WO2020116244A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2020116244A1
WO2020116244A1 PCT/JP2019/046210 JP2019046210W WO2020116244A1 WO 2020116244 A1 WO2020116244 A1 WO 2020116244A1 JP 2019046210 W JP2019046210 W JP 2019046210W WO 2020116244 A1 WO2020116244 A1 WO 2020116244A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
stage
processing apparatus
plasma processing
plasma
Prior art date
Application number
PCT/JP2019/046210
Other languages
English (en)
French (fr)
Inventor
池田 太郎
聡 川上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020116244A1 publication Critical patent/WO2020116244A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the exemplary embodiment of the present disclosure relates to a plasma processing apparatus.
  • Plasma processing equipment is used in the manufacture of electronic devices.
  • a kind of plasma processing apparatus is described in Patent Document 1.
  • a capacitively coupled plasma processing apparatus is known.
  • As a capacitively coupled plasma processing apparatus attention is focused on a plasma processing apparatus that uses a high frequency having a frequency in the ultra-high frequency (VHF) band or the ultra-high frequency (UHF) band for plasma generation.
  • the VHF band is a frequency band in the range of 30 MHz to 300 MHz.
  • the UHF band is a frequency band in the range of about 300 MHz to 3 GHz.
  • a plasma processing apparatus is provided. It is a plasma processing apparatus for generating plasma in a space between an electrode embedded in a dielectric and a counter electrode arranged to face the electrode.
  • the electrode includes a first electrode and a second electrode, and the first electrode and the second electrode are different from each other in the distance to the counter electrode.
  • the plasma processing apparatus According to the plasma processing apparatus according to one exemplary embodiment, it is possible to improve the uniformity of plasma density.
  • FIG. 1 is a diagram showing a vertical cross-sectional structure of a stage according to one exemplary embodiment (Example 1).
  • FIG. 2 is a plan view of a stage according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a plasma processing apparatus according to an exemplary embodiment.
  • FIG. 4 is a diagram showing a vertical cross-sectional structure of a stage according to another exemplary embodiment (Example 2).
  • FIG. 5 is a diagram showing a vertical cross-sectional configuration of a stage according to still another exemplary embodiment (Example 3).
  • FIG. 6 is a diagram showing a vertical cross-sectional structure of a stage according to a comparative example.
  • FIG. 7 is a graph showing the in-plane electric field uniformity in the stages of Example 3 and Comparative Example.
  • a stage for a plasma processing apparatus is provided.
  • the stage is a stage for a plasma processing apparatus that generates plasma in the space by introducing a high frequency into a space between the upper electrode (opposite electrode) arranged opposite to the stage.
  • the stage includes a stage body, a first electrode and a second electrode.
  • the first electrode is embedded in the dielectric stage body.
  • the second electrode is embedded in the stage body.
  • the first electrode and the second electrode are separated from each other along the thickness direction of the stage body. That is, the first electrode and the second electrode are different from each other in the distance to the counter electrode.
  • the distance between the upper electrode and the lower electrode is constant in the plane, the plasma density in the plane will not be uniform due to the standing wave effect generated in the plasma generation space when high-frequency is introduced. Therefore, it is conceivable to calculate the electromagnetic field distribution in such a shape that the plasma density becomes uniform in the plane and deform the lower electrode, but there is a problem that the shape becomes complicated.
  • a high frequency electromagnetic wave is introduced from the peripheral portion of the processing container toward the central portion, such a complicated shape is a curved surface having a concave central portion.
  • the electrode is deeply embedded in the place where the electric field is strong on the stage, and the electrode is shallowly embedded in the place where the electric field is weak. In this way, even if the shape has a plurality of electrodes with appropriately different separation distances, it is possible to improve the in-plane uniformity of the plasma density more than before, and perform highly uniform plasma treatment. You can
  • the first electrode is arranged outside the second electrode in plan view.
  • the distance between the outer first electrode and the upper electrode (counter electrode) may be smaller than the distance between the inner second electrode and the upper electrode (counter electrode).
  • the first electrode and the second electrode may not be electrically connected within the stage body. Since the above-mentioned concave curved surface is a continuous surface, it was thought that it is preferable to electrically connect the first electrode and the second electrode, but in reality, it is better not to electrically connect the plasma density. The in-plane uniformity can be improved.
  • the first electrode and the second electrode can be separated from each other in the radial direction in a plan view.
  • the in-plane uniformity of the plasma density can be further improved.
  • the apparatus further comprises a heater embedded in the stage body in which the first electrode and the second electrode are embedded.
  • the heater can heat the stage body.
  • the position of the heater is preferably a position not interposed between these electrodes and the upper electrode so that electromagnetic shielding does not occur.
  • a plasma processing apparatus includes any one of the stages described above, an upper electrode (opposing electrode) facing the stage, and a high frequency generator that generates a high frequency. Since plasma with high in-plane uniformity can be generated, plasma treatment with high in-plane uniformity can be performed.
  • FIG. 1 is a diagram showing a vertical cross-sectional structure of a stage according to one exemplary embodiment (Example 1).
  • FIG. 2 is a plan view of a stage according to an exemplary embodiment.
  • the electrodes are shown to be visible through the stage body. In reality, the electrodes are embedded in different layers within the stage body.
  • the plasma processing apparatus stage LS generates plasma in the space SP by introducing a high frequency into a space SP between the stage LS and the upper electrode (counter electrode) 5 facing the stage LS. It is a stage for.
  • the Z-axis is defined with the thickness direction of the stage LS as the vertical direction, and the directions perpendicular to the Z-axis are the X-axis and the Y-axis, forming an XYZ three-dimensional orthogonal coordinate system.
  • the stage LS is connected to the drive mechanism DRV, and by driving the drive mechanism DRV, the stage LS can move up and down along the Z axis, as indicated by the white arrow, and can also move about the Z axis. Can rotate.
  • the stage LS includes a stage body 8, a mesh-shaped first electrode 6A and a second electrode 6B.
  • the first electrode 6A is made of a dielectric material and is embedded in the stage body 8 which has a circular shape in plan view when viewed from the Z-axis direction.
  • the second electrode 6B is embedded in the stage body 8.
  • the first electrode 6A and the second electrode 6B are separated from each other in the thickness direction (Z axis) of the stage body 8. In other words, the first electrode 6A and the second electrode 6B are different from each other in the distance to the upper electrode (counter electrode) 5.
  • the stage LS includes a mesh-shaped electrode as a lower electrode.
  • the plurality of mesh-shaped electrodes are set to have a large separation distance from the upper electrode (counter electrode) in the central portion of the stage LS and a small separation distance in the peripheral portion.
  • the electric field is weak and the first electrode 6A is buried shallowly.
  • the electric field on the stage LS is strong and the second electrode 6B is deeply embedded.
  • the mesh-shaped electrode has the same effect on the uniformity with respect to the electric field as compared with the full-scale electrode, but has an advantage that it can be easily embedded in a dielectric made of ceramic or the like, and that a small amount of material is required.
  • the lower electrode is not limited to the mesh shape and may be a thin film shape or formed by a printing method.
  • the first electrode 6A is arranged outside the second electrode 6B, and the separation distance ZA between the outer first electrode 6A and the upper electrode 5 is equal to the inner second electrode 6B. It is smaller than the separation distance ZB from the upper electrode 5. The smaller the separation distance, the higher the electric field strength in the Z-axis direction. When the high frequency for plasma generation is introduced from the peripheral portion toward the central portion, the electric field becomes strong in the central portion on the stage LS and becomes weak in the peripheral portion. Therefore, in-plane uniformity of plasma density can be improved by increasing the separation distance in the central portion and decreasing the separation distance in the peripheral portion.
  • the first electrode 6A and the second electrode 6B are not electrically connected in the stage body.
  • the in-plane uniformity of the plasma density can be improved because the electric field is not locally concentrated compared to the electrically connected mode (Example 2 (FIG. 4)).
  • the outer first electrode 6A has an annular shape, and its inner edge shape and outer edge shape are both circular, and the inner second electrode 6B has an outer edge shape that is circular.
  • the first electrode 6A and the second electrode 6B are radially separated from each other by a distance r gap in a plan view. In other words, the inner edge of the first electrode 6A and the outer edge of the second electrode 6B are separated by the distance r gap .
  • the shape of the mesh multiple shapes such as a square lattice, a triangular lattice, and a honeycomb structure can be considered.
  • the in-plane uniformity of the plasma density is further increased because the electric field concentration is relaxed. Can be improved.
  • the shape of each electrode is flat except that an opening is formed, and the vertical cross section extends linearly. Even when the first electrode 6A and the second electrode 6B are electrically connected in the stage main body, if they are separated in the radial direction, the in-plane uniformity of the plasma density is improved because the electric field concentration is relaxed. It is thought that it can be improved.
  • a heater HTR is embedded in the stage body 8.
  • the stage body 8 can be heated by the heater HTR.
  • the position of the heater HTR is preferably positioned so as not to be interposed between the first electrode 6A and the second electrode 6B and the upper electrode 5, that is, below these electrodes so that electromagnetic shielding does not occur.
  • FIG. 3 is a diagram schematically showing a plasma processing apparatus according to an exemplary embodiment.
  • This plasma processing apparatus includes any one of the stages LS described in the description, an upper electrode (counter electrode) 5 facing the stage LS, and a high frequency generator 13 that generates a high frequency. If any of the stages LS according to the exemplary embodiment is used, plasma with high in-plane uniformity can be generated, and thus plasma processing with high in-plane uniformity can be performed.
  • the high frequency generator 13 generates a high frequency.
  • the VHF wave is generated, but the UHF wave may be generated.
  • the generated VHF wave is introduced into the processing container 1 through the waveguide.
  • An upper lid 3 is provided on the upper portion of the processing container 1, and the VHF wave is introduced into the inside through the upper lid 3 and an opening provided in the upper lid 3.
  • a waveguide 2 is formed in the processing container 1.
  • the inside of the waveguide 2 is filled with a gas or solid dielectric and allows VHF waves to pass therethrough. Air or nitrogen can be used as a gas dielectric, and silicon oxide, silicon nitride, alumina, aluminum nitride, or the like can be used as a solid dielectric.
  • the waveguide 2 is surrounded by a suitable conductor such as aluminum or stainless steel.
  • the waveguide path 2 has a shape in which a plurality of cylinders or discs are stacked along the Z-axis direction, and the VHF wave introduced into the processing container 1 is directed from the outer peripheral portion of the processing container 1 toward the central portion thereof. proceed.
  • a processing gas various gases such as an etching gas and a deposition gas are known in addition to a rare gas such as Ar.
  • SiH 4 , NH 3 , CH 3 or the like is used. Gas can be used.
  • the plasma generation environment is adjusted.
  • a general plasma generation pressure is about 0.1 Pa to 100 Pa. Since the VHF wave is introduced between the upper electrode 5 and the stage LS, the processing gas is turned into plasma by the VHF wave in the space SP between these electrodes, and a sheath electric field is generated around the plasma. The sheath electric field tends to be weak in the peripheral portion of the stage LS and strong in the central portion, but in the present embodiment, since the stage in which a plurality of electrodes are embedded is used, the in-plane electric field distribution is made uniform.
  • An opening for introducing the processing gas from the flow rate controller 11 is provided at the center of the upper lid 3 of the processing container 1, and the processing gas is introduced into the processing container 1.
  • the introduced processing gas reaches the space SP for plasma generation located below the upper electrode 5 through an appropriate path.
  • Various structures are conceivable as the structure of the upper electrode 5.
  • a dielectric shower plate is attached below a metal electrode made of a metal such as copper or aluminum, and the processing gas is supplied into the space SP via a plurality of gas ejection holes in the dielectric shower plate.
  • the metal electrode itself may be provided with holes or grooves for passing a processing gas, or a conductive film functioning as an electrode may be formed on the upper surface of the dielectric shower plate.
  • a method of introducing the processing gas into the inside through the outer wall of the peripheral region of the processing container 1 can be considered.
  • the substrate S to be processed is placed on the surface of the stage LS, and in this state, the plasma-processed gas is supplied onto the exposed surface of the substrate S.
  • the temperature during processing can be adjusted by adjusting the electric power supplied from the heater power supply 15 electrically connected to the heater HTR.
  • the flow rate controller 11, the high frequency generator 13, the exhaust device 14, the heater power supply 15, and the drive mechanism DRV are all controlled by the controller 12.
  • the potential of the upper electrode 5 is a floating potential
  • the potential of the first electrode 6A as the lower electrode is a ground potential or a floating potential
  • the potential of the second electrode 6B is a ground potential or a floating potential.
  • Example 1 The dimensions and materials of each element in Example 1 are as follows.
  • FIG. 4 is a diagram showing a vertical cross-sectional configuration of a stage according to another exemplary embodiment (Example 2).
  • the second embodiment is different from the first embodiment in that the first electrode 6A and the second electrode 6B are electrically connected to each other in the vertical direction in the stage body 8, and the other points are the same. Is.
  • the size of the second electrode 6B is the same as that of the first embodiment, and the inner diameter of the first electrode 6A is small. Even when the first electrode 6A and the second electrode 6B are electrically connected in the stage body, it is considered that the in-plane uniformity of the plasma density can be improved by separating them in the radial direction. However, the better characteristics are obtained in the first embodiment.
  • FIG. 5 is a diagram showing a vertical cross-sectional structure of a stage according to still another exemplary embodiment (Example 3).
  • Example 3 The dimensions and materials of each element in Example 3 are as follows.
  • FIG. 6 is a diagram showing a vertical cross-sectional structure of a stage according to a comparative example.
  • stage body 8 made of a dielectric material
  • FIG. 7 is a graph showing the in-plane electric field uniformity in the stages of Example 3 and Comparative Example.
  • the change of the electric field depending on the position is smaller than that of the comparative example, and the in-plane uniformity is remarkably improved.
  • the in-plane electric field uniformity index ⁇ is proportional to the statistical dispersion value of the in-plane electric field.
  • the dielectric stage body 8 is preferably made of AlN as the ceramic material, and the electrodes are preferably made of a suitable conductive material (eg, Cu, Al, etc.).
  • the above-mentioned multilayer mesh-shaped electrode structure may be manufactured as follows.
  • a multilayer mesh electrode structure can be obtained by sintering a ceramic powder together with an electrode material.
  • the aluminum nitride (AlN) sintered body is obtained by heating AlN powder at a sintering temperature of about 1800° C. to 2000° C.
  • a suitable sintering aid for example, Y 2 O 3 , Y 2 O 3 -CaO, Y 2 O 3 -CaO-B and the like are known, and sintering is performed by mixing these sintering aids with AlN. It is also possible to do so.
  • Insulating materials such as alumina, zirconia, silicon carbide, and silicon nitride are also known as ceramics materials. If the electrode material and the heater material are embedded in the ceramic material powder and heated at the sintering temperature, the above-described stage structure is obtained.
  • the material of the dielectric stage body 8 is not limited to the above-mentioned AlN, but a ceramic containing a sintering aid therein, or a material containing alumina, zirconia, silicon carbide or silicon nitride. Can be used.
  • a metal material such as Cu or Al, or a conductive material such as a conductive ceramic in which nanocarbon or metal fine particles are dispersed can be used.
  • the outer diameter ra1, the inner diameter ra2, the distance d edge , the distance ZA, the outer diameter rb1, the distance d center , and the distance ZB satisfy the following ranges, it is considered that the electric field uniformity can be further improved. It is considered that the above-mentioned effects can be achieved even outside.
  • the stage and the plasma processing apparatus capable of improving the uniformity of the plasma density on the stage.
  • the mode in which the electrodes are arranged in the stage is shown, but the present invention is not limited to this. That is, even if the upper electrode facing the stage is composed of the first electrode 6A and the second electrode 6B and these electrodes are embedded in the dielectric, the same effect can be obtained. In this case, the lower electrode in the stage functions as a counter electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

プラズマ処理装置において、プラズマ密度の均一性を向上させることを可能とするプラズマ処理装置を提供する。一つの例示的実施形態に係るプラズマ処理装置は、誘電体に埋め込まれた電極と、それに対向して配置される対向電極と、の間の空間内にプラズマを発生させるプラズマ処理装置であって、電極は、第1電極と、第2電極と、で構成され、第1電極と、第2電極とは、対向電極までの離間距離が互いに相違している。

Description

プラズマ処理装置
 本開示の例示的実施形態は、プラズマ処理装置に関するものである。
 電子デバイスの製造においてはプラズマ処理装置が用いられている。一種のプラズマ処理装置は、特許文献1に記載されている。プラズマ処理装置としては、容量結合型のプラズマ処理装置が知られている。容量結合型のプラズマ処理装置として、超短波(VHF)帯又は極超短波(UHF)帯の周波数を有する高周波をプラズマの生成に用いるプラズマ処理装置が注目されている。なお、VHF帯とは、30MHz~300MHz程度の範囲の周波数帯である。UHF帯とは、300MHz~3GHz程度の範囲の周波数帯である。
特開2016-195150号公報
 VHF帯又はUHF帯の周波数を有する高周波をプラズマの生成に用いるプラズマ処理装置においては、プラズマ密度の均一性を向上させることが求められている。
 一つの例示的実施形態において、プラズマ処理装置が提供される。誘電体に埋め込まれた電極と、それに対向して配置される対向電極と、の間の空間内にプラズマを発生させるプラズマ処理装置である。電極は、第1電極と、第2電極と、で構成され、第1電極と、第2電極とは、対向電極までの離間距離が互いに相違している。
 一つの例示的実施形態に係るプラズマ処理装置によれば、プラズマ密度の均一性を向上させることが可能となる。
図1は、一つの例示的実施形態(実施例1)に係るステージの縦断面構成を示す図である。 図2は、一つの例示的実施形態に係るステージを平面視した図である。 図3は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。 図4は、別の例示的実施形態(実施例2)に係るステージの縦断面構成を示す図である。 図5は、更に別の例示的実施形態(実施例3)に係るステージの縦断面構成を示す図である。 図6は、比較例に係るステージの縦断面構成を示す図である。 図7は、実施例3及び比較例のステージにおける面内電界均一性を示すグラフである。
 以下、種々の例示的実施形態について説明する。
 一つの例示的実施形態において、プラズマ処理装置用のステージが提供される。ステージは、このステージに対向配置される上部電極(対向電極)との間の空間に高周波を導入することにより、当該空間内にプラズマを発生させるプラズマ処理装置用のステージである。ステージは、ステージ本体、第1電極及び第2電極を備えている。第1電極は、誘電体のステージ本体内に埋め込まれている。第2電極は、ステージ本体内に埋め込まれている。第1電極と、第2電極とは、ステージ本体の厚み方向に沿って離間している。つまり、第1電極と、第2電極とは、対向電極までの離間距離が互いに相違している。
 上部電極と下部電極との間の距離を面内において一定とすると、高周波導入の際にプラズマ発生空間内において発生する定在波効果により、面内のプラズマ密度は、均一にならない。そこで、プラズマ密度が面内で均一になるような形状に電磁界分布の計算を行い、下部電極を変形させることが考えられるが、形状が複雑となるという課題がある。処理容器の周辺部から中央部に向けて高周波の電磁波を導入する場合、このような複雑な形状は、中央部が凹んだ曲面となる。この形状の特徴を抽出すると、中央部において電極間の離間距離が大きく、周辺部において離間距離が小さい形状であると言える。ステージ上の電界の強い箇所においては電極を深く埋め込み、電界の弱い場所においては電極を浅く埋め込む。このように、適切に離間距離を異ならせた複数の電極を有する形状であっても、プラズマ密度の面内均一性を、従来よりも向上させることができ、均一性の高いプラズマ処理が行うことができる。
 一つの例示的実施形態において、平面視において、第1電極は、第2電極の外側に配置されている。外側にある第1電極と上部電極(対向電極)との間の離間距離は、内側にある第2電極と上部電極(対向電極)との間の離間距離よりも小さいこととすることができる。これは、上記の凹んだ曲面の電極形状を単純化した形状であり、ステージ上の中央部において電界が強く、周辺部においては電界が弱い場合に、プラズマ密度の面内均一性を向上させることができる。
 一つの例示的実施形態において、第1電極と、第2電極とは、ステージ本体内において、電気的に接続されていないことができる。上記の凹んだ曲面は連続面であるため、第1電極と第2電極とは、電気的に接続した方が好ましいと考えられたが、実際には、電気的に接続しない方が、プラズマ密度の面内均一性を高めることができる。
 一つの例示的実施形態において、第1電極と、第2電極とは、平面視において径方向に離間していることとすることができる。特に、第1電極と、第2電極とをステージ本体内で電気的に接続しない場合において、これらを径方向に離間させると、さらにプラズマ密度の面内均一性を向上させることができる。
 一つの例示的実施形態において、第1電極及び第2電極が埋設されたステージ本体内に埋め込まれたヒータを更に備える。ヒータにより、ステージ本体を加熱することができる。電磁遮蔽が起こらないように、ヒータの位置は、これらの電極と上部電極との間に介在しない位置が好ましい。
 一つの例示的実施形態に係るプラズマ処理装置は、上記のいずれかのステージと、ステージに対向する上部電極(対向電極)と、高周波を発生する高周波発生器とを備えている。面内均一性の高いプラズマを発生させることができるので、面内均一性の高いプラズマ処理を行うことができる。
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
 図1は、一つの例示的実施形態(実施例1)に係るステージの縦断面構成を示す図である。また、図2は、一つの例示的実施形態に係るステージを平面視した図である。平面形状を説明するため、同図では、ステージ本体を透過して、電極が見えるように記載している。実際には、ステージ本体内の異なる層に、それぞれの電極が埋め込まれている。
 プラズマ処理装置用のステージLSは、このステージLSに対向配置される上部電極(対向電極)5との間の空間SPに高周波を導入することにより、当該空間SP内にプラズマを発生させるプラズマ処理装置用のステージである。ステージLSの厚み方向を鉛直方向としてZ軸を規定し、Z軸に垂直な方向をX軸及びY軸とし、XYZ三次元直交座標系が構成されている。ステージLSは、駆動機構DRVに接続されており、駆動機構DRVを駆動することにより、白抜き矢印で示すように、Z軸に沿って上下に移動することができ、また、Z軸を中心に回転することができる。
 ステージLSは、ステージ本体8、メッシュ状の第1電極6A及び第2電極6Bを備えている。第1電極6Aは、誘電体からなり、Z軸方向から見た平面視が円形のステージ本体8内に埋め込まれている。第2電極6Bは、ステージ本体8内に埋め込まれている。第1電極6Aと、第2電極6Bとは、ステージ本体8の厚み方向(Z軸)に沿って離間している。言い換えると、第1電極6Aと、第2電極6Bとは、上部電極(対向電極)5までの離間距離が互いに相違する。
 ステージLSは、下部電極としてのメッシュ状の電極を含んでいる。本例では、複数のメッシュ状の電極は、ステージLSの中央部において上部電極(対向電極)との間の離間距離が大きく、周辺部において離間距離が小さく設定されている。ステージLSの周辺部においては、電界が弱く、第1電極6Aは浅く埋め込まれている。ステージLSの中央部において、ステージLS上の電界が強く、第2電極6Bが深く埋めこまれている。なお、メッシュ状の電極は、全面電極と比較して、電界に対する均一性の効果としては同様であるが、セラミックなどからなる誘電体に埋め込みやすいという利点があり、また、材料も少量で済むという利点がある。なお、下部電極は、メッシュ状に限定されるものではなく、薄膜状、または印刷法により形成されたものであってもよい。
 平面視において、第1電極6Aは、第2電極6Bの外側に配置されており、外側にある第1電極6Aと上部電極5との間の離間距離ZAは、内側にある第2電極6Bと上部電極5との間の離間距離ZBよりも小さい。離間距離を小さくした方が、Z軸方向の電界強度が高くなる。周辺部から中央部に向けてプラズマ発生用の高周波を導入する場合、ステージLS上の中央部において電界が強くなり、周辺部においては電界が弱くなる。したがって、中央部において、離間距離を大きくし、周辺部において離間距離を小さくすれば、プラズマ密度の面内均一性を向上させることができる。
 第1電極6Aと、第2電極6Bとは、ステージ本体内において、電気的に接続されていない。この形態の場合、電気的に接続した形態(実施例2(図4))よりも、電界が局所的に集中しないという理由から、プラズマ密度の面内均一性を高めることができる。
 外側の第1電極6Aの形状は円環状であって、その内縁形状及び外縁形状は共に円形であり、内側の第2電極6Bの外縁形状は円形である。第1電極6Aと第2電極6Bとは、平面視において、径方向に距離rgapだけ離間している。換言すれば、第1電極6Aの内縁と、第2電極6Bの外縁とは、距離rgapだけ離間している。
 メッシュの形状としては、正方格子、三角格子、ハニカム構造など、複数の形状が考えられる。
 第1電極6Aと、第2電極6Bとをステージ本体内で電気的に接続しない場合において、これらを径方向に離間させると、電界集中の緩和という理由から、さらにプラズマ密度の面内均一性を向上させることができる。なお、それぞれの電極の形状は開口が形成されている点を除いて平坦であり、縦断面は直線的に延びている。第1電極6Aと、第2電極6Bとをステージ本体内で電気的に接続した場合においても、これらを径方向に離間させると、電界集中の緩和という理由から、プラズマ密度の面内均一性を向上させることができると考えられる。
 ステージ本体8内には、ヒータHTRが埋め込まれている。ヒータHTRにより、ステージ本体8を加熱することができる。電磁遮蔽が起こらないように、ヒータHTRの位置は、第1電極6A及び第2電極6Bと、上部電極5との間に介在しない位置、すなわち、これらの電極の下方に位置することが好ましい。
 図3は、一つの例示的実施形態に係るプラズマ処理装置を概略的に示す図である。
 このプラズマ処理装置は、説明中に記載のいずれかのステージLSと、ステージLSに対向する上部電極(対向電極)5と、高周波を発生する高周波発生器13とを備えている。例示的実施形態に係るいずれかのステージLSを用いれば、面内均一性の高いプラズマを発生させることができるので、面内均一性の高いプラズマ処理を行うことができる。
 高周波発生器13は、高周波を発生する。ここでは、VHF波を発生するものとするが、UHF波を発生させるものであってもよい。発生したVHF波は、導波管を通って、処理容器1内に導入される。処理容器1の上部には上蓋3が設けられており、VHF波は上蓋3を介して、上蓋3に設けられた開口を介して、内部に導入される。処理容器1内には、導波通路2が形成されている。導波通路2内は、気体又は固体の誘電体内が満たされており、VHF波を通過させる。気体の誘電体としては、空気や窒素があり、固体の誘電体としては、酸化シリコン、窒化シリコン、アルミナ、又は、窒化アルミニウムなどを用いることができる。導波通路2は、アルミニウムやステンレスなどの適当な導体で囲まれている。導波通路2は、複数の円筒又は円板をZ軸方向に沿って重ねた形状であり、処理容器1内に導入されたVHF波は、処理容器1の外周部から中央部に向けて、進行する。処理ガスとしては、Arなどの希ガスの他、エッチングガス、堆積用のガスなど、様々なものが知られているが、高周波のプラズマ処理を行う場合、SiH、NH、CHなどのガスを用いることができる。
 排気装置14により処理容器1内を排気して圧力を調整し、ガス源10及び流量コントローラ11を介して、処理ガスを処理容器1内に導入すると、プラズマ発生環境が整う。一般的なプラズマ発生圧力は、0.1Pa~100Pa程度である。上部電極5とステージLSとの間には、VHF波が導入されるので、これらの電極間の空間SP内において、VHF波により処理ガスがプラズマ化し、プラズマの周囲にシース電界が発生する。シース電界は、ステージLSの周辺部において弱く、中央部において強くなる傾向があるが、本形態では、複数の電極を埋め込んだステージを用いているので、面内の電界分布が均一化される。
 処理容器1の上蓋3の中央には流量コントローラ11からの処理ガスを導入する開口が設けられており、処理容器1内に処理ガスが導入される。導入された処理ガスは、適当な経路を通って、上部電極5の下方に位置するプラズマ発生用の空間SP内に到達する。上部電極5の構造としては、種々のものが考えられる。例えば、銅やアルミニウムなどの金属から構成された金属電極の下方に、誘電体シャワープレートを取り付け、誘電体シャワープレートにおける複数のガス噴出孔を介して、処理ガスを空間SP内に供給する。金属電極自体に、処理ガスを通すための孔や溝を設けてもよく、また、誘電体シャワープレートの上面に電極として機能する導電膜を形成してもよい。また、処理ガスを上部から導入する形式の他、処理容器1の周辺領域の外壁を介して、内部に導入する方法も考えられる。
 ステージLSの表面上には、処理される基板Sが載せられ、この状態で、プラズマ化した処理ガスが、基板Sの露出表面上に供給される。なお、処理中の温度は、ヒータHTRに電気的に接続されたヒータ用電源15からの供給電力を調整することにより、調整することができる。流量コントローラ11、高周波発生器13、排気装置14、ヒータ用電源15及び駆動機構DRVは、全て制御装置12により制御される。
 なお、上部電極5の電位は、浮遊電位とされ、下部電極としての第1電極6Aの電位はグランド電位もしくは浮遊電位、第2電極6Bの電位はグランド電位もしくは浮遊電位とされる。
 なお、実施例1における各要素の寸法と材料は以下の通りである。
・第1電極6Aの外径ra1=330mm、内径ra2=270mm、ステージ本体8の上部表面からの垂直方向の離間距離dedge=1mm、上部電極との間の垂直方向の離間距離ZA=9mm、材料:導電性材料(例示:Cu、Al等)。
・第2電極6Bの外径rb1=250mm、ステージ本体8の上部表面からの垂直方向の離間距離dcenter=11mm、上部電極との間の垂直方向の離間距離ZB=10mm、材料:導電性材料(例示:Cu、Al等)。
・水平方向の離間距離rgap=10mm。
・ステージ本体8の材料:AlN。
・円形の上部電極5の外径=330mm、材料:導電性材料(例示:Cu、Al等)。
・ヒータHTRの材料:電極よりも高い体積抵抗率を有する導電材料(例示:Mo、W、カーボン等)
 図4は、別の例示的実施形態(実施例2)に係るステージの縦断面構成を示す図である。
 実施例2では、実施例1と比較して、第1電極6Aと第2電極6Bとを、ステージ本体8内で垂直方向に沿って電気的に接続した点が異なり、その他の点は、同一である。第2電極6Bの寸法は、実施例1と同一とし、第1電極6Aの内径を小さくしたものである。第1電極6Aと、第2電極6Bとをステージ本体内で電気的に接続した場合においても、これらを径方向に離間させると、プラズマ密度の面内均一性を向上させることができると考えられるが、実施例1の方が良い特性が得られる。
 図5は、更に別の例示的実施形態(実施例3)に係るステージの縦断面構成を示す図である。
 実施例3では、実施例2と比較して、接続部を除いたものであり、その他の点は、同一である。また、実施例3を実施例1と比較すると、水平方向の離間距離rgap=0mmとした点のみが異なり、その他の点は同一である。上述のように、第1電極6Aと、第2電極6Bとをステージ本体内で電気的に接続しない実施例3の場合、電界局所集中という理由から、実施例1及び実施例2のいずれよりも良い特性が得られる。
 なお、実施例3における各要素の寸法と材料は以下の通りである。
・第1電極6Aの外径ra1=330mm、内径ra2=250mm、ステージ本体8の上部表面からの垂直方向の離間距離dedge=1mm、上部電極との間の垂直方向の離間距離ZA=9mm、材料:導電性材料(例示:Cu、Al等)。
・第2電極6Bの外径rb1=250mm、ステージ本体8の上部表面からの垂直方向の離間距離dcenter=11mm、上部電極との間の垂直方向の離間距離ZB=10mm、材料:導電性材料(例示:Cu、Al等)。
・水平方向の離間距離rgap=0mm。
・ステージ本体8の材料:AlN。
・円形の上部電極5の外径=330mm、材料:導電性材料(例示:Cu、Al等)。
・ヒータHTRの材料:電極よりも高い体積抵抗率を有する導電材料(例示:Mo、W、カーボン等)
 図6は、比較例に係るステージの縦断面構成を示す図である。
 図1に示したステージとの相違点は、単一の平坦な電極6のみが、誘電体のステージ本体8内に埋め込まれている点のみであり、その他の点は、図1に示したステージと同一である。
 図7は、実施例3及び比較例のステージにおける面内電界均一性を示すグラフである。このグラフでは、XY平面内におけるステージLSの重心位置を原点(r=0)とし、径方向の位置rにおけるステージ上の電界強度E(任意単位)が示されている。同図に示されるように、実施例3の場合、比較例よりも、位置による電界の変化が少なく、面内均一性が著しく向上している。面内電界均一性を示す指標βを用いると、比較例の面内電界均一性指標β=30である一方、実施例3では面内電界均一性指標β=14である。なお、面内電界均一性指標βは、面内の電界の統計学上の分散の値に比例する。
 なお、誘電体のステージ本体8は、セラミック材料として、AlNを用いることが好適であり、電極としては、適当な導電性材料(例示:Cu、Al等)を用いることが好適である。この場合、上述の多層のメッシュ状の電極構造は、以下のように製造すればよい。
 多層のメッシュ状の電極構造は、電極材料と共にセラミックの粉末を焼結することで得ることができる。窒化アルミニウム(AlN)の焼結体は、AlNの粉末を焼結温度1800℃~2000℃程度で加熱することで得られる。セラミックの焼結時において、AlNの粉末のみを加熱することも可能であるが、適当な焼結助剤を用いることもできる。焼結助剤としては、例えば、Y、Y-CaO、Y-CaO-Bなどが知られており、AlNにこれらの焼結助剤を混ぜて焼結を行うことも可能である。セラミクス材料としては、アルミナ、ジルコニア、炭化珪素、窒化珪素などの絶縁材料も知られている。セラミクス材料の粉末内に電極の材料及びヒータの材料を埋め込んだ状態で、焼結温度で加熱をすれば、上述のステージ構造が得られる。このように、誘電体のステージ本体8の材料は、上記のAlNに限られず、これに焼結助剤が含まれたセラミックや、あるいは、アルミナ、ジルコニア、炭化珪素又は窒化珪素を含有する材料を用いることができる。また、電極の材料としては、上記の如く、CuやAl等の金属材料の他、ナノカーボンや金属微粒子を分散させた導電性セラミックなどの導電性材料を用いることができる。
 また、外径ra1、内径ra2、距離dedge、距離ZA、外径rb1、距離dcenter、距離ZBは、以下の範囲を満たす場合には、電界均一性を更に向上できると考えられるが、範囲外であっても、上述の作用効果は奏すると考えられる。
 320mm≦外径ra1≦360mm
 200mm≦内径ra2≦300mm
 0.1mm≦距離dedge≦5mm
 5.1mm≦距離ZA≦105mm
 180mm≦外径rb1≦300mm
 5mm≦距離dcenter≦20mm
 10mm≦距離ZB≦120mm
 以上、説明したように、上述の形態によれば、ステージ上のプラズマ密度の均一性を向上させることを可能とするステージとプラズマ処理装置を提供することができる。
 なお、上述の実施例では、ステージ内に電極を配置した形態を示したが、これに限定されない。すなわち、ステージに対向する上部電極を、第1電極6A及び第2電極6Bで構成し、これら電極を誘電体に埋め込んでも、同様の効果を奏することができる。この場合において、ステージ内の下部電極が対向電極として機能する。
 LS…ステージ、5…上部電極、SP…空間、8…ステージ本体、6A…第1電極、6B…第2電極。
 

Claims (5)

  1.  誘電体に埋め込まれた電極と、それに対向して配置される対向電極と、の間の空間内にプラズマを発生させるプラズマ処理装置であって、
     前記電極は、第1電極と、第2電極と、で構成され、
     前記第1電極と、前記第2電極とは、前記対向電極までの離間距離が互いに相違している、ことを特徴とするプラズマ処理装置。
  2.  平面視において、前記第1電極は、前記第2電極の外側に配置されており、
     外側にある前記第1電極と前記対向電極との間の離間距離は、内側にある前記第2電極と前記対向電極との間の離間距離よりも小さい、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記第1電極と、前記第2電極とは、電気的に接続されていない、
    ことを特徴とする請求項1又は2に記載のプラズマ処理装置。
  4.  前記第1電極と、前記第2電極とは、平面視において径方向に離間している、
    ことを特徴とする請求項1~3のいずれか一項に記載のプラズマ処理装置。
  5.  前記第1電極及び前記第2電極が埋設されたステージ本体内に埋め込まれたヒータを更に備える、
    ことを特徴とする請求項1~4のいずれか一項に記載のプラズマ処理装置。
PCT/JP2019/046210 2018-12-06 2019-11-26 プラズマ処理装置 WO2020116244A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229217 2018-12-06
JP2018-229217 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116244A1 true WO2020116244A1 (ja) 2020-06-11

Family

ID=70974236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046210 WO2020116244A1 (ja) 2018-12-06 2019-11-26 プラズマ処理装置

Country Status (1)

Country Link
WO (1) WO2020116244A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488729B2 (ja) 2020-08-31 2024-05-22 株式会社Screenホールディングス 大気圧プラズマ源、および、基板処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176860A (ja) * 1995-12-25 1997-07-08 Fujitsu Ltd 基板載置台、プラズマ処理装置及び半導体装置の製造方法
JPH1074736A (ja) * 1996-04-23 1998-03-17 Tokyo Electron Ltd プラズマ処理装置
JP2004363552A (ja) * 2003-02-03 2004-12-24 Okutekku:Kk プラズマ処理装置及びプラズマ処理装置用の電極板及び電極板製造方法
US20140057454A1 (en) * 2007-08-31 2014-02-27 Novellus Systems, Inc. Methods and apparatus for plasma-based deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176860A (ja) * 1995-12-25 1997-07-08 Fujitsu Ltd 基板載置台、プラズマ処理装置及び半導体装置の製造方法
JPH1074736A (ja) * 1996-04-23 1998-03-17 Tokyo Electron Ltd プラズマ処理装置
JP2004363552A (ja) * 2003-02-03 2004-12-24 Okutekku:Kk プラズマ処理装置及びプラズマ処理装置用の電極板及び電極板製造方法
US20140057454A1 (en) * 2007-08-31 2014-02-27 Novellus Systems, Inc. Methods and apparatus for plasma-based deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488729B2 (ja) 2020-08-31 2024-05-22 株式会社Screenホールディングス 大気圧プラズマ源、および、基板処理装置

Similar Documents

Publication Publication Date Title
KR101591404B1 (ko) 플라즈마 생성장치 및 플라즈마 처리장치
US5226967A (en) Plasma apparatus including dielectric window for inducing a uniform electric field in a plasma chamber
KR100652983B1 (ko) 플라즈마 처리 장치 및 방법
TWI397121B (zh) And a plasma processing apparatus for a plasma processing apparatus
TW491911B (en) Plasma process apparatus
KR101496841B1 (ko) 혼합형 플라즈마 반응기
JP2008186806A (ja) イオンビーム装置
KR20090102680A (ko) 플라즈마 처리 장치
JP2007317661A (ja) プラズマ反応器
US8888951B2 (en) Plasma processing apparatus and electrode for same
WO2008010520A1 (fr) panneau de douche, SON PROCÉDÉ DE FABRICATION, appareil de traitement au plasma utilisant le panneau de douche, PROCÉDÉ de traitement au plasma, et procédé de fabrication de dispositif électronique
JP2015162266A (ja) プラズマ処理装置
TWI448215B (zh) 電漿處理裝置
TW200826186A (en) Stage for plasma processing apparatus, and plasma processing apparatus
KR20120094980A (ko) 플라즈마 처리장치
KR102508315B1 (ko) 급전 부재 및 기판 처리 장치
WO2020116244A1 (ja) プラズマ処理装置
JP3396399B2 (ja) 電子デバイス製造装置
WO1995014308A1 (fr) Electrode pour la production de plasma, element d'enfouissement d'electrode, et procede de fabrication de l'electrode et de l'element
KR101788918B1 (ko) 상부 유전체 수정판 및 슬롯 안테나 개념
JPH09246240A (ja) プラズマ処理装置およびプラズマ処理方法
TWI778081B (zh) 排氣板及電漿處理裝置
KR101585891B1 (ko) 혼합형 플라즈마 반응기
JP2007258570A (ja) プラズマ処理装置
JP5852878B2 (ja) 沿面放電型プラズマ生成器ならびにそれを用いた成膜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP