions 121 to 124. be able to. As a result, the weight of the flying object can be reduced. Further, since the fence 130 is annular and has a predetermined width W1, the fence 130 has a desired mechanical strength.
  • each of the propellers 121 to 124 when the diameter of each of the propellers 121 to 124 is the same as that of a structure in which a duct is provided for each of the propellers 121 to 124, the total side area of the duct portion is reduced, which leads to weight reduction and reduction of air resistance. Can be achieved. Further, due to the box-shaped structure of the fence 130, it is possible to reduce the weight of the duct while maintaining desired strength. Further, during horizontal flight, the fence 130 generates lift. At this time, since the fence 130 has a box shape and is lightened, it is sufficient that tension is mainly applied to the arms 129a and 129b.
  • the flying vehicle 1J has excellent quietness.
  • Main trunk section 128, 302 Leg sections 129a, 129b... Arm section 129t... Tip 130... Fences 130a, 130b, 130c. ... Fence section 201, 301... Center of gravity 202... Mounting section 210, 210a, 210b... Vertical tail 211, 212... Horizontal tail 220... Power supply 231... Skid 240... Fan 250... Fuselage rear section 303... Housing space 304, 410... Arm

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

【課題】マルチコプタ機構を備えた飛翔体について、垂直離着陸と水平巡行との両機能を備え、優れた巡行性能を有する飛翔体を提供する。 【解決手段】上記目的を達成するため、本発明の一形態に係る飛翔体は、推進部と、胴体部とを具備する。推進部は、第1方向に延在する回転軸と、回転軸の両端に設けられた推力発生機構とを有し、空中を飛行する推進力を発生する。胴体部は、回転軸の下方において推進部に吊着され、回転軸よりも下の位置に重心を有し、回転軸の周りに回転自由に構成され、荷物を収容することが可能である。

Description

飛翔体
 本発明は、マルチコプタ機構を備えた飛翔体に関する。
 空中撮影、建築設備の調査等には、ドローンと呼ばれる回転翼機を備えた飛翔体が利用される(特許文献1参照)。このような飛翔体は、複数の回転翼を有するマルチコプタ機構を備える。マルチコプタ機構を備えることで、垂直離着陸が自在となる。このため、空中撮影、建築設備の調査等に回転翼機を備えた該飛翔体が広く普及している。
 近年、このようなマルチコプタ機構の次段階の用途として、物流ドローン、飛行タクシー等といった輸送用途への適用が期待されている。
特開2018-127215号公報
 しかしながら、このような飛翔体を輸送用途に適用させるには、巡行距離、巡行安定性においてさらなる向上が求められている。
 以上のような事情に鑑み、本発明の目的は、マルチコプタ機構を備えた飛翔体について、垂直離着陸と水平巡行との両機能を備え、優れた巡行性能を有する飛翔体を提供することにある。
 上記目的を達成するため、本発明の一形態に係る飛翔体は、推進部と、胴体部とを具備する。推進部は、第1方向に延在する回転軸と、回転軸の両端に設けられた推力発生機構とを有し、空中を飛行する推進力を発生する。胴体部は、回転軸の下方において推進部に吊着され、回転軸よりも下の位置に重心を有し、回転軸の周りに回転自由に構成され、荷物を収容することが可能である。
 以上述べたように、本発明によれば、垂直離着陸と水平巡行との両機能を備え、優れた巡行性能を有する飛翔体が提供される。
図(a)は、本実施形態に係る飛翔体の模式的上面図である。図(b)は、本実施形態に係る飛翔体の模式的側面図である。 図(a)は、本実施形態に係る飛翔体の模式的上面図である。図(b)は、本実施形態に係る飛翔体の模式的側面図である。 本実施形態に係る飛翔体の別の模式的側面図である。 本実施形態の飛翔体における動作の一例を示す模式的側面図である。 本実施形態の飛翔体における動作の一例を示す模式的側面図である。 図(a)は、変形例1に係る飛翔体の模式的上面図である。図(b)は、変形例1に係る飛翔体の模式的側面図である。 変形例2に係る飛翔体の模式的上面図である。 図(a)は、変形例3に係る飛翔体の模式的上面図である。図(b)は、変形例3に係る飛翔体の模式的側面図である。 図(a)は、変形例4に係る飛翔体の模式的上面図である。図(b)は、変形例4に係る飛翔体の模式的側面図である。 図(a)は、変形例5に係る飛翔体の模式的上面図である。図(b)は、変形例5に係る飛翔体の模式的側面図である。 図(a)は、変形例6に係る飛翔体の模式的上面図である。図(b)は、変形例6に係る飛翔体の模式的側面図である。 図(a)は、変形例7に係る飛翔体の模式的上面図である。図(b)は、変形例7に係る飛翔体の模式的側面図である。 図(a)は、変形例8に係る飛翔体の模式的上面図である。図(b)は、変形例8に係る飛翔体の模式的側面図である。図(c)は、変形例8に係る飛翔体における動作の一例を説明する模式図である。 図(a)は、変形例9に係る飛翔体の模式的上面図である。図(b)は、変形例9に係る飛翔体の模式的側面図である。 変形例9に係る飛翔体における動作の一例を示す模式的側面図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。また、同一の部材または同一の機能を有する部材には同一の符号を付す場合があり、その部材を説明した後には適宜説明を省略する場合がある。
 図1(a)は、本実施形態に係る飛翔体の模式的上面図である。図1(b)は、本実施形態に係る飛翔体の模式的側面図である。図2(a)は、本実施形態に係る飛翔体の模式的上面図である。図2(b)は、本実施形態に係る飛翔体の模式的側面図である。
 ここで、図1(a)、(b)には、地面に静止した飛翔体1Aにおいて、推進部10に含まれるプロペラの回転面が地面に対して平行の状態が示され、図2(a)、(b)には、水平巡行する飛翔体1Aにおいて、該回転面が地面に対して垂直の状態が示されている。
 本実施形態に係る飛翔体1Aは、垂直離着陸と水平巡行との両機能を兼ね備えたマルチコプタ型の飛翔体である。飛翔体1Aは、胴体部20に荷物を収容することができ、無人飛翔体でもよく、有人飛翔体でもよい。
 図1(a)~図2(b)に示すように、飛翔体1Aは、推進部10と、胴体部20とを具備する。まず、推進部10から説明する。
 推進部10は、飛翔体1Aにおいて空中を飛行する推進力を発生する。推進部10は、胴体部20を懸架する機能を備える。推進部10は、基体100と、回転軸110と、推力発生機構120とを有する。
 基体100は、回転軸110を軸支するブロック状の支持体である。基体100は、胴体部20に接触・固定される。固定手段としては、ボルト止、クランプ止等の機会的手段、磁気力、静電力を利用した手段等があげられる。
 回転軸110は、基体100を貫通している。回転軸110は、X軸方向(第1方向)に延在する。回転軸110は、基体100に対して回転自由に構成されている。例えば、回転軸110と基体100との間には、ベアリング等の摺動部材が介設されたり、回転軸110が基体100に接する接触面に摺動層がコーティングされたりしている。また必要に応じて、回転軸110と基体100との間には潤滑油が塗布される。また、推進部10には、回転自由な回転軸110の動きを制御する制御機能(例えば、油圧ブレーキ)を設けてもよい。すなわち、回転軸110は、この制御機能から解除された場合、基体100内を自由回転する。
 推力発生機構120は、例えば、プロペラ機構があげられる。以下、推力発生機構120を"プロペラ機構120"として説明する。
 プロペラ機構120は、回転軸110の両端110eに設けられている。プロペラ機構120は、回転軸110の中心111を基準として略点対象となった構成をしている。例えば、プロペラ機構120は、胴体部20の一方の横にアーム部125(第1アーム部)と、プロペラ部121(第1プロペラ部)と、プロペラ部122(第2プロペラ部)とを有する。さらに、プロペラ機構120は、胴体部20の他方の横にアーム部126(第2アーム部)と、プロペラ部123(第3プロペラ部)と、プロペラ部124(第4プロペラ部)とを有する。
 プロペラ部121とプロペラ部122とは、回転軸110の一方の端110eにアーム部125を介して取り付けられている。プロペラ部123とプロペラ部124とは、回転軸110の他方の端110eにアーム部126を介して取り付けられている。X軸方向に直交する方向において、プロペラ部121とプロペラ部122とが並設され、プロペラ部123とプロペラ部124とが並設されている。
 例えば、アーム部125は、板状の主幹部125tと、主幹部125tから分岐した枝部125bとを有する。プロペラ部121及びプロペラ部122のそれぞれは、枝部125bに固定されている。また、アーム部126は、板状の主幹部126tと、主幹部126tから分岐した枝部126bとを有する。プロペラ部123及びプロペラ部124のそれぞれは、枝部126bに固定されている。
 プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれの回転面は、同一面内にある。換言すれば、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれのプロペラ軸は、同じ方向に延在している。プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれは、独立に制御され、それぞれが同じ推進力を発したり、それぞれが異なった推進力を発したりする。
 プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれは、ダクテッドファンである。例えば、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれは、プロペラ120pと、プロペラ120pを囲む円筒形のダクト120dとを有する。プロペラ120pの中心軸は、ダクト120dの中心軸に一致する。また、プロペラ120pがダクト120dによって取り囲まれることにより、ダクト120dによる消音作用が働く。
 プロペラ部121及びプロペラ部122がアーム部125を介して回転軸110に軸支され、プロペラ部123及びプロペラ部124がアーム部126を介して回転軸110に軸支されていることから、プロペラ機構120は、回転軸110ともに回転軸110を中心軸として自由回転することができる。
 例えば、飛翔体1Aが垂直離着陸するときは、プロペラ機構120の回転面が地面と略平行になる(図1(a)、(b))。また、飛翔体1Aが水平巡行するときは、プロペラ機構120の回転面が地面と略垂直になる(図2(a)、(b))。
 飛翔体1Aが水平巡行するときは、ダクト120dの中心軸が地面と略平行になる。これにより、ダクト120dは、翼部として機能する。また、アーム部125の主幹部125tの主面は、基体100の主面と略面一になり、アーム部126の主幹部126tの主面は、基体100の主面と略面一になる。これにより、アーム部125、126の一部は、翼部として機能する。
 すなわち、飛翔体1Aが水平巡行するときには、ダクト120dまたはアーム部125、126によって揚力が発生する。また、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれに含まれるダクト120dの後方には、補助翼120a(第3補助翼)が設けられている。
 また、推進部10は、姿勢制御力を発生する機能、航法・誘導・制御に必要なセンサ、コンピュータ等を備える。地上からは、姿勢制御機能、航法・誘導・制御に必要な信号が推進部10に送信される。
 胴体部20は、回転軸110の下方において推進部10に吊着されている。胴体部20は、回転軸110よりも下の位置に重心201を有する。例えば、重心201は、回転軸110の中心111の直下に位置する。胴体部20が推進部10に吊着され、基体100に胴体部20の上部が固定されていることから、胴体部20も回転軸110の周りに回転自由に構成されている。
 胴体部20は、X軸方向が短手方向となり、X軸方向に直交するY軸方向(第2方向)が長手方向となる形状を有する。胴体部20は、向かってくる気流に対して最適な空気抵抗となるように、その外形が設計されている。例えば、胴体部20の外形は、Y軸方向を長手方向とする流線型、魚雷型等となっている。また、胴体部20の重心201が回転軸110の中心111の直下に位置することから、飛翔体1Aが地上から垂直方向に上昇したとしても、胴体部20は、推進部10に吊着されながら水平状態を維持する。
 本実施形態では、水平巡行に進む方向(気流に逆行する方向)を飛翔体の前方とし、その逆方向を後方する。胴体部20には、推進部10の後方に垂直尾翼210と、水平尾翼211、212とが設けられている。水平尾翼211、212のそれぞれには、それぞれの後方に補助翼213(第1補助翼)が設けられている。
 胴体部20は、プロペラ機構に電力を供給する電池等の電源220を有する。電源220は、例えば、X軸方向、Y軸方向、及びZ軸方向のいずれかに自動的にスライドできるように胴体部20内に設置されている。例えば、胴体部20内に荷物が積載された後、胴体部20の重心201の位置がずれた場合には、電源220をX軸方向、Y軸方向、及びZ軸方向のいずれかにスライド移動する。これにより、重心201の位置を元の位置に戻すことができる。
 また、胴体部20の下部には、地面に胴体部20が直接接触しないように降着用のスキッド230が付設されている。スキッド230は、例えば、一対構成でX軸方向に並び、Y軸方向に平行に延在する。スキッド230は、胴体部20内に引き込めるタイプのものでもよい。
 図3は、本実施形態に係る飛翔体の別の模式的側面図である。
 飛翔体1Aにおいては、胴体部20が推進部10から脱着可能に構成されている。例えば、推進部10の基体100は、胴体部20の上部に設けられた取付部202に接触した後、基体100が取付部202に固定される。さらに、基体100は、取付部202から取り外すこともできる。取付け、取り外しは、人手で行ってもよく、外部からの信号によって自動的に行われてもよい。
 次に、飛翔体1Aの動作について説明する。飛翔体1Aにおいては、推進部10のプロペラ機構120が垂直姿勢あるいは水平姿勢に方向転換し、推進部10が発する推進力によって胴体部20が垂直姿勢で離着陸し、胴体部20が水平姿勢で水平巡行する。
 例えば、重力方向を鉛直方向とした場合、プロペラ機構120に代表される推力発生機構の垂直姿勢とは、推力発生機構の推力軸の軸方向(推力が働く方向)が鉛直方向に対して平行になった状態であり、水平姿勢とは、推力軸の軸方向が鉛直方向に対して直交した状態である。
 換言すれば、プロペラ機構120の垂直姿勢とは、プロペラ面が鉛直方向に対して垂直になった状態であり、水平姿勢とは、プロペラ面が鉛直方向に対して平行になった状態である。なお、プロペラ機構120が垂直姿勢または水平姿勢となったとしても、飛翔体1Aの胴体部20は、水平姿勢を維持する。
 図4(a)~図5(b)は、本実施形態の飛翔体における動作の一例を示す模式的側面図である。
 例えば、図4(a)には、飛翔体1Aが地面から垂直離陸するときの状態が示されている。この状態では、胴体部20の長手方向(Y軸方向)と、プロペラ機構120の回転面とが略平行である。推進部10によって地面に対して垂直に働く推進力が飛翔体1Aの重力を上回ると、飛翔体1Aが地面から離陸する。
 このとき、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれが発する推進力は、例えば、略同じに設定される。また、離陸後においても、胴体部20は、回転軸110の周りに自由回転し、且つ、回転軸110よりも胴体部20の重心201が下方に位置するため、胴体部20は、重力によって水平状態を維持する。
 仮に、胴体部20の重心201が回転軸110の中心111に重なっているとする。この場合、胴体部20が何らかの要因で一旦、回転軸110を中心に傾いてしまうと、回転軸110を中心とした胴体部20の前方と後方とのモーメント力が釣り合ってしまい、胴体部20が水平状態に戻ることができない。飛翔体1Aでは、胴体部20の重心201が回転軸110よりも下方に位置するため、胴体部20が重力によって水平状態を常時維持する。
 次に、空中において、プロペラ部121及びプロペラ部123のそれぞれが発する推進力(推進力A)よりも、プロペラ部122及びプロペラ部124のそれぞれが発する推進力(推進力B)を増加する(推進力A<推進力B)。
 これにより、プロペラ機構120には回転軸110を中心とする回転モーメントが働いて、プロペラ機構120が回転軸110とともに、回転軸110を中心として自由回転をし始める。例えば、図示する飛翔体1Aの向きでは、プロペラ機構120が回転軸110を中心に反時計回りに回転して、その向きを変え始める。この状態を図4(b)に示す。
 このときも、胴体部20は、回転軸110の周りに自由回転し、且つ、回転軸110よりも胴体部20の重心201が下方に位置するため、胴体部20は、重力によって水平状態を維持する。また、プロペラ機構120の向きの変更により、プロペラ機構120が発する推進力が地面に対して斜めに働くことから、飛翔体1Aは、上昇しながら前方に移動し始める。
 次に、プロペラ機構120の自由回転により、胴体部20の長手方向(Y軸方向)と、プロペラ機構120の回転面とが略直交したら、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれが発する推進力を略同じに設定する。この状態を図4(c)に示す。
 この状態では、推進部10が発する推進力が地面に対して水平方向に働き、飛翔体1Aは、水平巡行する。このときも、胴体部20は、回転軸110の周りに自由回転し、且つ、回転軸110よりも胴体部20の重心201が下方に位置するため、胴体部20は、重力によって水平状態を維持する。
 次に、水平巡行から飛翔体1Aを地面に着陸させるには、プロペラ部121及びプロペラ部123のそれぞれが発する推進力(推進力A)をプロペラ部122及びプロペラ部124のそれぞれが発する推進力(推進力B)よりも増加させる(推進力A>推進力B)。この状態を図5(a)に示す。そして、図4(a)と同様に、プロペラ機構120の回転面が胴体部20の長手方向(Y軸方向)と略平行になったら、推進力が飛翔体1Aの重力よりも劣るように推進力を下げて地面に飛翔体1Aを着陸させる。
 なお、飛翔体1Aが前に進む速度を強制的に減速するには、図5(b)に示すように、推進力が胴体部20の手前に向くように、プロペラ機構120の向きを変えてもよい。
 飛翔体1Aにおいては、水平巡行時(図4(c))に、プロペラ機構120による推進力のほかに、ダクト120dまたはアーム部125、126によって飛翔体1Aに揚力が働く。
 また、飛翔体1Aにおいては、プロペラ部121、プロペラ部122、プロペラ部123、及びプロペラ部124のそれぞれに補助翼120aが設けられているため、この補助翼120aによっても揚力が発生する。
 また、飛翔体1Aにおいては、胴体部20が気流に対して最適な空気抵抗(低抵抗)となるように設計されている。
 また、飛翔体1Aにおいては、プロペラ機構120が回転軸110を中心として自由回転して向きを変えるので、プロペラ機構120の向きを飛翔体1A内で強制的に変える複雑な回転機構(例えば、チルトロータ機構)を要さない。このため、飛翔体1Aは、軽量になる。
 また、飛翔体1Aにおいては、回転軸110を中心として、胴体部20自らが水平状態を維持する。このため、離着陸時及び水平巡行時に常時胴体部20を水平に維持する複雑な制御技術も要しない。
 このように、飛翔体1Aが水平巡行する際には、プロペラ機構120には負荷がかかりにくく、飛翔体1Aは、低電力で長い航続距離を稼ぐことできる。また、飛翔体1Aには、複雑な回転機構を要しないことから、故障が少なくなり、離着陸及び水平巡行における信頼性が向上する。
 また、飛翔体1Aにおいては、水平巡行時に、気流によって胴体部20が回転軸110を中心として回るモーメント力(ピッチングモーメント)が胴体部20に働いたとしても、胴体部20に付設された水平尾翼211、212によって、そのモーメント力を抑える力が胴体部20に働く。
 また、飛翔体1Aにおいては、気流によって胴体部20が回転軸110を中心として振動するモーメント力が胴体部20に働いたとしても、水平尾翼211、212に付設された補助翼213によって、振動を打ち消すモーメント力を胴体部20に作用させることができる。
 これにより、胴体部20は、水平巡行時には安定して水平状態を維持することができる。また、離着陸時及び水平巡行時に胴体部20が常時水平方向を維持することから、飛翔体1Aによって、例えば、精密機械、割れ物、貴重品、液体等を安心して運搬することができる。
 また、飛翔体1Aにおいては、例えば、プロペラ部121及びプロペラ部122に付設された補助翼120aを上側、プロペラ部123及びプロペラ部124に付設された補助翼120aを下側に傾ければ、容易にローリング運動(胴体部20の前後軸まわりの運動)が可能になる。
 このように、飛翔体1Aは、垂直離着陸と水平巡行との両機能を備え、優れた巡行性能を有する。
 次に、飛翔体の変形例について説明する。
 (変形例1)
 図6(a)は、変形例1に係る飛翔体の模式的上面図である。図6(b)は、変形例1に係る飛翔体の模式的側面図である。
 図6(a)、(b)に示す飛翔体1Bには、プロペラ機構120にダクトが設けられていない。
 例えば、飛翔体1Bのプロペラ機構120は、胴体部20の一方の横にアーム部125c、125d、プロペラ121p、122pを有する。さらに、プロペラ機構120は、胴体部20の他方の横にアーム部126c、126d、プロペラ123a、124pを有する。飛翔体1Bでは、アーム部125c、125dをまとめて第1アーム部とし、アーム部126c、126dをまとめて第2アーム部としてもよい。
 例えば、プロペラ121pは、回転軸110の一方の端110eに、板状のアーム部125cを介して取り付けられている。プロペラ122pは、回転軸110の一方の端110eに、板状のアーム部125dを介して取り付けられている。プロペラ123pは、回転軸110の他方の端110eに、板状のアーム部126cを介して取り付けられている。プロペラ124pは、回転軸110の他方の端110eに、板状のアーム部126dを介して取り付けられている。
 X軸方向に直交する方向において、プロペラ121pとプロペラ122pとが並設され、プロペラ123pとプロペラ124pとが並設されている。プロペラ121p、プロペラ122p、プロペラ123p、及びプロペラ124pのそれぞれの回転面は、同一面内にある。
 プロペラ121p、プロペラ122p、プロペラ123p、及びプロペラ124pのそれぞれは、独立に制御され、それぞれが同じ推進力を発したり、それぞれが異なった推進力を発したりする。
 飛翔体1Bにおいては、ダクトが設けられていないことから、さらなる軽量化が実現する。これにより、プロペラ機構120にかかる負荷がより低減する。また、飛翔体1Bにおいては、プロペラの回転面が地面と略垂直になったときには、アーム部125c、125d、126c、126dのそれぞれの主面が地面と略平行になる。これにより、アーム部125c、125d、126c、126dが翼として機能して、アーム部125c、125d、126c、126dにより揚力が得られる。
 また、飛翔体1Bにおいては、アーム部125c、125d、126c、126dのそれぞれに補助翼127(第2補助翼)が設けられている。これにより、飛翔体1Bにおいては、容易にローリング運動が可能になる。
 (変形例2)
 図7は、変形例2に係る飛翔体の模式的上面図である。
 図7に示す飛翔体1Cでは、プロペラ部が飛翔体1Aに比べて増設されている。
 例えば、飛翔体1Cのプロペラ機構120は、胴体部20の一方の横に板状のアーム部125を介して、2個のプロペラ部121と、2個のプロペラ部122とを有する。さらに、プロペラ機構120は、胴体部20の他方の横に板状のアーム部126を介して、2個のプロペラ部123と、2個のプロペラ部124とを有する。
 飛翔体1Cでは、X軸方向に直交する方向において、プロペラ部121とプロペラ部122とが並設され、プロペラ部123とプロペラ部124とが並設されている。また、2個のプロペラ部121は、X軸方向に並設され、2個のプロペラ部122は、X軸方向に並設されている。また、2個のプロペラ部123は、X軸方向に並設され、2個のプロペラ部124は、X軸方向に並設されている。また、隣接するプロペラ部同士は、ダクト120d間が互いに接続されている。
 このような構成であれば、プロペラ機構120が発する推進力がさらに増加する。また、いずれかのプロペラ部が故障したとしも、X軸方向に隣接するプロペラ部が故障したプロペラを補助する補助プロペラ部として機能する。
 (変形例3)
 図8(a)は、変形例3に係る飛翔体の模式的上面図である。図8(b)は、変形例3に係る飛翔体の模式的側面図である。
 図8(a)、(b)に示す飛翔体1Dにおいては、降着用の脚部128が設けられている。脚部128は、それぞれのダクト120dに付設され、推進力が働く方向とは反対の方向に延在している。
 このような構成であれば、地上では、脚部128がスキッド230に代わる着陸脚として機能する。さらに、ダクト120dに直接、脚部128が設けられていることから、着陸後、地上ではプロペラ機構120の自由回転が強制的に脚部128によって抑えられる。例えば、強風等の環境下に飛翔体1Dが置かれても、プロペラ機構120が自由回転することはない。
 (変形例4)
 図9(a)は、変形例4に係る飛翔体の模式的上面図である。図9(b)は、変形例4に係る飛翔体の模式的側面図である。図9(a)、(b)では、胴体部20の一部が略されている。
 飛翔体1Eにおいては、アーム部125の主幹部125tに遮蔽板125sが設置されて、アーム部126の主幹部126tに遮蔽板126sが設置されている。また、基体100には、アーム部125の側に遮蔽板101が設けられ、アーム部126の側には、遮蔽板102が設けられている。X軸方向において、遮蔽板125sと遮蔽板101とは隣接し、遮蔽板126sと遮蔽板102とは隣接する。
 これにより、アーム部125と基体100との間には、遮蔽板125s及び遮蔽板101が形成され、アーム部126と基体100との間には、遮蔽板126s及び遮蔽板102が形成される。このような遮蔽板を設ければ、アーム部125、126のそれぞれの表面と基体100の表面との間において空気の流れが抑制される。
 推進部10の自由回転により、アーム部125、126のそれぞれの表面と基体100の表面とが面一になった状態では(例えば、水平巡行時)、アーム部125、126のそれぞれの表面と基体100の表面との間には隙間が形成されない。しかし、アーム部125、126のそれぞれの表面と基体100の表面とが面一でなくなると、アーム部125、126のそれぞれの表面と基体100の表面との間に隙間が形成される。この隙間から空気が漏れると、飛翔体の揚力低下と、翼部の抵抗増加とをもたらす。
 飛翔体1Eでは、遮蔽板125s、126s、101、102の介在により、アーム部125、126のそれぞれの表面と基体100の表面との間において空気の流れが抑制されるので、揚力低下及び抵抗増加が抑制される。
 (変形例5)
 図10(a)は、変形例5に係る飛翔体の模式的上面図である。図10(b)は、変形例5に係る飛翔体の模式的側面図である。
 飛翔体1Fにおいては、推進部10の後方の胴体部20にファン240が設けられている。ファン240は、平行に並ぶ垂直尾翼210a、210bの間に設けられている。ファン240は、胴体部20が回転軸110の周りに回転する回転力を発揮する。
 このような構成であれば、ホバリング時、または低速飛行時には、適正なファン240の推進力により水平姿勢がより維持しやすくなる。また、ファン240は、胴体部20内に設置されているため、胴体部20により消音効果が働く。
 (変形例6)
 図11(a)は、変形例6に係る飛翔体の模式的上面図である。図11(b)は、変形例6に係る飛翔体の模式的側面図である。
 飛翔体1Gでは、推進部10の下において、基体100に脚部302を有するキャリア30が接続されている。キャリア30は、複数のアーム304によって骨組みされた組立構造を有する。キャリア30は、その内部に荷物等を積載することができる収容空間303を有する。収容空間303の下には、電源220が配置されている。また、電源220を含めたキャリア30の重心301は、回転軸110の中心111の直下に位置している。
 また、飛翔体1Gの前方には、前方に凸となった曲面を持つ防風版35が設けられている。防風版35は、例えば、キャリア30と基体100とによって支持されている。また、基体100からは、飛翔体1Gの後方にアーム部31が延在している。このアーム部31の端部には、垂直尾翼210と、水平尾翼211、212が設けられている。
 このような構成でも、飛翔体1Gは、垂直離着陸と水平巡行との両機能を備え、優れた巡行性能を有する。
 (変形例7)
 図12(a)は、変形例7に係る飛翔体の模式的上面図である。図12(b)は、変形例7に係る飛翔体の模式的側面図である。
 飛翔体1Hにおいては、胴体部20のY軸方向に沿った垂直断面の一部が逆キャンバー型に構成されている。例えば、推進部10から後方の胴体後部250は、Y軸方向に沿った垂直断面の底辺が反り上がる逆キャンバー形状になっている。
 このような構成によれば、胴体部20の空力形状の改良で尾翼なしで、空力安定が得られる。また、尾翼を無くすことで、飛翔体の軽量化、低抵抗化が実現する。
 (変形例8)
 図13(a)は、変形例8に係る飛翔体の模式的上面図である。図13(b)は、変形例8に係る飛翔体の模式的側面図である。図13(c)は、変形例8に係る飛翔体における動作の一例を説明する模式図である。図13(a)、(b)では、平行リンク機構40を説明するために、基体100以外の推進部10が図示されていない。図13(c)では、平行リンク機構40と、その周辺が主に図示されている。
 飛翔体1Iにおいては、胴体部20と推進部10との間に平行リンク機構40を具備する。平行リンク機構40は、一対の回転軸401、402と、一対の回転軸403、404と、複数のアーム410とを有する。
 回転軸401、402は、X軸方向において基体100を貫通する。回転軸401、402は、X軸方向に延在する。回転軸401、402は、Y軸方向に並ぶ。回転軸403、404は、X軸方向において胴体部20を貫通する。回転軸403、404は、X軸方向に延在する。回転軸403、404は、Y軸方向に並ぶ。回転軸403、404がY軸方向に並ぶ間隔は、回転軸401、402がY軸方向に並ぶ間隔と同じである。回転軸401、402のそれぞれは、基体100内で自由に回転する。回転軸403、404のそれぞれは、胴体部20内で自由に回転する。
 回転軸401の両端部と回転軸403の両端部との間、及び回転軸402の両端部と回転軸404の両端部との間は、複数のアーム410のいずれかにより接続されている。複数のアーム410のそれぞれは、互いに平行に配置される。複数のアーム410のそれぞれの長さは、同じである。
 このような平行リンク機構40を設ければ、図13(c)に示すように、基体100が胴体部20の前後方向、すなわち、Y軸方向に自由度を有する。そして、胴体部20は、平行リンク機構40を介して基体100に吊着される。
 これにより、水平巡行時に空気抵抗等で飛翔体の前方から発生するピッチングモーメントが胴体部20に働いたとしても、前後に並ぶ1組のアーム410によって、このモーメントが胴体部20に働きにくくなる。同様に、水平巡行時に空気抵抗等で飛翔体の後方から発生するピッチングモーメントが胴体部20に働いたとしても、前後に並ぶ1組のアーム410によって、このモーメントが胴体部20に働きにくくなる。
 特に、低速水平巡行時のように、水平尾翼211、21によるピッチングモーメントの抑制力が効きにくくなるとき、平行リンク機構40の作用は有効に働く。
 (変形例9)
 図14(a)は、変形例9に係る飛翔体の模式的上面図である。図14(b)は、変形例9に係る飛翔体の模式的側面図である。図15は、変形例9に係る飛翔体における動作の一例を示す模式的側面図である。
 飛翔体1Jにおけるプロペラ機構120は、回転軸110の両端110eに取り付けられる。プロペラ機構120は、中心111を基準として略点対象となっている。プロペラ機構120は、胴体部20の一方の横にアーム部129a、129bと、プロペラ部121と、プロペラ部122とを有し、胴体部20の他方の横にアーム部129a、129bと、プロペラ部123と、プロペラ部124とを有する。
 アーム部129aは、両端110eから胴体部20の前方に略直線状に延在する。アーム部129bは、両端110eから胴体部20の後方に略直線状に延在する。すなわち、アーム部129aとアーム部129bとは、両端110eから二股に分かれている。
 プロペラ部121とプロペラ部122とは、X軸方向に直交する方向に並設される。プロペラ部123とプロペラ部124とは、X軸方向に直交する方向に並設される。プロペラ部121は、回転軸110の一方の端110eにアーム部129aを介して固定される。プロペラ部122は、回転軸110の一方の端110eにアーム部129bを介して固定される。プロペラ部123は、回転軸110の他方の端110eにアーム部129aを介して固定される。プロペラ部124は、回転軸110の他方の端110eにアーム部129bを介して固定される。
 また、飛翔体1Jにおいては、2つのアーム部129aのそれぞれの先端129t及び2つのアーム部129bのそれぞれの先端129tにフェンス130の内壁が固定される。フェンス130は、帯状の板材が環状となった環状体であり、例えば、X軸方向に略平行に延在する一対のフェンス部130aと、X軸方向と略直交する一対のフェンス部130bと、フェンス部130aとフェンス部130bを繋ぐフェンス部130cを有する。ここで、フェンス部130a、130bは、平板であり、フェンス部130cは、歪曲している。
 フェンス130の幅をW1(プロペラ面と平行な方向の幅)としたとき、幅W1は、プロペラ部121~124のそれぞれの厚みよりも広く構成される。これにより、プロペラ部121~124のそれぞれは、フェンス130によって囲まれる。フェンス130は、プロペラ部121~124を一括して囲むダクトとしても機能する。
 飛翔体1Jが水平巡行する一例を図15に示す。図15は、水平巡行する飛翔体1Jを側面から観察している。
 飛翔体1Jの水平巡行時には、フェンス130が回転軸110を中心に回転し、胴体部20がフェンス130によって取り囲まれる。すなわち、胴体部20の上下にフェンス部130aが位置する。この際、上下のフェンス部130aの板面は、水平巡行する方向と略平行となり、上下のフェンス部130aが飛翔体1Jの主翼として飛翔体1Jに揚力を発生させる。
 また、飛翔体1Jにおいては、フェンス130がプロペラ部121~124を一括して囲むので、プロペラ部121~124のそれぞれにダクトを付設する構成よりも、ダクト(すなわち、フェンス130)の容積を減らすことができる。これにより、飛翔体の軽量化を図ることができる。また、フェンス130は、環状であって、所定の幅W1を持つことから、フェンス130は、所望の機械的強度を有している。
 例えば、プロペラ121~124の1つごとに、ダクトを設ける構成に比べて,プロペラ121~124のそれぞれの直径が同じ場合,ダクト部分の総側面積が減るため軽量化が図れ、空気抵抗の削減を図れる。また、フェンス130の箱型構造により、所望の強度を維持したまま、ダクトの軽量化を図れる。さらに、水平飛行中には、フェンス130が揚力を発生する。この際、フェンス130は、箱型であり、軽量化がなされているため、アーム部129a、129bには、主に張力がかかるだけで足りる。
 また、プロペラ部121~124がフェンス130により囲まれることにより、プロペラ部121~124が発する音はフェンス130によって遮音される。これにより、飛翔体1Jは、優れた静粛性を有する。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。
 1A、1B、1C、1D、1E、1F、1G、1I、1J…飛翔体
 10…推進部
 20…胴体部
 100…基体
 30…キャリア
 31、125、125c、125d、126、126c、126d…アーム部
 35…防風版
 40…平行リンク機構
 101、102、125s、126s…遮蔽板
 110、401、402、403、404…回転軸
 110e…端
 111…中心
 120…プロペラ機構
 120a、127、213…補助翼
 120d…ダクト
 120p…プロペラ
 121、122、123、124…プロペラ部
 125b、126b…枝部
 125t、126t…主幹部
 128、302…脚部
 129a、129b…アーム部
 129t…先端
 130…フェンス
 130a、130b、130c…フェンス部
 201、301…重心
 202…取付部
 210、210a、210b…垂直尾翼
 211、212…水平尾翼
 220…電源
 231…スキッド
 240…ファン
 250…胴体後部
 303…収容空間
 304、410…アーム

Claims (16)

  1.  第1方向に延在する回転軸と、前記回転軸の両端に設けられた推力発生機構とを有し、空中を飛行する推進力を発生する推進部と、
     前記回転軸の下方において前記推進部に吊着され、前記回転軸よりも下の位置に重心を有し、前記回転軸の周りに回転自由に構成され、荷物を収容することが可能な胴体部と、
     を具備する飛翔体。
  2.  請求項1に記載された飛翔体であって、
     前記推進部において、前記推力発生機構が前記推力発生機構の推力軸が重力方向に対して平行になる垂直姿勢、あるいは前記推力軸が前記重力方向に対して垂直になる水平姿勢に方向転換し、前記推進力によって前記垂直姿勢で前記胴体部が離着陸し、前記水平姿勢で前記胴体部が水平巡行する
     飛翔体。
  3.  請求項1または2に記載された飛翔体であって、
     前記胴体部は、前記第1方向が短手方向となり、前記第1方向に直交する第2方向が長手方向となる形状を有し、前記推進部に吊着された状態で水平状態を維持する
     飛翔体。
  4.  請求項1~3のいずれか1つに記載された飛翔体であって、
     前記胴体部には、前記推進部の後方に尾翼が設けられている
     飛翔体。
  5.  請求項4に記載された飛翔体であって、
     前記尾翼に第1補助翼が設けられている
     飛翔体。
  6.  請求項1~5のいずれか1つに記載された飛翔体であって、
     前記胴体部には、前記推進部の後方において前記胴体部を前記回転軸の周りに回転させる回転力を発揮するファンが設けられている
     飛翔体。
  7.  請求項3~6のいずれか1つに記載された飛翔体であって、
     前記胴体部の前記第2方向に沿った垂直断面の一部が逆キャンバー型に構成されている
     飛翔体。
  8.  請求項1~7のいずれか1つに記載された飛翔体であって、
     前記胴体部は、前記推力発生機構に電力を供給する電源を有する
     飛翔体。
  9.  請求項1~8のいずれか1つに記載された飛翔体であって、
     前記胴体部は、前記推進部から脱着可能に構成されている
     飛翔体。
  10.  請求項1~9のいずれか1つに記載された飛翔体であって、
     前記推力発生機構は、
     前記回転軸の一方の端に第1アーム部を介して取り付けられた第1プロペラ部及び第2プロペラ部と、
     前記回転軸の他方の端に第2アーム部を介して取り付けられた第3プロペラ部及び第4プロペラ部と
     を有し、
     前記第1方向に直交する方向において、前記第1プロペラ部と前記第2プロペラ部とが並設され、前記第3プロペラ部と前記第4プロペラ部とが並設された
     飛翔体。
  11.  請求項10に記載された飛翔体であって、
     前記第1アーム部及び前記第2アーム部のそれぞれに第2補助翼が設けられている
     飛翔体。
  12.  請求項10または11に記載された飛翔体であって、
     前記第1プロペラ部、前記第2プロペラ部、前記第3プロペラ部、及び前記第4プロペラ部のそれぞれは、プロペラと、前記プロペラを囲む円筒形のダクトとを有し、
     前記胴体部が水平巡行するときに前記ダクトによって揚力が発生する
     飛翔体。
  13.  請求項12に記載された飛翔体であって、
     前記ダクトに第3補助翼が設けられている
     飛翔体。
  14.  請求項12または13に記載された飛翔体であって、
     前記ダクトには、前記推進力が働く方向とは反対の方向に延在する脚部が設けられている
     飛翔体。
  15.  請求項10~14のいずれか1つに記載された飛翔体であって、
     前記推進部は、前記回転軸が貫通する基体を有し、
     前記第1アーム部と前記基体との間に、前記第1アーム部の表面と前記基体の表面との間に流れる空気の流れを抑制する第1遮蔽部と、前記第2アーム部と前記基体との間に、前記第2アーム部の表面と前記基体の表面との間に流れる空気の流れを抑制する第2遮蔽部とが設けられている
     飛翔体。
  16.  請求項1~15のいずれか1つに記載された飛翔体であって、
     前記胴体部と前記推進部との間に、前記第1方向に直交する第2方向に自由度を持つ平行リンク機構をさらに備え、
     前記胴体部が前記平行リンク機構を介して前記推進部に吊着されている
     飛翔体。
PCT/JP2019/028386 2018-12-14 2019-07-19 飛翔体 WO2020121582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980082271.7A CN113165737B (zh) 2018-12-14 2019-07-19 飞行体
JP2020559698A JP7181643B2 (ja) 2018-12-14 2019-07-19 飛翔体
US17/413,896 US11794891B2 (en) 2018-12-14 2019-07-19 Aerial vehicle equipped with multicopter mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-234303 2018-12-14
JP2018234303 2018-12-14

Publications (1)

Publication Number Publication Date
WO2020121582A1 true WO2020121582A1 (ja) 2020-06-18

Family

ID=71076551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028386 WO2020121582A1 (ja) 2018-12-14 2019-07-19 飛翔体

Country Status (4)

Country Link
US (1) US11794891B2 (ja)
JP (1) JP7181643B2 (ja)
CN (1) CN113165737B (ja)
WO (1) WO2020121582A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650793A (zh) * 2021-10-21 2021-11-16 成都飞机工业(集团)有限责任公司 一种可视化重力加油口及其刻度标注方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827348B2 (en) * 2019-03-21 2023-11-28 Gurkan ACIKEL VTOL tilting fuselage winged frame multirotor aircraft

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577789A (ja) * 1991-09-20 1993-03-30 Kawasaki Heavy Ind Ltd 垂直離着陸航空機
US20020100834A1 (en) * 2001-01-31 2002-08-01 Baldwin G. Douglas Vertical lift flying craft
US20090084890A1 (en) * 2006-04-26 2009-04-02 Gert Joachim Reinhardt Aircraft
JP2013189104A (ja) * 2012-03-14 2013-09-26 Ihi Corp 垂直離着陸機
JP2016501773A (ja) * 2012-12-10 2016-01-21 ベルモンド、ジェロメBERMOND, G e rome 胴体に水平ファンおよび翼端にダクテッドファン2基を備えた転換式航空機
KR20170135577A (ko) * 2016-05-31 2017-12-08 김성남 틸팅 및 가변 피치 시스템이 적용된 무인 비행체
US20180002011A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft with Selectively Attachable Passenger Pod Assembly
JP6266731B1 (ja) * 2016-11-05 2018-01-24 宏悦 森 回転翼機
CN207374652U (zh) * 2017-11-02 2018-05-18 深圳市北航旭飞科技有限公司 无人机
US20180265189A1 (en) * 2017-02-28 2018-09-20 Airbus Helicopters Deutschland GmbH Multirotor aircraft with an airframe and a thrust producing units arrangement
EP3415424A1 (en) * 2017-06-12 2018-12-19 Bell Helicopter Textron Inc. X-tiltwing aircraft
CN109263931A (zh) * 2018-10-30 2019-01-25 佛山市神风航空科技有限公司 一种垂直起降飞机
CN109263957A (zh) * 2018-10-30 2019-01-25 佛山市神风航空科技有限公司 一种共轴倾转垂直起降固定翼飞机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488232B2 (en) * 1998-12-16 2002-12-03 Trek Aerospace, Inc. Single passenger aircraft
CN1182005C (zh) * 2002-04-30 2004-12-29 广州天象地效飞行器股份有限公司 动力增升型地效飞行器
US7520466B2 (en) * 2005-03-17 2009-04-21 Nicolae Bostan Gyro-stabilized air vehicle
CN1792715A (zh) * 2005-07-17 2006-06-28 李志文 无翼飞行器及其实施方法
JP2010247627A (ja) * 2009-04-14 2010-11-04 Global Energy Co Ltd 飛行機
CN101643116B (zh) * 2009-08-03 2012-06-06 北京航空航天大学 一种使用双螺旋桨垂直涵道控制的倾转旋翼飞机
WO2015200345A1 (en) * 2014-06-24 2015-12-30 Oliver Garreau Five-wing aircraft to permit smooth transitions between vertical and horizontal flight
KR101767943B1 (ko) * 2015-05-08 2017-08-17 광주과학기술원 추력의 방향 설정이 가능한 멀티로터 타입의 무인 비행체
JP6550562B2 (ja) 2018-04-10 2019-07-31 株式会社エアロネクスト 回転翼機
US11077937B1 (en) * 2018-06-22 2021-08-03 Transcend Air Corporation Vertical take-off and landing (VTOL) tilt-wing passenger aircraft

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577789A (ja) * 1991-09-20 1993-03-30 Kawasaki Heavy Ind Ltd 垂直離着陸航空機
US20020100834A1 (en) * 2001-01-31 2002-08-01 Baldwin G. Douglas Vertical lift flying craft
US20090084890A1 (en) * 2006-04-26 2009-04-02 Gert Joachim Reinhardt Aircraft
JP2013189104A (ja) * 2012-03-14 2013-09-26 Ihi Corp 垂直離着陸機
JP2016501773A (ja) * 2012-12-10 2016-01-21 ベルモンド、ジェロメBERMOND, G e rome 胴体に水平ファンおよび翼端にダクテッドファン2基を備えた転換式航空機
KR20170135577A (ko) * 2016-05-31 2017-12-08 김성남 틸팅 및 가변 피치 시스템이 적용된 무인 비행체
US20180002011A1 (en) * 2016-07-01 2018-01-04 Bell Helicopter Textron Inc. Aircraft with Selectively Attachable Passenger Pod Assembly
JP6266731B1 (ja) * 2016-11-05 2018-01-24 宏悦 森 回転翼機
US20180265189A1 (en) * 2017-02-28 2018-09-20 Airbus Helicopters Deutschland GmbH Multirotor aircraft with an airframe and a thrust producing units arrangement
EP3415424A1 (en) * 2017-06-12 2018-12-19 Bell Helicopter Textron Inc. X-tiltwing aircraft
CN207374652U (zh) * 2017-11-02 2018-05-18 深圳市北航旭飞科技有限公司 无人机
CN109263931A (zh) * 2018-10-30 2019-01-25 佛山市神风航空科技有限公司 一种垂直起降飞机
CN109263957A (zh) * 2018-10-30 2019-01-25 佛山市神风航空科技有限公司 一种共轴倾转垂直起降固定翼飞机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650793A (zh) * 2021-10-21 2021-11-16 成都飞机工业(集团)有限责任公司 一种可视化重力加油口及其刻度标注方法
CN113650793B (zh) * 2021-10-21 2022-01-25 成都飞机工业(集团)有限责任公司 一种可视化重力加油口及其刻度标注方法

Also Published As

Publication number Publication date
US20220048617A1 (en) 2022-02-17
JP7181643B2 (ja) 2022-12-01
US11794891B2 (en) 2023-10-24
JPWO2020121582A1 (ja) 2021-09-27
CN113165737A (zh) 2021-07-23
CN113165737B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
US11639220B1 (en) In-flight reconfigurable hybrid unmanned aerial vehicle
US20200010184A1 (en) Vehicle configuration with motors that rotate between a lifting position and a thrusting position
US10518875B2 (en) Vertical take-off aircraft
US20190337608A1 (en) Coaxially aligned propellers of an aerial vehicle
US8342441B2 (en) VTOL vehicle with coaxially tilted or tiltable rotors
US20070221779A1 (en) Aircraft Produced by Fixing Rapid Airflow Generation Wind Direction Changing Device Directly and Firmly to Side Surface or Wall Thereof
US9908619B1 (en) Ballast control mechanisms for aerial vehicles
WO2020121582A1 (ja) 飛翔体
US20210016877A1 (en) A structure construction for an aircraft and aircraft comprising the structure construction
JP2018144732A (ja) 飛行装置
KR102032243B1 (ko) 틸트프롭 비행체
US11691725B2 (en) Twin fuselage tiltrotor aircraft
ITRM20120014A1 (it) Convertiplano da plurimpiego.
US20240034466A1 (en) Aircraft
AU2009100459A4 (en) Vectored thrust operating system
US11780598B2 (en) Aircraft
WO2022172793A1 (ja) 飛行体
JP7221514B2 (ja) 無人飛行体
CA3081733C (en) Logistics support aircraft having a minimal drag configuration
JP2004210266A (ja) 飛行機
US20200391859A1 (en) Vtol aircraft with leading edge tilting ducted fans
JP7207699B2 (ja) 無人飛行体
CN117104546B (zh) 一种多涵道式无人机及控制方法
JP3226748U (ja) 輸送システム、及び移動体
JP2022107348A (ja) テイルシッター型電動航空機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895811

Country of ref document: EP

Kind code of ref document: A1