WO2020116645A1 - 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池 - Google Patents

液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池 Download PDF

Info

Publication number
WO2020116645A1
WO2020116645A1 PCT/JP2019/047934 JP2019047934W WO2020116645A1 WO 2020116645 A1 WO2020116645 A1 WO 2020116645A1 JP 2019047934 W JP2019047934 W JP 2019047934W WO 2020116645 A1 WO2020116645 A1 WO 2020116645A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
compound
polymer electrolyte
electrolyte membrane
Prior art date
Application number
PCT/JP2019/047934
Other languages
English (en)
French (fr)
Inventor
貢 齋藤
匠 奥山
浩行 渡部
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP19892568.7A priority Critical patent/EP3892642B1/en
Priority to KR1020217008498A priority patent/KR20210100080A/ko
Priority to JP2020560075A priority patent/JP7322896B2/ja
Priority to CN201980080558.6A priority patent/CN113166297B/zh
Publication of WO2020116645A1 publication Critical patent/WO2020116645A1/ja
Priority to US17/333,682 priority patent/US20210296673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or Groups 11 to 13 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a liquid composition, a solid polymer electrolyte membrane, a membrane electrode assembly, and a solid polymer fuel cell.
  • a polymer electrolyte fuel cell is, for example, a cell in which a membrane electrode assembly is sandwiched between two separators to form a cell, and a plurality of cells are stacked.
  • the membrane electrode assembly includes an anode and a cathode having a catalyst layer, and a solid polymer electrolyte membrane arranged between the anode and the cathode.
  • the solid polymer electrolyte membrane is, for example, a film-shaped liquid composition containing a sulfonic acid group-containing fluorocarbon polymer.
  • the solid polymer electrolyte membrane is required to have durability against hydrogen peroxide or peroxide radicals.
  • a solid polymer electrolyte membrane containing a sulfonic acid group-containing fluorocarbon polymer and cerium ions (Patent Document 1).
  • the cerium ion in the membrane may move to the catalyst layer after the membrane/electrode assembly is formed.
  • the cerium ions that have moved to the catalyst layer may be ion-exchanged with the ion-exchange groups of the ion-exchange resin in the catalyst layer. Therefore, in the case of the membrane electrode assembly including the conventional solid polymer electrolyte membrane, the initial power generation characteristics may be deteriorated.
  • the solid polymer electrolyte membrane is required to have durability against hydrogen peroxide or peroxide radicals in order to enable stable power generation for a long period of time.
  • the solid polymer electrolyte membrane is required to have few defects such as breakage of the membrane.
  • the present invention provides a liquid composition capable of forming a solid polymer electrolyte membrane having excellent initial power generation characteristics when formed into a membrane electrode assembly, excellent durability, and few defects; Solid polymer electrolyte membrane having excellent power generation characteristics, excellent durability, and few defects; a membrane electrode assembly and a solid polymer electrolyte fuel cell having excellent initial power generation characteristics and capable of stable power generation for a long period of time. provide.
  • a liquid medium, a sulfonic acid group-containing fluorocarbon polymer, and a sparingly soluble cerium compound are contained, and the sulfonic acid group-containing fluorocarbon polymer has an ion exchange capacity of 1.36 to 2.50 meq/g dry resin.
  • the average particle diameter of the sparingly soluble cerium compound is 1 nm to 3000 nm, and the ratio of the total number of moles of cerium atoms in the sparingly soluble cerium compound to the total number of moles of sulfonic acid groups of the sulfonic acid group-containing fluorocarbon polymer is Is a liquid composition of 0.001 to 0.3.
  • Q 11 is a perfluoroalkylene group which may have an etheric oxygen atom
  • Q 12 is a single bond, or a perfluoroalkylene group which may have an etheric oxygen atom
  • Y 1 is a fluorine atom or a monovalent perfluoroorganic group
  • s is 0 or 1
  • Z + is H +
  • a monovalent metal ion or one or more hydrogen atoms are substituted with a hydrocarbon group. It is an ammonium ion which may be contained.
  • a sulfonic acid group-containing fluorocarbon polymer and a sparingly soluble cerium compound are contained, and the ion exchange capacity of the sulfonic acid group-containing fluorocarbon polymer is 1.36 to 2.50 meq/g dry resin,
  • the average particle diameter of the soluble cerium compound is 1 nm to 3000 nm, and the ratio of the total number of moles of cerium atoms in the hardly soluble cerium compound to the total number of moles of sulfonic acid groups of the sulfonic acid group-containing fluorocarbon polymer is 0.
  • the solid polymer electrolyte membrane is 001 to 0.3.
  • Q 11 is a perfluoroalkylene group which may have an etheric oxygen atom
  • Q 12 is a single bond, or a perfluoroalkylene group which may have an etheric oxygen atom
  • Y 1 is a fluorine atom or a monovalent perfluoroorganic group
  • s is 0 or 1
  • Z + is H +
  • a monovalent metal ion or one or more hydrogen atoms are substituted with a hydrocarbon group. It is an ammonium ion which may be contained.
  • the liquid composition of the present invention it is possible to form a solid polymer electrolyte membrane having excellent initial power generation characteristics when a membrane/electrode assembly is formed, excellent durability, and few defects.
  • the solid polymer electrolyte membrane of the present invention has excellent initial power generation characteristics when formed into a membrane electrode assembly, excellent durability, and few defects.
  • the membrane electrode assembly and the polymer electrolyte fuel cell of the present invention are provided with a polymer electrolyte membrane having excellent initial power generation characteristics and capable of stable power generation for a long period of time.
  • the unit represented by the formula u1 is referred to as a unit u1. Units represented by other formulas are also described in the same manner.
  • the compound represented by Formula 1 is referred to as Compound 1.
  • the “sulfonic acid group” is a salt-type sulfonic acid group (—SO 3 ⁇ Z + , where Z + is H + , a monovalent metal ion, or one or more hydrogen atoms are substituted with a hydrocarbon group. And an acid type sulfonic acid group (—SO 3 — H + ).
  • the “poorly soluble cerium compound” means a cerium compound having a solubility in water at 25° C.
  • the "total number of moles of cerium atoms in the hardly soluble cerium compound” is the total number of moles of cerium atoms contained in the hardly soluble cerium compound. For example, when one molecule of the hardly soluble cerium compound has two cerium atoms, the total number of moles of the cerium atom in the hardly soluble cerium compound is the total number of moles of the hardly soluble cerium compound ⁇ 2.
  • An "ion-exchange group” is a group capable of exchanging a cation contained in the group with another cation.
  • the "unit" in a polymer is a general term for an atomic group directly formed by polymerizing one molecule of a monomer and an atomic group obtained by chemically converting a part of the atomic group.
  • the "ion exchange capacity" of a polymer is determined by the method described in the examples.
  • the "volumetric flow rate value” of the polymer is determined by the method described in the examples. In the present specification, the volumetric flow rate value is referred to as “TQ value”.
  • the “average particle diameter” of the sparingly soluble cerium compound is determined by the method described in the examples.
  • the dimensional ratios in FIGS. 1 and 2 are different from actual ones for convenience of explanation.
  • the liquid composition of the present invention contains a liquid medium, a sulfonic acid group-containing fluorocarbon polymer, and a sparingly soluble cerium compound.
  • the liquid composition of the present invention may further contain cerium ions.
  • the liquid composition of the present invention may further contain components other than the essential components as long as the effects of the present invention are not impaired.
  • liquid medium examples include water, an organic solvent, a mixed solvent of water and an organic solvent, and the like, and among them, a mixed solvent of water and an organic solvent is preferable.
  • Water improves the dispersibility or solubility of the sulfonic acid group-containing fluorocarbon polymer in the liquid medium.
  • the organic solvent facilitates formation of a solid polymer electrolyte membrane that is hard to break.
  • an organic solvent having a hydroxyl group is preferable, and one or more alcohols having 1 to 4 carbon atoms are more preferable, from the viewpoint of easily forming a solid polymer electrolyte membrane that is hard to break.
  • the alcohol having 1 to 4 carbon atoms include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-penta. Fluoro-1-propanol, 2,2,3,3-tetrafluoro-1-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3,3,3-trifluoro-1 -Propanol.
  • the alcohol having 1 to 4 carbon atoms may be used alone or in combination of two or more.
  • the proportion of water is preferably 10 to 99% by mass, more preferably 40 to 99% by mass, based on the total amount of the liquid medium.
  • the proportion of the organic solvent is preferably 1 to 90% by mass, more preferably 1 to 60% by mass, based on the total amount of the liquid medium.
  • the sulfonic acid group-containing fluorocarbon polymer is a polymer having a perfluoromonomer unit and a sulfonic acid group (—SO 3 ⁇ Z + ) (hereinafter referred to as “polymer H”).
  • the ion exchange capacity of the polymer H is 1.36 to 2.50 meq/g dry resin (hereinafter, also simply referred to as “meq/g”), and preferably 1.37 to 2.49 meq/g. , 1.38 to 2.48 meq/g is more preferable.
  • the ion exchange capacity is not less than the lower limit of the above range, even if cerium ions are generated in the solid polymer electrolyte membrane, the polymer H can sufficiently capture the cerium ions in the solid polymer electrolyte membrane. In addition, since the conductivity of the polymer H is increased, a sufficient cell output can be obtained when the polymer electrolyte membrane of the polymer electrolyte fuel cell is used.
  • the ion exchange capacity is not more than the upper limit value of the above range, swelling of the polymer H when it contains water is suppressed, and the mechanical strength of the solid polymer electrolyte membrane becomes high.
  • the content of the polymer H is preferably 1 to 50% by mass, more preferably 3 to 30% by mass based on 100% by mass of the liquid composition.
  • the content of the polymer H is at least the lower limit value of the above range, a thick film can be stably obtained during film formation.
  • the content of the polymer H is at most the upper limit value of the above range, it is possible to prevent the viscosity of the liquid composition from becoming excessively high.
  • Examples of the perfluoromonomer unit include a perfluoromonomer unit having no ion exchange group and its precursor group, and a perfluoromonomer unit having an ion exchange group.
  • Examples of the perfluoromonomer having no ion-exchange group and its precursor group include, for example, tetrafluoroethylene (hereinafter referred to as “TFE”), hexafluoropropylene, perfluoro(alkyl vinyl ether), and WO 2011/013578. Mention may be made of the mentioned perfluoromonomers having a 5-membered ring.
  • Examples of the perfluoromonomer unit having an ion exchange group include a perfluoromonomer unit having a known ion exchange group described in International Publication No. 2017/221840, International Publication No. 2018/012374, and the unit u1 described later. Be done.
  • a perfluoromonomer unit having an ion exchange group a perfluoromonomer unit having a sulfonic acid group is preferable.
  • Examples of the perfluoromonomer unit having a sulfonic acid group include a unit u1, a unit u2, and a unit u3 described later.
  • the polymer H is a unit (hereinafter, also referred to as “other unit”) based on a monomer other than a perfluoromonomer (hereinafter, referred to as “other monomer”), if necessary, within a range not impairing the effects of the present invention. May have.
  • chlorotrifluoroethylene for example, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, propylene, (perfluoroalkyl)ethylene, (perfluoroalkyl)propene, perfluorovinyl ether (perfluoro(alkyl vinyl ether),
  • examples include perfluoro (alkyl vinyl ether containing an etheric oxygen atom) and the like, and perfluoromonomers having a 5-membered ring described in WO 2011/013578.
  • a polymer having at least a unit u1 or a unit u2 is preferable from the viewpoint of easily forming a solid polymer electrolyte membrane having excellent initial power generation characteristics and durability.
  • a polymer further having a TFE unit is preferable from the viewpoint of excellent mechanical properties and durability.
  • the polymer H may have one unit each of the unit u1, the unit u2 and the other unit, or may have two or more types of each.
  • the unit u1 is expressed by the following formula.
  • R F1 and R F2 are perfluoroalkylene groups having 1 to 3 carbon atoms, and Z + is H + , a monovalent metal ion, or one or more hydrogen atoms are substituted with a hydrocarbon group. It may be an ammonium ion.
  • R F1 and R F2 may be the same or different.
  • R F1 and R F2 for example, -CF 2 -, - CF 2 CF 2 -, - CF (CF 3) -, - CF 2 CF 2 CF 2 -, - CF (CF 2 CF 3) -, - Examples thereof include CF(CF 3 )CF 2 —, —CF 2 CF(CF 3 )—, and —C(CF 3 )(CF 3 )—.
  • R F1 and R F2 are preferably perfluoroalkylene groups having 1 to 2 carbon atoms because the raw materials are cheaper, the compound 7 described later can be easily produced, and the ion exchange capacity of the polymer H can be further increased. When it has 2 carbon atoms, a straight chain is preferable. Specifically, -CF 2 -, - CF 2 CF 2 - or -CF (CF 3) - are preferred, -CF 2 - is more preferable.
  • the unit u2 is expressed by the following formula.
  • Q 11 is a perfluoroalkylene group which may have an etheric oxygen atom
  • Q 12 is a single bond, or a perfluoroalkylene group which may have an etheric oxygen atom
  • Y 1 is a fluorine atom or a monovalent perfluoroorganic group
  • s is 0 or 1
  • Z + is H +
  • a monovalent metal ion or one or more hydrogen atoms are substituted with a hydrocarbon group. It is an ammonium ion which may be contained.
  • the organic group means a group containing at least one carbon atom.
  • the number of the oxygen atom may be one or two or more. Further, the oxygen atom may be inserted between the carbon atom-carbon atom bond of the perfluoroalkylene group, or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkylene group for Q 11 and Q 12 may be linear or branched, and is preferably linear.
  • the carbon number of the perfluoroalkylene group is preferably 1 to 6, more preferably 1 to 4. When the carbon number is 6 or less, the boiling point of the raw material monomer becomes low, and the distillation purification becomes easy. When the carbon number is 6 or less, the decrease in the ion exchange capacity of the polymer H is suppressed, and the decrease in the proton conductivity is suppressed.
  • Q 12 is preferably a C 1-6 perfluoroalkylene group which may have an etheric oxygen atom.
  • Q 12 is a perfluoroalkylene group having 1 to 6 carbon atoms which may have an etheric oxygen atom, when the polymer electrolyte fuel cell is operated for a longer period than when Q 12 is a single bond. In addition, the stability of power generation performance is further excellent.
  • At least one of Q 11 and Q 12 is preferably a C 1-6 perfluoroalkylene group having an etheric oxygen atom.
  • a monomer having an etheric oxygen atom and a perfluoroalkylene group having 1 to 6 carbon atoms can be synthesized without undergoing a fluorination reaction with a fluorine gas, so that the yield is good and the production is easy.
  • Q 11 and Q 12 are preferably perfluoroalkylene groups having an etheric oxygen atom.
  • Q 11 and Q 12 are perfluoroalkylene groups having an etheric oxygen atom, the flexibility of the polymer H is improved.
  • the solid polymer electrolyte membrane containing the highly flexible polymer H is less likely to be damaged even if swelling in a wet state and contraction in a dry state are repeated.
  • Y 1 a fluorine atom or a linear perfluoroalkyl group having 1 to 6 carbon atoms which may have an etheric oxygen atom is preferable.
  • the units u2-1 to u2-3 are preferable because the polymer H is easy to produce and industrially easy to implement.
  • the obtained polymer H is flexible, and when it is used as a solid polymer electrolyte membrane, it is less likely to be damaged even if swelling in a wet state and contraction in a dry state are repeated. preferable.
  • the polymer H may have a unit having only one ion exchange group.
  • Examples of the unit having only one ion exchange group include the unit u3.
  • Q 2 is a single bond or a perfluoroalkylene group which may have an etheric oxygen atom
  • Y 2 is a fluorine atom or a monovalent perfluoroorganic group
  • t is 0 or 1
  • Z + is H + , a monovalent metal ion, or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group.
  • the organic group means a group containing at least one carbon atom.
  • the oxygen atom may be one or two or more. Further, the oxygen atom may be inserted between the carbon atom-carbon atom bond of the perfluoroalkylene group, or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkylene group for Q 2 may be linear or branched.
  • Examples of the monovalent perfluoro organic group for Y 2 include a trifluoromethyl group.
  • Examples of the unit u3 include units u3-1 to u3-4.
  • the proportion of each unit in the polymer H is appropriately determined according to the properties and physical properties required for the polymer H (hydrogen gas permeability, hot water resistance, ion exchange capacity, conductivity, mechanical strength, elastic modulus, softening temperature, etc.). do it.
  • the polymer H is obtained, for example, by converting the fluorosulfonyl group (—SO 2 F) of the polymer F described later into a sulfonic acid group (—SO 3 ⁇ Z + ).
  • a method of converting the fluorosulfonyl group into a sulfonic acid group there is a method of hydrolyzing the fluorosulfonyl group of the polymer F to form a salt-type sulfonic acid group.
  • the hydrolysis is performed, for example, by bringing the polymer F into contact with the basic compound in a solvent.
  • the basic compound include sodium hydroxide, potassium hydroxide and triethylamine.
  • the solvent examples include water and a mixed solvent of water and a polar solvent.
  • polar solvents include alcohols (methanol, ethanol, etc.) and dimethyl sulfoxide.
  • the polymer F is hydrolyzed and then the salt type sulfonic acid group is acidified to be converted into an acid type sulfonic acid group.
  • the acid conversion is performed, for example, by bringing a polymer having a salt type sulfonic acid group into contact with an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid or the like.
  • the temperature for hydrolysis and acidification is preferably 0 to 120°C.
  • Polymer H is preferably washed with water after hydrolysis or acid formation.
  • the organic matter may be decomposed by a treatment such as immersing the polymer H in a hydrogen peroxide solution after the hydrolysis.
  • concentration of hydrogen peroxide in the hydrogen peroxide water is preferably 0.1 to 30% by mass, more preferably 1% by mass or more and less than 10% by mass. If the concentration of hydrogen peroxide in hydrogen peroxide water is at least the lower limit value of the above range, the effect of decomposing organic substances is sufficient. If the concentration of hydrogen peroxide in the hydrogen peroxide water is equal to or lower than the upper limit value of the above range, the polymer H is difficult to decompose.
  • the temperature of the hydrogen peroxide solution is preferably 15 to 90°C, more preferably 40°C or higher and lower than 80°C.
  • the temperature of the hydrogen peroxide solution is at least the lower limit value of the above range, the effect of decomposing organic matter is sufficient. If the temperature of the hydrogen peroxide solution is equal to or lower than the upper limit value of the above range, hydrogen peroxide will not easily decompose.
  • the time for immersing the polymer H in the hydrogen peroxide solution depends on the thickness of the polymer H and the amount of organic substances contained, but for example, when the polymer H is a film having a thickness of 50 ⁇ m, 0.5 to 100 hours is preferable. ..
  • the immersion time is less than 0.5 hours, it is difficult to decompose organic substances inside the film. Even if it is soaked for more than 100 hours, the effect of further decomposing organic substances cannot be expected.
  • the final shape of the polymer H that has been subjected to the above treatment may be in the form of powder, pellets, or film.
  • Polymer F which is a precursor of polymer H, is a polymer having a perfluoromonomer unit and a fluorosulfonyl group (—SO 2 F).
  • the perfluoromonomer unit include a perfluoromonomer unit having no ion-exchange group and its precursor group, and a perfluoromonomer unit having an ion-exchange group precursor group.
  • the perfluoromonomer having no ion exchange group and its precursor group include the perfluoromonomer having no ion exchange group and its precursor group described in the polymer H.
  • the perfluoromonomer unit having a precursor group of an ion exchange group for example, a perfluoromonomer unit having a known precursor group of an ion exchange group described in WO 2017/221840 and WO 2018/012374.
  • the unit may be the unit u4 described later.
  • the perfluoromonomer unit having a precursor group of an ion exchange group is preferably a perfluoromonomer unit having a fluorosulfonyl group.
  • Examples of the perfluoromonomer unit having a fluorosulfonyl group include a unit u4, a unit u5, and a unit u6 described later.
  • the polymer F may have other units, if necessary, as long as the effects of the present invention are not impaired.
  • the polymer F a polymer having one or both of the unit u4 and the unit u5 is preferable from the viewpoint of easily forming a solid polymer electrolyte membrane having excellent initial power generation characteristics and durability.
  • a polymer further having a TFE unit is preferable from the viewpoint that a polymer H excellent in mechanical properties and durability can be obtained.
  • the unit u4 is expressed by the following formula.
  • R F1 and R F2 are the same as R F1 and R F2 described in the unit u1, and the preferred forms are also the same.
  • the unit u5 is expressed by the following formula.
  • Q 11 , Q 12 , Y 1 and s are the same as Q 11 , Q 12 , Y 1 and s described for the unit u2, and the preferred forms are also the same.
  • the units u5-1 to u5-3 are preferable because the polymer F is easy to produce and industrially easy to carry out.
  • the polymer F obtained is flexible, and when it is converted into the polymer H to form a solid polymer electrolyte membrane, it is less likely to be damaged even if swelling in a wet state and contraction in a dry state are repeated, and durability is likely to be good.
  • the difference between the elastic modulus in the wet state and the elastic modulus in the dry state is likely to be small, cracks due to wrinkles that occur repeatedly by swelling in the wet state and contraction in the dry state are less likely to develop, and good power generation performance
  • the unit u5-2 or u5-3 is more preferable because it is easy to maintain
  • the polymer F may have a unit having only one ion-exchange group precursor group.
  • Examples of the unit having only one ion-exchange group precursor group include the unit u6.
  • Q 2 , Y 2 , and t are the same as Q 2 , Y 2 , and t described in the unit u3, and the preferred forms are also the same.
  • Examples of the unit u6 include units u6-1 to u6-4.
  • the proportion of each unit in the polymer F is appropriately determined according to the properties and physical properties required for the polymer H (hydrogen gas permeability, hot water resistance, ion exchange capacity, conductivity, mechanical strength, elastic modulus, softening temperature, etc.). do it.
  • the TQ value of the polymer F is preferably 190 to 350°C, more preferably 200 to 340°C, and further preferably 210 to 330°C.
  • the polymer H has a sufficient molecular weight and is excellent in mechanical strength.
  • the TQ value of the polymer F is less than or equal to the upper limit value of the above range, the solubility or dispersibility of the polymer H is improved and the liquid composition is easily prepared.
  • the TQ value is an index of the molecular weight of the polymer, and the higher the TQ value, the higher the molecular weight of the polymer.
  • the polymer F having the unit u4 can be produced, for example, by polymerizing the compound 7 described below, and optionally TFE, a monomer component containing the compound 7 and a monomer other than TFE.
  • the polymerization method include a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Moreover, you may superpose
  • the polymerization is performed under the condition that radicals are generated.
  • the method of generating radicals include a method of irradiating with radiation such as ultraviolet rays, ⁇ rays and electron beams, and a method of adding a radical initiator.
  • the polymerization temperature is preferably 10 to 170°C.
  • Compound 7 can be used for the production of polymer F having unit u4.
  • R F1 and R F2 are the same as R F1 and R F2 described in the unit u1, and the preferred forms are also the same.
  • Examples of compound 7 include compound 7-1.
  • Compound 7 can be produced, for example, as follows.
  • Compound 2 is obtained by reacting compound 1 with a sulfonating agent.
  • Compound 3 is obtained by reacting compound 2 with a chlorinating agent.
  • Compound 4 is obtained by reacting compound 3 with a fluorinating agent. The compound 4 is fluorinated to obtain the compound 5.
  • Compound 5 is reacted with a perfluoroallylating agent (for example, compound 6 described later) to obtain compound 7.
  • R 1 and R 2 are alkylene groups having 1 to 3 carbon atoms. R 1 and R 2 may be the same or different.
  • R F1 and R F2 are the same as R F1 and R F2 described for the unit u1, and the preferred forms are also the same.
  • the R 1 and R 2 for example, -CH 2 -, - CH 2 CH 2 -, - CH (CH 3) -, - CH 2 CH 2 CH 2 -, - CH (CH 2 CH 3) -, - Examples include CH(CH 3 )CH 2 —, —CH 2 CH(CH 3 )—, and —C(CH 3 )(CH 3 )—.
  • R 1 and R 2 are each an alkylene group having 1 to 2 carbon atoms. preferable. When it has 2 carbon atoms, a straight chain is preferable. Specifically, -CH 2 -, - CH 2 CH 2 - or -CH (CH 3) - are preferred, -CH 2 - is more preferable.
  • Examples of the compound 1 include acetone, methyl ethyl ketone, diethyl ketone, methyl propyl ketone, ethyl propyl ketone, dipropyl ketone, diisopropyl ketone, isopropyl methyl ketone, isopropyl ethyl ketone, and isopropyl propyl ketone.
  • Acetone is preferable because Compound 1 is cheaper, Compound 7 can be easily produced, and the ion exchange capacity of Polymer H per unit molecular weight can be further increased.
  • the sulfonating agent examples include chlorosulfonic acid, fluorosulfonic acid, sulfur trioxide, sulfur trioxide complex, fuming sulfuric acid, and concentrated sulfuric acid.
  • the reaction temperature between the compound 1 and the sulfonating agent is preferably 0 to 100°C.
  • the reaction solvent can be appropriately selected from those which are less likely to be sulfonated. Examples of the reaction solvent include methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloromethane, cyclohexane, hexane, petroleum ether, pentane, heptane, diethyl ether and acetonitrile. Two or more kinds of reaction solvents may be mixed and used.
  • chlorinating agent examples include thionyl chloride, phosphorus pentachloride, phosphorus trichloride, phosphoryl chloride, sulfonic acid chloride, sulfuryl chloride, oxalyl chloride and chlorine.
  • the reaction temperature between the compound 2 and the chlorinating agent is preferably 0 to 100°C. When the reaction temperature is at most the upper limit value of the above range, decomposition of compound 3 can be suppressed, so that the yield of compound 3 is improved. When the reaction temperature is at least the lower limit value of the above range, the reaction rate is increased and the productivity is improved.
  • fluorinating agent examples include potassium hydrogen fluoride, sodium hydrogen fluoride, potassium fluoride, sodium fluoride, cesium fluoride, silver fluoride, quaternary ammonium fluoride (tetraethylammonium fluoride, tetrabutylammonium fluoride). Etc.), hydrogen fluoride, hydrofluoric acid, hydrogen fluoride complex (HF-pyridine complex, HF-triethylamine, etc.).
  • the reaction temperature between the compound 3 and the fluorinating agent is preferably -30 to 100°C.
  • the reaction solvent can be appropriately selected from polar solvents or low polar solvents that are less likely to undergo a fluorination reaction.
  • reaction solvent examples include methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloromethane, diethyl ether, dioxane, tetrahydrofuran, dimethoxyethane, diethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl sulfoxide, sulfolane, N, Examples thereof include N-dimethylformamide, acetonitrile, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate and water. Two or more kinds of reaction solvents may be mixed and used.
  • the fluorination treatment is performed by bringing the compound 4 into contact with fluorine gas or a fluorine compound.
  • fluorine gas examples include hydrogen fluoride, halogen fluoride (chlorine trifluoride, iodine pentafluoride, etc.), gaseous fluoride (boron trifluoride, nitrogen trifluoride, phosphorus pentafluoride, tetrafluoride).
  • the fluorination treatment is preferably a treatment in which the compound 4 and the fluorine gas are brought into contact with each other in terms of easy handling and reduction of impurities contained in the compound 5.
  • the fluorine gas may be diluted with an inert gas such as nitrogen gas before use.
  • the temperature of the fluorination treatment is preferably -20 to 350°C.
  • the reaction solvent can be appropriately selected from those having a high solubility of the compound 4 or the compound 5 and being difficult for the solvent itself to undergo the fluorination treatment.
  • Examples of the reaction solvent include acetonitrile, chloroform, dichloromethane, trichlorofluoromethane, perfluorotrialkylamine (perfluorotributylamine, etc.), perfluorocarbon (perfluorohexane, perfluorooctane, etc.), hydrofluorocarbon (1H,4H-perfluorobutane, 1H).
  • Examples of the perfluoroallylating agent include compound 6.
  • CF 2 CFCF 2 -G
  • G is —OSO 2 F, —OSO 2 R f , a chlorine atom, a bromine atom or an iodine atom, and R f is a perfluoroalkyl group having 1 to 8 carbon atoms.
  • compound 6-1 is preferable from the viewpoints of availability of raw materials, reactivity of perfluoroallylation agent, ease of synthesis, and ease of handling.
  • CF 2 CFCF 2 OSO 2 F Formula 6-1
  • the compound 6-1 can be produced, for example, by reacting hexafluoropropylene and sulfur trioxide in the presence of boron trifluoride.
  • boron trifluoride instead of boron trifluoride, a boron trifluoride diethyl ether complex or a Lewis acid such as trimethoxyborane may be used.
  • the reaction between the compound 5 and the perfluoroallylating agent is preferably carried out in the presence of a fluoride salt.
  • a fluoride salt include potassium fluoride, cesium fluoride, silver fluoride, quaternary ammonium fluoride, and sodium fluoride.
  • the reaction temperature between the compound 5 and the perfluoroallylating agent is preferably -70 to 40°C.
  • the reaction solvent preferably contains an aprotic polar solvent, more preferably only an aprotic polar solvent.
  • aprotic polar solvent examples include monoglyme, diglyme, triglyme, tetraglyme, acetonitrile, propionitrile, adiponitrile, benzonitrile, dioxane, tetrahydrofuran, N,N-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, nitroethane. Is mentioned. Two or more kinds of reaction solvents may be mixed and used.
  • the polymer F having the unit u5 and the polymer F having the unit u6 can be produced, for example, by the method described in International Publication No. 2017/221840, International Publication No. 2018/012374 and the like.
  • the sparingly soluble cerium compound functions as a decomposition catalyst for hydrogen peroxide or peroxide radicals.
  • the average particle size of the sparingly soluble cerium compound is 1 nm to 3000 nm, preferably 1 nm to 400 nm.
  • the upper limit of the average particle diameter is preferably 2500 nm, more preferably 1800 nm, further preferably 1000 nm, most preferably 400 nm.
  • the lower limit of the average particle size is preferably 5 nm, preferably 10 nm or more, and more preferably 20 nm or more.
  • the average particle diameter of the hardly soluble cerium compound is not less than the lower limit value of the above range, aggregation of the hardly soluble cerium compound is suppressed and it is easy to obtain a stable dispersion state.
  • the average particle diameter of the sparingly soluble cerium compound is not more than the upper limit value of the above range, so that the surface area is sufficient to reduce hydrogen peroxide or peroxide radicals, and the solid polymer electrolyte membrane is damaged. Fewer defects.
  • the ratio of the total number of moles of cerium atoms in the sparingly soluble cerium compound to the total number of moles of sulfonic acid groups contained in the polymer H is 0.001 to 0.3, preferably 0.001 to 0.17, and more preferably 0.1. 003 to 0.07 is more preferable, and 0.003 to 0.035 is further preferable.
  • the ratio of the total number of moles of the cerium atom is equal to or more than the lower limit value of the range, deterioration of the membrane due to hydrogen peroxide or peroxide radicals can be reduced, and the solid polymer electrolyte membrane obtained from the liquid composition The durability is improved.
  • the ratio of the total number of moles of the cerium atom is equal to or less than the upper limit value of the above range, the sedimentation rate becomes small, so that the hardly soluble cerium compound can be easily dispersed in the liquid composition.
  • Examples of the sparingly soluble cerium compound include cerium phosphate, cerium oxide, cerium hydroxide, cerium fluoride, cerium oxalate, cerium tungstate, and cerium salt of heteropolyacid.
  • cerium phosphate, cerium oxide, cerium fluoride, cerium tungstate and cerium salt of heteropolyacid are selected from the viewpoint of high effect of suppressing deterioration of the polymer H due to hydrogen peroxide or peroxide radicals. More than one species are preferred.
  • Cerium oxide is particularly preferable because it has excellent dispersibility when added to the liquid composition of the present invention.
  • Cerium oxide may be doped with polyvalent metal ions. Examples of polyvalent metal ions include zirconium and praseodymium.
  • the liquid composition of the present invention further contains cerium ions.
  • cerium ions in the solid polymer electrolyte membrane obtained from the liquid composition, deterioration due to hydrogen peroxide or peroxide radicals is more likely to be suppressed. Therefore, a high output voltage can be maintained for a long period of time when the membrane electrode assembly is used.
  • the cerium ion may be a cerium ion generated by dissociation equilibrium of a sparingly soluble cerium compound or a cerium ion generated from a water-soluble cerium salt.
  • the cerium ion may have a valence of +3 or a valence of +4.
  • Examples of the water-soluble cerium salt include cerium carbonate, cerium acetate, cerium chloride, cerium nitrate, cerium sulfate, diammonium cerium nitrate, and tetraammonium cerium sulfate.
  • cerium carbonate is preferable because it can easily remove carbonic acid as a gas.
  • Examples of the organic metal complex salt of cerium include cerium acetylacetonate.
  • the liquid composition can be produced, for example, by the following method 1 and method 2.
  • Method 1 A method of mixing a composition containing a liquid medium and polymer H with particles of a sparingly soluble cerium compound.
  • -Method 2 A method of mixing a composition containing a liquid medium and polymer H with a dispersion liquid in which a sparingly soluble cerium compound is dispersed in the liquid medium.
  • the composition containing the liquid medium and the polymer H may be added to and mixed with the dispersion liquid of the sparingly soluble cerium compound.
  • Method 2 As a method for producing a liquid composition, Method 2 is preferable because it is possible to mix a sparingly soluble cerium compound having a small particle size and a liquid composition having excellent dispersion stability can be obtained.
  • the reason for this is that when the liquid medium, the polymer H, and the sparingly soluble cerium compound are mixed at the same time, it is difficult to sufficiently disintegrate the particles of the sparingly soluble cerium compound, and the sparingly soluble cerium compound having a large particle size is used as the liquid composition and solid particles. This is because they easily exist in the molecular electrolyte membrane.
  • a composition containing a liquid medium and a polymer H is gradually added while stirring a dispersion liquid of a hardly soluble cerium compound.
  • the temperature at the time of mixing is preferably 0 to 80°C, more preferably 0 to 30°C. If necessary, shearing such as ultrasonic waves may be applied.
  • the solid polymer electrolyte membrane has high proton conductivity even under conditions of high temperature and low humidity, and the electrolyte of the solid polymer fuel cell is When used as a membrane, it exhibits high power generation characteristics. Therefore, according to the liquid composition of the present invention, it is possible to form a solid polymer electrolyte membrane having improved initial power generation characteristics when it is used as a membrane electrode assembly.
  • the liquid composition of the present invention contains a sparingly soluble cerium compound, and the ratio of the total mols of cerium atoms in the sparingly soluble cerium compound to the total mols of the sulfonic acid groups of the polymer H is 0.001 or more.
  • the deterioration of the membrane due to hydrogen peroxide or peroxide radicals can be reduced, and the durability of the solid polymer electrolyte membrane is improved.
  • the average particle diameter of the sparingly soluble cerium compound is 3000 nm or less, defects such as breakage of the solid polymer electrolyte membrane are small.
  • the solid polymer electrolyte membrane of the present invention is a membrane containing polymer H and a sparingly soluble cerium compound.
  • the sulfonic acid group of the polymer H in the solid polymer electrolyte membrane is preferably acid type.
  • the details and preferable forms of the polymer H and the sparingly soluble cerium compound are the same as those described in the liquid composition of the present invention.
  • the thickness of the solid polymer electrolyte membrane is preferably 2 to 200 ⁇ m, more preferably 5 to 130 ⁇ m. If the thickness of the solid polymer electrolyte membrane is not more than the upper limit value of the above range, the membrane resistance can be sufficiently reduced. When the thickness of the solid polymer electrolyte membrane is at least the lower limit value of the above range, hydrogen gas permeability will be sufficiently low.
  • the solid polymer electrolyte membrane may be reinforced with a reinforcing material.
  • the reinforcing material include porous bodies, fibers, woven fabrics, and non-woven fabrics.
  • the material for the reinforcing material include polytetrafluoroethylene, a copolymer having TFE units and hexafluoropropylene units, a copolymer having TFE units and perfluoro(alkyl vinyl ether) units, polyethylene, polypropylene, and polyphenylene sulfide.
  • the solid polymer electrolyte membrane may contain silica or a heteropoly acid (zirconium phosphate, phosphomolybdic acid, phosphotungstic acid, etc.) as a water retention agent for preventing drying.
  • the solid polymer electrolyte membrane can be formed, for example, by a method (cast method) of applying the liquid composition of the present invention to the surface of the base film or the catalyst layer and drying.
  • the solid polymer electrolyte membrane can be formed, for example, by a method of impregnating the liquid composition of the present invention into the reinforcing material and drying.
  • the temperature of the heat treatment depends on the kind of polymer H, but is preferably 130 to 200°C. When the heat treatment temperature is 130° C. or higher, the polymer H does not contain excessive water. When the temperature of the heat treatment is 200° C. or lower, thermal decomposition of sulfonic acid groups is suppressed, and decrease in conductivity of the solid polymer electrolyte membrane is suppressed.
  • the solid polymer electrolyte membrane may be treated with hydrogen peroxide solution if necessary.
  • the solid polymer electrolyte membrane of the present invention described above contains the polymer H and the sparingly soluble cerium compound, and the ratio of the total mol number of cerium atoms in the sparingly soluble cerium compound to the total mol number of sulfonic acid groups of the polymer H is Since it is 0.3 or less, cerium ions generated by dissociation equilibrium of the sparingly soluble cerium compound will not be excessively generated. Further, since the cerium compound is sparingly soluble, cerium ions are difficult to move from the solid polymer electrolyte membrane to the catalyst layer after the production of the membrane electrode assembly, and ion exchange with the ion exchange group of the ion exchange resin in the catalyst layer is performed.
  • the solid polymer electrolyte membrane of the present invention since the ion exchange capacity of the polymer H is 1.36 meq/g or more, the solid polymer electrolyte membrane of the present invention has high proton conductivity even under conditions of high temperature and low humidity, and has a solid polymer form. It exhibits high power generation characteristics when used as an electrolyte membrane of a fuel cell. Therefore, according to the solid polymer electrolyte membrane of the present invention, the initial power generation characteristics of the membrane/electrode assembly are improved.
  • the solid polymer electrolyte membrane of the present invention contains a sparingly soluble cerium compound, and the ratio of the total mols of the cerium atoms in the sparingly soluble cerium compound to the total mols of the sulfonic acid groups of the polymer H is 0.001 or more. Therefore, deterioration of the film due to hydrogen peroxide or peroxide radicals can be reduced, and durability is improved. Further, in the solid polymer electrolyte membrane of the present invention, since the average particle diameter of the sparingly soluble cerium compound is 3000 nm or less, there are few defects such as breakage.
  • FIG. 1 is a cross-sectional view showing an example of the membrane electrode assembly of the present invention.
  • the membrane electrode assembly 10 includes an anode 13 having a catalyst layer 11 and a gas diffusion layer 12, a cathode 14 having the catalyst layer 11 and a gas diffusion layer 12, and a catalyst layer 11 that is in contact with the catalyst layer 11 between the anode 13 and the cathode 14. And a solid polymer electrolyte membrane 15 arranged in this state.
  • the catalyst layer 11 is a layer containing a catalyst and a polymer having an ion exchange group.
  • the catalyst include a supported catalyst in which platinum or a platinum alloy is supported on a carbon carrier.
  • the carbon carrier include carbon black powder.
  • the polymer having an ion exchange group include polymer H and perfluoropolymers having an ion exchange group other than polymer H.
  • the gas diffusion layer 12 has a function of uniformly diffusing gas in the catalyst layer 11 and a function as a current collector.
  • Examples of the gas diffusion layer 12 include carbon paper, carbon cloth, and carbon felt.
  • the gas diffusion layer 12 is preferably treated to be water repellent with polytetrafluoroethylene or the like.
  • the solid polymer electrolyte membrane 15 is the solid polymer electrolyte membrane of the present invention.
  • the membrane electrode assembly 10 may have a carbon layer 16 between the catalyst layer 11 and the gas diffusion layer 12.
  • the carbon layer 16 is a layer containing carbon and a nonionic fluoropolymer.
  • Examples of carbon include carbon particles and carbon fibers, and carbon nanofibers having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 ⁇ m or less are preferable.
  • Examples of the nonionic fluorine-containing polymer include polytetrafluoroethylene.
  • the membrane electrode assembly 10 is manufactured by the following method, for example.
  • the membrane electrode assembly 10 When the membrane electrode assembly 10 has the carbon layer 16, the membrane electrode assembly 10 is manufactured by the following method, for example. -A dispersion liquid containing carbon and a nonionic fluoropolymer is applied on a substrate film and dried to form a carbon layer 16, and a catalyst layer 11 is formed on the carbon layer. A method in which the molecular electrolyte membrane 15 is attached, the base film is peeled off to obtain a membrane/catalyst layer assembly having the carbon layer 16, and the membrane/catalyst layer assembly is sandwiched between the gas diffusion layers 12.
  • Examples of the method of forming the catalyst layer 11 include the following methods. A method of applying the catalyst layer forming coating liquid on the solid polymer electrolyte membrane 15, the gas diffusion layer 12 or the carbon layer 16 and drying. A method of applying a coating liquid for forming a catalyst layer on a base material film, drying it to form the catalyst layer 11, and transferring the catalyst layer 11 onto the solid polymer electrolyte membrane 15.
  • the catalyst layer forming coating liquid is a liquid in which a polymer having an ion exchange group and a catalyst are dispersed in a dispersion medium.
  • the catalyst layer-forming coating liquid can be prepared, for example, by mixing a liquid composition containing a polymer having an ion exchange group and a catalyst dispersion liquid.
  • the catalyst layer-forming coating liquid may contain one or more metals, metal compounds, or metal ions selected from the group consisting of cerium and manganese in order to further improve the durability of the catalyst layer 11.
  • the membrane electrode assembly 10 described above includes the solid polymer electrolyte membrane of the present invention, it has excellent initial power generation characteristics. Since the solid polymer electrolyte membrane of the present invention having excellent durability is provided, stable power generation is possible for a long period of time.
  • the polymer electrolyte fuel cell of the present invention comprises the membrane electrode assembly of the present invention.
  • the polymer electrolyte fuel cell of the present invention may be one in which a separator having a groove serving as a gas flow path is disposed on both surfaces of the membrane electrode assembly.
  • the separator include separators made of various conductive materials such as a metal separator, a carbon separator, and a separator made of a material in which graphite and a resin are mixed.
  • power is generated by supplying a gas containing oxygen to the cathode and a gas containing hydrogen to the anode.
  • the membrane electrode assembly can also be applied to a methanol fuel cell that supplies methanol to the anode to generate electricity.
  • the polymer electrolyte fuel cell of the present invention includes the membrane electrode assembly of the present invention, it has excellent initial power generation characteristics. Since the solid polymer electrolyte membrane of the present invention having excellent durability is provided, stable power generation is possible for a long period of time.
  • Examples 1 to 6 are production examples
  • Examples 7-1 to 7-13 are comparative examples
  • Examples 7-14 to 7-25 are examples.
  • the yield means the yield of the reaction step x the yield of the purification step.
  • the reaction yield means only the yield of the reaction step before purifying the target product and not including the loss of the purification step.
  • the ion exchange capacity of the polymer F was determined by back titrating the hydrolyzed sodium hydroxide solution with 0.1 mol/L hydrochloric acid.
  • the ion exchange capacity of polymer H is the same as that of polymer F.
  • Sample 1 Average particle size of sparingly soluble cerium compound
  • a dispersion liquid in which a sparingly soluble cerium compound was dispersed in a liquid medium was used in the production of a liquid composition
  • Sample 1 was prepared by the following method, and the average particle diameter of the sparingly soluble cerium compound was determined. First, Sample 1 was prepared by diluting a dispersion liquid of a sparingly soluble cerium compound with ultrapure water so that a scattering intensity suitable for measuring an average particle diameter was obtained.
  • sample 1 using a fiber optic dynamic light scattering photometer (FDLS-3000 manufactured by Otsuka Electronics Co., Ltd.), temperature: 25° C., sampling time: 50 ⁇ s, number of channels: 1024, number of integration: 100 times
  • the strength was measured, the average particle diameter was calculated from the obtained autocorrelation function by the cumulant method analysis, and the average particle diameter of the sparingly soluble cerium compound was determined.
  • Sample 2 was prepared by the following method, and the average particle diameter of the sparingly soluble cerium compound was determined.
  • the poorly soluble cerium compound, the polymer H, and the liquid medium were mixed and subjected to dispersion treatment to prepare a sample 2 composed of the hardly soluble cerium compound, the polymer H, and the liquid medium.
  • Sample 2 was measured with a laser diffraction/scattering particle size distribution analyzer (MT3300EXII, manufactured by Microtrac Bell), and the d50 of the obtained particle size distribution was defined as the average particle diameter of the sparingly soluble cerium compound.
  • the ratio of each unit in the polymer F was calculated from the ion exchange capacity of the polymer F.
  • the proportion of each unit in the polymer H corresponds to the proportion of each unit in the polymer F, and is therefore omitted.
  • TQ value Using a flow tester (CFT-500D, manufactured by Shimadzu Corporation) equipped with a nozzle having a length of 1 mm and an inner diameter of 1 mm, the polymer F was melt extruded while changing the temperature under the extrusion pressure condition of 2.94 MPa (gauge pressure). The extrusion rate of the polymer F was measured while changing the temperature, and the temperature at which the extrusion rate was 100 mm 3 /sec was determined as the TQ value.
  • CFT-500D a flow tester manufactured by Shimadzu Corporation
  • the membrane electrode assembly was incorporated into a power generation cell, the temperature of the membrane electrode assembly was maintained at 95°C, hydrogen gas (utilization rate 70%) was used for the anode, and oxygen gas (utilization rate 50%) was used for the cathode at 151 kPa ( Supply at a pressure of absolute pressure.
  • the humidity of the gas was set to 20% RH for both hydrogen gas and oxygen gas, and the cell voltage when the current density was 1 A/cm 2 was recorded and evaluated according to the following criteria.
  • A The cell voltage is 0.65 V or higher.
  • The cell voltage is 0.60 V or more and less than 0.65 V.
  • X The cell voltage is less than 0.60V.
  • Damage was observed in at least a part of the solid polymer electrolyte membrane after fabrication, and evaluation was not possible.
  • the membrane electrode assembly is installed in a power generation cell and an open circuit voltage test is performed as an acceleration test.
  • hydrogen gas utilization rate 70%
  • oxygen gas utilization rate 40%
  • a current density of 0.2 A/cm 2 were supplied to the anode and the cathode, respectively, at a normal pressure
  • the cell temperature was 120° C.
  • the hydrogen gas was hydrogen gas.
  • the relative humidity of oxygen gas was set to 20% RH
  • the change with time of the open circuit voltage was recorded, and the following criteria were evaluated.
  • The decrease in open circuit voltage after 700 hours of operation is less than 50 mV compared to the initial open circuit voltage.
  • The decrease of the open circuit voltage after 500 hours of operation is less than 50 mV compared to the initial open circuit voltage, but the decrease of the open circuit voltage after 700 hours of operation is compared with the initial open circuit voltage. It is 50 mV or more. Poor: The decrease in the open circuit voltage after 500 hours was 50 mV or more compared with the initial open circuit voltage.
  • XX Damage was observed in at least a part of the solid polymer electrolyte membrane after fabrication, and evaluation was not possible.
  • TFE tetrafluoroethylene
  • P2SVE CFOCF 2 CF (CF 2 OCF 2 CF 2 SO 2 F) OCF 2 CF 2 SO 2 F
  • PFtBPO (CF 3) 3 COOC (CF 3) 3
  • HCFC-225cb CClF 2 CF 2 CHClF
  • HCFC-141b CH 3 CCl 2 F
  • HFC-52-13p CF 3 (CF 2 ) 5 H
  • HFE-347pc-f CF 3 CH 2 OCF 2 CF 2 H
  • ETFE sheet a film of a copolymer having ethylene units and TFE units (manufactured by AGC, trade name: Aflex 100N, thickness
  • Example 1 (Example 1-1) In a Hastelloy autoclave having an internal volume of 230 mL, 123.8 g of PSVE, 35.2 g of HCFC-225cb and 63.6 mg of AIBN were put, and cooled with liquid nitrogen to be deaerated. The temperature was raised to 70° C., TFE was introduced into the system, and the pressure was maintained at 1.14 MPaG. TFE was continuously added so that the pressure was constant at 1.14 MPaG. After the elapse of 7.9 hours, the autoclave was cooled when the amount of TFE added reached 12.4 g, and the gas in the system was purged to terminate the reaction.
  • polymer F-1 which is a copolymer having TFE units and PSVE units.
  • Table 1 The results are shown in Table 1.
  • Example 1-2 TFE and PSVE were copolymerized in the same manner as in Example 1-1, except that the conditions were changed as shown in Table 1, to obtain polymers F-2 and F-3. The results are shown in Table 1.
  • Example 2 A stainless autoclave with an internal volume of 2,575 mL was charged with 1996.4 g of P2SVE under reduced pressure, and degassed under reduced pressure at room temperature. After the temperature was raised to 57° C., TFE was introduced until it reached 0.76 MPaG. After confirming that the pressure did not change, 9.29 g of the HFC-52-13p solution in which 400 mg of V601 was dissolved was pressurized with nitrogen gas and the addition line was washed with 11.0 g of HFC-52-13p. did. While maintaining the temperature and pressure constant, TFE was continuously supplied to polymerize. 14.5 hours after the initiation of polymerization, the autoclave was cooled to stop the polymerization reaction, and the gas in the system was purged to obtain a solution of polymer F-4.
  • Example 3 (Example 3-1) A 2 L four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 560 g of chlorosulfonic acid under a nitrogen gas seal. The flask was cooled in an ice bath, and a mixture of 139.5 g of compound 1-1 and 478.7 g of dichloromethane was added dropwise over 20 minutes while keeping the internal temperature at 20°C or lower. At the time of dropping, heat generation and gas generation were observed. After the completion of dropping, the flask was set in an oil bath, and the reaction was carried out for 7 hours while keeping the internal temperature at 30 to 40°C.
  • Example 3-2 The compound 2-1 obtained in Example 3-1 was directly used in the next reaction without isolation. 2049 g of thionyl chloride was added to the flask of Example 3-1. The flask was heated to 80° C. and refluxed for 15 hours. With the progress of the reaction, the reflux temperature increased from 52°C to 72°C. Generation of gas was confirmed during the reaction. The end point of the reaction was the point at which the compound 2-1 was completely dissolved and the generation of gas stopped. The reaction solution was transferred to a 2 L separable flask and allowed to cool for 9 hours while sealing the gas phase with nitrogen gas, whereby a blackish brown solid was deposited in the separable flask.
  • Example 3-3 A 1 L four-necked flask equipped with a stirrer, a condenser and a thermometer was charged with 90.0 g of Compound 3-1 and 750 mL of acetonitrile under a nitrogen gas blanket. The flask was cooled in an ice bath and 110.3 g of potassium hydrogen fluoride was added with stirring. The exotherm associated with the addition was slight. The ice bath was changed to a water bath, and the reaction was carried out for 62 hours while keeping the internal temperature at 15 to 25°C. A fine white solid was produced along with the reaction. The reaction solution was transferred to a pressure filter, and unreacted potassium hydrogen fluoride and the product were separated by filtration.
  • Acetonitrile was added to the filter and the filtered solid was washed until the filtrate became transparent, and the washed liquid was collected.
  • the filtrate and the washing solution were put on an evaporator to remove acetonitrile.
  • 950 mL of toluene was added to the solid remaining after drying to dryness, and it heated at 100 degreeC and dissolved the solid in toluene.
  • the solution was naturally filtered to remove undissolved components.
  • the filtrate was transferred to a 1 L separable flask and allowed to cool for 14 hours while sealing the gas phase with nitrogen gas, whereby light brown needle crystals were precipitated in the separable flask.
  • the crystals were washed with toluene and dried at 25° C.
  • reaction solution 103.2 g was recovered from the autoclave.
  • the reaction liquid was quantitatively analyzed by 19 F-NMR, and it was confirmed that the compound 5-1 was contained in an amount of 8.4% by mass.
  • the reaction yield based on compound 4-1 was 66%.
  • Example 3-7 A 50 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 1.65 g of potassium fluoride and 7.8 mL of diethylene glycol dimethyl ether (diglyme). The flask was cooled in an ice bath and stirred, while maintaining the internal temperature at 0 to 10°C, 8.43 g of the reaction solution obtained in Example 3-4 was added dropwise using a plastic syringe. A strong exotherm was confirmed, and it took 15 minutes for the dropping. After the dropping was completed, the ice bath was replaced with a water bath and the reaction was carried out at 15 to 20° C. for 1 hour.
  • Example 3-8 A 500 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 36.6 g of potassium fluoride and 125.6 g of acetonitrile. The flask was cooled in an ice bath and stirred, while maintaining the internal temperature at 0 to 10°C, 79.8 g of the reaction solution obtained in Example 3-5 was added dropwise using a plastic dropping funnel. A strong exotherm was confirmed, and it took 23 minutes for the dropping. After the dropping was completed, the ice bath was replaced with a water bath and the reaction was carried out at 20 to 30° C. for 5.5 hours.
  • Example 3-9 A 50 mL four-necked flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 3.70 g of potassium fluoride and 10.9 g of acetonitrile. The flask was cooled in an ice bath, and 10.2 g of the reaction solution obtained in Example 3-6 was added dropwise using a plastic syringe while stirring to keep the internal temperature at 0 to 10°C. A strong exotherm was confirmed, and 8 minutes were required for dropping. After completion of dropping, the ice bath was replaced with a water bath, and the reaction was carried out at 20 to 30° C. for 3 hours.
  • Example 4 70.0 g of Compound 7-1 was placed in an autoclave (internal volume 100 mL, made of stainless steel), cooled with liquid nitrogen and deaerated. 2.53 g of TFE was introduced into the autoclave and heated in an oil bath until the internal temperature reached 100°C. The pressure at this time was 0.29 MPa (gauge pressure). A mixed solution of 36.3 mg of PFtBPO which is a polymerization initiator and 2.58 g of HFC-52-13p was press-fitted into the autoclave. Furthermore, nitrogen gas was introduced from the press-fitting line to completely push the press-fitting liquid in the press-fitting line.
  • Example 5 Using the polymers F-1 to F-3 obtained in Example 1, film-like polymers H-1 to H-3 were obtained by the following method.
  • the polymer F was pressed at a temperature 10° C. higher than the TQ value and 4 MPa to prepare a film of the polymer F having a size of 30 mm ⁇ 50 mm and a thickness of 100 to 200 ⁇ m.
  • the film of polymer F was immersed in an aqueous solution containing 20% by mass of potassium hydroxide at 80° C. for 16 hours to hydrolyze —SO 2 F of polymer F and convert it to —SO 3 K. Further, the polymer film was immersed in a 3 mol/L hydrochloric acid aqueous solution for 2 hours.
  • the hydrochloric acid aqueous solution was exchanged, and the same treatment was repeated 4 times to convert —SO 3 K of the polymer into —SO 3 H to obtain a polymer H in the form of a film.
  • the polymer F-4 obtained in Example 2 was used to prepare a polymer H-4 in the form of a film by the method described above, and the polymer F-5 obtained in Example 4 was used to manufacture the polymer H-5 in the form of a film described above. Was manufactured.
  • Example 6 (Example 6-1) Using the polymer H-1 film obtained in Example 5, a polymer dispersion S-1 was prepared by the following method. To the autoclave (internal volume 200 mL, made of glass), 21 g of the finely cut polymer H-1 membrane and 56.9 g of a mixed solvent of ethanol/water (60/40 (mass ratio)) were added, and the autoclave was stirred. Heated. After stirring at 115° C. for 16 hours, the mixture was allowed to cool and filtered using a pressure filter (filter paper: PF040 manufactured by Advantech Toyo Co., Ltd.) to obtain a polymer dispersion S-1 in which polymer H-1 was dispersed in a mixed solvent. Of 77.4 g was obtained.
  • a pressure filter filter paper: PF040 manufactured by Advantech Toyo Co., Ltd.
  • Example 6-2 to Example 6-5 Polymer dispersions S-2 to S-5 were obtained in the same manner as in Example 6-1, except that the polymers used, the composition of the mixed solvent, and the stirring conditions were changed as shown in Table 2.
  • Example 7 (Example 7-1, Example 7-6, Example 7-14, Example 7-18, Example 7-21) Using the polymer dispersions S-1 to S-5 obtained in Example 6, the liquid compositions of Example 7-1, Example 7-6, Example 7-14, Example 7-18 and Example 7-21 were prepared by the following method. Products L-1, L-6, L-14, L-18 and L-21 were prepared. Cerium oxide particles (Fujifilm Wako Pure Chemical Industries, Ltd., primary particle size ⁇ 10 nm) were added to the polymer dispersion described in Table 3, and the total number of moles of cerium atoms in cerium oxide was based on the total number of moles of sulfonic acid groups of polymer H.
  • Cerium oxide particles Fejifilm Wako Pure Chemical Industries, Ltd., primary particle size ⁇ 10 nm
  • Example 7-2 Example 7-7
  • liquid compositions L-2 and L-7 of Examples 7-2 and 7-7 were prepared by the following method.
  • Cerium oxide particles Flujifilm Wako Pure Chemical Industries, Ltd., primary particle size ⁇ 10 nm
  • Table 3 the total number of moles of cerium atoms in cerium oxide was based on the total number of moles of sulfonic acid groups of polymer H.
  • Example 7-3 Example 7-8, Example 7-15, Example 7-19, Example 7-22, Example 7-24
  • the liquid compositions of Examples 7-3, 7-8, 7-15, 7-19, 7-22, 7-24 were prepared by the following method.
  • Products L-3, L-8, L-15, L-19, L-22 and L-24 were prepared.
  • Cerium oxide particles (Fujifilm Wako Pure Chemical Industries, Ltd., primary particle size ⁇ 10 nm) were added to the polymer dispersion described in Table 3, and the total number of moles of cerium atoms in cerium oxide was based on the total number of moles of sulfonic acid groups of polymer H.
  • Example 7-4 Example 7-9, Example 7-16, Example 7-20, Example 7-23, Example 7-25
  • Example 7-4 Example 7-9, Example 7-16, Example 7-20, Example 7-23, and Example 7.
  • Liquid compositions L-4, L-9, L-16, L-20, L-23, and L-25 of -25 were prepared.
  • the average particle size of the cerium oxide aqueous dispersion (Sigma-Aldrich, dispersant: acetic acid, cerium oxide average particle size 30-50 nm) was measured by the dynamic light scattering method. The average particle size of cerium oxide was 30 nm.
  • Example 7-5, Example 7-10, Example 7-17 Using the polymer dispersions S-1 to S-3 obtained in Example 6, the liquid compositions L-5, L-10 and L of Examples 7-5, 7-10 and 7-17 were prepared by the following method. -17 was prepared. When an average particle size of the cerium oxide aqueous dispersion (Sigma-Aldrich, cerium oxide average particle size ⁇ 5 nm) was measured by a dynamic light scattering method, the average particle size of cerium oxide was 5 nm.
  • Example 7-11 Using the polymer dispersion S-3 obtained in Example 6, a liquid composition L-11 of Example 7-11 was prepared by the following method. Cerium oxide particles (Fujifilm Wako Pure Chemical Industries, primary particle size ⁇ 10 nm) were added to the polymer dispersion S-3, and the total number of moles of cerium atoms in the cerium oxide relative to the total number of moles of sulfonic acid groups of the polymer H-3. was added so that the ratio was 0.033, zirconia beads having a diameter of 5 mm were added, and then mixed with a planetary bead mill at a rotation speed of 200 rpm for 30 minutes to perform a dispersion treatment. When the prepared liquid composition was measured with a laser diffraction/scattering type particle size distribution analyzer, the average particle diameter of cerium oxide was 5000 nm.
  • Cerium oxide particles Flujifilm Wako Pure Chemical Industries, primary particle size ⁇ 10 nm
  • Example 7-12 Using the polymer dispersion S-3 obtained in Example 6, a liquid composition L-12 of Example 7-12 was prepared by the following method.
  • the cerium carbonate hydrate (Ce 2 (CO 3 )) was added so that the ratio of the number of cerium atoms was 0.033 with respect to the total number of moles of sulfonic acid groups in the polymer H-3. 3 ⁇ 8H 2 O) was added and stirred at 50 ° C. 24 hours.
  • Example 7-13 No cerium compound was added to the polymer dispersion S-3 obtained in Example 6 to obtain the liquid composition L-13 of Example 7-13 as it was.
  • Liquid compositions L-1 to L-25 are applied to the surface of an ETFE sheet by a die coater, dried at 80° C. for 15 minutes, and further heat-treated at 185° C. for 30 minutes to give a solid polymer electrolyte membrane having a thickness of 25 ⁇ m.
  • a gas diffusion substrate (NOK, trade name: X0086 T10X13) was coated with a coating liquid for forming an intermediate layer using a die coater so that the solid content was 3 mg/cm 2, and dried at 80°C. Then, a gas diffusion substrate with an intermediate layer in which the intermediate layer was formed on the surface of the carbon nonwoven fabric was produced.
  • the solid polymer electrolyte membrane is sandwiched between two ETFE sheets with a catalyst layer on each side, and the solid polymer electrolyte membrane is heated and pressed under the conditions of a press temperature of 160° C., a press time of 2 minutes and a pressure of 3 MPa.
  • the layers were joined and the ETFE sheet was peeled off from the catalyst layer to obtain a membrane/catalyst layer assembly having an electrode area of 25 cm 2 .
  • the membrane electrode assembly to be used for the initial power generation characteristic evaluation and the hydrogen leak amount evaluation was the same as the membrane catalyst layer assembly, but on the anode side, a gas diffusion substrate with a carbon layer (manufactured by NOK, trade name: X0086 IX92 CX320), cathode side.
  • the membrane electrode assembly to be used for the durability evaluation was a gas diffusion substrate (manufactured by NOK, trade name: X0086 IX92 CX320) with a carbon layer, which was obtained by firing the membrane catalyst layer assembly on the anode side at 350° C. for 2 hours.
  • a gas diffusion substrate with a carbon layer (manufactured by NOK, trade name: H2315 T10X6 CX96 modified), which was fired at 350° C. for 2 hours, was placed so that the carbon layer was in contact with the catalyst layer side, and the film was formed with the gas diffusion substrate.
  • a membrane electrode assembly was obtained by sandwiching the electrode assembly.
  • Examples 7-11 since the average particle size of the sparingly soluble cerium compound was larger than the range specified in the present invention, defects occurred in the film. Therefore, the solid polymer electrolyte membrane obtained from the composition L-11 could not be evaluated for both initial characteristics and durability.
  • the water-soluble cerium salt was used without using the sparingly soluble cerium compound. Therefore, it is considered that the ion-exchange groups in the solid polymer electrolyte membrane were ion-exchanged and the proton conductivity of the solid polymer electrolyte membrane was lowered, so that the initial power generation characteristics of the membrane electrode assembly were lowered.
  • the membrane electrode assembly was manufactured without using the cerium compound. Therefore, it is considered that the solid polymer electrolyte membrane was deteriorated by hydrogen peroxide and peroxide radicals generated during operation, and the durability was insufficient.
  • the liquid composition of the present invention is useful as a material for forming a solid polymer electrolyte membrane of a solid polymer fuel cell.
  • the solid polymer electrolyte membrane of the present invention is useful as a solid polymer electrolyte membrane for polymer electrolyte fuel cells, and also a proton selective permeable membrane used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, etc.; It is also useful as a cation exchange membrane for salt electrolysis; a diaphragm for redox flow batteries; a cation exchange membrane for electrodialysis used for desalination or salt production.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-230348, filed on Dec. 07, 2018, are cited herein as disclosure of the specification of the present invention. It is something to incorporate.
  • membrane electrode assembly 11 catalyst layer, 12 gas diffusion layer, 13 anode, 14 cathode, 15 solid polymer electrolyte membrane, 16 carbon layer.

Abstract

膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない固体高分子電解質膜を形成できる液状組成物の提供。 液状媒体と、スルホン酸基含有フルオロカーボンポリマーと、難溶性セリウム化合物と、を含み、前記スルホン酸基含有フルオロカーボンポリマーのイオン交換容量が1.36~2.50ミリ当量/g乾燥樹脂であり、前記難溶性セリウム化合物の平均粒子径が1nm~3000nmであり、前記スルホン酸基含有フルオロカーボンポリマーが有するスルホン酸基の総モル数に対する前記難溶性セリウム化合物中のセリウム原子の総モル数の割合が、0.001~0.3である、液状組成物。

Description

液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池
 本発明は、液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池に関する。
 固体高分子形燃料電池は、例えば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックしたものである。膜電極接合体は、触媒層を有するアノード及びカソードと、アノードとカソードとの間に配置された固体高分子電解質膜とを備えたものである。固体高分子電解質膜は、例えば、スルホン酸基含有フルオロカーボンポリマーを含む液状組成物を膜状に製膜したものである。
 固体高分子形燃料電池において発電を行う際には、カソード側に供給された酸素ガスに由来する過酸化水素又は過酸化物ラジカルが生成する。そのため、固体高分子電解質膜には、過酸化水素又は過酸化物ラジカルに対する耐久性が求められる。
 過酸化水素又は過酸化物ラジカルに対する耐久性に優れた固体高分子電解質膜としては、下記のものが提案されている。
 スルホン酸基含有フルオロカーボンポリマーと、セリウムイオンとを含む固体高分子電解質膜(特許文献1)。
特許第3915846号公報
 しかし、従来の固体高分子電解質膜においては、膜電極接合体とした後に膜中のセリウムイオンが触媒層に移動することがある。触媒層に移動したセリウムイオンは、触媒層中のイオン交換樹脂のイオン交換基とイオン交換される可能性がある。そのため、従来の固体高分子電解質膜を備えた膜電極接合体にあっては、初期の発電特性が低下することがある。
 また、固体高分子電解質膜には長期間にわたって安定した発電を可能とするために、過酸化水素又は過酸化物ラジカルに対する耐久性が求められる。
 加えて、固体高分子電解質膜には膜の破損等の欠陥が少ないことが求められる。
 本発明は、膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない固体高分子電解質膜を形成できる液状組成物;膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない固体高分子電解質膜;初期の発電特性に優れ、長期間にわたって安定した発電が可能な膜電極接合体及び固体高分子形燃料電池を提供する。
 本発明は、下記の態様を有する。
[1] 液状媒体と、スルホン酸基含有フルオロカーボンポリマーと、難溶性セリウム化合物と、を含み、前記スルホン酸基含有フルオロカーボンポリマーのイオン交換容量が1.36~2.50ミリ当量/g乾燥樹脂であり、前記難溶性セリウム化合物の平均粒子径が1nm~3000nmであり、前記スルホン酸基含有フルオロカーボンポリマーが有するスルホン酸基の総モル数に対する前記難溶性セリウム化合物中のセリウム原子の総モル数の割合が、0.001~0.3である、液状組成物。[2] 前記難溶性セリウム化合物が酸化セリウムである、[1]の液状組成物。[3] 前記スルホン酸基含有フルオロカーボンポリマーが、下式u1で表される単位又は下式u2で表される単位のいずれか一方又は両方を有する、[1]又は[2]の液状組成物。
Figure JPOXMLDOC01-appb-C000003
 ただし、式u1中、RF1及びRF2は、炭素数1~3のペルフルオロアルキレン基であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、RF1及びRF2は同一であっても異なっていてもよい。式u2中、Q11は、エーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Q12は、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、sは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。[4] 前記難溶性セリウム化合物の平均粒子径が、1nm~400nmである、[1]~[3]のいずれかの液状組成物。[5] 前記スルホン酸基含有フルオロカーボンポリマーの含有量が液状組成物100質量%に対し、1~50質量%である、[1]~[4]のいずれかの液状組成物。[6] 前記液状媒体が、水酸基を有する有機溶媒を含む、[1]~[5]のいずれかの液状組成物。[7] セリウムイオンをさらに含む、[1]~[6]のいずれかの液状組成物。[8] スルホン酸基含有フルオロカーボンポリマーと、難溶性セリウム化合物と、を含み、前記スルホン酸基含有フルオロカーボンポリマーのイオン交換容量が1.36~2.50ミリ当量/g乾燥樹脂であり、前記難溶性セリウム化合物の平均粒子径が1nm~3000nmであり、前記スルホン酸基含有フルオロカーボンポリマーが有するスルホン酸基の総モル数に対する前記難溶性セリウム化合物中のセリウム原子の総モル数の割合が、0.001~0.3である、固体高分子電解質膜。[9] 前記難溶性セリウム化合物が酸化セリウムである、[8]の固体高分子電解質膜。[10] 前記スルホン酸基含有フルオロカーボンポリマーが、下式u1で表される単位又は下式u2で表される単位を少なくとも有する、[8]又は[9]の固体高分子電解質膜。
Figure JPOXMLDOC01-appb-C000004
 ただし、式u1中、RF1及びRF2は、炭素数1~3のペルフルオロアルキレン基であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、RF1及びRF2は同一であっても異なっていてもよい。式u2中、Q11は、エーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Q12は、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、sは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。[11] 前記難溶性セリウム化合物の平均粒子径が、1nm~400nmである、[8]~[10]のいずれかの固体高分子電解質膜。[12] セリウムイオンをさらに含む、[8]~[11]のいずれかの固体高分子電解質膜。[13] 触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された、[8]~[12]のいずれかの固体高分子電解質膜とを備えた膜電極接合体。[14] [13]の膜電極接合体を備えた固体高分子形燃料電池。
 本発明の液状組成物によれば、膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない固体高分子電解質膜を形成できる。
 本発明の固体高分子電解質膜は、膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない。
 本発明の膜電極接合体及び固体高分子形燃料電池は、初期の発電特性に優れ、長期間にわたって安定した発電が可能な固体高分子電解質膜を備える。
膜電極接合体の一例を示す模式断面図である。 膜電極接合体の他の例を示す模式断面図である。
 本明細書においては、式u1で表される単位を、単位u1と記す。他の式で表される単位も同様に記す。
 本明細書においては、式1で表される化合物を、化合物1と記す。他の式で表される化合物も同様に記す。
 「スルホン酸基」は、塩型のスルホン酸基(-SO 。ただし、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。)及び酸型のスルホン酸基(-SO )の総称である。
 「難溶性セリウム化合物」とは、25℃の水に対する溶解度が、水100gに対して0.1g以下であるセリウム化合物を意味する。
 「難溶性セリウム化合物中のセリウム原子の総モル数」とは、難溶性セリウム化合物中に含まれるセリウム原子の数の総モル数である。例えば、1分子の難溶性セリウム化合物がセリウム原子を2個有する場合、難溶性セリウム化合物中のセリウム原子の総モル数は、難溶性セリウム化合物の総モル数×2となる。
 「イオン交換基」は、該基に含まれる陽イオンが他の陽イオンに交換し得る基である。
 ポリマーにおける「単位」は、モノマー1分子が重合して直接形成される原子団と、該原子団の一部を化学変換して得られる原子団との総称である。
 ポリマーの「イオン交換容量」は、実施例に記載の方法によって求める。
 ポリマーの「容量流速値」は、実施例に記載の方法によって求める。本明細書においては、容量流速値を「TQ値」と記す。
 難溶性セリウム化合物の「平均粒子径」は、実施例に記載の方法によって求める。
 図1~図2における寸法比は、説明の便宜上、実際のものとは異なったものである。
<液状組成物>
 本発明の液状組成物は、液状媒体と、スルホン酸基含有フルオロカーボンポリマーと、難溶性セリウム化合物とを含む。
 本発明の液状組成物は、セリウムイオンをさらに含んでもよい。
 本発明の液状組成物は、本発明の効果を損なわない範囲において、必須成分以外の他の成分をさらに含んでもよい。
 液状媒体としては、水、有機溶媒、水と有機溶媒との混合溶媒等が挙げられ、なかでも水と有機溶媒との混合溶媒が好ましい。
 水は、液状媒体に対するスルホン酸基含有フルオロカーボンポリマーの分散性又は溶解性を向上させる。
 有機溶媒は、割れにくい固体高分子電解質膜を形成しやすくする。
 有機溶媒としては、割れにくい固体高分子電解質膜を形成しやすい点から、水酸基を有する有機溶媒が好ましく、炭素数が1~4のアルコールの1種以上がより好ましい。
 炭素数が1~4のアルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノールが挙げられる。
 炭素数が1~4のアルコールは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
 水の割合は、液状媒体の合計のうち、10~99質量%が好ましく、40~99質量%がより好ましい。
 有機溶媒の割合は、液状媒体の合計のうち、1~90質量%が好ましく、1~60質量%がより好ましい。
 水及び有機溶媒の割合が前記範囲内であれば、分散媒に対するスルホン酸基含有フルオロカーボンポリマーの分散性に優れ、かつ割れにくい固体高分子電解質膜を形成しやすい。
 スルホン酸基含有フルオロカーボンポリマーは、ペルフルオロモノマー単位を有し、かつスルホン酸基(-SO )を有するポリマー(以下、「ポリマーH」と記す。)である。
 ポリマーHのイオン交換容量は、1.36~2.50ミリ当量/g乾燥樹脂(以下、単に「ミリ当量/g」ともいう)であり、1.37~2.49ミリ当量/gが好ましく、1.38~2.48ミリ当量/gがより好ましい。
 イオン交換容量が前記範囲の下限値以上であることにより、固体高分子電解質膜中でセリウムイオンが発生したとしても、ポリマーHがセリウムイオンを固体高分子電解質膜中で充分に捕捉できる。また、ポリマーHの導電率が高くなるため、固体高分子形燃料電池の固体高分子電解質膜としたときの充分な電池出力が得られる。イオン交換容量が前記範囲の上限値以下であれば、ポリマーHが含水した際の膨潤が抑えられ、固体高分子電解質膜としたときの機械的強度が高くなる。
 ポリマーHの含有量は、液状組成物100質量%に対し、1~50質量%であることが好ましく、3~30質量%であることがより好ましい。ポリマーHの含有量が前記範囲の下限値以上であれば、製膜時に厚みのある膜を安定して得ることができる。ポリマーHの含有量が前記範囲の上限値以下であれば、液状組成物の粘度が過度に高くなるのを抑制できる。
 ペルフルオロモノマー単位としては、例えば、イオン交換基及びその前駆体基を有しないペルフルオロモノマー単位、イオン交換基を有するペルフルオロモノマー単位が挙げられる。
 イオン交換基及びその前駆体基を有しないペルフルオロモノマーとしては、例えば、テトラフルオロエチレン(以下、「TFE」と記す。)、ヘキサフルオロプロピレン、ペルフルオロ(アルキルビニルエーテル)、国際公開第2011/013578号に記載された5員環を有するペルフルオロモノマーが挙げられる。
 イオン交換基を有するペルフルオロモノマー単位としては、例えば、国際公開第2017/221840号、国際公開第2018/012374号等に記載された公知のイオン交換基を有するペルフルオロモノマー単位、後述する単位u1が挙げられる。イオン交換基を有するペルフルオロモノマー単位としては、スルホン酸基を有するペルフルオロモノマー単位が好ましい。スルホン酸基を有するペルフルオロモノマー単位としては、後述する単位u1、単位u2、単位u3が挙げられる。
 ポリマーHは、本発明の効果を損なわない範囲において、必要に応じて、ペルフルオロモノマー以外のモノマー(以下、「他のモノマー」と記す。)に基づく単位(以下、「他の単位」ともいう)を有してもよい。
 他のモノマーとしては、例えば、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、エチレン、プロピレン、(ペルフルオロアルキル)エチレン、(ペルフルオロアルキル)プロペン、ペルフルオロビニルエーテル(ペルフルオロ(アルキルビニルエーテル)、ペルフルオロ(エーテル性酸素原子含有アルキルビニルエーテル)等)、国際公開第2011/013578号に記載された5員環を有するペルフルオロモノマー等が挙げられる。
 ポリマーHとしては、初期の発電特性及び耐久性に優れる固体高分子電解質膜を形成しやすい点から、単位u1又は単位u2を少なくとも有するものが好ましい。ポリマーHとしては、機械的特性及び耐久性に優れる点から、TFE単位をさらに有するものが好ましい。
 ポリマーHは、単位u1、単位u2及び他の単位を、それぞれ一種ずつ有してもよく、それぞれ二種以上有してもよい。
 単位u1は、下式で表される。
Figure JPOXMLDOC01-appb-C000005
 式u1中、RF1及びRF2は、炭素数1~3のペルフルオロアルキレン基であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。RF1及びRF2は同一であっても異なっていてもよい。
 RF1及びRF2としては、例えば、-CF-、-CFCF-、-CF(CF)-、-CFCFCF-、-CF(CFCF)-、-CF(CF)CF-、-CFCF(CF)-、-C(CF)(CF)-が挙げられる。原料がより安価であり、後述する化合物7の製造が容易であり、またポリマーHのイオン交換容量をより高くできる点から、RF1及びRF2は、炭素数1~2のペルフルオロアルキレン基が好ましく、炭素数2の場合は、直鎖が好ましい。具体的には、-CF-、-CFCF-又は-CF(CF)-が好ましく、-CF-がより好ましい。
 単位u2は、下式で表される。
Figure JPOXMLDOC01-appb-C000006
 式u2中、Q11は、エーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Q12は、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、sは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。有機基は、炭素原子を1以上含む基を意味する。
 Q11、Q12のペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。
 Q11、Q12のペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
 ペルフルオロアルキレン基の炭素数は、1~6が好ましく、1~4がより好ましい。炭素数が6以下であれば、原料のモノマーの沸点が低くなり、蒸留精製が容易となる。また、炭素数が6以下であれば、ポリマーHのイオン交換容量の低下が抑えられ、プロトン導電率の低下が抑えられる。
 Q12は、エーテル性の酸素原子を有してもよい炭素数1~6のペルフルオロアルキレン基であることが好ましい。Q12がエーテル性の酸素原子を有してもよい炭素数1~6のペルフルオロアルキレン基であれば、Q12が単結合である場合に比べ、長期にわたって固体高分子形燃料電池を運転した際に、発電性能の安定性にさらに優れる。
 Q11、Q12の少なくとも一方は、エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基であることが好ましい。エーテル性の酸素原子を有する炭素数1~6のペルフルオロアルキレン基を有するモノマーは、フッ素ガスによるフッ素化反応を経ずに合成できるため、収率が良好で、製造が容易である。
 Q11及びQ12は、エーテル性の酸素原子を有するペルフルオロアルキレン基であることが好ましい。Q11及びQ12がエーテル性の酸素原子を有するペルフルオロアルキレン基であれば、ポリマーHの柔軟性が向上する。柔軟性が高いポリマーHを含む固体高分子電解質膜は、湿潤状態における膨潤と乾燥状態における収縮とを繰り返しても破損しにくい。
 Yとしては、フッ素原子、又はエーテル性の酸素原子を有してもよい炭素数1~6の直鎖のペルフルオロアルキル基が好ましい。
 単位u2としては、ポリマーHの製造が容易であり、工業的実施が容易である点から、単位u2-1~u2-3が好ましい。得られるポリマーHが柔軟であり、固体高分子電解質膜としたときに、湿潤状態における膨潤と乾燥状態における収縮とを繰り返しても破損しにくい点から、単位u2-2又は単位u2-3がより好ましい。
Figure JPOXMLDOC01-appb-C000007
 ポリマーHは、イオン交換基を1つのみ有する単位を有するものであってもよい。イオン交換基を1つのみ有する単位としては、例えば、単位u3が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 式u3中、Qは、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、tは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。有機基は、炭素原子を1以上含む基を意味する。
 Qのペルフルオロアルキレン基がエーテル性の酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素原子-炭素原子結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。
 Qのペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよい。
 Yの1価のペルフルオロ有機基としては、トリフルオロメチル基が挙げられる。
 単位u3としては、例えば、単位u3-1~u3-4が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ポリマーHにおける各単位の割合は、ポリマーHに要求される特性及び物性(水素ガス透過性、耐熱水性、イオン交換容量、導電率、機械的強度、弾性率、軟化温度等)に応じて適宜決定すればよい。
 ポリマーHは、例えば、後述するポリマーFのフルオロスルホニル基(-SOF)をスルホン酸基(-SO )に変換して得られる。
 フルオロスルホニル基をスルホン酸基に変換する方法としては、ポリマーFのフルオロスルホニル基を加水分解して塩型のスルホン酸基とする方法がある。
 加水分解は、例えば、溶媒中にてポリマーFと塩基性化合物とを接触させて行う。塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、トリエチルアミンが挙げられる。溶媒としては、例えば、水、水と極性溶媒との混合溶媒が挙げられる。極性溶媒としては、例えば、アルコール(メタノール、エタノール等)、ジメチルスルホキシドが挙げられる。
 酸型のスルホン酸基を有するポリマーHを得る場合、ポリマーFを加水分解した後に塩型のスルホン酸基を酸型化して酸型のスルホン酸基に変換する。
 酸型化は、例えば、塩型のスルホン酸基を有するポリマーを、塩酸、硫酸、硝酸等の水溶液に接触させて行う。加水分解及び酸型化における温度は、0~120℃が好ましい。加水分解又は酸型化の後に、ポリマーHを水洗することが好ましい。
 ポリマーHに不純物として含まれる有機物を除去するために、加水分解の後に、ポリマーHを過酸化水素水に浸漬する等の処理により、有機物を分解してもよい。
 過酸化水素水中の過酸化水素の濃度は、0.1~30質量%が好ましく、1質量%以上10質量%未満がより好ましい。過酸化水素水中の過酸化水素の濃度が前記範囲の下限値以上であれば、有機物を分解する効果が充分である。過酸化水素水中の過酸化水素の濃度が前記範囲の上限値以下であれば、ポリマーHが分解しにくい。
 過酸化水素水の温度は、15~90℃が好ましく、40℃以上80℃未満がより好ましい。過酸化水素水の温度が前記範囲の下限値以上であれば、有機物を分解する効果が充分である。過酸化水素水の温度が前記範囲の上限値以下であれば、過酸化水素が分解しにくい。
 ポリマーHを過酸化水素水に浸漬する時間は、ポリマーHの厚さと、含まれる有機物の量にもよるが、例えば、ポリマーHが厚さ50μmの膜の場合、0.5~100時間が好ましい。浸漬する時間が0.5時間未満では、膜内部の有機物まで分解するのが難しい。100時間を超えて浸漬しても、有機物をそれ以上分解する効果は期待できない。
 過酸化水素水に浸漬した後に、ポリマーHを水洗することが好ましい。水洗に用いる水としては、超純水が好ましい。また、水洗前に酸型化処理を行ってもよい。
 前記の処理を終えた最終的なポリマーHの形状は、粉末状でもよく、ペレット状でもよく、膜状でもよい。
 ポリマーHの前駆体であるポリマーFは、ペルフルオロモノマー単位を有し、かつフルオロスルホニル基(-SOF)を有するポリマーである。
 ペルフルオロモノマー単位としては、例えば、イオン交換基及びその前駆体基を有しないペルフルオロモノマー単位、イオン交換基の前駆体基を有するペルフルオロモノマー単位が挙げられる。
 イオン交換基及びその前駆体基を有しないペルフルオロモノマーとしては、ポリマーHで説明したイオン交換基及びその前駆体基を有しないペルフルオロモノマーが挙げられる。
 イオン交換基の前駆体基を有するペルフルオロモノマー単位としては、例えば、国際公開第2017/221840号、国際公開第2018/012374号等に記載された公知のイオン交換基の前駆体基を有するペルフルオロモノマー単位、後述する単位u4が挙げられる。
 イオン交換基の前駆体基を有するペルフルオロモノマー単位としては、フルオロスルホニル基を有するペルフルオロモノマー単位が好ましい。フルオロスルホニル基を有するペルフルオロモノマー単位としては、後述する単位u4、単位u5、単位u6が挙げられる。
 ポリマーFは、本発明の効果を損なわない範囲において、必要に応じて、他の単位を有してもよい。
 ポリマーFとしては、初期の発電特性及び耐久性に優れる固体高分子電解質膜を形成しやすい点から、単位u4及び単位u5のいずれか一方又は両方を有するものが好ましい。ポリマーFとしては、機械的特性及び耐久性に優れるポリマーHが得られる点から、TFE単位をさらに有するものが好ましい。
 単位u4は、下式で表される。
Figure JPOXMLDOC01-appb-C000010
 式u4中、RF1及びRF2は、単位u1で説明したRF1及びRF2と同じであり、好ましい形態も同様である。
 単位u5は、下式で表される。
Figure JPOXMLDOC01-appb-C000011
 式u5中、Q11、Q12、Y、sは、単位u2で説明したQ11、Q12、Y、sと同じであり、好ましい形態も同様である。
 単位u5としては、ポリマーFの製造が容易であり、工業的実施が容易である点から、単位u5-1~u5-3が好ましい。得られるポリマーFが柔軟であり、ポリマーHに変換して固体高分子電解質膜を形成したときに、湿潤状態における膨潤と乾燥状態における収縮とを繰り返しても破損しにくく、耐久性が良好となりやすい点、湿潤状態における弾性率と乾燥状態における弾性率との差が少なくなりやすく、湿潤状態における膨潤と乾燥状態における収縮とを繰り返して発生したシワに起因する亀裂が進展しにくく、良好な発電性能を維持しやすい点から、単位u5-2又はu5-3がより好ましい。
Figure JPOXMLDOC01-appb-C000012
 ポリマーFは、イオン交換基の前駆体基を1つのみ有する単位を有するものであってもよい。イオン交換基の前駆体基を1つのみ有する単位としては、例えば、単位u6が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式u6中、Q、Y、tは、単位u3で説明したQ、Y、tと同じであり、好ましい形態も同様である。
 単位u6としては、例えば、単位u6-1~u6-4が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 ポリマーFにおける各単位の割合は、ポリマーHに要求される特性及び物性(水素ガス透過性、耐熱水性、イオン交換容量、導電率、機械的強度、弾性率、軟化温度等)に応じて適宜決定すればよい。
 ポリマーFのTQ値は、190~350℃が好ましく、200~340℃がより好ましく、210~330℃がさらに好ましい。
 ポリマーFのTQ値が前記範囲の下限値以上であれば、ポリマーHが充分な分子量を有し、機械的強度にも優れる。ポリマーFのTQ値が前記範囲の上限値以下であれば、ポリマーHの溶解性又は分散性がよくなり、液状組成物を調製しやすい。TQ値は、ポリマーの分子量の指標であり、TQ値が高いほどポリマーの分子量は大きい。
 単位u4を有するポリマーFは、例えば、後述する化合物7、必要に応じてTFE、化合物7及びTFE以外のモノマーを含むモノマー成分を重合して製造できる。
 重合法としては、例えば、バルク重合法、溶液重合法、懸濁重合法、乳化重合法が挙げられる。また、液体又は超臨界の二酸化炭素中にて重合してもよい。
 重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル開始剤を添加する方法等が挙げられる。重合温度は、10~170℃が好ましい。
 化合物7は、単位u4を有するポリマーFの製造に使用可能である。
Figure JPOXMLDOC01-appb-C000015
 式7中、RF1及びRF2は、単位u1で説明したRF1及びRF2と同じであり、好ましい形態も同様である。
 化合物7としては、例えば、化合物7-1が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 化合物7は、例えば、以下のようにして製造できる。
 化合物1とスルホン化剤とを反応させて化合物2を得る。
 化合物2と塩素化剤とを反応させて化合物3を得る。
 化合物3とフッ素化剤とを反応させて化合物4を得る。
 化合物4をフッ素化処理して化合物5を得る。
 化合物5とペルフルオロアリル化剤(例えば、後述する化合物6)とを反応させて化合物7を得る。
Figure JPOXMLDOC01-appb-C000017
 式1~式4中、R及びRは、炭素数1~3のアルキレン基である。R及びRは同一であっても異なっていてもよい。
 式5及び式7中、RF1及びRF2は、単位u1で説明したRF1及びRF2と同じであり、好ましい形態も同様である。
 R及びRとしては、例えば、-CH-、-CHCH-、-CH(CH)-、-CHCHCH-、-CH(CHCH)-、-CH(CH)CH-、-CHCH(CH)-、-C(CH)(CH)-が挙げられる。原料の化合物1がより安価であり、化合物7の製造が容易であり、また、ポリマーHのイオン交換容量をより高くできる点から、R及びRは、炭素数1~2のアルキレン基が好ましい。炭素数2の場合は、直鎖が好ましい。具体的には、-CH-、-CHCH-又は-CH(CH)-が好ましく、-CH-がより好ましい。
 化合物1としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、メチルプロピルケトン、エチルプロピルケトン、ジプロピルケトン、ジイソプロピルケトン、イソプロピルメチルケトン、イソプロピルエチルケトン、イソプロピルプロピルケトンが挙げられる。化合物1がより安価であり、化合物7の製造が容易であり、また、単位分子量当たりのポリマーHのイオン交換容量をより高くできる点から、アセトンが好ましい。
 スルホン化剤としては、例えば、塩化スルホン酸、フルオロスルホン酸、三酸化硫黄、三酸化硫黄の錯体、発煙硫酸、濃硫酸が挙げられる。
 化合物1とスルホン化剤との反応温度は、0~100℃が好ましい。反応溶媒は、溶媒自身がスルホン化されにくい溶媒から適宜選択できる。反応溶媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素、1,1,1-トリクロロメタン、シクロヘキサン、ヘキサン、石油エーテル、ペンタン、ヘプタン、ジエチルエーテル、アセトニトリルが挙げられる。反応溶媒は、2種以上を混合して用いてもよい。
 塩素化剤としては、例えば、塩化チオニル、五塩化リン、三塩化リン、塩化ホスホリル、塩化スルホン酸、塩化スルフリル、塩化オキサリル、塩素が挙げられる。
 化合物2と塩素化剤との反応温度は、0~100℃が好ましい。反応温度が前記範囲の上限値以下であれば、化合物3の分解を抑制できることから化合物3の収率が向上する。反応温度が前記範囲の下限値以上であれば、反応速度が上がり生産性が向上する。
 フッ素化剤としては、例えば、フッ化水素カリウム、フッ化水素ナトリウム、フッ化カリウム、フッ化ナトリウム、フッ化セシウム、フッ化銀、第四級アンモニウムフルオリド(テトラエチルアンモニウムフルオリド、テトラブチルアンモニウムフルオリド等)、フッ化水素、フッ化水素酸、フッ化水素錯体(HF-ピリジン錯体、HF-トリエチルアミン等)が挙げられる。
 化合物3とフッ素化剤との反応温度は、-30~100℃が好ましい。反応溶媒は、フッ素化反応を受けにくい極性溶媒又は低極性溶媒から適宜選択できる。反応溶媒としては、例えば、塩化メチレン、クロロホルム、四塩化炭素、1,1,1-トリクロロメタン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジメチルスルホキシド、スルホラン、N,N-ジメチルホルムアミド、アセトニトリル、炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、水が挙げられる。反応溶媒は、2種以上を混合して用いてもよい。
 フッ素化処理は、化合物4とフッ素ガス又はフッ素化合物とを接触させて行う。
 フッ素化合物としては、例えば、フッ化水素、フッ化ハロゲン(三フッ化塩素、五フッ化ヨウ素等)、ガス状フッ化物(三フッ化ホウ素、三フッ化窒素、五フッ化リン、四フッ化ケイ素、六フッ化硫黄等)、金属フッ化物(フッ化リチウム、フッ化ニッケル(II)等)、ハイポフルオライト化合物(トリフルオロメチルハイポフルオライト、トリフルオロアセチルハイポフルオライト等)、求電子的フッ素化反応試薬(セレクトフルオル(登録商標)、N-フルオロベンゼンスルホンイミド等)が挙げられる。
 フッ素化処理としては、取り扱いが容易である点、及び化合物5に含まれる不純物を少なくする点から、化合物4とフッ素ガスとを接触させる処理が好ましい。フッ素ガスは、窒素ガス等の不活性ガスで希釈して用いてもよい。フッ素化処理の温度は、-20~350℃が好ましい。反応溶媒は、化合物4又は化合物5の溶解性が高く、また溶媒自身がフッ素化処理を受けにくい溶媒から適宜選択できる。反応溶媒としては、例えば、アセトニトリル、クロロホルム、ジクロロメタン、トリクロロフルオロメタン、ペルフルオロトリアルキルアミン(ペルフルオロトリブチルアミン等)、ペルフルオロカーボン(ペルフルオロヘキサン、ペルフルオロオクタン等)、ハイドロフルオロカーボン(1H,4H-ペルフルオロブタン、1H-ペルフルオロヘキサン等)、ハイドロクロロフルオロカーボン(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等)、ハイドロフルオロエーテル(CFCHOCFCFH等)が挙げられる。
 なお、化合物5は、フッ化水素(HF)の存在下では、O=C<部分にフッ化水素が付加してHO-CF<となったアルコール体と平衡状態にあるか、アルコール体となっている場合がある。本明細書においては、単に化合物5と記載した場合でも、化合物5及びアルコール体のいずれか一方又は両方を表していることがある。
 ペルフルオロアリル化剤としては、例えば化合物6が挙げられる。
 CF=CFCF-G   式6
 式6中、Gは、-OSOF、-OSO、塩素原子、臭素原子又はヨウ素原子であり、Rは炭素数1~8のペルフルオロアルキル基である。
 化合物6としては、原料の入手性、ペルフルオロアリル化剤の反応性、合成の簡便さ、取扱いの容易さの点から、化合物6-1が好ましい。
 CF=CFCFOSOF   式6-1
 化合物6-1は、例えば、三フッ化ホウ素の存在下にヘキサフルオロプロピレンと三酸化硫黄とを反応させて製造できる。三フッ化ホウ素の代わりに三フッ化ホウ素ジエチルエーテル錯体、トリメトキシボラン等のルイス酸を用いてもよい。
 化合物5とペルフルオロアリル化剤との反応は、フッ化物塩の存在下に行うことが好ましい。フッ化物塩としては、例えば、フッ化カリウム、フッ化セシウム、フッ化銀、第四級アンモニウムフルオリド、フッ化ナトリウムが挙げられる。
 化合物5とペルフルオロアリル化剤との反応温度は、-70~40℃が好ましい。反応溶媒は、非プロトン性極性溶媒を含むことが好ましく、非プロトン性極性溶媒のみがより好ましい。非プロトン性極性溶媒としては、例えば、モノグライム、ジグライム、トリグライム、テトラグライム、アセトニトリル、プロピオニトリル、アジポニトリル、ベンゾニトリル、ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、ニトロエタンが挙げられる。反応溶媒は、2種以上を混合して用いてもよい。
 単位u5を有するポリマーF、単位u6を有するポリマーFは、例えば、国際公開第2017/221840号、国際公開第2018/012374号等に記載された方法によって製造できる。
 難溶性セリウム化合物は、過酸化水素又は過酸化物ラジカルの分解触媒として機能する。
 難溶性セリウム化合物の平均粒子径は1nm~3000nmであり、好ましくは1nm~400nmである。平均粒子径の上限値は2500nmが好ましく、1800nmがより好ましく、1000nmがさらに好ましく、400nmが最も好ましい。また、平均子粒径の下限値は5nmが好ましく、10nm以上が好ましく、20nm以上が好ましい。
 難溶性セリウム化合物の平均粒子径が前記範囲の下限値以上であることにより、難溶性セリウム化合物の凝集が抑制され安定な分散状態とするのが容易である。難溶性セリウム化合物の平均粒子径が前記範囲の上限値以下であることにより、過酸化水素又は過酸化物ラジカルを低減するのに充分な表面積を有し、また、固体高分子電解質膜の破損等の欠陥が少なくなる。
 ポリマーHが有するスルホン酸基の総モル数に対する難溶性セリウム化合物中のセリウム原子の総モル数の割合は、0.001~0.3であり、0.001~0.17が好ましく、0.003~0.07がより好ましく、0.003~0.035がさらに好ましい。
 前記のセリウム原子の総モル数の割合が前記範囲の下限値以上であることにより、過酸化水素又は過酸化物ラジカルによる膜の劣化を低減でき、液状組成物から得られる固体高分子電解質膜の耐久性がよくなる。前記のセリウム原子の総モル数の割合が前記範囲の上限値以下であることにより、沈降速度が小さくなることから液状組成物における難溶性セリウム化合物の分散が容易である。
 難溶性セリウム化合物としては、例えば、リン酸セリウム、酸化セリウム、水酸化セリウム、フッ化セリウム、シュウ酸セリウム、タングステン酸セリウム、ヘテロポリ酸のセリウム塩等が挙げられる。これらの中でも、過酸化水素又は過酸化物ラジカルによるポリマーHの劣化を抑制する効果が高い点から、リン酸セリウム、酸化セリウム、フッ化セリウム、タングステン酸セリウム及びヘテロポリ酸のセリウム塩から選ばれる1種以上が好ましい。
 本発明の液状組成物に添加した際の分散性に優れることから酸化セリウムが特に好ましい。酸化セリウムは多価の金属イオンがドープされていてもよい。多価の金属イオンとしては、例えばジルコニウム、プラセオジム等が挙げられる。
 本発明の液状組成物がセリウムイオンをさらに含むことが好ましい。液状組成物がセリウムイオンをさらに含む場合、液状組成物から得られる固体高分子電解質膜において、過酸化水素又は過酸化物ラジカルによる劣化がさらに抑制されやすい。そのため、膜電極接合体としたときに高い出力電圧を長期間にわたって維持できる。
 セリウムイオンは難溶性セリウム化合物の解離平衡により生じるセリウムイオンでもよく、水溶性セリウム塩から生じるセリウムイオンでもよい。セリウムイオンは、+3価でも+4価でもよい。
 水溶性セリウム塩としては、炭酸セリウム、酢酸セリウム、塩化セリウム、硝酸セリウム、硫酸セリウム、硝酸二アンモニウムセリウム、硫酸四アンモニウムセリウム等が挙げられる。これらの中でも、炭酸をガスとして容易に除去できる点から、炭酸セリウムが好ましい。
 セリウムの有機金属錯塩としては、セリウムアセチルアセトナート等が挙げられる。
 液状組成物は、例えば、下記の方法1、方法2によって製造できる。
・方法1:液状媒体とポリマーHとを含む組成物と、難溶性セリウム化合物の粒子とを混合する方法。
・方法2:液状媒体とポリマーHとを含む組成物と、液状媒体に難溶性セリウム化合物が分散された分散液とを混合する方法。
 方法2では、難溶性セリウム化合物の分散液に液状媒体とポリマーHとからなる組成物を加えて混合してもよい。
 液状組成物の製造方法としては、小粒子径の難溶性セリウム化合物を混合可能であり、分散安定性に優れる液状組成物が得られる点から、方法2が好ましい。この理由は、液状媒体とポリマーHと難溶性セリウム化合物とを同時に混合する場合、難溶性セリウム化合物の微粒子を充分に解砕し難く、大粒子径の難溶性セリウム化合物が液状組成物及び固体高分子電解質膜に存在しやすいためである。
 方法2における混合方法としては、例えば、大気圧下、又はオートクレーブ等で密閉した状態下において、難溶性セリウム化合物の分散液を攪拌しながら液状媒体とポリマーHとを含む組成物を徐々に加えていく方法が挙げられる。
 混合の際の温度は、0~80℃が好ましく、0~30℃がより好ましい。必要に応じて、超音波等のせん断を付与してもよい。
(作用機序)
 以上説明した本発明の液状組成物は、ポリマーHが有するスルホン酸基の総モル数に対する難溶性セリウム化合物中のセリウム原子の総モル数の割合が0.3以下であるから、液状組成物から得られる固体高分子電解質膜中で、難溶性セリウム化合物の解離平衡により生じるセリウムイオンが過剰に発生することがない。また、セリウム化合物が難溶性であることから、膜電極接合体の製造後にセリウムイオンが固体高分子電解質膜から触媒層に移動しにくく、触媒層中のイオン交換樹脂のイオン交換基とのイオン交換を抑制できる。
 加えて、ポリマーHのイオン交換容量が1.36ミリ当量/g以上であるから、固体高分子電解質膜が高温低加湿の条件でも高いプロトン伝導性を有し、固体高分子形燃料電池の電解質膜として使用された際に高い発電特性を示す。よって、本発明の液状組成物によれば、膜電極接合体としたときの初期の発電特性がよくなる固体高分子電解質膜を形成できる。
 また、本発明の液状組成物は難溶性セリウム化合物を含み、ポリマーHが有するスルホン酸基の総モル数に対する難溶性セリウム化合物中のセリウム原子の総モル数の割合が0.001以上であるから、過酸化水素又は過酸化物ラジカルによる膜の劣化を低減でき、固体高分子電解質膜の耐久性がよくなる。
 また、本発明の液状組成物においては、難溶性セリウム化合物の平均粒子径が3000nm以下であるから、固体高分子電解質膜の破損等の欠陥が少ない。
<固体高分子電解質膜>
 本発明の固体高分子電解質膜は、ポリマーHと、難溶性セリウム化合物とを含む膜である。固体高分子電解質膜におけるポリマーHのスルホン酸基は、酸型が好ましい。ポリマーH及び難溶性セリウム化合物の詳細及び好ましい形態は、本発明の液状組成物で説明した内容と同様である。
 固体高分子電解質膜の厚さは、2~200μmが好ましく、5~130μmがより好ましい。固体高分子電解質膜の厚さが前記範囲の上限値以下であれば、膜抵抗を充分に下げることができる。固体高分子電解質膜の厚さが前記範囲の下限値以上であれば、水素ガスの透過性が充分に低くなる。
 固体高分子電解質膜は、補強材で補強されていてもよい。補強材としては、例えば、多孔体、繊維、織布、不織布が挙げられる。補強材の材料としては、例えば、ポリテトラフルオロエチレン、TFE単位とヘキサフルオロプロピレン単位とを有するコポリマー、TFE単位とペルフルオロ(アルキルビニルエーテル)単位とを有するコポリマー、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィドが挙げられる。
 固体高分子電解質膜は、乾燥を防ぐための保水剤として、シリカ、又はヘテロポリ酸(リン酸ジルコニウム、リンモリブデン酸、リンタングステン酸等)を含んでいてもよい。
 固体高分子電解質膜は、例えば、本発明の液状組成物を基材フィルム又は触媒層の表面に塗布し、乾燥させる方法(キャスト法)によって形成できる。固体高分子電解質膜が補強材をさらに含む場合、固体高分子電解質膜は、例えば、本発明の液状組成物を補強材に含浸し、乾燥させる方法によって形成できる。
 固体高分子電解質膜を安定化させるために、熱処理を行うことが好ましい。熱処理の温度は、ポリマーHの種類にもよるが、130~200℃が好ましい。熱処理の温度が130℃以上であれば、ポリマーHが過度に含水しなくなる。熱処理の温度が200℃以下であれば、スルホン酸基の熱分解が抑えられ、固体高分子電解質膜の導電率の低下が抑えられる。
 固体高分子電解質膜は、必要に応じて過酸化水素水で処理してもよい。
(作用機序)
 以上説明した本発明の固体高分子電解質膜は、ポリマーHと難溶性セリウム化合物を含み、ポリマーHが有するスルホン酸基の総モル数に対する難溶性セリウム化合物中のセリウム原子の総モル数の割合が0.3以下であるから、難溶性セリウム化合物の解離平衡により生じるセリウムイオンが過剰に発生することがない。また、セリウム化合物が難溶性であることから、膜電極接合体の製造後にセリウムイオンが固体高分子電解質膜から触媒層に移動しにくく、触媒層中のイオン交換樹脂のイオン交換基とのイオン交換を抑制できる。
 加えて、ポリマーHのイオン交換容量が1.36ミリ当量/g以上であるから、本発明の固体高分子電解質膜は、高温低加湿の条件でも高いプロトン伝導性を有し、固体高分子形燃料電池の電解質膜として使用された際に高い発電特性を示す。よって、本発明の固体高分子電解質膜によれば、膜電極接合体としたときの初期の発電特性がよくなる。
 また、本発明の固体高分子電解質膜は難溶性セリウム化合物を含み、ポリマーHが有するスルホン酸基の総モル数に対する難溶性セリウム化合物中のセリウム原子の総モル数の割合が0.001以上であるから、過酸化水素又は過酸化物ラジカルによる膜の劣化を低減でき、耐久性がよくなる。
 また、本発明の固体高分子電解質膜においては、難溶性セリウム化合物の平均粒子径が3000nm以下であるから、破損等の欠陥が少ない。
<膜電極接合体>
 図1は、本発明の膜電極接合体の一例を示す断面図である。膜電極接合体10は、触媒層11及びガス拡散層12を有するアノード13と、触媒層11及びガス拡散層12を有するカソード14と、アノード13とカソード14との間に、触媒層11に接した状態で配置される固体高分子電解質膜15とを具備する。
 触媒層11は、触媒と、イオン交換基を有するポリマーとを含む層である。
 触媒としては、例えば、カーボン担体に白金又は白金合金を担持した担持触媒が挙げられる。
 カーボン担体としては、カーボンブラック粉末が挙げられる。
 イオン交換基を有するポリマーとしては、例えば、ポリマーH、ポリマーH以外のイオン交換基を有するペルフルオロポリマーが挙げられる。
 ガス拡散層12は、触媒層11に均一にガスを拡散させる機能及び集電体としての機能を有する。ガス拡散層12としては、例えば、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。ガス拡散層12は、ポリテトラフルオロエチレン等によって撥水化処理されていることが好ましい。
 固体高分子電解質膜15は、本発明の固体高分子電解質膜である。
 図2に示すように、膜電極接合体10は、触媒層11とガス拡散層12との間にカーボン層16を有してもよい。
 カーボン層16を配置することによって、触媒層11の表面のガス拡散性が向上し、固体高分子形燃料電池の発電特性が大きく向上する。
 カーボン層16は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
 カーボンとしては、例えば、カーボン粒子、カーボンファイバー等が挙げられ、繊維径1~1000nm、繊維長1000μm以下のカーボンナノファイバーが好ましい。非イオン性含フッ素ポリマーとしては、例えば、ポリテトラフルオロエチレンが挙げられる。
 膜電極接合体10がカーボン層16を有しない場合、膜電極接合体10は、例えば、下記の方法にて製造される。
 ・固体高分子電解質膜15上に触媒層11を形成して膜触媒層接合体とし、膜触媒層接合体をガス拡散層12で挟み込む方法。
 ・ガス拡散層12上に触媒層11を形成して電極(アノード13、カソード14)とし、固体高分子電解質膜15を電極で挟み込む方法。
 膜電極接合体10がカーボン層16を有する場合、膜電極接合体10は、例えば、下記の方法にて製造される。
 ・基材フィルム上に、カーボン及び非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、カーボン層上に触媒層11を形成し、触媒層11と固体高分子電解質膜15とを貼り合わせ、基材フィルムを剥離して、カーボン層16を有する膜触媒層接合体とし、膜触媒層接合体をガス拡散層12で挟み込む方法。
 ・ガス拡散層上12に、カーボン及び非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、固体高分子電解質膜15上に触媒層11を形成した膜触媒層接合体を、カーボン層16を有するガス拡散層12で挟み込む方法。
 触媒層11の形成方法としては、例えば、下記の方法が挙げられる。
 ・触媒層形成用塗工液を、固体高分子電解質膜15、ガス拡散層12、又はカーボン層16上に塗布し、乾燥させる方法。
 ・触媒層形成用塗工液を基材フィルム上に塗布し、乾燥させて触媒層11を形成し、触媒層11を固体高分子電解質膜15上に転写する方法。
 触媒層形成用塗工液は、イオン交換基を有するポリマー及び触媒を分散媒に分散させた液である。触媒層形成用塗工液は、例えば、イオン交換基を有するポリマーを含む液状組成物と、触媒の分散液とを混合することによって調製できる。触媒層形成用塗工液は、触媒層11の耐久性をさらに向上させるために、セリウム及びマンガンからなる群から選ばれる1種以上の金属、金属化合物、又は金属イオンを含んでいてもよい。
 以上説明した膜電極接合体10は、本発明の固体高分子電解質膜を備えるため、初期の発電特性に優れる。そして、耐久性に優れる本発明の固体高分子電解質膜を備えるため、長期にわたって安定した発電が可能である。
<固体高分子形燃料電池>
 本発明の固体高分子形燃料電池は、本発明の膜電極接合体を備える。
 本発明の固体高分子形燃料電池は、膜電極接合体の両面に、ガスの流路となる溝が形成されたセパレータを配置したものであってもよい。セパレータとしては、例えば、金属製セパレータ、カーボン製セパレータ、黒鉛と樹脂を混合した材料からなるセパレータ等、各種導電性材料からなるセパレータが挙げられる。
 固体高分子形燃料電池においては、カソードに酸素を含むガス、アノードに水素を含むガスを供給して発電が行われる。また、アノードにメタノールを供給して発電を行うメタノール燃料電池にも、膜電極接合体を適用できる。
 本発明の固体高分子形燃料電池は、本発明の膜電極接合体を備えるため、初期の発電特性に優れる。そして、耐久性に優れる本発明の固体高分子電解質膜を備えるため、長期にわたって安定した発電が可能である。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
 例1~例6は製造例であり、例7-1~例7-13は比較例であり、例7-14~例7-25は実施例である。
 (H-NMR)
 H-NMRは、周波数:300.4MHz、化学シフト基準:テトラメチルシランの条件にて測定した。溶媒としては、特に付記のない限りCDCNを用いた。生成物の定量は、H-NMRの分析結果及び内部標準試料(1,3-ビス(トリフルオロメチル)ベンゼン)の添加量から行った。
 (19F-NMR)
 19F-NMRは、周波数:282.7MHz、溶媒:CDCN、化学シフト基準:CFClの条件にて測定した。生成物の定量は、19F-NMRの分析結果及び内部標準試料(1,3-ビス(トリフルオロメチル)ベンゼン)の添加量から行った。
 (13C-NMR)
 13C-NMRは、周波数:75.5MHz、化学シフト基準:テトラメチルシランの条件にて測定した。溶媒は、特に付記のない限りCDCNを用いた。
 (収率)
 収率は、反応工程の収率×精製工程の収率を意味する。反応収率は、目的物を精製する前の反応工程の収率のみの、精製工程のロスが含まれない収率を意味する。
 (イオン交換容量)
 ポリマーFの膜を120℃で12時間真空乾燥した。乾燥後のポリマーの膜の質量を測定した後、ポリマーの膜を0.85モル/gの水酸化ナトリウム溶液(溶媒:水/メタノール=10/90(質量比))に60℃で72時間以上浸漬して、フルオロスルホニル基を加水分解した。加水分解後の水酸化ナトリウム溶液を0.1モル/Lの塩酸で逆滴定することによってポリマーFのイオン交換容量を求めた。ポリマーHのイオン交換容量は、ポリマーFのイオン交換容量と同じである。
 (難溶性セリウム化合物の平均粒子径)
 液状組成物の製造の際に液状媒体に難溶性セリウム化合物が分散された分散液を用いる場合、以下の方法でサンプル1を調製し、難溶性セリウム化合物の平均粒子径を求めた。まず、平均粒子径の測定に適切な散乱強度が得られるように難溶性セリウム化合物の分散液を超純水で希釈してサンプル1を調製した。次いで、サンプル1についてファイバー光学動的光散乱光度計(大塚電子社製、FDLS-3000)を用い、温度:25℃、サンプリング時間:50μs、チャンネル数:1024、積算回数:100回の条件で散乱強度を測定し、得られる自己相関関数からキュムラント法解析によって平均粒子径を算出し、難溶性セリウム化合物の平均粒子径とした。
 液状組成物の製造の際に難溶性セリウム化合物の粒子を用いる場合、以下の方法でサンプル2を調製し、難溶性セリウム化合物の平均粒子径を求めた。まず、難溶性セリウム化合物とポリマーHと液状媒体とを混合し、分散処理を行い、難溶性セリウム化合物とポリマーHと液状媒体からなるサンプル2を調製した。次いで、サンプル2をレーザー回折・散乱式粒度分布解析装置(マイクロトラック・ベル社製、MT3300EXII)で測定し、得られる粒度分布のd50を難溶性セリウム化合物の平均粒子径とした。
 (各単位の割合)
 ポリマーFにおける各単位の割合は、ポリマーFのイオン交換容量から算出した。
 ポリマーHにおける各単位の割合は、ポリマーFにおける各単位の割合に対応しているため、省略する。
 (TQ値)
 長さ1mm、内径1mmのノズルを備えたフローテスタ(島津製作所社製、CFT-500D)を用い、2.94MPa(ゲージ圧)の押出し圧力の条件で温度を変えながらポリマーFを溶融押出した。温度を変えてポリマーFの押出し量を測定し、押出し量が100mm/秒となる温度をTQ値として求めた。
 (初期の発電特性)
 膜電極接合体を発電用セルに組み込み、膜電極接合体の温度を95℃に維持し、アノードに水素ガス(利用率70%)、カソードに酸素ガス(利用率50%)を、それぞれ151kPa(絶対圧力)に加圧して供給する。ガスの加湿度は水素ガス、酸素ガスともに相対湿度20%RHとし、電流密度が1A/cmのときのセル電圧を記録し、下記基準にて評価した。
 ◎:セル電圧が0.65V以上である。
 ○:セル電圧が0.60V以上0.65V未満である。
 ×:セル電圧が0.60V未満である。
 ××:作製後の固体高分子電解質膜の少なくとも一部に破損が観察され、評価できない。
 (耐久性)
 膜電極接合体を発電用セルに組み込み、加速試験として開回路電圧試験を行う。試験は常圧で電流密度0.2A/cmに相当する水素ガス(利用率70%)及び酸素ガス(利用率40%)をそれぞれアノード及びカソードに供給し、セル温度は120℃、水素ガス及び酸素ガスの相対湿度を20%RHとし、開回路電圧の経時変化を記録し、下記基準にて評価した。
 ◎:700時間運転後の開回路電圧の低下が、初期の開回路電圧と比較して50mV未満である。
 〇:500時間運転後の開回路電圧の低下が、初期の開回路電圧と比較して50mV未満であるが、700時間運転後の開回路電圧の低下が、初期の開回路電圧と比較して50mV以上である。
 ×:500時間経過後の開回路電圧の低下が初期の開回路電圧と比較して50mV以上である。
 ××:作製後の固体高分子電解質膜の少なくとも一部に破損が観察され、評価できない。
 (略号)
 PSVE:CF=CFOCFCF(CF)OCFCFSOF、
 TFE:テトラフルオロエチレン、
 P2SVE:CF=CFOCFCF(CFOCFCFSOF)OCFCFSOF、
 PFtBPO:(CFCOOC(CF
 V-601:CHOC(O)C(CH-N=N-C(CHC(O)OCH
 HCFC-225cb:CClFCFCHClF、
 HCFC-141b:CHCClF、
 HFC-52-13p:CF(CFH、
 HFE-347pc-f:CFCHOCFCF
 ETFEシート:エチレン単位とTFE単位とを有するコポリマーのフィルム(AGC社製、商品名:アフレックス100N、厚さ:100μm)。
[例1]
 (例1-1)
 内容積230mLのハステロイ製オートクレーブに、PSVEの123.8g、HCFC-225cbの35.2g、AIBNの63.6mgを入れ、液体窒素で冷却して脱気した。70℃に昇温してTFEを系内に導入し、圧力を1.14MPaGに保持した。圧力が1.14MPaGで一定になるように、TFEを連続的に添加した。7.9時間経過後、TFEの添加量が12.4gとなったところでオートクレーブを冷却して、系内のガスをパージして反応を終了させた。ポリマー溶液をHCFC-225cbで希釈してから、HCFC-141bを添加して、凝集した。HCFC-225cb及びHCFC-141bを用いて洗浄を行った後、乾燥して、TFE単位とPSVE単位とを有するコポリマーであるポリマーF-1の25.1gを得た。結果を表1に示す。
 (例1-2、例1-3)
 各条件を表1のように変更した以外は、例1-1と同様にしてTFEとPSVEとを共重合し、ポリマーF-2、F-3を得た。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000018
[例2]
 内容積2575mLのステンレス製オートクレーブに減圧下で、P2SVEの1996.4gを仕込み、室温にて減圧脱気した。57℃に昇温した後、TFEを0.76MPaGになるまで導入した。圧力が変化しないことを確認した後、V601の400mgを溶解したHFC-52-13p溶液の9.29gを窒素ガスで加圧添加して、HFC-52-13pの11.0gで添加ラインを洗浄した。温度と圧力を一定に保持しながら、TFEを連続的に供給して重合させた。重合開始から14.5時間後にオートクレーブを冷却して重合反応を停止し、系内のガスをパージしてポリマーF-4の溶液を得た。
 ポリマーF-4の溶液にHFC-52-13pの1800gを加えて混合した。ポリマー溶液の温度は19℃であった。このポリマー溶液を10℃のHFE-347pc-fの11.5kgに加え、ポリマーF-4を凝集させ、粒子を形成させた。ポリマーF-4の粒子を含む液を、ろ紙(アドバンテック社製、No.4A)を用いてろ過した。得られたポリマーF-4の粒子に、HFE-347pc-fの1800gを加え、撹拌した後、ろ過することによって洗浄した。洗浄操作を5回繰り返した。得られたポリマーF-4の粒子を140℃で一晩減圧乾燥して、ポリマーF-4の339.7gを得た。ポリマーF-4のイオン交換容量は1.95ミリ当量/gであり、ポリマーF-4のTQ値は、236℃であった。
[例3]
 (例3-1)
 撹拌機、コンデンサー、温度計、滴下ロートを備えた2Lの4つ口フラスコに、窒素ガスシール下、塩化スルホン酸の560gを仕込んだ。フラスコを氷浴で冷却し、内温を20℃以下に保ったまま化合物1-1の139.5gとジクロロメタンの478.7gの混合液を20分かけて滴下した。滴下時は発熱とガスの発生が見られた。滴下完了後、フラスコをオイルバスにセットし、内温を30~40℃に保ったまま7時間反応させた。反応はガスの発生を伴いながら進行し、白色の固体が析出した。反応後、フラスコ内を減圧にしてジクロロメタンを留去した。フラスコ内には黄色味を帯びた白色固体が残った。固体をH-NMRで分析したところ、化合物2-1が生成していることを確認した。
Figure JPOXMLDOC01-appb-C000019
 化合物2-1のNMRスペクトル;
 H-NMR(溶媒:DO):4.27ppm(-CH-、4H、s)。
 13C-NMR(溶媒:DO):62.6ppm(-CH-)、195.3ppm(C=O)。
 (例3-2)
 例3-1で得た化合物2-1は単離せずに、次の反応にそのまま用いた。例3-1のフラスコ内に塩化チオニルの2049gを加えた。フラスコを80℃に加熱して15時間還流した。反応の進行に伴い、還流温度は52℃から72℃まで上昇した。反応中はガスの発生が確認された。化合物2-1がすべて溶解し、ガスの発生が収まった点を反応終点とした。反応液を2Lのセパラブルフラスコへ移し、気相部を窒素ガスでシールしながら9時間放冷したところ、セパラブルフラスコ内に黒褐色の固体が析出した。デカンテーションで未反応の塩化チオニルを除去した。トルエンを添加して析出固体を洗浄し、再びデカンテーションでトルエンを除去した。トルエン洗浄は合計3回実施し、トルエンの使用量は合計1207gだった。析出固体を窒素ガス気流下、25℃にて71時間乾燥した。乾燥後の固体を回収し、H-NMRで分析したところ、純度96.2%の化合物3-1の356.5gが得られたことを確認した。化合物1-1基準の収率は56.0%となった。
Figure JPOXMLDOC01-appb-C000020
 化合物3-1のNMRスペクトル;
 H-NMR:5.20ppm(-CH-、4H、s)。
 13C-NMR:72.3ppm(-CH-)、184.6ppm(C=O)。
 (例3-3)
 撹拌機、コンデンサー、温度計を備えた1Lの4つ口フラスコに、窒素ガスシール下、化合物3-1の90.0gとアセトニトリルの750mLを仕込んだ。フラスコを氷浴で冷却し、撹拌しながらフッ化水素カリウムの110.3gを加えた。添加に伴う発熱はわずかだった。氷浴を水浴に変え、内温を15~25℃に保ったまま62時間反応させた。反応に伴い、細かい白色の固体が生成した。反応液を加圧ろ過器へ移し、未反応のフッ化水素カリウムと生成物をろ別した。ろ過器にアセトニトリルを加え、ろ液が透明になるまでろ別した固体を洗浄し、洗浄液を回収した。ろ液と洗浄液をエバポレーターにかけてアセトニトリルを留去した。乾固して残った固体にトルエンの950mLを添加し、100℃に加熱して固体をトルエンに溶解させた。溶解液を自然ろ過して未溶解分を除去した。ろ液を1Lのセパラブルフラスコへ移し、気相部を窒素ガスでシールしながら14時間放冷したところ、セパラブルフラスコ内に薄茶色の針状結晶が析出した。トルエンで結晶を洗浄し、窒素ガス気流下、25℃にて30時間乾燥させた。乾燥後の固体を回収しH-NMR及び19F-NMRで分析したところ、純度97.6%の化合物4-1の58.1gが得られたことを確認した。化合物3-1基準の収率は72.3%となった。
Figure JPOXMLDOC01-appb-C000021
 化合物4-1のNMRスペクトル;
 H-NMR:4.97ppm(-CH-、4H、d、J=3.1Hz)。
 19F-NMR:62.4ppm(-SOF、2F、t、J=3.1Hz)。
 13C-NMR:60.7ppm(-CH-)、184.9ppm(C=O)。
 (例3-4)
 200mLのニッケル製オートクレーブに、化合物4-1の9.93gとアセトニトリルの89.7gを仕込んだ。オートクレーブを冷却し、内温を0~5℃に保ちながら窒素ガスを6.7L/hrの流量でフィードして、反応液を1時間バブリングした。反応液の温度を0~5℃に保ちながら、フッ素ガスと窒素ガスとの混合ガス(混合比=10.3モル%/89.7モル%)を6.7L/hrの流量で6時間かけて導入した。再び窒素ガスを6.7L/hrの流量でフィードし、反応液を1時間バブリングした。オートクレーブから反応液の103.2gを回収した。反応液を19F-NMRで定量分析したところ、化合物5-1が8.4質量%含まれていることを確認した。化合物4-1基準の反応収率は66%となった。
Figure JPOXMLDOC01-appb-C000022
 化合物5-1のNMRスペクトル;
 19F-NMR:-104.1ppm(-CF-、4F、s)、45.8ppm(-SOF、2F、s)。
 (例3-5)
 200mLのニッケル製オートクレーブに、化合物4-1の19.9gとアセトニトリルの85.6gを仕込んだ。オートクレーブを冷却し、内温を0~5℃に保ちながら窒素ガスを6.7L/hrの流量でフィードして、反応液を1時間バブリングした。反応液の温度を0~5℃に保ちながら、フッ素ガスと窒素ガスとの混合ガス(混合比=10.3モル%/89.7モル%)を16.4L/hrの流量で6.5時間かけて導入した。再び窒素ガスを6.7L/hrの流量でフィードし、反応液を1時間バブリングした。オートクレーブから化合物5-1を含む反応液の109.6gを回収した。
 (例3-6)
 200mLのニッケル製オートクレーブに、化合物4-1の20.1gとアセトニトリルの80.1gを仕込んだ。オートクレーブを冷却し、内温を0~5℃に保ちながら窒素ガスを6.7L/hrの流量でフィードして、反応液を1時間バブリングした。反応液の温度を0~5℃に保ちながら、フッ素ガスと窒素ガスとの混合ガス(混合比=20.0モル%/80.0モル%)を8.4L/hrの流量で6時間かけて導入した。再び窒素ガスを6.7L/hrの流量でフィードし、反応液を1時間バブリングした。オートクレーブから化合物5-1を含む反応液の107.1gを回収した。
 (例3-7)
 撹拌機、コンデンサー、温度計、滴下ロートを備えた50mLの4つ口フラスコに、フッ化カリウムの1.65gとジエチレングリコールジメチルエーテル(ジグライム)の7.8mLを仕込んだ。フラスコを氷浴で冷却し、撹拌して内温を0~10℃に保ちながら例3-4で得た反応液の8.43gを、プラスチックシリンジを用いて滴下した。強い発熱を確認し、滴下には15分を要した。滴下完了後に氷浴を水浴に替え、15~20℃で1時間反応させた。再度氷浴にて冷却し、反応液の温度を0~10℃に保ちながら滴下ロートから化合物6-1の6.56gを滴下した。滴下完了後、氷浴を水浴に替えて20~25℃で3.5時間反応させた。吸引ろ過により反応液から副生固体を除去し、ろ液を回収した。ろ過残固体は適当量のアセトニトリルで洗浄し、洗浄液はろ液と混合した。ろ液の37.1gを19F-NMRで定量分析したところ、化合物7-1が2.04質量%含まれていることを確認した。化合物4-1基準の反応収率は46.6%となった。
Figure JPOXMLDOC01-appb-C000023
 化合物7-1のNMRスペクトル;
 19F-NMR:-191.5ppm(CF=CF-、1F、ddt、J=116、38、14Hz)、-133.8ppm(-O-CF-、1F、tt、J=21.3、6.1Hz)、-103.1ppm(-CF-SOF、4F、m)、-101.5ppm(CF=CF-、1F、ddt、J=116、49、27Hz)、-87.6ppm(CF=CF-、1F、ddt、J=49、38、7Hz)、-67.5ppm(-CF-O-、2F、m)、46.8ppm(-SOF、2F、s)。
 (例3-8)
 撹拌機、コンデンサー、温度計、滴下ロートを備えた500mLの4つ口フラスコに、フッ化カリウムの36.6gとアセトニトリルの125.6gを仕込んだ。フラスコを氷浴で冷却し、撹拌して内温を0~10℃に保ちながら例3-5で得た反応液の79.8gを、プラスチック製滴下ロートを用いて滴下した。強い発熱を確認し、滴下には23分を要した。滴下完了後に氷浴を水浴に替え、20~30℃で5.5時間反応させた。再度氷浴にて冷却し、反応液の温度を0~10℃に保ちながら滴下ロートから化合物6-1の146.0gを滴下した。滴下完了後、氷浴を水浴に替えて15~25℃で16時間反応させた。例3-7と同様にして吸引ろ過し、得られたろ液の412.3gを19F-NMRで定量分析したところ、化合物7-1が3.93質量%含まれていることを確認した。化合物4-1基準の反応収率は55.9%となった。ろ液を減圧蒸留することにより、沸点97.2℃/10kPa留分として化合物7-1を単離した。ガスクロマトグラフィー純度は98.0%であった。
 (例3-9)
 撹拌機、コンデンサー、温度計、滴下ロートを備えた50mLの4つ口フラスコに、フッ化カリウムの3.70gとアセトニトリルの10.9gを仕込んだ。フラスコを氷浴で冷却し、撹拌して内温を0~10℃に保ちながら例3-6で得た反応液の10.2gを、プラスチックシリンジを用いて滴下した。強い発熱を確認し、滴下には8分を要した。滴下完了後に氷浴を水浴に替え、20~30℃で3時間反応させた。再度氷浴にて冷却し、反応液の温度を0~10℃に保ちながら滴下ロートから化合物6-1の14.6gを滴下した。滴下完了後、氷浴を水浴に替えて15~25℃で17時間反応させた。例3-7と同様にして吸引ろ過し、得られたろ液の55.9gを19F-NMRで定量分析したところ、化合物7-1が4.77質量%含まれていることを確認した。化合物4-1基準の反応収率は69.6%となった。また、化合物1-1基準の反応収率(モノマー合成工程全体での反応収率)は、28.2%となった。
[例4]
 オートクレーブ(内容積100mL、ステンレス製)に、化合物7-1の70.0gを入れ、液体窒素で冷却して脱気した。オートクレーブにTFEの2.53gを導入し、内温が100℃になるまでオイルバスにて加温した。このときの圧力は0.29MPa(ゲージ圧)であった。重合開始剤であるPFtBPOの36.3mgとHFC-52-13pの2.58gとの混合液をオートクレーブ内に圧入した。さらに圧入ラインから窒素ガスを導入し、圧入ライン内の圧入液を完全に押し込んだ。この操作により気相部のTFEが希釈された結果、圧力は0.56MPa(ゲージ圧)まで増加した。圧力を0.56MPa(ゲージ圧)で維持したままTFEを連続添加し重合を行った。9.5時間でTFEの添加量が4.03gになったところでオートクレーブ内を冷却して重合を停止し、系内のガスをパージした。反応液をHFC-52-13pで希釈後、HFE-347pc-fを添加し、ポリマーを凝集してろ過した。その後、HFC-52-13p中でポリマーを撹拌して、HFE-347pc-fで再凝集する操作を2回繰り返した。120℃で真空乾燥して、TFE単位と化合物7-1単位とを有するコポリマーであるポリマーF-5を得た。
[例5]
 例1で得たポリマーF-1~F-3を用い、下記の方法にて膜状のポリマーH-1~ポリマーH-3を得た。
 ポリマーFを、TQ値より10℃高い温度及び4MPaでプレスし、サイズ:30mm×50mm、厚さ:100~200μmのポリマーFの膜を作製した。水酸化カリウムの20質量%を含む水溶液に、80℃にてポリマーFの膜を16時間浸漬させ、ポリマーFの-SOFを加水分解し、-SOKに変換した。さらにポリマーの膜を、3モル/Lの塩酸水溶液に2時間浸漬した。塩酸水溶液を交換し、同様の処理をさらに4回繰り返し、ポリマーの-SOKを-SOHに変換し、膜状のポリマーHを得た。
 例2で得たポリマーF-4を用いて上述の方法によって膜状のポリマーH-4を製造し、例4で得たポリマーF-5を用いて上述の方法によって膜状のポリマーH-5を製造した。
[例6]
 (例6-1)
 例5で得たポリマーH-1の膜を用い、下記の方法にてポリマー分散液S-1を調製した。
 オートクレーブ(内容積200mL、ガラス製)に、細かく切断したポリマーH-1の膜の21g、エタノール/水の混合溶媒(60/40(質量比))の56.9gを加え、撹拌しながらオートクレーブを加熱した。115℃で16時間撹拌した後に放冷し、加圧ろ過機(ろ紙:アドバンテック東洋社製、PF040)を用いてろ過することによって、ポリマーH-1が混合溶媒に分散したポリマー分散液S-1の77.4gを得た。
 (例6-2~例6-5)
 使用したポリマー、混合溶媒の組成、攪拌条件を表2に示す通りに変更した以外は、例6-1と同様にしてポリマー分散液S-2~S-5を得た。
Figure JPOXMLDOC01-appb-T000024
[例7]
 (例7-1、例7-6、例7-14、例7-18、例7-21)
例6で得たポリマー分散液S-1~S-5を用い、下記の方法にて例7-1、例7-6、例7-14、例7-18、例7-21の液状組成物L-1、L-6、L-14、L-18、L-21を調製した。
 表3に記載のポリマー分散液に酸化セリウム粒子(富士フイルム和光純薬、一次粒子径<10nm)を、ポリマーHのスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が0.033となるように添加し、直径5mmのジルコニアビーズを加えたのち遊星ビーズミルで200rpmの回転数で60分混合して分散処理を行った。調製後の液状組成物をレーザー回折・散乱式粒度分布計を用いて測定したところ、酸化セリウムの平均粒子径は2300nmであった。
 (例7-2、例7-7)
 例6で得たポリマー分散液S-1、S-2を用い、下記の方法にて例7-2、例7-7の液状組成物L-2、L-7を調製した。
 表3に記載のポリマー分散液に酸化セリウム粒子(富士フイルム和光純薬、一次粒子径<10nm)を、ポリマーHのスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が0.033となるように添加し、直径5mmのジルコニアビーズを加えたのち遊星ビーズミルで300rpmの回転数で60分混合して分散処理を行った。調製後の液状組成物をレーザー回折・散乱式粒度分布計を用いて測定したところ、酸化セリウムの平均粒子径は1000nmであった。
 (例7-3、例7-8、例7-15、例7-19、例7-22、例7-24)
 例6で得たポリマー分散液S-1~S-5を用い、下記の方法にて例7-3、7-8、7-15、7-19、7-22、7-24の液状組成物L-3、L-8、L-15、L-19、L-22、L-24を調製した。
 表3に記載のポリマー分散液に酸化セリウム粒子(富士フイルム和光純薬、一次粒子径<10nm)を、ポリマーHのスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が表3に記載の数値となるように添加し、直径2mmのジルコニアビーズを加えたのち遊星ビーズミルで300rpmの回転数で60分混合して分散処理を行った。調製後の液状組成物をレーザー回折・散乱式粒度分布計を用いて測定したところ、酸化セリウムの平均粒子径は300nmであった。
 (例7-4、例7-9、例7-16、例7-20、例7-23、例7-25)
 例6で得たポリマー分散液S-1~S-5を用い、下記の方法にて例7-4、例7-9、例7-16、例7-20、例7-23、例7-25の液状組成物L-4、L-9、L-16、L-20、L-23、L-25を調製した。
 酸化セリウム水分散液(シグマ・アルドリッチ、分散剤:酢酸、酸化セリウム平均粒子径30-50nm)の動的光散乱法による平均粒子径測定を行ったところ、酸化セリウムの平均粒子径は30nmであった。この酸化セリウム水分散液を攪拌しながら、表3に記載のポリマー分散液を、ポリマーHのスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が表3に記載の数値となるように徐々に添加した。
 (例7-5、例7-10、例7-17)
 例6で得たポリマー分散液S-1~S-3を用い、下記の方法にて例7-5、例7-10、例7-17の液状組成物L-5、L-10、L-17を調製した。
 酸化セリウム水分散液(シグマ・アルドリッチ、酸化セリウム平均粒子径<5nm)の動的光散乱法による平均粒子径測定を行ったところ、酸化セリウムの平均粒子径は5nmであった。この酸化セリウム水分散液を攪拌しながら、表3に記載のポリマー分散液を、ポリマーHのスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が0.033となるように徐々に添加した。
 (例7-11)
 例6で得たポリマー分散液S-3を用い、下記の方法にて例7-11の液状組成物L-11を調製した。
 ポリマー分散液S-3に酸化セリウム粒子(富士フイルム和光純薬、一次粒子径<10nm)を、ポリマーH-3のスルホン酸基の総モル数に対し、酸化セリウム中のセリウム原子の総モル数の割合が0.033となるように添加し、直径5mmのジルコニアビーズを加えたのち遊星ビーズミルで200rpmの回転数で30分混合して分散処理を行った。調製後の液状組成物をレーザー回折・散乱式粒度分布計を用いて測定したところ、酸化セリウムの平均粒子径は5000nmであった。
 (例7-12)
 例6で得たポリマー分散液S-3を用い、下記の方法にて例7-12の液状組成物L-12を調製した。
 ポリマー分散液S-3に、セリウム原子の数の割合がポリマーH-3中のスルホン酸基の総モル数に対して0.033となるように炭酸セリウム水和物(Ce(CO・8HO)を加え、50℃で24時間撹拌した。
 (例7-13)
 例6で得たポリマー分散液S-3にセリウム化合物を添加せず、そのまま例7-13の液状組成物L-13とした。
Figure JPOXMLDOC01-appb-T000025
(固体高分子電解質膜の作製)
 液状組成物L-1~L-25をETFEシートの表面にダイコーターで塗布し、80℃で15分間乾燥し、さらに185℃で30分間の熱処理を施し、厚さ25μmの固体高分子電解質膜を得た。
(触媒層つきETFEシートの作製)
 ポリマーH-1とエタノール/水の混合溶媒(60/40(質量比))とを混合し、固形分濃度が25.8質量%のポリマーH-1分散液を得た。
 カーボン粉末に白金を46質量%担持した担持触媒(田中貴金属工業社製)の44gに、水の221.76g、エタノールの174.24gとを加え、超音波ホモジナイザーを用いて混合粉砕し、触媒の分散液を得た。触媒の分散液に、ポリマーH-1分散液の80.16gとエタノールの44.4gとゼオローラ-H(日本ゼオン製)の25.32gをあらかじめ混合、混練した混合液を102.06g加え、さらに水の26.77g、エタノールの12gを加えて超音波ホモジナイザーを用いて混合し、固形分濃度を10質量%とし、触媒層形成用塗工液を得た。該液をETFEシート上にダイコーターで塗布し、80℃で乾燥させ、さらに160℃で30分の熱処理を施し、白金量が0.4mg/cmの触媒層つきETFEシートを形成した。
 気相成長炭素繊維(商品名:VGCF-H、昭和電工社製;繊維径約150nm、繊維長10~20μm)の50gにエタノール81.6g及び蒸留水154.4gを添加し、よく撹拌した。これに、フレミオン(イオン交換容量1.1meq/g、固形分濃度28.1%)を89g添加してよく撹拌し、さらに超音波ホモジナイザーを用いて混合、粉砕させて中間層形成用塗布液を調製した。
 ガス拡散基材(NOK社製、商品名:X0086 T10X13)の表面に中間層形成用塗布液を、固形分量が3mg/cmとなるようにダイコーターを用いて塗工し、80℃で乾燥し、カーボン不織布の表面に中間層が形成された中間層付きガス拡散基材を作製した。
 固体高分子電解質膜を2枚の触媒層つきETFEシートで、それぞれ両側から挟み、プレス温度160℃、プレス時間2分、圧力3MPaの条件にて加熱プレスし、固体高分子電解質膜の両面に触媒層を接合し、触媒層からETFEシートを剥離して、電極面積25cmの膜触媒層接合体を得た。
 初期発電特性評価及び水素リーク量評価に供する膜電極接合体は、前記膜触媒層接合体に、アノード側にカーボン層付きガス拡散基材(NOK社製、商品名:X0086 IX92 CX320)、カソード側に前記中間層付きガス拡散基材をそれぞれカーボン層、中間層が触媒層側と接するように配置し、プレス温度160℃、プレス時間2分、圧力3MPaで加熱プレスして膜電極接合体を作製し、発電特性を評価した。
 耐久性評価に供する膜電極接合体は、前記膜触媒層接合体に、アノード側に350℃2時間で焼成したカーボン層付きガス拡散基材(NOK社製、商品名:X0086 IX92 CX320)、カソード側に350℃2時間で焼成したカーボン層付きガス拡散基材(NOK社製、商品名:H2315 T10X6 CX96改)をそれぞれカーボン層が触媒層側と接するように配置し、ガス拡散基材で膜電極接合体を挟み込むことにより膜電極接合体を得た。
 表3に示すように、イオン交換容量、難溶性セリウム化合物の平均粒子径、難溶性セリウム化合物中のセリウム原子の数が本発明で規定する範囲内である例7―14~例7―25では、膜電極接合体としたときの初期の発電特性に優れ、かつ、耐久性に優れ、欠陥が少ない固体高分子電解質膜が得られた。
 例7―1~例7―10では、イオン交換容量が1.36ミリ当量/g未満であるポリマーHを含む液状組成物を用いた。この場合、ポリマーHのプロトン伝導度が不足していることにより、膜電極接合体の初期の発電特性が不充分であった。
 例7―11では、難溶性セリウム化合物の平均粒子径が本発明で規定する範囲より大きいため、膜に欠陥が生じた。そのため組成物L―11から得られる固体高分子電解質膜については、初期特性及び耐久性をともに評価できなかった。
 例7―12では、難溶性セリウム化合物を使用せずに、水溶性セリウム塩を使用した。そのため、固体高分子電解質膜内のイオン交換基がイオン交換され、固体高分子電解質膜のプロトン伝導度が低下したことにより、膜電極接合体の初期の発電特性が低下したと考えられる。
 例7-13では、セリウム化合物を使用せずに膜電極接合体を製造した。そのため、運転中に発生する過酸化水素、過酸化物ラジカルにより固体高分子電解質膜が劣化し、耐久性が不充分であったと考えられる。
 本発明の液状組成物は、固体高分子形燃料電池の固体高分子電解質膜を形成する材料として有用である。
 本発明の固体高分子電解質膜は、固体高分子形燃料電池の固体高分子電解質膜として有用であるほか、水電解、過酸化水素製造、オゾン製造、廃酸回収等に用いるプロトン選択透過膜;食塩電解用陽イオン交換膜;レドックスフロー電池の隔膜;脱塩又は製塩に用いる電気透析用陽イオン交換膜等としても有用である。
 なお、2018年12月07日に出願された日本特許出願2018-230348号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 膜電極接合体、
 11 触媒層、
 12 ガス拡散層、
 13 アノード、
 14 カソード、
 15 固体高分子電解質膜、
 16 カーボン層。

Claims (14)

  1.  液状媒体と、
     スルホン酸基含有フルオロカーボンポリマーと、
     難溶性セリウム化合物と、
     を含み、
     前記スルホン酸基含有フルオロカーボンポリマーのイオン交換容量が1.36~2.50ミリ当量/g乾燥樹脂であり、
     前記難溶性セリウム化合物の平均粒子径が1nm~3000nmであり、
     前記スルホン酸基含有フルオロカーボンポリマーが有するスルホン酸基の総モル数に対する前記難溶性セリウム化合物中のセリウム原子の総モル数の割合が、0.001~0.3である、液状組成物。
  2.  前記難溶性セリウム化合物が酸化セリウムである、請求項1に記載の液状組成物。
  3.  前記スルホン酸基含有フルオロカーボンポリマーが、下式u1で表される単位及び下式u2で表される単位のいずれか一方又は両方を有する、請求項1又は2に記載の液状組成物。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式u1中、RF1及びRF2は、炭素数1~3のペルフルオロアルキレン基であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、RF1及びRF2は同一であっても異なっていてもよい。式u2中、Q11は、エーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Q12は、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、sは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。
  4.  前記難溶性セリウム化合物の平均粒子径が、1nm~400nmである、請求項1~3のいずれか一項に記載の液状組成物。
  5.  前記スルホン酸基含有フルオロカーボンポリマーの含有量が、液状組成物100質量%に対し、1~50質量%である、請求項1~4のいずれか一項に記載の液状組成物。
  6.  前記液状媒体が、水酸基を有する有機溶媒を含む、請求項1~5のいずれか一項に記載の液状組成物。
  7.  セリウムイオンをさらに含む、請求項1~6のいずれか一項に記載の液状組成物。
  8.  スルホン酸基含有フルオロカーボンポリマーと、
     難溶性セリウム化合物と、
     を含み、
     前記スルホン酸基含有フルオロカーボンポリマーのイオン交換容量が1.36~2.50ミリ当量/g乾燥樹脂であり、
     前記難溶性セリウム化合物の平均粒子径が1nm~3000nmであり、
     前記スルホン酸基含有フルオロカーボンポリマーが有するスルホン酸基の総モル数に対する前記難溶性セリウム化合物中のセリウム原子の総モル数の割合が、0.001~0.3である、固体高分子電解質膜。
  9.  前記難溶性セリウム化合物が酸化セリウムである、請求項8に記載の固体高分子電解質膜。
  10.  前記スルホン酸基含有フルオロカーボンポリマーが、下式u1で表される単位又は下式u2で表される単位を少なくとも有する、請求項8又は9に記載の固体高分子電解質膜。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式u1中、RF1及びRF2は、炭素数1~3のペルフルオロアルキレン基であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、RF1及びRF2は同一であっても異なっていてもよい。式u2中、Q11は、エーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Q12は、単結合、又はエーテル性の酸素原子を有してもよいペルフルオロアルキレン基であり、Yは、フッ素原子又は1価のペルフルオロ有機基であり、sは、0又は1であり、Zは、H、一価の金属イオン、又は1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンである。
  11.  前記難溶性セリウム化合物の平均粒子径が、1nm~400nmである、請求項8~10のいずれか一項に記載の固体高分子電解質膜。
  12.  セリウムイオンをさらに含む、請求項8~11のいずれか一項に記載の固体高分子電解質膜。
  13.  触媒層を有するアノードと、触媒層を有するカソードと、前記アノードと前記カソードとの間に配置された、請求項8~12のいずれか一項に記載の固体高分子電解質膜とを備えた膜電極接合体。
  14.  請求項13に記載の膜電極接合体を備えた固体高分子形燃料電池。
PCT/JP2019/047934 2018-12-07 2019-12-06 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池 WO2020116645A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19892568.7A EP3892642B1 (en) 2018-12-07 2019-12-06 Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
KR1020217008498A KR20210100080A (ko) 2018-12-07 2019-12-06 액상 조성물, 고체 고분자 전해질막, 막 전극 접합체, 고체 고분자형 연료 전지
JP2020560075A JP7322896B2 (ja) 2018-12-07 2019-12-06 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池
CN201980080558.6A CN113166297B (zh) 2018-12-07 2019-12-06 液体组合物、固体高分子电解质膜、膜电极接合体、固体高分子型燃料电池
US17/333,682 US20210296673A1 (en) 2018-12-07 2021-05-28 Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-230348 2018-12-07
JP2018230348 2018-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/333,682 Continuation US20210296673A1 (en) 2018-12-07 2021-05-28 Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2020116645A1 true WO2020116645A1 (ja) 2020-06-11

Family

ID=70973935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047934 WO2020116645A1 (ja) 2018-12-07 2019-12-06 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池

Country Status (6)

Country Link
US (1) US20210296673A1 (ja)
EP (1) EP3892642B1 (ja)
JP (1) JP7322896B2 (ja)
KR (1) KR20210100080A (ja)
CN (1) CN113166297B (ja)
WO (1) WO2020116645A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085206A1 (ja) * 2021-11-09 2023-05-19 Agc株式会社 固体高分子型水電解用膜電極接合体および水電解装置
JP7392709B2 (ja) 2019-02-28 2023-12-06 Agc株式会社 スルホン酸基含有ポリマー、フルオロスルホニル基含有ポリマーおよび液状組成物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021079904A1 (ja) * 2019-10-21 2021-04-29
DE102022105790A1 (de) * 2022-03-11 2023-09-14 Forschungszentrum Jülich GmbH Stoff, Verfahren zur Herstellung eines Stoffs, Membran und Verwendung einer Membran

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107914A (ja) * 2004-10-05 2006-04-20 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2006260811A (ja) * 2005-03-15 2006-09-28 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP3915846B2 (ja) 2004-06-22 2007-05-16 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
WO2011013578A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2012046870A1 (ja) * 2010-10-05 2012-04-12 日本ゴア株式会社 固体高分子形燃料電池
WO2013031479A1 (ja) * 2011-08-26 2013-03-07 旭硝子株式会社 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体
WO2017221840A1 (ja) 2016-06-22 2017-12-28 旭硝子株式会社 電解質材料、その製造方法およびその使用
WO2018012374A1 (ja) 2016-07-11 2018-01-18 旭硝子株式会社 電解質材料、それを含む液状組成物およびその使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897059B2 (ja) * 2004-06-22 2007-03-22 旭硝子株式会社 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP4765401B2 (ja) * 2005-05-18 2011-09-07 旭硝子株式会社 固体高分子形燃料電池用膜の製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
DE602006012992D1 (de) * 2005-07-27 2010-04-29 Asahi Glass Co Ltd Elektrolytmaterial für eine festpolymer-brennstoffzelle, elektrolytmembran und membran-elektroden-baugruppe
KR20100015875A (ko) * 2007-04-25 2010-02-12 니뽄 고어-텍스 인크. 고체 고분자형 연료 전지용 고분자 전해질막의 제조 방법, 고체 고분자형 연료 전지용 막 전극 조립체 및 고체 고분자형 연료 전지
WO2009022728A1 (ja) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
CN105358592B (zh) * 2013-07-03 2017-09-19 旭硝子株式会社 含氟聚合物的制造方法
JP6477502B2 (ja) * 2014-01-20 2019-03-06 Agc株式会社 液状組成物の製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
EP3353221B1 (en) * 2015-09-23 2023-06-07 3M Innovative Properties Company Method of making a copolymer of tetrafluoroethylene having sulfonyl pendant groups

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915846B2 (ja) 2004-06-22 2007-05-16 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2006107914A (ja) * 2004-10-05 2006-04-20 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2006260811A (ja) * 2005-03-15 2006-09-28 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
WO2011013578A1 (ja) 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2012046870A1 (ja) * 2010-10-05 2012-04-12 日本ゴア株式会社 固体高分子形燃料電池
WO2013031479A1 (ja) * 2011-08-26 2013-03-07 旭硝子株式会社 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体
WO2017221840A1 (ja) 2016-06-22 2017-12-28 旭硝子株式会社 電解質材料、その製造方法およびその使用
WO2018012374A1 (ja) 2016-07-11 2018-01-18 旭硝子株式会社 電解質材料、それを含む液状組成物およびその使用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392709B2 (ja) 2019-02-28 2023-12-06 Agc株式会社 スルホン酸基含有ポリマー、フルオロスルホニル基含有ポリマーおよび液状組成物
WO2023085206A1 (ja) * 2021-11-09 2023-05-19 Agc株式会社 固体高分子型水電解用膜電極接合体および水電解装置

Also Published As

Publication number Publication date
EP3892642A4 (en) 2022-11-09
KR20210100080A (ko) 2021-08-13
JPWO2020116645A1 (ja) 2021-10-28
CN113166297A (zh) 2021-07-23
JP7322896B2 (ja) 2023-08-08
EP3892642B1 (en) 2023-08-23
US20210296673A1 (en) 2021-09-23
CN113166297B (zh) 2023-07-28
EP3892642A1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP7238957B2 (ja) フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途
JP7322896B2 (ja) 液状組成物、固体高分子電解質膜、膜電極接合体、固体高分子形燃料電池
WO2007013532A1 (ja) フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
US11898018B2 (en) Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
US11851508B2 (en) Acid-type sulfonic acid group-containing polymer, liquid composition, polymer electrolyte membrane, membrane electrode assembly, polymer electrolyte fuel cell and ion exchange membrane for water electrolysis
JP7363812B2 (ja) ポリマー、ポリマーの製造方法及び膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019892568

Country of ref document: EP

Effective date: 20210707