WO2020118702A1 - 发光二极管封装体 - Google Patents

发光二极管封装体 Download PDF

Info

Publication number
WO2020118702A1
WO2020118702A1 PCT/CN2018/121265 CN2018121265W WO2020118702A1 WO 2020118702 A1 WO2020118702 A1 WO 2020118702A1 CN 2018121265 W CN2018121265 W CN 2018121265W WO 2020118702 A1 WO2020118702 A1 WO 2020118702A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
emitting diode
light
diode package
package according
Prior art date
Application number
PCT/CN2018/121265
Other languages
English (en)
French (fr)
Inventor
时军朋
李儒维
徐宸科
Original Assignee
泉州三安半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州三安半导体科技有限公司 filed Critical 泉州三安半导体科技有限公司
Priority to CN201880003855.6A priority Critical patent/CN109952660B/zh
Priority to PCT/CN2018/121265 priority patent/WO2020118702A1/zh
Priority to CN202210569529.XA priority patent/CN115000272A/zh
Priority to TW108117063A priority patent/TWI688124B/zh
Publication of WO2020118702A1 publication Critical patent/WO2020118702A1/zh
Priority to US17/086,673 priority patent/US11569410B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to the field of semiconductor lighting, in particular to a package structure of a light emitting diode.
  • a light-emitting diode is a low-voltage semiconductor solid-state light-emitting device that uses a solid-state semiconductor chip as a light-emitting material. When a forward voltage is applied to both ends, carriers in the semiconductor will recombine and cause photon emission. Generating light is the most popular light source technology today.
  • the LED light-emitting device 110 generally includes: a bracket 110 with a bowl and a bowl mounted on the bracket 110.
  • the luminous efficiency of white LEDs is rapidly improving.
  • the luminous efficiency of products on the market has reached 2201m/W.
  • various aspects of process, materials, etc. are carried out. Optimized.
  • One of the key technologies is to redesign the stand. For example, make a ring of protrusions on the bottom of the bowl and then fill the side wall of the bowl with reflective materials, such as the Japanese manufacturer Nichia 3 030.
  • the object of the present invention is to provide a high-efficiency light-emitting diode package structure and a manufacturing method thereof.
  • the light-emitting diode package including a support, has opposed upper and lower surfaces, wherein the upper surface has a bottom and a side wall portion connected to the bottom, thereby forming a semiconductor device for mounting A space; an LED chip installed in the space; a packaging material layer covering the LED chip, thereby sealing the LED chip in the bracket.
  • reflectors are provided at two or more different positions on the edge of the upper surface of the bottom of the bracket, and the reflectors are used to shorten the propagation of the light emitted by the LED chip inside the package path.
  • the light emitting diode package can be obtained by the following manufacturing method, (1) providing a bracket, the bracket has an upper surface and a lower surface, wherein the upper surface has a bottom and a side wall portion connected to the bottom, Thereby, a space for mounting semiconductor devices is formed; (2) LED chips are installed in the space of the bracket; (3) two or more different positions are provided on the edge of the bottom upper surface of the bracket (4) Form a layer of encapsulating material to cover the LED chip, thereby sealing the LED chip in the bracket.
  • the light emitting diode package can also be obtained by the following manufacturing method, (1) providing a bracket, the bracket has an opposite upper surface and a lower surface, wherein the upper surface has a bottom and a side wall portion connected to the bottom , So as to form a space for mounting semiconductor devices; (2) There are two or more different positions at the edge of the upper surface of the bottom of the bracket; (3) Install in the space of the bracket LED chip; (4) forming a packaging material layer to cover the LED chip, thereby sealing the LED chip in the bracket.
  • the reflector is only formed on a part of the edge of the upper surface of the bottom of the bracket, for reducing the difference in the propagation distance of the light emitted by the LED chip in different directions.
  • the reflector can be formed by dispensing, spraying or the like.
  • the light emitting light emitting diode package does not need to redesign the bracket, the light emitting efficiency of the light emitting diode package can be effectively submitted, and the process is simple.
  • FIG. 1 is a schematic diagram illustrating the structure of a conventional light emitting diode package.
  • FIG. 2 is a perspective view illustrating a first embodiment of the light emitting diode package.
  • FIG. 3 is a schematic cross-sectional view illustrating a first embodiment of the light-emitting diode package.
  • FIG. 4 is a partial perspective view illustrating a first embodiment of the light emitting diode package.
  • FIG. 5 is a top view illustrating a first embodiment of the light emitting diode package.
  • FIG. 6 is a partial perspective view illustrating a second embodiment of the light emitting diode package.
  • FIG. 7 is a plan view illustrating a second embodiment of the light emitting diode package.
  • FIG. 8 is a plan view illustrating a third embodiment of the light emitting diode package.
  • FIG. 9 is a plan view illustrating a fourth embodiment of the light emitting diode package.
  • FIG. 10 is a plan view illustrating a fifth embodiment of the light emitting diode package.
  • FIG. 11 is a plan view illustrating a sixth embodiment of the light emitting diode package.
  • FIG. 12 is a plan view illustrating a seventh embodiment of the light emitting diode package.
  • the following embodiments disclose a light-emitting diode package, which includes: a holder with a bowl, the LED chip is installed in the bowl, and a reflector is provided at different positions on the edge of the bottom of the bowl, which is performed by the packaging material Sealing, the reflector can effectively shorten the propagation path of the light emitted by the LED chip inside the package, thereby improving the light extraction efficiency of the device.
  • an LED package 200 mainly includes: a bracket 210, an LED chip 220, a sealing material 230, and a reflector 240.
  • the bracket 210 may be an EMC bracket, a PPA bracket, a PCT bracket, or a ceramic bracket.
  • the EMC holder has a bowl-cup structure, including a bottom surface 211 and a side wall portion 212 connected to the bottom surface, forming a space 213 for mounting LED chips.
  • the bottom surface 210 has a conductive layer, and the conductive layer passes through the gap 2113 into a first conductive region 2111 and a second conductive region 2112.
  • the area of the first conductive area 2111 is much larger than the area of the second conductive area 2112, which is used to mount the LED chip.
  • the bottom surface 210 is substantially flat, and the entire surface is not intentionally patterned for height difference, and the high and low difference values are basically maintained at Below 10nm.
  • the side wall portion 212 preferably has a certain inclination angle, and the inclination angle may be 45 to 90°
  • the inner surface 2121 preferably has a certain reflectivity.
  • More than one LED chip 220 is disposed on the bracket 210, specifically assembled on the first conductive area of the conductive layer, and connected to the first conductive area 2111 through the lead 2201, and connected to the second conductive layer 2 through the lead 2202 112 connections. With the help of externally supplied power, more than one LED chip 220 can release light, and the light released from the LED chip 220 can be released to the outside.
  • the LED chip 110 includes an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, and may be a conventional front-mounted structure, a flip-chip structure, or a vertical structure.
  • the reflector 240 is disposed in a part of the edge area of the bowl, preferably away from the light emitting diode 220, which may be a columnar structure or a block structure, the number is preferably more than two, and its position and size are designed according to actual needs, which mainly depends on
  • the size of the space in the bowl and the distance difference between the LED chip 220 and each side wall 2122 of the bowl cup can shorten the propagation path of the light emitted by the LED chip 220 inside the package, and at the same time can reduce the light emitted by the LED chip The difference in the propagation distance in different directions. Taking the structure shown in FIG.
  • the bottom surface 211 of the bowl and cup has a rectangular shape with four top corners 213, and the LED chip 220 is installed in the middle area of the bottom surface as much as possible.
  • the four top corners 213 of the rectangle are located Is far away from the LED chip 220, and at the same time the inner side wall 2112 of the bowl intersects here, can be used as the support of the reflector 240, so it is suitable for the reflector 240, which can be dispensed or sprayed at the top angle
  • the position of the reflector 240 is formed.
  • the height of the reflector 240 is preferably 10 microns or more, preferably between the height of the LED chip and the height of the side wall portion 212 of the bowl and cup, preferably, not less than the light-emitting layer of the LED chip 220, More preferably, the height of the reflector 240 is not lower than the height of the LED chip 220 and not higher than the top surface 2121 of the side wall portion 212 of the bowl and cup, for example, may be slightly lower than the top surface 2121 of the side wall portion of the bowl and cup.
  • the surface of the reflector 240 has a high reflectivity, preferably greater than the reflectivity of the inner surface 2121 of the bowl and cup, which can be more than 90%, more preferably, can reach more than 95%, and the material can be a reflective plastic Or reflective resin.
  • the inclination angle can be 30 to 90°, and the inclination angle is less than 30°, the space for installing the LED chip 220 in the bowl is correspondingly reduced, and it is difficult to ensure that the LED chip 220 is used in the mounting process
  • the preferred range of the inclination angle is 45 to 80°.
  • the area of all reflectors 240 may be about 5% relative to the area S1 of the bottom surface 211 inside the bowl and cup ⁇ 60%S1. That is, in a state where the size of the light emitting diode package 200 is predetermined, the area of the reflector 240 varies depending on the position and number of the LED chips 220. If the area of the reflector is greater than 60% of the total area of the light emitting diode package 100, the reflector 240 is not easy to control in the bowl, and the area used for mounting the LE D chip in the bowl is excessively occupied.
  • the size of the LED chip 220 mounted on the light emitting diode package 200 is limited, so that the usability of the light emitting diode package 200 is reduced, and the space for mounting the LED chip 220 and performing wire bonding is reduced. Defects may occur.
  • the reflector 240 if it is less than 5%, the reflector 240 has a limited degree of shortening the propagation path of the light emitted by the LED chip inside the package, and it is difficult to effectively improve the light efficiency. Therefore, as described above, it is advantageous that the reflector 240 occupies 5% to 60% of the area of the bowl bottom surface 211.
  • the single reflector 240 focuses on the shortest distance H2 from the LED chip 220.
  • the distance H2 between the reflector 240 and the LED chip 220 is too small, on the one hand, since the bottom surface of the bowl and cup is substantially flat, the material of the reflector may be affected by the material of the reflector 240 at this time, for example, it may cause crawling
  • the distance between the reflector 240 and the LED chip 240 is too short, which is not conducive to the light emitted by the LED chip out of the package, and the surface light undergoes multiple internal reflections inside the package, causing light loss, so the reflector 240 and the LED
  • the distance H 2 between the chips 220 is preferably 50 ⁇ m or more, preferably 100 ⁇ m or more, for example, 100 to 500 ⁇ m, or 500 to 1000 ⁇ m, or 1000 to 5000 ⁇ m, or 0.5 to 10 mm
  • the manufacturing process of the reflector 240 will also affect the distance H2 between the reflector 240 and the LED chip.
  • the method of dispensing is used.
  • the distance between the chips H2; using the spray method, the size of the reflector can be controlled more accurately at this time, and the distance H2 between the reflector and the LED chip can be as close as possible according to optical needs.
  • the distance H2 between the reflector 240 and the LED chip 220 is affected to some extent by the shortest distance H1 from the LED chip 220 to the side wall 212 of the bowl and cup, and the value of H2 is set to 0.3H1 ⁇ 1.3H1 will be more advantageous.
  • H2 is less than 0.3H1, it is easy to cause uneven distribution of the light emitted by the LED chip 220 on the light exit surface of the package.
  • H2 is greater than 1.3H1, the adjustment of the light path of the reflector 240 is compared limited. In a better value range, H2 is between 0.5H1 and 1.1H1. In this interval, the reflector 240 can adjust the light path inside the package to achieve a more uniform light extraction and improve light extraction efficiency.
  • the distance H2 between the reflector 240 and the LED chip 220 is determined, the larger the size of the reflector 240, the greater the light extraction rate of the light emitting diode package.
  • the light emitting diode package 200 may further include an anti-static element 250 for preventing the LED chip 220 from being damaged due to static electricity that may be generated by external power supply.
  • the anti-static element 250 may be located inside the bracket 210 without being exposed to the outside.
  • the antistatic element 250 can be mounted on any one of the first conductive area 2111 and the second conductive area 2112, and electrically connected through the lead 2501.
  • the antistatic element 250 can be encapsulated by the bracket 210 in a state of being attached to any one of the first conductive area 2111 and the second conductive area 2112, and can be completely Covered status.
  • the antistatic element 250 is disposed in an edge area in the bowl, and a reflector 240 covers the antistatic element 250, and the light emitted from the LED chip 220 may not directly illuminate the antistatic element 250.
  • a height difference Ah may be formed between the upper surface 2401 of the reflector 240 and the upper end surface 2121 of the side wall portion of the bracket 210. That is, the upper end surface 2121 of the side wall portion of 210 may be arranged slightly higher than the upper surface 2401 of the reflector 240.
  • the light emitting diode package 200 may further include a sealing material 230.
  • the sealing material 150 may be resin or silicone, and may cover the inside of the LED chip 220, the reflector 240, and the bowl.
  • the sealing material 230 can be hardened and formed by filling the inside of the bowl with a liquid sealing material during the manufacturing process, and a height difference can be formed between the upper surface 2401 of the reflector 240 and the upper end surface 2121 of the side wall portion of the bracket 210 Ah, thus it is possible to prevent the liquid sealing material 230 from overflowing to the outside of the bracket 210 during the covering process.
  • FIG. 6 is a partial perspective view illustrating a light emitting diode package of a second embodiment
  • FIG. 7 is a top view illustrating a light emitting diode package of a second embodiment of the present invention.
  • the light emitting diode package 200 includes a bracket 210, an LED chip 220, a sealing material 230, a reflector 240, and a zener diode 250.
  • the light emitting diode package of the second embodiment will be described, as well as the first and second embodiments The same explanation is omitted.
  • the two LED chips 220A and 220B mounted in the bracket 210 of the light emitting diode package 200 are staggered, that is, the angle between the center line of the chip and the edge of the chip is not 90°. Because the LED chips 220A and 220B are staggered, the distance between the chip and the bowl will be different. As shown in FIGS. 6 and 7, the LED chip is farther from the upper left corner 2301 and the lower left corner 2303 of the bowl, and is relatively close to the other two corners 2302 and 2304, so the corners 2301 and 2303 of the bowl are filled with white glue as Reflective body 240. Further, a Zener diode 250 may be attached to the corner 2303 of the bowl and covered with white glue.
  • the LED chips are horizontally arranged, the mutual absorption of light between the LED chips can be effectively reduced, and the light extraction efficiency of the light emitting diode package can be further improved.
  • FIG 8 is an attached view illustrating the light emitting diode package of the third embodiment.
  • a reflector 240B is provided on the edge of the bowl and between the two LED chips.
  • the reflector 240B has a smaller scale than the reflector 240A on the corner.
  • the difference in the horizontal direction from the central position of the two LED chips can be D, the reflector 240
  • the projection diameter dl of A on the bowl bottom surface 211 and the projection diameter d2 of the reflector 240A on the bowl bottom surface 211 are optimized to obtain a high-efficiency light-emitting diode package.
  • the horizontal difference between the central positions of the two LED chips is preferably D, which is less than one-half of the length L of the LED chip.
  • D is greater than 0.5L, there will be room for wire bonding Reduced, may cause defects during the process.
  • the projection diameter dl of the bowl bottom surface 211 of the reflector 240A preferably takes a value of 0.5 ⁇ 2D, for example, it can be between D ⁇ 1.5D, the projection diameter d2 of the projection bottom surface 211 of the bowl 240A of the reflector 240A 0.1 ⁇ D, for example, 0.5D ⁇ D.
  • providing reflectors of different sizes at different positions on the edge of the bowl and cup can further improve the light extraction efficiency of the light emitting diode package.
  • FIG. 9 is an additional view illustrating the light emitting diode package of the fourth embodiment.
  • three reflector cups 240 are provided on the edge of the bowl 210 of the bracket 210 of the light emitting diode package 200. Since the LED chips 220A and 220B are alternately attached to the first conductive area 2111 of the bracket, the upper left corner, upper right corner, and lower right corner of the bowl and cup The distances from the three corners to the LED chip are relatively long, so the reflector 240 is provided at these three positions.
  • the LED packages of the first to fourth embodiments are all mounted with two LED chips, but the number of LED chips included in the LED package of the present invention is not limited to two. Need to install one or more.
  • FIG. 10 illustrates an additional view of the light emitting diode package of the fifth embodiment.
  • only one LED chip is mounted in the light-emitting diode package 200, and a reflector is provided at all four corners of the bowl.
  • FIG. 11 illustrates an additional view of the light emitting diode package of the sixth embodiment. Similar to the first embodiment, the light emitting diode package 200 includes three LED chips, and no Zener diode is provided in the bowl. As shown in FIG. 11, the three LED chips 220A, 220B, and 220C are at the top left and the bottom at the right. Two corners of the bowl and cup far away from the LED chip are filled with white glue as a reflector 240.
  • FIG. 12 illustrates an additional view of the light emitting diode package of the seventh embodiment. Similar to the fifth embodiment, the light-emitting diode package includes three LED chips. The specific placement is shown in FIG. 12, with the uppermost one to the left, the middle one to the right, and the lowermost to the left. In the upper left corner of the bracket, the lower left corner and the middle right are filled with white glue as the reflector 240.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

一种高光效的发光二极管封装体(200),具体包括支架(210),具有相对的上表面和下表面,其中上表面具有一个底表面(211)、及与该底表面(211)连接的侧壁部(212),从而形成一个用于安装半导体器件的空间;LED芯片(220),安装于该空间内;密封材料(230),覆盖所述LED芯片(220),从而将所述LED芯片(220)密封于该支架(210)内。进一步地,所述支架(210)的底部上表面的边缘有两个或者两个以上不同的位置设置有反光体(240),所述反光体(240)用于缩短所述LED芯片(220)发出的光线在封装体内部的传播路径。

Description

发光二极管封装体 技术领域
[0001] 本发明涉及半导体照明领域, 具体为一种发光二极管的封装体结构。
背景技术
[0002] 发光二极管 (LED) 是一种低电压半导体固体发光器件, 它是利用固体半导体 芯片作为发光材料, 当两端加上正向电压, 半导体中的载流子会发生复合引起 光子发射而产生光, 是当今最热门的光源技术。
[0003] 目前, 普通照明 LED封装大多采用注塑成型的 EMC、 PPA等支架, 其封装结构 如图 1示, 该 LED发光装置 110—般包括: 具有碗杯的支架 110、 安装于支架 110的 碗杯内的 LED芯片 120和抗静电元件 130、 以及用于将各电子元件进行密封的封装 胶 140。 随着 LED封装技术的不断发展, 白光 LED的光效在快速的提升, 目前市 场上的产品的光效已有达到 2201m/W, 为了达到如此高的光效, 对工艺, 材料等 各个方面进行了优化。 其中一个关键的技术是重新设计支架, 例如在支架的碗 杯底部做一圈凸起, 然后在碗杯的侧壁填充反光材料等, 例如日本厂商日亚的 3 030产品。
[0004] 尽管如此可以提升器件的光效, 但是由于要重新设计支架, 费用较高; 再者需 在碗杯的侧面填充一整圈反光材料, 降低生产效率且成本增加; 此外, 由于支 架有凸起的设计, 芯片的大小和安装位置都受到了限制, 针对不同尺寸的芯片 需要采用不同的支架, 导致灵活度比较差。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 本发明的目的, 在于提供一种高光效的发光二极管封装体结构及其制作方法。
[0006] 该发光二极管封装体, 包括支架, 具有相对的上表面和下表面, 其中上表面具 有一个底部及、 与该底部连接的侧壁部, 从而形成一个用于安装半导体器件的 空间; LED芯片, 安装于该空间内; 封装材料层, 覆盖所述 LED芯片, 从而将所 述 LED芯片密封于该支架内。
[0007] 进一步地, 所述支架的底部上表面的边缘有两个或者两个以上不同的位置设置 有反光体, 所述反光体用于缩短所述 LED芯片发出的光线在封装体内部的传播路 径。
[0008] 该发光二极管封装体可以通过下面制作方法获得, (1) 提供一支架, 该支架 具有相对的上表面和下表面, 其中上表面具有一个底部及、 与该底部连接的侧 壁部, 从而形成一个用于安装半导体器件的空间; (2) 在所述支架的空间内安 装 LED芯片; (3) 在所述支架的底部上表面的边缘有两个或者两个以上不同的 位置设置反光体; (4) 形成封装材料层, 覆盖所述 LED芯片, 从而将所述 LED 芯片密封于该支架内。
[0009] 该发光二极管封装体还可以通过下面制作方法获得, (1) 提供一支架, 该支 架具有相对的上表面和下表面, 其中上表面具有一个底部及、 与该底部连接的 侧壁部, 从而形成一个用于安装半导体器件的空间; (2) 在所述支架的底部上 表面的边缘有两个或者两个以上不同的位置设置反光体; (3) 在所述支架的空 间内安装 LED芯片; (4) 形成封装材料层, 覆盖所述 LED芯片, 从而将所述 LE D芯片密封于该支架内。
[0010] 较佳的, 所述反光体仅形成在所述支架的底部上表面的部分边缘, 用于减少所 述 LED芯片发射的光在不同方向上的传播距离的差异。 该反光体可以通过点胶、 喷射等方式形成。
[0011] 该发光发光二极管封装体不用重新设计支架, 可以有效提交发光二极管封装体 的出光效率, 且工艺简单。
发明的有益效果
有益效果
[0012] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
对附图的简要说明 附图说明
[0013] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0014] 图 1是一个示意图, 说明一个习知的发光二极管封装体的结构。
[0015] 图 2是一个立体图, 说明该发光二极管封装体的一个第一实施例。
[0016] 图 3是一个剖面示意图, 说明该发光二极管封装体的一个第一实施例。
[0017] 图 4是一个局部立体图, 说明该发光二极管封装体的一个第一实施例。
[0018] 图 5是一个俯视图, 说明该发光二极管封装体的一个第一实施例。
[0019] 图 6是一个局部立体图, 说明该发光二极管封装体的一个第二实施例。
[0020] 图 7是一个俯视图, 说明该发光二极管封装体的一个第二实施例。
[0021] 图 8是一个俯视图, 说明该发光二极管封装体的一个第三实施例。
[0022] 图 9是一个俯视图, 说明该发光二极管封装体的一个第四实施例。
[0023] 图 10是一个俯视图, 说明该发光二极管封装体的一个第五实施例。
[0024] 图 11是一个俯视图, 说明该发光二极管封装体的一个第六实施例。
[0025] 图 12是一个俯视图, 说明该发光二极管封装体的一个第七实施例。
发明实施例
本发明的实施方式
[0026] 下面各实施例公开了一种发光二极管封装体, 其包括: 具有碗杯的支架, LED 芯片安装于碗杯里, 在碗杯底部的边缘之不同位置设置反光体, 通过封装材料 进行密封, 该反光体可以有效缩短所述 LED芯片发出的光线在封装体内部的传播 路径, 从而提升器件的出光效率。
[0027] 请参看附图 2和 3, 根据本发明的第一个较佳实施例, 一种 LED封装体 200, 主 要包括: 支架 210、 LED芯片 220, 密封材料 230、 反光体 240。
[0028] 如图 4所示, 该支架 210可以为 EMC支架、 PPA支架、 PCT支架或者陶瓷支架。
在本实施例中, 以 EMC支架为例, 具有碗杯结构, 包含底表面 211以及与底表面 连接的侧壁部 212, 形成一个用于安装 LED芯片的空间 213。 其中底表面 210具有 导电层, 该导电层通过间隙 2113区域为第一导电区 2111和第二导电区 2112, 其 中第一导电区 2111的面积远大于第二导电区 2112的面积, 用于安装 LED芯片, 底 表面 210基本平坦, 整个表面未刻意进行高差图案化处理, 其高、 低差值基本保 持在 10nm以下。 侧壁部 212优选具有一定的倾斜角度, 该倾斜角度可以为 45~90°
, 倾斜角度小于 45°, 则能够在碗杯内贴 LED芯片 220的空间相应减小, 难以确保 用于 LED芯片 220贴装工序的空间和用于引线键合的空间。 内侧表面 2121优选具 有一定的反射率。
[0029] LED芯片 220具备一个以上, 配置于支架 210上, 具体为装配在导电层的第一导 电区上, 并通过引线 2201与第一导电区 2111连接, 通过引线 2202与第二导电层 2 112连接。 借助于外部供应的电源, 一个以上的 LED芯片 220可以释放光, 从 LED 芯片 220释放的光可以释放到外部。 该 LED芯片 110包括 n型半导体层、 活性层及 p 型半导体层, 可以为常规正装结构, 也可以为倒装结构或者垂直结构。
[0030] 反光体 240设置在碗杯的部分边缘区域, 优选远离发光二极管 220, 其可以为柱 状结构或者块装结构, 数量优先为两个以上, 其位置和尺寸根据实际需求进行 设计, 主要取决于碗杯内的空间大小及 LED芯片 220到碗杯的各个侧壁 2122之间 距离差, 以期可以缩短 LED芯片 220发出的光线在封装体内部的传播路径, 同时 可以减少 LED芯片发射的光在不同方向上的传播距离的差异。 以图 5所示的结构 为例, 碗杯的底表面 211呈矩形, 具有四个顶角 213 , LED芯片 220尽可能地安装 于底表面的中间区域, 此时矩形的四个顶角 213所在的位置与 LED芯片 220的距离 较远, 同时碗杯的内侧壁 2112在此处相交, 可以作为反光体 240的支撑部, 因此 适合设置反光体 240, 可以通过点胶或者喷射的方式在顶角的位置形成该反光体 240。 该反光体 240的高度为 10微米以上为佳, 优选介于 LED芯片的高度与碗杯的 侧壁部 212的高度之间, 较佳的, 以不低于 LED芯片 220的发光层为佳, 更佳的, 该反光体 240的高度不低于 LED芯片 220的高度、 不高于碗杯的侧壁部 212的顶表 面 2121, 例如可以略低于碗杯的侧壁部的顶表面 2121。 进一步的, 该反光体 240 的表面具有高反射率, 优选大于碗杯的内侧表面 2121的反射率, 可以为到 90%以 上, 更佳的, 可以达到 95%以上, 其材料可以是反光胶材或反光树脂。 在本实施 例中, 在碗杯内的四个角落 213采用点胶的方式设置四个反光体 240, 其材料为 反光硅胶, 该反光体与侧壁部 210的内侧表面 2122接触, 面向 LED芯片的一侧可 以具有一定的倾斜角度, 该倾斜角度可以为 30~90°, 倾斜角度小于 30°, 则碗杯 内用于安装 LED芯片 220的空间相应减小, 难以确保用于 LED芯片 220贴装工序的 空间和用于引线键合的空间, 该倾斜角度的更佳范围为 45~80°。
[0031] 如图 5所示, 如果考虑反光体 240与该碗杯的面积占比关系, 相对于该碗杯内部 的底表面 211的面积 S1, 则所有反光体 240的面积可以约为 5%~60%S1。 即, 在 发光二极管封装件 200的大小既定的状态下, 反光体 240的面积会因 LED芯片 220 的位置及数量而异。 如果反光体的面积占比大于发光二极管封装件 100的全体面 积的 60%, 此时反光体 240在碗杯内不易控制, 且在过多占用碗杯内用于安装 LE D芯片的面积, 能够贴装于发光二极管封装件 200的 LED芯片 220的大小受限, 使 得发光二极管封装件 200的利用性会下降, 并且会使贴装 LED芯片 220、 进行引线 键合的空间减小, 在工序过程中可能发生不良。 另外, 如果小于 5%, 此时反光 体 240对于缩短 LED芯片发出的光线在封装体内部的传播路径的程度有限, 较难 有效提升光效。 因此, 如上所述, 反光体 240占碗杯底表面 211的面积的 5%~60% 会比较有利。
[0032] 此外, 由于反光体 240优选设置在碗杯的四个角落处, 此时单个反光体 240重点 考虑其到 LED芯片 220的最近距离 H2。 当反光体 240与 LED芯片 220之间的距离 H2 过小时, 一方面由于碗杯底表面基本平坦, 则此时在制作反光体 240有可能使得 反光体的材料影响 LED芯片, 例如有可能产生爬胶, 另一方面反光体 240与 LED 芯片 240的距离过短不利于 LED芯片发出的光线射出封装体, 造面光线在封装体 内部进行多次内反射, 造成光损耗, 因此反光体 240与 LED芯片 220之间的距离 H 2为 50微米以上为宜, 较佳为 100微米以上, 例如可以为 100~500微米, 或者 500~ 1000微米, 或者 1000~5000微米, 或者 0.5~10毫米等, 可以根据封装体的尺寸及 芯片的尺寸进行选择。 同时反光体 240的制作工艺也会影响到反光体 240与 LED芯 片之间距离 H2, 例如采用点胶的方式, 此时较不易控制反光胶的尺寸, 此时宜 适当的加大反光体 240与 LED芯片之间距离 H2; 采用喷射的方式, 此时可以更精 确控制反光体的尺寸, 此时可以反光体与 LED芯片之间的距离 H2可以根据光学 需要尽可能的靠近。 再者, 反光体 240与 LED芯片 220之间的距离 H2在一定程度 上受 LED芯片 220到碗杯的侧壁 212的最短距离 H1的影响, 将 H2的值设置为 0.3H1 ~1.3H1会是比较有利的, 当 H2小于 0.3H1时容易造成 LED芯片 220发出的光线在 封装体的出光面的分布不均匀, 当 H2大于 1.3H1时, 反光体 240对于光路径的调 节比较有限。 在一个更佳的取值范围中, H2为 0.5H1~1.1H1之间, 在该区间反光 体 240可以比较好地调整封装体内部的光路径, 达到较为均匀的出光并提升出光 效率。 当反光体 240与 LED芯片 220之间的距离 H2确定时, 反光体 240的尺寸越大 , 发光二极管封装体的出光率越大。
[0033] 在本实施例中, 结合常规支架的碗杯结构, 不用重新进行支架的设计, 在碗杯 的四个角落通过点胶、 喷射等方式形成反光体, 该反光体可以有效缩短 LED芯片 发出的光线在封装体内部的传播路径, 更可以减少 LED芯片发射的光在不同方向 上的传播距离的差异, 进而提升了发光二极管的出光效率。
[0034] 在本实施例中, 该发光二极管封装体 200还可以包括抗静电元件 250, 用于防止 LED芯片 220因外部供应电源而可能发生的静电而受到损伤。 在本实施例中, 抗 静电元件 250安装于碗杯内的情形进行说明, 根据需要, 抗静电元件 250可以位 于支架 210的内部而不露出于外部。 该抗静电元件 250可以贴装于第一导电区 211 1及第二导电区 2112中任意一处, 并通过引线 2501进行电性连接。 此时, 抗静电 元件 250在贴装于第一导电区 2111及第二导电区 2112中的任意一个的状态下, 可 以被支架 210封装, 并且以借助于构成封装胶 230的树脂等来以完全覆盖的状态 。 优选地, 该抗静电元件 250设置于该碗杯内的边缘区域, 一个反光体 240覆盖 该抗静电元件 250, 从 LED芯片 220发光的光可以不直接照射抗静电元件 250。
[0035] 在本实施例中, 如图 3所示, 在反光体 240的上表面 2401与支架 210的侧壁部上 端面 2121之间可以形成高低差 Ah。 即, 210的侧壁部上端面 2121可以配置得稍高 于反光体 240的上表面 2401。
[0036] 在本实施例中, 发光二极管封装件 200可以还包括密封材料 230。 密封材料 150 可以为树脂或硅胶, 可以覆盖 LED芯片 220、 反光体 240和碗杯的内侧。 此时, 密 封材料 230在制造过程中可以利用液态的密封材料填充碗杯内侧的状态下硬化形 成, 在反光体 240的上表面 2401与支架 210的侧壁部上端面 2121之间可以形成高 低差 Ah, 因而能够防止在此过程中, 液态的密封材料 230在覆盖过程中溢出到支 架 210的外部。 [0037] 图 6是图示第二实施例的发光二极管封装件的局部立体图, 图 7是图示本发明第 二实施例的发光二极管封装件的俯视图。 该发光二极管封装体 200包括支架 210 、 LED芯片 220, 密封材料 230、 反光体 240和齐纳二极管 250, 对第二实施例的发 光二极管封装件进行说明, 与第 1实施例及第 2实施例相同的说明省略。
[0038] 在本实施例中, 该发光二极管封装 200的支架 210内装贴的两个 LED芯片 220A和 220B错开排列, 即芯片的中心点连线和芯片的边缘夹角不是 90°。 由于 LED芯片 220A和 220B位置错开, 因此芯片到碗杯的距离会不同。 如图 6和 7所示, LED芯 片距离碗杯的左上角 2301和左下角 2303比较远, 而距离另两个角 2302和 2304相 对较近, 因此碗杯的角落 2301和 2303设置填充白胶作为反光体 240。 进一步地, 可以在碗杯的角落 2303装贴有一颗齐纳二极管 250, 并用白胶覆盖齐纳二极管。
[0039] 在本实施例中, 由于 LED芯片水平错开排列, 可以有效减少 LED芯片之间的相 互吸光, 进一步提升发光二极管封装体的出光效率。
[0040] 图 8是图示第三实施例的发光二极管封装件的附视图。 本实施例在第二实施例 的基础上, 在碗杯的边缘且在两颗 LED芯片中间的位置设置反光体 240B, 该反 光体 240B的尺度小于角落上的反光体 240A的尺度。
[0041] 在本实施例中, 可以从两个 LED芯片中心位置水平方向的差值为 D、 反光体 240
A在碗杯底面 211的投影的直径 dl、 反光体 240A的碗杯底面 211的投影的直径 d2进 行优化, 进而获得高光效的发光二极管封装体。 首先, 两个 LED芯片中心位置水 平方向的差值为 D的较佳取值为 LED芯片长度 L的二分之一以下, 当 D的取值大 于 0.5L时, 会使得进行引线键合的空间减小, 在工序过程中可能发生不良。 反光 体 240A的碗杯底面 211的投影的直径 dl较佳取值为 0.5~2D, 例如可以为 D~1.5D 之间, 反光体 240A的碗杯底面 211的投影的直径 d2的较佳取值为 0.1~D, 例如可 以为 0.5D~D。
[0042] 在本实施例中, 在碗杯边缘的不同位置设置不同尺寸的反光体, 可以进一步提 升发光二极管封装体的出光效率。
[0043] 图 9是图示第四实施例的发光二极管封装件的附视图。 在本实施例中, 在发光 二极管封装体 200的支架 210的碗杯边缘设置三个反光杯 240。 由于 LED芯片 220A 和 220B交错装贴于支架的第一导电区 2111, 因此碗杯的左上角、 右上角、 右下 角这三个角落到LED芯片的距离相对较远, 因此在此三个位置设置反光体 240。
[0044] 前面第一至四个实施例的发光二极管封装体都装贴有两个LED芯片, 但本发明 所述的发光二极管封装体包含的LED芯片个数并不局限于两个, 可以根据需求装 贴一个或者多个。
[0045] 图 10图示第五实施例的发光二极管封装件的附视图。 在本实施例中, 该发光二 极管封装体 200中只装贴一个LED芯片, 在碗杯的四个角落都设置一个反光体。
[0046] 图 11图示第六实施例的发光二极管封装件的附视图。 与第一个实施例类似, 发 光二极管封装体 200包含三个LED芯片, 未在碗杯内设置齐纳二极管。 如图 11所 示, 三颗LED芯片 220A、 220B和 220C中最上方靠左侧, 最下方靠右侧。 在距离 LED芯片较远的碗杯的两个角落填充白胶作为反光体 240。
[0047] 图 12图示第七实施例的发光二极管封装件的附视图。 与第五个实施例类似, 发 光二极管封装体包含三个LED芯片, 具体摆放位置如图所 12示, 最上方的靠左侧 , 中间一颗靠右侧, 最下方的靠左侧。 在支架的左上角, 左下角以及右中部的 位置填充白胶作为反光体 240。
[0048] 如以上所作的说明, 根据参照附图的实施例, 对本发明进行了具体说明, 但所 述实施例只是列举本发明的优选示例进行说明, 因而不得理解为本发明只局限 于所述实施例, 本发明应理解为本发明的技术方案及其等价概念。

Claims

权利要求书
[权利要求 1] 一种发光二极管封装体, 包括: 支架, 具有相对的上表面和下表面, 其中上表面具有一个底部及、 与该底部连接的侧壁部, 从而形成一个 用于安装半导体器件的空间; LED芯片, 安装于该空间内; 封装材料 层, 覆盖所述 LED芯片, 从而将所述 LED芯片密封于该支架内, 其特 征在于: 所述支架的底部上表面的边缘有两个或者两个以上不同的位 置设置有反光体, 所述反光体用于缩短所述 LED芯片发出的光线在封 装体内部的传播路径。
[权利要求 2] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 用于减少所述 LED芯片发射的光在不同方向上的传播距离的差异。
[权利要求 3] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述支架底 部的上表面为一平坦面, 其高低差为 10微米以下。
[权利要求 4] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 与所述支架的侧壁部接触, 并突出于该侧壁部的内壁表面。
[权利要求 5] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的反射率大于或等于所述侧壁部的内侧表面的反射率。
[权利要求 6] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的反射率为 90%以上。
[权利要求 7] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反射体 与所述芯片的最近距离低于所述侧壁部的内侧表面与所述 LED芯片的 最短距离。
[权利要求 8] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的高度不高于所述侧壁部的高度。
[权利要求 9] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的高度不低于所述侧壁部高度的 2/3。
[权利要求 10] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述 LED芯 片包括第一类型半导体层、 第二类型半导体层及夹在两者之间的发光 层, 所述反光体的高度不低于所述发光层的高度。
[权利要求 11] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的上表面与所述支架的侧壁部上端面之间形成一个台阶。
[权利要求 12] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的高度为 5~200(Vm之间。
[权利要求 13] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的材料是反光硅胶或反光树脂。
[权利要求 14] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 与所述 LED芯片的距离为 10(Vm以上。
[权利要求 15] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 定义所述 LE
D芯片与所述侧壁部的最近距离为 H1, 所述反光体与所述 LED芯片之 间的距离为 H2, 则 H2=0.3~1.3H1。
[权利要求 16] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 占所述空间的面积比例为 5%~60%。
[权利要求 17] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 为柱状结构或块状结构。
[权利要求 18] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 面向所述 LED芯片的一侧具有倾斜角度, 该角度为 30~90°。
[权利要求 19] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 通过点胶、 喷射或者网印的方式形成于所述空间的边缘。
[权利要求 20] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的材料与所述支架底部的材料不同。
[权利要求 21] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 的材料与所述支架的侧壁部的材料不同。
[权利要求 22] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 还包括一个 抗静电元件, 至少一个该反光体覆盖所述抗静电元件。
[权利要求 23] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述支架为
EMC支架、 PPA支架、 PCT支架或者陶瓷支架。
[权利要求 24] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述 LED芯 片为倒装芯片或者水平芯片。
[权利要求 25] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述反光体 设置在所述底面上表面之远离所述LED芯片的位置。
[权利要求 26] 根据权利要求 1所述的发光二极管封装体, 其特征在于: 所述空间是 矩形形状, 所述反光体设置于该矩形的一个或多个顶角处。
[权利要求 27] 根据权利要求 26所述的发光二极管封装体, 其特征在于: 包括两个L
ED芯片, 该两个LED芯片水平错开排列, 定义所述两件LED芯片中 心位置水平方向的差值为D, 所述反光体的底部横截面的直径为 0.1~2 D。
[权利要求 28] 根据权利要求 27所述的发光二极管封装体, 其特征在于: 包括第一反 光体和第二反光体, 其中第一反光体位于所述方形空间的顶角处, 第 二反光体位于所述空间之垂直于所述LED芯片方面的一侧边缘, 并位 于两个LED芯片中间, 所述第一反光体的横截面的面积大于所述第二 反光体的横截面的面积。
[权利要求 29] 根据权利要求 27所述的发光二极管封装体, 其特征在于: 所述第一反 光体的底部横截面的直径为 0.5~2D。
[权利要求 30] 根据权利要求 27所述的发光二极管封装体, 其特征在于: 所述第二反 光体的横截面的直径为 0.1~D。
PCT/CN2018/121265 2018-12-14 2018-12-14 发光二极管封装体 WO2020118702A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880003855.6A CN109952660B (zh) 2018-12-14 2018-12-14 发光二极管封装体
PCT/CN2018/121265 WO2020118702A1 (zh) 2018-12-14 2018-12-14 发光二极管封装体
CN202210569529.XA CN115000272A (zh) 2018-12-14 2018-12-14 发光二极管封装体
TW108117063A TWI688124B (zh) 2018-12-14 2019-05-17 發光二極體封裝元件
US17/086,673 US11569410B2 (en) 2018-12-14 2020-11-02 Light emitting diode packaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121265 WO2020118702A1 (zh) 2018-12-14 2018-12-14 发光二极管封装体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/086,673 Continuation-In-Part US11569410B2 (en) 2018-12-14 2020-11-02 Light emitting diode packaging device

Publications (1)

Publication Number Publication Date
WO2020118702A1 true WO2020118702A1 (zh) 2020-06-18

Family

ID=67007120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121265 WO2020118702A1 (zh) 2018-12-14 2018-12-14 发光二极管封装体

Country Status (4)

Country Link
US (1) US11569410B2 (zh)
CN (2) CN115000272A (zh)
TW (1) TWI688124B (zh)
WO (1) WO2020118702A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649144A (zh) * 2019-09-25 2020-01-03 广东晶科电子股份有限公司 一种led器件及其封装支架
CN210607317U (zh) * 2019-11-18 2020-05-22 福建天电光电有限公司 一种多色温多通道emc支架结构
CN117393550B (zh) * 2023-11-15 2024-05-28 深圳市富斯迈电子有限公司 一种led发光管芯片跃层式封装结构及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148317A (zh) * 2010-02-04 2011-08-10 Lg伊诺特有限公司 发光器件封装和照明系统
CN106920869A (zh) * 2015-12-26 2017-07-04 日亚化学工业株式会社 发光装置以及发光装置的制造方法
CN107768504A (zh) * 2017-11-10 2018-03-06 深圳市灏天光电有限公司 一种贴片led支架
CN207690828U (zh) * 2018-01-04 2018-08-03 厦门市三安光电科技有限公司 一种led发光装置
US20180323357A1 (en) * 2015-12-22 2018-11-08 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665216B1 (ko) * 2005-07-04 2007-01-09 삼성전기주식회사 개선된 측벽 반사 구조를 갖는 측면형 발광다이오드
KR20100077864A (ko) * 2008-12-29 2010-07-08 서울반도체 주식회사 발광소자 패키지
WO2014091914A1 (ja) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led装置及びその製造方法
US9548419B2 (en) * 2014-05-20 2017-01-17 Southern Taiwan University Of Science And Technology Light emitting diode chip having multi microstructure substrate surface
JP2016177009A (ja) * 2015-03-18 2016-10-06 東芝メディカルシステムズ株式会社 反射材、シンチレータアレイ、シンチレータアレイの製造方法、および放射線検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148317A (zh) * 2010-02-04 2011-08-10 Lg伊诺特有限公司 发光器件封装和照明系统
US20180323357A1 (en) * 2015-12-22 2018-11-08 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
CN106920869A (zh) * 2015-12-26 2017-07-04 日亚化学工业株式会社 发光装置以及发光装置的制造方法
CN107768504A (zh) * 2017-11-10 2018-03-06 深圳市灏天光电有限公司 一种贴片led支架
CN207690828U (zh) * 2018-01-04 2018-08-03 厦门市三安光电科技有限公司 一种led发光装置

Also Published As

Publication number Publication date
TW202023068A (zh) 2020-06-16
CN109952660A (zh) 2019-06-28
CN115000272A (zh) 2022-09-02
TWI688124B (zh) 2020-03-11
US20210050473A1 (en) 2021-02-18
US11569410B2 (en) 2023-01-31
CN109952660B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
KR100880638B1 (ko) 발광 소자 패키지
US8278671B2 (en) Led package module
TWI451602B (zh) 光學發射器及其製作方法以及顯示裝置
TWI517458B (zh) 發光二極體封裝
US20120025241A1 (en) Surface mounted led packaging structure and method based on a silicon substrate
WO2020118702A1 (zh) 发光二极管封装体
US10541355B2 (en) Solid-state radiation transducer devices having flip-chip mounted solid-state radiation transducers and associated systems and methods
TW201232843A (en) Full-directional LED package method and LED package
KR20090059538A (ko) Led 패키지 및 그 제조방법
CN109983590A (zh) 发光器件封装和光源单元
TWI603506B (zh) 發光二極體封裝結構
BR112013027354B1 (pt) Método para fabricar dispositivo emissor de luz e dispositivo emissor de luz
JP2012505543A (ja) マルチチップledパッケージ
CN110085578B (zh) 具有底部反射体的封装led透镜
WO2015139369A1 (zh) 一种led灯条制作方法及led灯条
TWI455365B (zh) 發光二極體封裝結構的製造方法
WO2023186177A1 (zh) 一种封装结构及封装方法
TW201401566A (zh) 發光二極體的封裝方法
CN102832330B (zh) 一种圆片级led封装结构
TWI447970B (zh) 發光二極體裝置及其製造方法
CN214753831U (zh) 一种led器件
TWI551806B (zh) Led發光裝置及led燈具
TWI392124B (zh) 一種發光二極體裝置及其封裝方法
TWM484277U (zh) Led發光裝置及led燈具
KR101423455B1 (ko) Led 패키지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943242

Country of ref document: EP

Kind code of ref document: A1