WO2020115810A1 - 加湿装置および換気装置 - Google Patents

加湿装置および換気装置 Download PDF

Info

Publication number
WO2020115810A1
WO2020115810A1 PCT/JP2018/044516 JP2018044516W WO2020115810A1 WO 2020115810 A1 WO2020115810 A1 WO 2020115810A1 JP 2018044516 W JP2018044516 W JP 2018044516W WO 2020115810 A1 WO2020115810 A1 WO 2020115810A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
overdrying
supply
exhaust
temperature
Prior art date
Application number
PCT/JP2018/044516
Other languages
English (en)
French (fr)
Inventor
諒 高津
一 外川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020558707A priority Critical patent/JP7047938B2/ja
Priority to PCT/JP2018/044516 priority patent/WO2020115810A1/ja
Publication of WO2020115810A1 publication Critical patent/WO2020115810A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/04Air-humidification, e.g. cooling by humidification by evaporation of water in the air using stationary unheated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a humidifying device and a ventilation device having a humidifying function.
  • a humidification mode in which a water supply valve is opened and a blower unit is rotated is started, and a cleaning mode in which the water supply valve is opened and the blower unit is stopped at the end of the humidification mode is performed.
  • a humidification device having a configuration in which a water supply valve is closed and a blowing mode is dried after the cleaning mode is completed.
  • the humidifying device described in Patent Document 1 has the effect of suppressing the scale component contained in water from being deposited on the humidifying element in the drying mode by including the above configuration.
  • the humidifying element is excessively dried during humidification (hereinafter referred to as an overdry state). Then, a situation occurs in which scale components are precipitated.
  • the present invention has been made to solve the above-described problems, and provides a humidifying device that suppresses the deposition of a humidifying element by a scale component and a ventilation device having a humidifying function.
  • the humidifying device is provided with a main body casing in which a suction port and a blowout port are formed, and in which an air passage communicating with the suction port and the blowout port is formed, and the air passage of the main body casing,
  • a humidifying element for humidifying air a water supply means for supplying water to the humidifying element, a blower for blowing the air in the air passage from the suction port to the outlet, and a control section for controlling the water supply flow rate of the water supply means and the air volume of the blower.
  • an input interface that receives information about the temperature of the air passing through the air passage and information about the humidity of the air passing through the air passage, and the temperature and humidity acquired through the input interface, the air volume of the blower, and the water supply means.
  • a dry state determining unit that determines whether the humidifying element is in an overdry state based on the water supply flow rate, and when the dry state determining unit determines that the humidifying element is in an overdry state, the control unit controls the humidifying element. The control is performed so as to perform the overdrying suppression operation that suppresses the overdrying.
  • a ventilator is an air supply air passage in which a supply air inlet, a supply air outlet, an exhaust air inlet and an exhaust air outlet are formed, and the supply air inlet and the supply air outlet communicate with each other.
  • a main body casing in which an exhaust air passage communicating with the exhaust air inlet and the exhaust air outlet is formed, and an air supply blower that is provided in the air supply air passage and blows air from the air supply inlet to the air supply outlet.
  • a drying state determining unit that determines whether or not the humidifying element is in an overdrying state based on the temperature and humidity acquired through the air flow rate of the air supply blower and the water supply flow rate of the water supply unit. When determining that the humidifying element is in the overdrying state, the control unit controls to perform the overdrying suppressing operation for suppressing the overdrying of the humidifying element.
  • the control unit when the dry state determining unit determines that the humidifying element is in the overdry state, the control unit suppresses overdrying of the humidifying element. It is provided with a configuration for performing control so as to perform suppression operation. With this configuration, it is possible to prevent the humidifying element from being excessively dried, and to suppress the scale from being deposited on the humidifying element.
  • Embodiment 1 It is a schematic diagram showing the internal configuration of the humidifier according to the first embodiment. It is a functional block diagram of the humidification device concerning Embodiment 1.
  • 5 is a flowchart showing an example of normal operation of the humidifying device according to the first embodiment.
  • 5 is a flowchart of control for suppressing an overdrying state of the humidifying element of the humidifying device according to the first embodiment.
  • 7 is a flowchart for deriving an overdrying determination value fd in the humidifying device according to the first embodiment.
  • 5 is a flowchart of control of overdrying suppression operation in the humidifying device according to the first embodiment.
  • 7 is a flowchart of control of overdrying suppression operation in the humidifying device according to the second embodiment.
  • 9 is a flowchart showing an example of control of normal operation of the ventilation device according to the fourth embodiment.
  • 9 is a flowchart for deriving an overdrying determination value fd in the ventilation device according to the fourth embodiment.
  • 10 is a flowchart of control of overdrying suppression operation in the ventilation device according to the fourth embodiment.
  • 13 is a flowchart of control of overdrying suppression operation in the ventilation device according to the fifth embodiment.
  • 13 is a flowchart of control of overdrying suppression operation in the ventilation device according to the sixth embodiment.
  • 20 is a flowchart of control for suppressing an overdry state of the humidifying element of the ventilation device according to the seventh exemplary embodiment.
  • 20 is an example of a table showing first to fourth overdrying suppression operations of the ventilation device according to the seventh embodiment.
  • FIG. 1 is a schematic diagram showing an internal configuration of the humidifying device according to the first embodiment.
  • the humidifying device 100 includes a main body casing 1, a blower 2, a temperature sensor 3, a humidity sensor 4, a humidifying element 5, a water supply pipe 6, a water supply valve 7, a control device 8, and an operation terminal 9. .
  • the water supply pipe 6 and the water supply valve 7 correspond to the water supply means of the present invention.
  • the main casing 1 is a member that forms the exterior of the humidifier 100.
  • the main body casing 1 accommodates a blower 2, a temperature sensor 3, a humidity sensor 4, a humidification element 5, a water supply pipe 6, a water supply valve 7, and a control device 8.
  • a suction port 10, a blowout port 11, and a water supply pipe connection port 12 are formed on the outer surface of the main body casing 1.
  • the suction port 10 and the air outlet 11 are connected to a humidification space, which is a space where the humidification device 100 humidifies.
  • the water supply pipe connection port 12 is connected to a water supply source such as water supply.
  • the suction port 10 and the air outlet 11 are communicated with each other by an air passage 13 formed inside the main body casing 1.
  • the blower 2 is a device that blows the air inside the air passage 13 from the suction port 10 side to the blowout port 11 side.
  • the blower 2 is arranged inside the air passage 13. Further, the blower 2 is configured to be able to control the air volume, for example, configured by a fan and a motor capable of controlling the rotation speed.
  • the blower 2 can be controlled to have three levels of air volume: strong, medium, and weak, in descending order of air volume.
  • the temperature sensor 3 is an element capable of detecting temperature
  • the humidity sensor 4 is an element capable of detecting humidity.
  • the temperature sensor 3 and the humidity sensor 4 are arranged inside the air passage 13.
  • the humidifying element 5 is a member that humidifies the passing air.
  • a filter containing water is used as the humidifying element 5.
  • the humidifying element 5 is arranged inside the air passage 13, and is arranged at least on the air outlet 11 side with respect to the temperature sensor 3 and the humidity sensor 4.
  • the water supply pipe 6 is a pipe that connects the humidification element 5 and the water supply pipe connection port 12 to each other.
  • the humidifying element 5 is supplied with water from a water source via a water supply pipe 6 and a water supply pipe connection port 12.
  • the water supply valve 7 is a valve for adjusting the water supply flow rate of the humidification element 5.
  • the water supply valve 7 is arranged in the middle of the water supply pipe 6.
  • the water supply valve 7 is configured to be able to control the water supply flow rate of the humidification element 5, such as a two-way valve capable of controlling the opening degree of the valve.
  • it is possible to control the feed water flow rate in five stages of 100%, 75%, 50%, 25%, and 0% with 100% when the valve is fully open and 0% when the valve is fully closed. ..
  • the control device 8 controls the air volume of the blower 2 and the water supply flow rate to the humidification element 5 based on the temperature detected by the temperature sensor 3 and the humidity detected by the humidity sensor 4.
  • the operation terminal 9 is a terminal for at least the user to perform an operation related to starting the operation of the humidifying device 100 and stopping the operation of the humidifying device 100.
  • the operation terminal 9 corresponds to, for example, a remote controller, a computer in which an operation application is installed, a tablet terminal, a smartphone, or the like.
  • suction air 14 The air that has flowed in through the suction port 10.
  • the suction air 14 flows into the air passage 13.
  • the temperature sensor 3 detects the temperature of the intake air 14 flowing into the air passage 13.
  • the humidity sensor 4 detects the humidity of the intake air 14 flowing into the air passage 13.
  • the suction air 14 passes through the blower 2 and flows toward the humidification element 5.
  • the suction air 14 passes through the humidification element 5 and is humidified.
  • the air humidified by the humidifying element 5 is referred to as post-humidification air 15.
  • the air 15 flows out from the outlet 11 and is again blown into the humidification space.
  • FIG. 2 is a functional block diagram of the humidifier according to the first embodiment. Next, a functional block diagram of the humidifying device 100 according to the first embodiment will be described.
  • the control device 8 includes an input interface 16, an output interface 17, and a microcomputer 18.
  • the input interface 16 is communicatively connected to the temperature sensor 3, the humidity sensor 4, and the operation terminal 9, and is operated by the operation terminal 9 with information about the temperature detected by the temperature sensor 3, information about the humidity detected by the humidity sensor 4. The information about the operation contents is received.
  • the output interface 17 is communicatively connected to the blower 2 and the water supply valve 7, and transmits a control signal regarding the air volume of the blower 2 and a control signal regarding the opening degree of the water supply valve 7, respectively.
  • the microcomputer 18 has the functions of a storage unit 19, a control unit 20, a dry state determination unit 21, and a timer unit 22. Further, the microcomputer 18 includes a processor such as a CPU (Central Processing Unit), a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and a timer.
  • a processor such as a CPU (Central Processing Unit)
  • a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory)
  • the storage unit 19 stores a software program executed by the processor and numerical values used to control the air volume of the blower 2 and the opening degree of the water supply valve 7.
  • the storage unit 19 is realized by storing programs and numerical values in the memory.
  • the control unit 20 generates a control signal regarding the air volume of the blower 2 and a control signal regarding the opening degree of the water supply valve 7, and controls the blower 2 and the water supply valve 7.
  • the dry state determination unit 21 determines whether the humidifying element 5 is in a dry state.
  • the control unit 20 and the dry state determination unit 21 are realized by the processor executing processing according to a software program stored in the memory.
  • the timer unit 22 measures time.
  • the timer unit 22 is realized by a timer.
  • FIG. 3 is a flowchart showing an example of normal operation of the humidifying device according to the first embodiment. The flowchart of FIG. 3 starts when the user performs an operation for starting the operation of the humidifying device 100 from the operation terminal 9.
  • step S1 the timer unit 22 resets the humidifying operation time ta.
  • step S2 the timer unit 22 starts measuring the humidifying operation time ta.
  • step S3 the control unit 20 controls the humidifying device 100 to perform the humidifying operation.
  • the humidifying operation is an operation for adjusting the humidifying space to a predetermined humidity.
  • the control unit 20 opens the water supply valve 7 to supply water to the humidifying element 5, and controls the blower 2 to blow air to the humidifying element 5.
  • the air flow rate is medium and the feed water flow rate is 75%.
  • step S3 the control unit 20 determines whether or not the user has operated the operation terminal 9 to stop the operation of the humidifying device 100.
  • step S5 the control unit 20 controls the humidifying device 100 to perform a drying operation for a predetermined time.
  • the drying operation is an operation for drying the humidifying element 5 that has been wetted in the humidifying operation.
  • the control unit 20 closes the water supply valve 7 to stop water supply to the humidification element 5, controls the blower 2 to blow air to the humidification element 5, and dries the humidification element 5. ..
  • the air flow rate is strong and the feed water flow rate is 0%.
  • step S6 the control unit 20 stops the operation of the humidifying device 100.
  • the control unit 20 controls to close the water supply valve 7 to stop the water supply to the humidification element 5 and stop the blower 2.
  • step S6 ends, the normal operation of the humidifying device 100 ends.
  • step S7 the timer unit 22 determines whether the humidifying operation time ta is longer than a predetermined drying operation start time ts.
  • step S8 the control unit 20 controls the humidifying device 100 to perform a drying operation for a predetermined time.
  • the drying operation in step S8 is the same as the drying operation described in step S5, and the description thereof will be omitted.
  • step S8 ends, the process proceeds to step S1, and the timer unit 22 resets the humidifying operation time ta.
  • step S7 determines that the humidification operation time ta is equal to or shorter than the drying operation start time ts (step S7, NO).
  • the process proceeds to step S4, and the control unit 20 causes the user to operate the humidification device 100 from the operation terminal 9 again. It is determined whether or not the operation for stopping the is performed.
  • FIG. 4 is a flowchart of control for suppressing the overdrying state of the humidifying element of the humidifying device according to the first embodiment.
  • the control of the flowchart of FIG. 4 starts when the user performs an operation for starting the operation of the humidifying device 100 from the operation terminal 9. That is, the control of the flowchart of FIG. 3 and the control of the flowchart of FIG. 4 are performed simultaneously.
  • the dry state determination unit 21 derives the overdrying determination value fd.
  • the overdrying determination value fd is a value used to determine whether the humidifying element 5 is in the overdrying state.
  • the overdrying determination value fd is based on the difference ⁇ T between the dry-bulb temperature and the wet-bulb temperature of the air immediately before passing through the humidifying element 5, the air volume Qa passing through the humidifying element 5, and the feed water flow rate Qw supplied to the humidifying element 5. Is derived. Details of deriving the overdrying determination value fd will be described later.
  • step S12 the dry state determination unit 21 determines whether the overdrying determination value fd derived in step S11 is larger than the overdrying determination threshold value ⁇ .
  • the overdrying determination threshold value ⁇ is a predetermined constant and is stored in the storage unit 19.
  • step S12 determines in step S12 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S12, Yes)
  • the process proceeds to step S13.
  • step S13 the control unit 20 stops the control of the normal operation in the flowchart of FIG. That is, when the humidifying device 100 is performing the humidifying operation or the drying operation, those operations are stopped.
  • step S14 the control unit 20 controls the humidifying device 100 to perform the overdrying suppression operation.
  • the overdrying suppression operation is an operation performed to suppress the overdrying state of the humidifying element 5. Details of the overdrying suppression operation will be described later.
  • step S15 the dry state determination unit 21 derives the overdrying determination value fd as in step S11.
  • step S15 the dry state determination unit 21 determines whether the overdrying determination value fd derived in step S15 is larger than the overdrying determination threshold value ⁇ .
  • step S16 determines in step S16 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S16, Yes).
  • the process proceeds to step S14 and the overdrying suppression operation is performed again.
  • step S17 the control unit 20 controls the humidifying device 100 to resume normal operation.
  • step S17 control is performed so that the operation performed by the humidifying device 100 when stopped in step S13 is performed. For example, when the humidifying operation is stopped in step S13, the control unit 20 controls the humidifying device 100 to perform the humidifying operation in step S17.
  • step S17 After the processing of step S17 is completed, or when the overdrying determination value fd is equal to or less than the overdrying determination threshold value ⁇ in step S12 (step S12, No), the process proceeds to step S18.
  • step S18 the dry state determination unit 21 determines whether the control unit 20 has stopped the operation of the humidifying device 100.
  • step S17 If the dry state determination unit 21 determines that the control unit 20 has stopped the operation of the humidifying device 100 in step S18 (Yes in step S17), the control for suppressing the overdry state is ended.
  • the dry state determination unit 21 determines that the control unit 20 does not stop the operation of the humidifying device 100 in step S18 (No in step S17)
  • the process proceeds to step S11, and the dry state determination unit 21 causes the overdry determination value fd. Derive.
  • FIG. 5 is a flowchart for deriving the overdrying determination value fd in the humidifying device according to the first embodiment.
  • the flowchart of FIG. 5 starts when the processing of step S11 or step S15 of the flowchart of FIG. 4 is performed.
  • the method of deriving the overdrying determination value fd performed by the dryness determination unit 21 will be described in detail.
  • step S21 the dry state determination unit 21 acquires the temperature detected by the temperature sensor 3 as the dry-bulb temperature Td1 of the intake air 14 via the input interface 16.
  • step S22 the dry state determination unit 21 acquires the humidity detected by the humidity sensor 4 as the relative humidity ⁇ 1 of the intake air 14 via the input interface 16.
  • step S23 the dry state determination unit 21 derives the air volume Qa passing through the humidification element 5. Since the air volume Qa is controlled by the control unit 20, there is a method of deriving the air volume Qa by referring to a control value relating to the air volume Qa transmitted from the control unit 20.
  • the storage unit 19 stores the value of the air volume Qa when the air volume is strong, medium, and weak, and the dry state determination unit 21 relates to the air volume controlled by the control unit 20. The value of the air volume Qa is acquired from the storage unit 19 with reference to the control value.
  • step S24 the dry state determination unit 21 derives the feed water flow rate Qw supplied to the humidification element 5. Since the water supply flow rate Qw is controlled by the control unit 20, there is a method of deriving the water supply flow rate Qw by referring to a control value related to the water supply flow rate Qw transmitted from the control unit 20.
  • the storage unit 19 stores the values of the water supply flow rate Qw when the water supply flow rate is 100%, 75%, 50%, 25%, and 0%, respectively, and the dry state determination unit Reference numeral 21 acquires the value of the water supply flow rate Qw from the storage unit 19 by referring to the control value relating to the water supply flow rate controlled by the control unit 20.
  • step S25 the dry state determination unit 21 derives the wet-bulb temperature Tw1 of the intake air 14 based on the dry-bulb temperature Td1 acquired in step S21 and the relative temperature ⁇ 1 acquired in step S22.
  • the storage unit 19 stores a table simulating the correlation in the wet air diagram having the dry-bulb temperature Td1 and the relative humidity ⁇ 1 as rows or columns and the wet-bulb temperature Tw1 as elements.
  • the storage unit 19 stores an approximate expression of the correlation between the dry bulb temperature Td1 and the relative humidity ⁇ 1 in the wet air diagram and the wet bulb temperature Tw, and the dry bulb temperature Td1 acquired in step S21 and the dry bulb temperature Td1 obtained in step S22.
  • step S25 the dry state determination unit 21 subtracts the wet-bulb temperature Tw1 derived in step S25 from the dry-bulb temperature Td1 acquired in step S21 to derive the dry-wet bulb temperature difference ⁇ T1 of the intake air 14.
  • step S27 the dry state determination unit 21 determines the overdrying determination value fd based on the air flow rate Qa derived in step S23, the feed water flow rate Qw derived in step S24, and the dry-wet bulb temperature difference ⁇ T of the intake air 14 derived in step S26.
  • the storage unit 19 stores the formula 1 and substitutes each numerical value into the formula to calculate the overdrying judgment value fd.
  • the f ( ⁇ T, Qa, Qw) of the equation 1 is a function determined by three variables of the wet and dry bulb temperature difference ⁇ T, the air volume Qa, and the feed water flow rate Qw.
  • the function f is experimentally derived. Specifically, the designer of the humidifying device 100 experimentally determines whether or not the conditions are such that the scale component is deposited on the humidifying element 5 by changing the dry/wet bulb temperature difference ⁇ T, the air volume Qa, and the water supply flow rate Qw.
  • the designer determines that the overdrying determination value fd exceeds the overdrying determination threshold ⁇ (fd> ⁇ ) under the condition that the scale component is deposited from the humidifying element 5, and the scale component is deposited from the humidifying element 5. Under such a condition, a function f is derived such that the overdrying determination value fd is equal to or less than the overdrying determination threshold value ⁇ (fd ⁇ ).
  • the function f satisfies the relationship that the overdrying determination value fd increases as the dry-wet bulb temperature difference ⁇ T increases. This is because the larger the dry-wet bulb temperature difference ⁇ T, the more dry air flows into the humidifying element 5, so that the humidifying element 5 is dried and the scale component is easily deposited.
  • the function f satisfies the relationship that the overdrying judgment value fd increases as the air volume Qa increases. This is because the amount of air passing through the humidifying element 5 increases as the air volume Qa increases, and the humidifying element 5 is dried, so that scale components are easily deposited.
  • the function f satisfies the relationship that the overdrying judgment value fd decreases as the feed water flow rate Qw increases. This is because the amount of water supplied to the humidifying element increases as the feed water flow rate Qw increases, and the humidifying element 5 becomes wet and scale components are less likely to be deposited.
  • step S27 After the processing of step S27 ends, the dry state determination unit 21 ends the derivation of the overdrying determination value fd.
  • FIG. 6 is a flowchart of control of overdrying suppression operation in the humidifying device according to the first embodiment.
  • the flowchart of FIG. 6 starts when the process of step S14 of the flowchart of FIG. 4 is performed. Next, the overdrying suppressing operation will be described.
  • step S101 the control unit 20 controls to increase the water supply flow rate to the humidification element 5. Specifically, the control unit 20 transmits a control signal for increasing the opening degree of the water supply valve 7 to the water supply valve 7.
  • the water supply valve 7 that has received the control signal has a larger opening degree than immediately before performing the overdrying suppression operation, and increases the water supply flow rate to the humidification element 5 than immediately before performing the overdrying suppression operation.
  • the control unit 20 may perform control to set the water supply flow rate preselected by the user or the manufacturer, control to increase the water supply flow rate by a predetermined ratio or step, and dry state determination.
  • the control may be performed in which the unit 21 calculates the water supply flow rate that is lost in the dry state when the overdrying determination value fd is derived and sets the calculated water supply flow rate.
  • the control unit 20 controls the water supply flow rate to 100%.
  • step S101 After the processing of step S101 ends, the process proceeds to step S102.
  • step S102 the timer unit 22 resets the elapsed time t.
  • step S102 After the processing of step S102 ends, the process proceeds to step S103.
  • step S103 the timer unit 22 starts measuring the elapsed time t.
  • step S104 the timer unit 22 determines whether the elapsed time t has passed the time Ts for maintaining the overdrying suppression operation.
  • Ts is stored in the storage unit 28 in advance and is a predetermined value such as 10 minutes.
  • step S104 determines that the elapsed time t has not passed Ts (step S104, No).
  • the timer unit 22 performs the determination of step S104 again.
  • the overdrying suppression by the control of the water supply flow rate ends.
  • the humidifying device 100 includes the control unit 20 that controls the water supply flow rate of the water supply unit and the air volume of the blower, the temperature and humidity acquired through the input interface 16, and the air volume of the blower 2.
  • a dry state determination unit 21 that determines whether or not the humidifying element 5 is in an overdry state based on the water supply flow rate of the water supply means.
  • the dry state determination unit 21 determines that the humidifying element 5 is in an overdry state.
  • the control unit is configured to perform the overdrying suppressing operation for suppressing the overdrying state of the humidifying element.
  • the control unit is configured to perform the overdrying suppressing operation for suppressing the overdrying state of the humidifying element.
  • the control unit 20 maintains the overdrying suppression operation until a predetermined time Ts has elapsed after starting the overdrying suppression operation. You may add the structure which controls so that. With this configuration, the humidifying device 100 can be prevented from switching between the normal operation and the overdrying suppression operation in a short time, and the stability of control can be improved.
  • the control unit 20 performs control to increase the water supply flow rate of the water supply means more than immediately before performing the overdrying suppression operation. You may add the structure to perform. With this configuration, in the overdrying suppression operation, the feed water flow rate increases, so that the humidifying element 5 can be set to a condition in which scale is difficult to deposit.
  • a humidification operation in which the water supply means of the dry state determination unit 21 supplies water to the humidification element 5 and the blower 2 blows air in the air passage 13.
  • a structure for determining whether the humidifying element 5 is in an overdry state may be added at times. With this configuration, it is possible to prevent the humidifying element from becoming over-dried during the humidifying operation to deposit scale.
  • the water supply unit does not supply water to the humidification element 5, and the blower 2 blows air in the air passage 13.
  • a configuration for determining whether or not the humidifying element 5 is in the overdry state during the drying operation may be added. With this configuration, it is possible to prevent the humidifying element from becoming over-dried during the drying operation and from depositing scale.
  • the temperature sensor 3 and the humidity sensor 4 are arranged inside the main body casing 1 in the humidifying device 100 according to the first embodiment, but the present invention is not limited to this.
  • the input interface 16 may be communicably connected to a temperature sensor and a humidity sensor that measure the temperature or humidity of the humidified space, and the temperature or humidity of the humidified space may be acquired from the input interface.
  • the temperature or humidity acquired from the input interface 16 corresponds to the temperature or humidity of the air passing through the air passage.
  • the storage unit 19 stores the formula of Formula 1 as a method of deriving the overdrying determination value fd, and substitutes each numerical value into the formula to determine the overdrying determination value fd. Is calculated, but is not limited to this.
  • the storage unit 19 stores a table simulating the correlation of the equation 1 in which the air volume Qa and the water supply volume Qw are rows or columns and the overdrying determination value fd is an element in each dry-wet bulb temperature difference ⁇ T, and the obtained values are acquired.
  • the overdrying determination value fd may be derived by referring to the table of the air flow rate Qa and the water supply flow rate Qw.
  • Embodiment 2 Next, the humidifying device 100 of the second embodiment will be described.
  • the humidifying device 100 of the second embodiment is different from the humidifying device 100 of the first embodiment in the control of the overdrying suppression operation.
  • the configuration and control of the humidifying device 100 according to the second embodiment excluding the control of the overdrying suppression operation are the same as the configuration and control of the humidifying device 100 according to the first embodiment, and a description thereof will be omitted.
  • FIG. 7 is a flowchart of control of overdrying suppression operation in the humidifying device according to the second embodiment. Note that steps S202, S203, and S204 of the control of the overdrying suppression operation of FIG. 7 perform the same processing as steps S102, S103, and S104 of the control of the overdrying suppression operation in the first embodiment, and therefore the description thereof will be omitted. ..
  • step S201 the control unit 20 reduces the air volume passing through the humidification element 5. Specifically, the control unit 20 transmits to the blower 2 a control signal for reducing the air volume of the blower 2.
  • the blower 2 that has received the control signal reduces the air volume from immediately before performing the overdrying suppression operation, and reduces the air volume that passes through the humidification element 5 from immediately before performing the overdrying suppression operation.
  • the control unit 20 may perform control to set the air flow rate selected in advance by the user or the manufacturer, control to reduce the air flow rate by a predetermined ratio or step, and the dry state determination unit 21.
  • control may be performed in which the air volume that is lost in the over-dry state is calculated when the over-dry determination value fd is derived and the calculated air volume is set.
  • the control unit 20 controls so that the air volume of the blower 2 becomes weak.
  • the humidifying device 100 according to the second embodiment is different from the humidifying device 100 according to the first embodiment described above as an additional configuration in that the controller 20 performs the overdrying suppression operation in the overdrying suppression operation. Also, a configuration for controlling to reduce the air volume of the blower 2 is added. With this configuration, the amount of air is reduced in the overdrying suppression operation, so that the humidifying element 5 can be set to a condition in which scale does not easily deposit.
  • the additional configuration shown in the second embodiment may be added to the configuration of the humidifying device 100 according to the first embodiment together with the other additional configurations shown in the first embodiment.
  • the overdrying suppressing operation shown in FIG. 6 for increasing the feedwater flow rate described in the first embodiment and the overdrying suppressing operation for decreasing the air volume shown in FIG. 7 in the second embodiment may be performed at the same time.
  • Embodiment 3 Next, the humidifying device 101 of the third embodiment will be described.
  • the humidifying device 101 of the third embodiment is different from the humidifying device 100 of the first embodiment in that the humidifying device 101 includes the temperature control coil 23, a method of deriving the overdrying determination value fd, and an overdrying suppression operation. Control is different. Except for these, the configuration and control of the humidifying device 101 of the third embodiment is the same as the configuration and control of the humidifying device 100 of the first embodiment, and a description thereof will be omitted.
  • FIG. 8 is a schematic diagram showing the internal configuration of the humidifier according to the third embodiment.
  • FIG. 9 is a functional block diagram of the humidifier of the humidifier according to the third embodiment. Next, the humidifying device 101 of the third embodiment will be described.
  • the humidifying device 101 of the third embodiment includes a temperature control coil 23 that heats passing air.
  • the temperature control coil 23 is arranged inside the air passage 13, is arranged closer to the air outlet 11 side than the temperature sensor 3 and the humidity sensor 4, and is arranged closer to the suction port 10 side than the humidification element 5. Further, the temperature control coil 23 is configured to be able to control the heating amount, such as a condenser of a refrigeration cycle.
  • the control unit 20 generates a control signal related to the heating amount of the temperature control coil 23 and controls the temperature control coil.
  • the maximum heating amount that the temperature control coil 23 can heat is 100%, the heating amount when the temperature control coil 23 is not heating is 0%, and 100%, 75%, 50%, 25%, The heating amount can be controlled in 5 steps of 0%. Further, in the humidifying operation of the second embodiment, the heating amount of the temperature control coil is controlled to any value from 100% to 25%, and in the drying operation of the second embodiment, the heating amount of the temperature control coil is controlled to 25%.
  • the flow of air inside the humidifying device 101 according to the third embodiment will be described.
  • the suction air 14 flows into the air passage 13 from the suction port 10.
  • the temperature sensor 3 detects the temperature of the intake air 14 flowing into the air passage 13.
  • the humidity sensor 4 detects the humidity of the intake air 14 flowing into the air passage 13.
  • the intake air 14 passes through the blower 2 and goes to the temperature control coil 23.
  • the suction air 14 passes through the temperature control coil 23 and is heated.
  • the air heated by the temperature control coil 23 is referred to as pre-humidification air 24.
  • the pre-humidification air 24 passes through the humidification element 5 and is humidified.
  • the humidified air 15 humidified by the humidifying element 5 flows out from the air outlet 11 and is again blown into the humidifying space.
  • FIG. 10 is a flowchart for deriving the overdrying determination value fd in the humidifying device according to the third embodiment.
  • the flowchart of FIG. 10 starts when the processing of step S11 or step S14 of the flowchart of FIG. 4 is performed in the third embodiment.
  • a method of deriving the overdrying determination value fd performed by the dryness determination unit 21 according to the third embodiment will be described. Note that steps S31, S32, S33, and S34 of FIG. 3 perform the same processing as steps S21, S22, S23, and S24 of FIG.
  • step S35 the dry state determination unit 21 derives the enthalpy H1 of the intake air 14 based on the dry-bulb temperature Td1 acquired in step S31 and the relative temperature ⁇ 1 acquired in step S32.
  • the method of deriving the enthalpy H1 is that the storage unit 19 stores a table simulating the correlation in the moist air diagram having the dry bulb temperature and the relative humidity as rows or columns and the enthalpy as an element, and is acquired in step S31.
  • There is a method of deriving the enthalpy H1 by referring to the table of the dry-bulb temperature Td1 and the relative temperature ⁇ 1 acquired in step S32.
  • the storage unit 19 stores an approximate expression of the correlation in the moist air diagram, and the enthalpy H1 is calculated by substituting the dry bulb temperature Td1 acquired in step S31 and the relative temperature ⁇ 1 acquired in step S32 into the expression. There is also a way to do it.
  • step S36 the dry state determination unit 21 derives the absolute humidity x1 of the intake air 14.
  • the absolute humidity x1 stores a table simulating a correlation in a wet air diagram having dry-bulb temperature and relative humidity as rows or columns and absolute humidity as an element, or an approximate expression of the correlation, similar to the method of deriving the enthalpy H1.
  • the absolute humidity x1 is derived by substituting the dry bulb temperature Td1 acquired in step S31 and the relative humidity ⁇ 1 acquired in step S32 into a table and a reference or approximation formula, which is stored in the unit 19.
  • step S37 the enthalpy H2 of the pre-humidification air 24 is derived. Specifically, it is derived by the formula shown in Formula 2.
  • Qh is the heating amount (unit: W) of the temperature control coil 23. Since the heating amount of the temperature control coil is controlled by the controller 20, it is determined by referring to the control value of the heating amount Qh or the control value of the heating amount Qh.
  • the storage unit 19 stores the heating amounts Qh when the heating amounts are 100%, 75%, 50%, 25%, and 0%, respectively, and the dry state determination unit 21
  • the heating amount Qh in the heating amount controlled by the control unit 20 is acquired from the storage unit 19.
  • ⁇ a is the density of air (unit: kg/m 3 ).
  • ⁇ a is a constant, and the value of ⁇ a is stored in the storage unit 19.
  • Qa is the air volume (unit is m 3 /s).
  • Qa uses the value derived in step S33.
  • step S38 the dry state determination unit 21 derives the dry/wet bulb temperature difference ⁇ T of the pre-humidification air 24. Since the absolute humidity does not change in the temperature control coil 23, the absolute humidity of the pre-humidification air 24 is the same as the absolute humidity x1 of the suction air 14. Therefore, the dry-bulb temperature Td2 of the pre-humidification air 24 and the wet-bulb temperature Tw2 of the pre-humidification air 24 are in a wet-air diagram in which the enthalpy and the absolute humidity are rows or columns and the dry-bulb temperature or the wet-bulb temperature is an element.
  • the dry-bulb temperature difference ⁇ T of the pre-humidification air 24 can be derived by subtracting the dry-bulb temperature Tw2 of the pre-humidification air 24 from the derived dry-bulb temperature Td2 of the pre-humidification air 24.
  • step S39 the dry state determination unit 21 determines the overdrying determination value fd from the air flow rate Qa derived in step S33, the water supply flow rate Qw derived in step S34, and the dry-wet bulb temperature difference ⁇ T of the pre-humidification air 24 derived in step S38. Derive.
  • the derivation of the overdrying determination value fd is the same as in step S27 of the first embodiment, and thus the description thereof is omitted.
  • step S39 After the processing of step S39 ends, the dry state determination unit 21 ends the derivation of the overdrying determination value fd.
  • FIG. 11 is a flowchart of control of the overdrying suppression operation in the humidifier according to the third embodiment.
  • control of the overdrying suppressing operation of the humidifying device 101 of the third embodiment will be described.
  • steps S302, S303, and S304 of the control of the overdrying suppression operation by controlling the heating amount perform the same processing as steps S102, S103, and S104 of the control of the overdrying suppression operation of the first embodiment. Omit.
  • step S301 the control unit 20 reduces the heating amount of the temperature control coil 23. Specifically, the control unit 20 transmits a control signal for reducing the heating amount of the temperature control coil 23 to the temperature control coil 23, so that the temperature control coil 23 reduces the heating amount.
  • the control unit 20 may perform control to set the heating amount preselected by the user or manufacturer, control to reduce the heating amount by a predetermined rate or step, and dry state determination. The control may be such that the unit 21 calculates the heating amount that disappears in the dry state when the overdrying determination value fd is derived, and sets the calculated heating amount. As an example, in the first embodiment, the control unit 20 controls the heating amount to be 0%.
  • the humidifying device 101 of the third embodiment is provided with the temperature adjusting coil 23 that heats the air blown to the humidifying element 5 in addition to the structure of the humidifying device 100 according to the first embodiment described above as an additional configuration.
  • the control unit 20 controls the heating amount of the temperature control coil 38, and in the overdrying suppression operation, the control unit 20 adds a configuration in which the heating amount of the temperature control coil 23 is reduced as compared to immediately before performing the overdrying suppression operation. There is. With this configuration, the heating amount of the temperature control coil 23 decreases in the overdrying suppression operation, so that the dry/wet bulb temperature difference ⁇ T becomes small, and the humidifying element 5 can be set in a condition in which scale is difficult to deposit.
  • the additional configuration shown in the third embodiment may be added to the configuration of the humidifying device 100 according to the first embodiment together with the other additional configurations shown in the first or second embodiment.
  • one or both of the overdrying suppressing operation for increasing the feed water flow rate in FIG. 6 shown in the first embodiment and the overdrying suppressing operation for reducing the air volume in FIG. 7 shown in the second embodiment are performed in the third embodiment. It may be performed at the same time as the overdrying suppression operation by decreasing the heating amount of the temperature control coil shown in FIG. 11.
  • the humidifying device 101 of the third embodiment derives the dry-wet bulb temperature difference ⁇ T of the pre-humidifying air 24 from the temperature and humidity of the intake air 14, but the present invention is not limited to this.
  • a temperature sensor and a humidity sensor are arranged on the air outlet 11 side of the temperature control coil 23 and on the suction port 10 side of the humidification element 5, and the temperature and humidity of the pre-humidification air 24 are directly measured to measure the dry and wet bulb temperature.
  • the difference ⁇ T may be derived.
  • the overdrying determination value fd may be derived using the dry-wet bulb temperature difference ⁇ T of the intake air 14 without deriving the dry-wet bulb temperature difference ⁇ T of the pre-humidification air 24.
  • steps S12 and S15 of FIG. 4 it is determined whether the value obtained by adding a predetermined margin ⁇ to the overdrying determination value fd is larger than the overdrying determination threshold ⁇ (fd+ ⁇ > ⁇ ).
  • the reason for adding the margin ⁇ is that the pre-humidification air 24 is the air in which the suction air 14 is heated by the temperature control coil 23.
  • the dry-wet bulb temperature difference ⁇ T of the pre-humidification air 24 is greater than the dry-wet bulb temperature difference ⁇ T of the suction air 14. This is because the overdrying determination value fd in the pre-humidified air 24 is larger than the overdrying determination value fd in the intake air 14.
  • the margin ⁇ may be a constant obtained experimentally or a function proportional to the heating amount of the temperature control coil 23.
  • FIG. 12 is a schematic diagram showing an internal configuration when the bypass air passage of the ventilation device according to the fourth embodiment is closed.
  • FIG. 13 is a schematic diagram showing the internal configuration of the ventilation device according to the fourth embodiment when the bypass air passage is opened.
  • the ventilation device 200 includes a main body casing 30, a heat exchanger 31, an air supply blower 32, an exhaust air blower 33, an air supply temperature sensor 34, an air supply humidity sensor 35, an exhaust air temperature sensor 36, and an exhaust air humidity sensor. 37, a temperature control coil 38, a humidification element 39, a water supply pipe 40, a water supply valve 41, a damper 42, a control device 43, and an operation terminal 44.
  • the main body casing 30 is a member that forms the exterior of the ventilation device 200.
  • the main body casing 1 includes a heat exchanger 31, an air supply blower 32, an exhaust air blower 33, an air supply temperature sensor 34, an air supply humidity sensor 35, an exhaust gas temperature sensor 36, an exhaust air humidity sensor 37, and a temperature control coil. 38, a humidification element 39, a water supply pipe 40, a water supply valve 41, a damper 42, and a control device 43 are housed.
  • a supply air inlet 45, a supply air outlet 46, an exhaust air inlet 47, an exhaust air outlet 48, and a water supply pipe connection port 49 are formed on the outer surface of the main body casing 1.
  • the supply air outlet 46 and the exhaust suction port 47 are connected to a ventilation space that is a space in which the ventilation device 200 ventilates.
  • the supply air intake port 45 and the exhaust air outlet port 48 are connected to other spaces different from the ventilation space such as outdoors.
  • the water supply pipe connection port 49 is connected to a water supply source such as water supply.
  • the intake air inlet 45 and the intake air outlet 46 are connected by an intake air passage 50 formed inside the main body casing 30.
  • the exhaust air inlet 47 and the exhaust air outlet 48 are connected by an exhaust air passage 51 formed inside the main body casing 30.
  • a bypass air passage 52 is formed in a part of the exhaust air passage 51 so as to bypass a second air passage of the heat exchanger 31 described later.
  • the heat exchanger 31 has a first air passage and a second air passage therein, and the air flowing in the first air passage and the air flowing in the second air passage exchange heat and moisture. It is configured.
  • the first air passage forms part of the supply air passage 50
  • the second air passage forms part of the exhaust air passage 51.
  • the air supply blower 32 is a device that blows the air inside the air supply air passage 50 from the air supply inlet 45 side to the air supply outlet 46 side.
  • the supply air blower 32 is arranged inside the supply air passage 50.
  • the exhaust blower 33 is a device that blows the air inside the exhaust air passage 51 from the exhaust suction port 47 side to the exhaust blowout port 48 side.
  • the exhaust blower 33 is arranged inside the exhaust air passage 51.
  • the air supply blower 32 and the exhaust blower 33 are each configured to control the air volume, such as a fan and a motor capable of controlling the rotation speed.
  • the supply air blower 32 and the exhaust air blower 33 are capable of controlling the air flow rates in three stages of strong, medium, and weak in descending order of air flow rate.
  • the supply air temperature sensor 34 and the exhaust air temperature sensor 36 are elements capable of detecting temperature
  • the supply air humidity sensor 35 and the exhaust air humidity sensor 37 are elements capable of detecting humidity.
  • the supply air temperature sensor 34 and the supply air humidity sensor 35 are arranged inside the supply air passage 50, and are arranged closer to the supply air inlet 45 than the first air passage of the heat exchanger 31.
  • the exhaust temperature sensor 36 and the exhaust humidity sensor 37 are arranged inside the exhaust air passage 51, and are arranged closer to the exhaust suction port 47 than the second air passage of the heat exchanger 31 and the bypass air passage 52.
  • the temperature control coil 38 is a member that heats the passing air.
  • the temperature control coil 38 is arranged inside the air supply air passage 50, and is arranged closer to the air supply outlet 46 than the first air passage of the heat exchanger 31. Further, the temperature control coil 38 is configured to be able to control the heating amount, such as a condenser of a refrigeration cycle. In the fourth embodiment, 100%, 75%, 50%, 25%, assuming that the maximum amount of heat that the temperature control coil 38 can heat is 100% and the amount of heat when the temperature control coil 38 is not operating is 0%. The heating amount can be controlled in 5 steps of 0%.
  • the humidifying element 39 is a member that humidifies the passing air.
  • a filter containing water is used as the humidifying element 39.
  • the humidifying element 39 is arranged inside the supply air passage 50, and is arranged closer to the supply air outlet 46 than the temperature control coil 38.
  • the water supply pipe 40 is a pipe that connects the humidification element 39 and the water supply pipe connection port 49.
  • the humidifying element 39 is supplied with water from a water source via a water supply pipe 40 and a water supply pipe connection port 49.
  • the water supply valve 41 is a valve for adjusting the water supply flow rate of the humidification element 39.
  • the water supply valve 41 is arranged in the middle of the water supply pipe 40.
  • the water supply valve 41 is configured to be able to control the water supply flow rate of the humidification element 39, such as a two-way valve capable of controlling the opening degree of the valve.
  • the feed water flow rate can be controlled in five stages of 100%, 75%, 50%, 25% and 0%. ..
  • the damper 42 is a member that switches between opening and closing the bypass air passage 52.
  • the damper 42 is arranged inside the exhaust air passage 51.
  • the damper 42 is provided, for example, by an actuator such as a motor, at a position where the second air passage of the heat exchanger 31 is opened and the bypass air passage 52 is closed as shown in FIG. 12, and at a position where the second air passage of the heat exchanger 31 is closed as shown in FIG. It is configured to be movable between the position where the second air passage is closed and the position where the bypass air passage 52 is opened.
  • the control device 43 based on the temperature detected by the supply air temperature sensor 34 and the exhaust air temperature sensor 36 and the humidity detected by the supply air humidity sensor 35 and the exhaust air humidity sensor 37, the air flow rate and temperature of the supply air blower 32 and the exhaust air blower 33.
  • the heating amount of the adjusting coil 38 and the flow rate of water supplied to the humidifying element 39 are controlled.
  • the operation terminal 44 is a terminal for at least the user to perform an operation related to the start of the operation of the ventilation device 200 and the stop of the operation of the ventilation device 200.
  • the operation terminal 44 corresponds to, for example, a remote controller, a computer in which an operation application is installed, a tablet terminal, a smartphone, or the like.
  • the supply air intake air 53 flows into the supply air passage 50.
  • the supply air temperature sensor 34 detects the temperature of the supply air intake air 53 flowing into the supply air passage 50.
  • the supply air humidity sensor 35 detects the humidity of the supply air intake air 53 that has flowed into the supply air passage 50.
  • the supply air intake air 53 whose temperature and humidity have been detected by the supply air temperature sensor 34 and the supply air humidity sensor 35 passes through the first air passage of the heat exchanger 31.
  • the air passing through the first air passage of the heat exchanger 31 is referred to as supply air heat exchange air 54.
  • exhaust heat exchange air 58 which will be described later, flows through the second air passage of the heat exchanger 31, the supply heat exchange air 54 exchanges heat and moisture with the exhaust heat exchange air 58, and then the heat exchanger.
  • the first air passage of 31 is passed. Further, when the exhaust heat exchange air 58 does not flow in the second air passage of the heat exchanger 31, the supply heat exchange air 54 does not exchange heat and moisture, and the first heat exchange air of the heat exchanger 31 does not flow. Pass through the wind path.
  • the supply air heat exchange air 54 that has passed through the first air passage of the heat exchanger 31 passes through the supply air blower 32 and then passes through the temperature control coil 38 to be heated.
  • the air that has passed through the temperature adjustment coil 38 and has not passed through the humidification element 39 is referred to as supply air before humidification 55.
  • the air 55 before supply air humidification passes through the humidification element 39 and is humidified.
  • the air humidified by the humidifying element 39 is referred to as air after humidification 56.
  • the air 56 after supply and humidification flows out from the supply air outlet 46 and is blown into the ventilation space.
  • exhaust suction air 57 The air that has flowed in through the exhaust suction port 47 is referred to as exhaust suction air 57.
  • the exhaust suction air 57 flows into the exhaust air passage 51.
  • the exhaust temperature sensor 36 detects the temperature of the exhaust suction air 57 flowing into the exhaust air passage 51.
  • the exhaust humidity sensor 37 detects the humidity of the exhaust suction air 57 flowing into the exhaust air passage 51.
  • the exhaust temperature sensor 36 and the exhaust humidity sensor 37 detect the temperature and humidity.
  • the exhausted intake air 57 thus passed passes through the second air passage of the heat exchanger 31.
  • the air passing through the second air passage of the heat exchanger 31 is referred to as exhaust heat exchange air 58.
  • the exhaust heat exchange air 58 passes through the second air passage of the heat exchanger 31 while exchanging heat and moisture with the supply heat exchange air 54.
  • the exhaust heat exchange air 58 that has passed through the second air passage of the heat exchanger 31 and the exhaust bypass passing air 60 that has passed through the bypass air passage 52 flow out from the exhaust air outlet 48 after passing through the exhaust blower 33, and are ventilated. It is blown out to another space different from the space.
  • the air flowing out from the exhaust air outlet 48 is referred to as the exhaust air outlet 59.
  • FIG. 14 is a functional block diagram of the ventilation device according to the fourth embodiment. Next, a functional block diagram of the ventilation device 200 according to the fourth embodiment will be described.
  • the control device 43 is composed of an input interface 61, an output interface 62, and a microcomputer 63.
  • the input interface 61 is communicatively connected to the supply air temperature sensor 34, the supply air humidity sensor 35, the exhaust gas temperature sensor 36, and the exhaust gas humidity sensor 37, and provides information about the temperature detected by the supply air temperature sensor 34 and the supply air humidity. Information about the humidity detected by the sensor 35, information about the temperature detected by the exhaust temperature sensor 36, and information about the humidity detected by the exhaust humidity sensor 37 are respectively received.
  • the output interface 62 is communicatively connected to the air supply blower 32, the exhaust air blower 33, the temperature control coil 38, the water supply valve 41, and the damper 42, and controls the air flow rate of the air supply blower 32 and the air flow rate of the exhaust air blower 33.
  • the control signal, the control signal regarding the heating amount of the temperature control coil 38, the control signal regarding the opening degree of the water supply valve 41, and the control signal regarding the position of the damper 42 are transmitted.
  • the microcomputer 63 has the functions of a storage unit 64, a control unit 65, a dry state determination unit 66, and a timer unit 67. Further, the microcomputer 63 includes a processor, a memory, and a timer, like the microcomputer 18 of the first embodiment.
  • the storage unit 64 includes a software program executed by the processor, an air flow rate of the air supply blower 32, an air flow rate of the exhaust air blower 33, a heating amount of the temperature control coil 38, an opening degree of the water supply valve 41, and a damper 42. It stores the numerical values used to control position and position respectively.
  • the storage unit 64 is realized by storing programs and various numerical values in a memory.
  • the control unit 65 generates control signals regarding the air volume of the air supply blower 32, the air volume of the exhaust air blower 33, the heating amount of the temperature control coil 38, the opening degree of the water supply valve 41, and the position of the damper 42.
  • the air supply blower 32, the exhaust air blower 33, the temperature control coil 38, the water supply valve 41, and the damper 42 are controlled.
  • the dry state determination unit 66 determines whether the humidifying element 39 is in the dry state.
  • the control unit 65 and the dry state determination unit 66 are realized by the processor executing processing according to a software program stored in the memory.
  • the timer 67 measures the elapsed time.
  • the timer unit 67 is realized by a timer.
  • FIG. 15 is a flowchart showing an example of control of normal operation of the ventilation device according to the fourth embodiment. The control of the flowchart of FIG. 15 starts when the user performs an operation for starting the operation of the ventilation device 200 from the operation terminal 44.
  • step S1a the timer unit 67 resets the humidifying operation time ta.
  • step S1a After the processing of step S1a ends, the process proceeds to step S2a.
  • step S2a the timer unit 67 starts measuring the humidifying operation time ta.
  • step S3a the control unit 65 controls the ventilation device 200 to perform the humidification ventilation operation.
  • the humidification/ventilation operation is an operation in which the air in the ventilation space is exhausted and the air in another space different from the ventilation space is humidified and supplied.
  • the control unit 65 opens the water supply valve 41 to supply water to the humidification element 39, operate the supply air blower 32 and the exhaust air blower 33, and perform control to heat the temperature control coil 38.
  • the supply air volume is medium
  • the exhaust air volume is medium
  • the supply water flow rate is 75%
  • the heating amount of the temperature control coil 38 is any value from 100% to 25%
  • the position of the damper 42 Is controlled to either the position where the bypass air passage 52 is closed or the position where the bypass air passage 52 is opened.
  • step S4a the control unit 65 determines whether or not the user has operated the operation terminal 44 to stop the operation of the ventilation device 200.
  • step S5a the control unit 65 controls the ventilation device 200 to perform the drying operation for a predetermined time. For example, in the dry operation, the control unit 65 closes the water supply valve 41 to stop the water supply to the humidification element 39, operates the air supply blower 32 and the exhaust air blower 33, and controls the temperature control coil 38 to be heated. ..
  • the supply air volume is strong
  • the exhaust air volume is strong
  • the supply water flow rate is 0%
  • the heating amount of the temperature control coil 38 is 25%
  • the position of the damper 42 is the position where the bypass air passage 52 is closed. It is controlled by.
  • step S6a the control unit 65 stops the operation of the ventilation device 200.
  • the water supply valve 41 is closed to stop the water supply to the humidification element 39, and the air supply blower 32, the exhaust air blower 33, and the temperature control coil 38 are stopped.
  • the normal operation of the ventilation device 200 ends.
  • step S7a the timer unit 67 determines whether the humidification operation time ta is longer than a predetermined drying operation start time ts.
  • step S8a the control unit 65 controls the ventilation device 200 to perform a drying operation for a predetermined time. Note that the drying operation in step S8a is the same as the drying operation described in step S5a, and the description thereof will be omitted.
  • step S8a ends, the process proceeds to step S1a, and the timer unit 67 resets the humidification operation time ta.
  • step S7a determines that the humidifying operation time ta is less than or equal to the dry operation start time ts (step S7a, NO).
  • the process proceeds to step S4a, and the control unit 65 causes the user to operate the ventilation device 200 from the operation terminal 44 again. It is determined whether or not the operation for stopping the is performed.
  • the flow chart of the control is different from the flow chart of the control for suppressing the overdrying state of the humidifying device 100 according to the first embodiment only in the main body of each process, and thus will be described using the flow chart of FIG. 4. .
  • the control in the flowchart of FIG. 4 is started when the user operates the ventilation terminal 200 from the operation terminal 44. That is, the control of the flowchart of FIG. 15 and the control of the flowchart of FIG. 4 are performed simultaneously.
  • step S11 the dry state determination unit 66 derives the overdrying determination value fd. Details of deriving the overdrying determination value fd in the ventilation device 200 according to the fourth embodiment will be described later.
  • step S12 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S11 is larger than the overdrying determination threshold value ⁇ .
  • the overdrying determination threshold value ⁇ is a predetermined constant and is stored in the storage unit 64.
  • step S12 determines in step S12 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S12, Yes)
  • the control unit 65 stops the control of the normal operation in the flowchart of FIG. That is, when the ventilation device 200 is performing the humidification ventilation operation or the drying operation, those operations are stopped.
  • step S14 the control unit 65 controls the ventilation device 200 to perform the overdrying suppression operation. Details of the overdrying suppression operation in the ventilation device 200 of the fourth embodiment will be described later.
  • step S15 the dry state determination unit 66 derives the overdrying determination value fd as in step S11.
  • step S15 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S15 is larger than the overdrying determination threshold value ⁇ .
  • step S16 determines in step S16 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S16, Yes)
  • the process proceeds to step S14 and the overdrying suppression operation is performed again.
  • step S16 determines that the overdrying determination value fd is equal to or less than the overdrying determination threshold value ⁇ in step S16 (step S16, No). the process proceeds to step S17.
  • step S17 the control unit 65 controls the ventilation device 200 to resume normal operation.
  • step S17 After the processing of step S17 is completed, or when the overdrying determination value fd is equal to or less than the overdrying determination threshold value ⁇ in step S12 (step S12, No), the process proceeds to step S18.
  • step S18 the dry state determination unit 66 determines whether the control unit 65 has stopped the operation of the ventilation device 200.
  • step S18 When the dry state determination unit 66 determines that the control unit 65 has stopped the operation of the ventilation device 200 in step S18 (Yes in step S18), the control for suppressing the overdry state of the humidifying element 39 is ended.
  • the dry state determination unit 66 determines that the control unit 20 does not stop the operation of the ventilation device 200 in step S18 (No in step S18)
  • the process proceeds to step S11, and the dry state determination unit 66 determines the overdry determination value fd. Derive.
  • FIG. 16 is a flowchart for deriving the overdrying determination value fd in the ventilation device according to the fourth embodiment.
  • the flowchart of FIG. 16 starts when the process of step S11 or step S14 of the flowchart of FIG. 4 is performed.
  • a method of deriving the overdrying determination value fd performed by the dryness determining unit 66 will be described.
  • step S41 the dry state determination unit 66 acquires the temperature detected by the supply air temperature sensor 34 as the dry-bulb temperature Tdoa of the supply air intake air 53 via the input interface 61.
  • step S42 the dry state determination unit 66 acquires the humidity detected by the supply air humidity sensor 35 as the relative humidity ⁇ oa of the supply air suction air 53 via the input interface 61.
  • step S43 the dry state determination unit 66 derives the supply air volume Qoa. Since the air supply air amount Qoa is controlled by the control unit 65, the air supply air amount Qoa is derived by referring to the control value related to the air supply air amount Qoa as in step S23 of FIG.
  • step S44 the dry state determination unit 66 derives the feed water flow rate Qw supplied to the humidification element 39. Since the water supply flow rate Qw is controlled by the control unit 65, the water supply flow rate Qw is derived by referring to the control value related to the water supply flow rate Qw as in step S24 of FIG.
  • step S45 the dry state determination unit 66 derives the enthalpy Hoa of the intake air 53.
  • the storage unit 19 stores a table simulating a correlation in a wet air diagram having dry bulb temperature and relative humidity as rows or columns and enthalpy as elements, or an approximate expression of the correlation.
  • the enthalpy Hoa is stored by substituting the dry-bulb temperature Tdoa acquired in step S41 and the relative humidity ⁇ oa acquired in step S42 into a table and a reference or approximation formula.
  • step S46 the dry state determination unit 66 determines whether the damper 42 blocks the bypass air passage 52. Since the position of the damper 42 is controlled by the control unit 65, the dry state determination unit 66 acquires information regarding the position of the damper 42 from the control unit 65 and makes a determination.
  • step S46 the dry state determination unit 66 acquires the temperature detected by the exhaust temperature sensor 36 as the dry-bulb temperature Tdra of the exhaust suction air 57 via the input interface 61.
  • step S48 the dry state determination unit 66 acquires the humidity detected by the exhaust humidity sensor 37 as the relative humidity ⁇ ra of the exhaust suction air 57 via the input interface 61.
  • step S49 the dry state determination unit 66 derives the enthalpy Hra of the exhaust suction air 57.
  • the storage unit 64 stores a table or an approximate expression of the correlation, which simulates the correlation in the wet air diagram having the dry-bulb temperature and the relative humidity as rows or columns and the enthalpy as an element, as in step S45.
  • step S50 the dry state determination unit 66 derives the exhaust air volume Qra. Since the exhaust air volume Qra is controlled by the control unit 65, the exhaust air volume Qra is derived by referring to the control value related to the exhaust air volume Qra as in step S44.
  • step S51 the dry state determination unit 66 derives the dry-bulb temperature Tdoa2 of the supply heat exchange air 54. Specifically, it is derived by the formula shown in Formula 3.
  • ⁇ t is the temperature exchange efficiency of the heat exchanger 31 (unit is dimensionless).
  • the temperature exchange efficiency ⁇ t has a correlation with the supply air volume Qoa and the exhaust air volume Qra, and the correlation is determined by the type of the heat exchanger 31.
  • the storage unit 64 stores a table or an approximate expression simulating a correlation in which the supply air volume Qoa and the exhaust air volume Qra are rows or columns and the temperature exchange efficiency ⁇ t is an element, and the storage air volume Qoa derived in step S43 is stored.
  • the temperature exchange efficiency ⁇ t is determined by substituting the exhaust air flow rate Qra derived in step S50 into a table or an approximate expression.
  • the temperature exchange efficiency ⁇ t decreases as the supply air volume Qoa increases, and the temperature exchange efficiency ⁇ t increases as the exhaust air volume Qra increases.
  • step S52 the dry state determination unit 66 derives the enthalpy Hoa2 of the supply heat exchange air 54. Specifically, it is derived by the formula shown in Formula 4.
  • ⁇ h is the enthalpy exchange efficiency of the heat exchanger 31 (unit is dimensionless).
  • the enthalpy exchange efficiency ⁇ h also has a correlation with the supply air volume Qoa and the exhaust air volume Qra, and the correlation is determined by the type of the heat exchanger 31.
  • the storage unit 64 stores a table or an approximate expression that simulates the correlation between the enthalpy exchange efficiency ⁇ h and the supply air volume Qoa and the exhaust air volume Qra, and derives the supply air volume Qoa derived in step S43 and step S50.
  • the enthalpy exchange efficiency ⁇ h is determined by substituting the exhaust air flow rate Qra into a table or an approximate expression. As for the enthalpy exchange efficiency ⁇ t, the enthalpy exchange efficiency ⁇ h decreases as the supply air volume Qoa increases, and the enthalpy exchange efficiency ⁇ h increases as the exhaust air volume Qra increases.
  • step S53 the dry state determination unit 66 derives the absolute humidity xoa2 of the supply heat exchange air 54.
  • the storage unit 64 stores a table or an approximate expression of the correlation simulating the correlation in which the dry-bulb temperature and the enthalpy in the moist air diagram are rows or columns and the absolute humidity is an element.
  • the absolute humidity xoa2 is derived by substituting the dry-bulb temperature and the enthalpy of the heat exchange air 54 into the table and the reference or approximation formula.
  • the dry state determination unit 66 determines that the damper 42 blocks the bypass air passage 52 in step S46 (Yes in step S46), the supply air heat exchange air 54 and the exhaust heat exchange air 58 generate heat. In addition, since water is exchanged, the dry state determination unit substitutes the dry-bulb temperature Tdoa2 derived in step S51 and the enthalpy Hoa2 derived in step S52 into the table and the reference or approximation formula. If the dry state determination unit 66 does not determine that the damper 42 blocks the bypass air passage 52 in step S46 (No in step S46), the supply heat exchange air 54 exchanges heat and moisture. Therefore, the dry state determination unit substitutes the dry-bulb temperature Tdoa acquired in step S41 and the enthalpy Hoa derived in step S45 into the table and the reference or approximation formula.
  • step S54 the enthalpy Hoa3 of the air 55 before supply and humidification is derived. Specifically, when the dry state determination unit 66 determines that the damper 42 closes the bypass air passage 52 in step S46 (Yes in step S46), it is derived by the formula shown in Formula 5, and in step S46, the damper is calculated. When the dry state determination unit 66 determines that the bypass air passage 52 is not blocked by the dry state determination unit 66 (No in step S ⁇ b>46 ), it is derived by the equation (6). The symbols used in Equations 5 and 6 are defined.
  • ⁇ a is the density of air (unit: kg/m 3 ). ⁇ a is a constant, and the value of ⁇ a is stored in the storage unit 64.
  • Qoa is the supply air volume (unit is m 3 /s). Qa uses the value derived in step S42.
  • step S55 the dry state determination unit 66 derives the dry/wet bulb temperature difference ⁇ T of the air 55 before supply and humidification.
  • the dry-bulb temperature of the pre-supply air humidifying air 55 and the wet-bulb temperature of the pre-supply air humidifying air 55 are the dry-bulb temperature or the wet-bulb temperature with the enthalpy and absolute humidity stored in the storage unit 64 as rows or columns. It is derived by referring to or substituting the enthalpy Hoa3 derived in step S54 and the absolute humidity xoa2 derived in step S53 into a table simulating the correlation in the moist air diagram as an element or an approximate expression of the correlation.
  • step S56 the dry state determination unit 66 sets the supply air volume Qoa derived in step S43, the supply water flow rate Qw derived in step S44, and the dry/wet bulb temperature difference ⁇ T of the supply air before humidification 55 derived in step S55.
  • the overdrying determination value fd is derived.
  • the storage unit 64 stores the equation (7) and calculates the fd by substituting each numerical value into the equation, as in step S27 of FIG. ..
  • the f ( ⁇ T, Qoa, Qw) of the equation 7 is a function determined by three variables of the dry and wet bulb temperature difference ⁇ T, the supply air volume Qoa, and the supply water flow rate Qw.
  • the function f is experimentally derived by the same method as Equation 1.
  • the function f satisfies the relationship that the overdrying determination value fd increases as the dry-wet bulb temperature difference ⁇ T increases. Furthermore, the function f satisfies the relationship that the overdrying determination value fd increases as the supply air amount Qoa increases. Furthermore, the function f satisfies the relationship that the overdrying determination value fd decreases as the feedwater flow rate Qw increases.
  • step S56 After the processing of step S56 ends, the dry state determination unit 66 ends the derivation of the overdrying determination value fd.
  • FIG. 17 is a flowchart of control of overdrying suppression operation in the ventilation device according to the fourth embodiment.
  • control of the overdrying suppression operation in the fourth embodiment will be described.
  • the steps S402, S403, and S404 of the control of the overdrying suppression operation in the fourth embodiment are mainly performed by the timer unit 22 from the steps S102, S103, and S104 of the control of the overdrying suppression operation in the first embodiment.
  • the only difference is that the timer unit 67 is changed, and the control contents are the same, so a description thereof will be omitted.
  • step S401 the control unit 65 opens the second air passage of the heat exchanger 31 and closes the bypass air passage 52. Specifically, the control unit 65 sends a control signal to the damper 42 to move the second air passage of the heat exchanger 31 to a position where the second air passage of the heat exchanger 31 is closed and the bypass air passage 52 is closed. The air passage 2 is opened and the bypass air passage 52 is closed.
  • the ventilation device 200 includes the control unit 65 that controls the water supply flow rate of the water supply unit and the air volume of the air supply blower 32, the temperature and humidity acquired via the input interface 61, and the air supply.
  • a drying state determining unit 66 that determines whether the humidifying element 39 is in an overdry state based on the air flow rate of the blower 32 and the water supply flow rate of the water supply unit.
  • the dry state determining unit 66 causes the humidifying element 39 to overdry.
  • the control unit 65 is configured to perform the overdrying suppressing operation for suppressing the overdrying state of the humidifying element 39.
  • a bypass wind formed in the configuration of the ventilation device 200 according to the fourth embodiment described above, which is formed in the exhaust air passage 51 so that the air flowing through the exhaust air passage 51 bypasses the heat exchanger 31.
  • the control unit 65 includes a passage 52 and a damper 42 that is provided in the exhaust air passage 51 and is movable to a position that opens the bypass air passage 52 and a position that closes the bypass air passage 52.
  • a configuration may be added in which the control unit 65 controls the damper 42 to move to a position that closes the bypass air passage 52 in the overdrying suppression operation.
  • the exhaust heat exchange air 58 is warmer and moist air than the supply heat exchange air 54.
  • the dry/wet bulb temperature difference ⁇ T of the heat-exchanged supply air heat exchange air 54 becomes smaller than the dry/wet bulb temperature difference ⁇ T of the supply air suction air 53 before heat exchange, and scale is less likely to be deposited. .. Therefore, with the additional configuration, the air flowing through the exhaust air passage 51 surely flows through the heat exchanger 31 in the overdrying suppression operation, which may make the scale difficult to deposit on the humidification element 39. There is an effect that can be done.
  • the control unit 65 maintains the overdrying suppression operation from the start of the overdrying suppression operation until a predetermined time Ts elapses. You may add the structure which controls so that. With this configuration, the ventilation device 200 can be prevented from switching between the normal operation and the overdrying suppression operation in a short time, and the stability of control can be improved.
  • the water supply means supplies water to the humidification element 39, and the air supply blower 32 blows air in the air supply air passage 50.
  • a configuration for determining whether or not the humidifying element 39 is in the overdry state during the humidifying/ventilating operation may be added. With this configuration, it is possible to prevent the humidifying element 39 from being overdried during the humidifying/ventilating operation and to prevent the scale from depositing.
  • the dry state determination unit 66 does not supply water to the humidification element 39 by the water supply unit, and the air supply blower 32 does not supply the air in the air supply air passage 50.
  • a configuration for determining whether or not the humidifying element 39 is in an excessively dry state during a drying operation for blowing air may be added. With this configuration, it is possible to prevent the humidifying element 39 from being over-dried during the drying operation and from depositing scale.
  • the control unit 65 controls the damper 42 to move to a position that closes the bypass air passage 52 in the overdrying suppression operation, but the present invention is not limited to this.
  • the control unit 65 increases the water supply flow rate of the water supply means more than immediately before performing the overdrying suppressing operation. You may perform the control which makes it.
  • the control unit 65 performs control so that the feed water flow rate becomes 100% in the overdrying suppression operation.
  • the control unit 65 performs control for reducing the heating amount of the temperature control coil 38 as compared to immediately before performing the overdrying suppressing operation. You can go.
  • the control unit 65 controls the heating amount to be 0% in the overdrying suppression operation.
  • the overdrying suppressing operation for increasing the feed water flow rate, the overdrying suppressing operation for decreasing the heating amount of the temperature control coil 38, and the overdrying suppressing operation for closing the bypass air passage 52 may be simultaneously performed.
  • the ventilation device 200 derives the dry/wet bulb temperature difference ⁇ T of the pre-supply air humidifying air 55 from the temperature and humidity of the intake air 53, but the present invention is not limited to this. Similar to the humidifying device 101 of the third embodiment, for example, a temperature sensor and a humidity sensor are arranged on the air supply outlet 46 side of the temperature control coil 38 and on the air supply inlet 45 side of the humidification element 39, It is also possible to directly measure the temperature and the humidity of the air 55 before supply and humidification to derive the dry-wet bulb temperature difference ⁇ T.
  • the over-drying determination value fd may be derived using the dry/wet bulb temperature difference ⁇ T of the supply air suction air 53 without deriving the dry/wet bulb temperature difference ⁇ T of the pre-supply air/humidification air 55.
  • steps S12 and S15 of FIG. 4 it is determined whether the value obtained by adding a predetermined margin ⁇ to the overdrying determination value fd is larger than the overdrying determination threshold ⁇ (fd+ ⁇ > ⁇ ).
  • the margin ⁇ may be a constant obtained experimentally or a function proportional to the heating amount of the temperature control coil 38. In this case, the exhaust temperature sensor 36 and the exhaust humidity sensor 37 are unnecessary.
  • the supply air temperature sensor 34, the supply air humidity sensor 35, the exhaust gas temperature sensor 36, and the exhaust gas humidity sensor 37 are arranged inside the main body casing 30, but the present invention is not limited to this. Absent.
  • the temperature and humidity of the air in another space different from the ventilation space may be acquired from the input interface 61.
  • the temperature and humidity of the outdoor space may be acquired from a network such as the Internet.
  • the temperature or humidity acquired from the input interface 61 corresponds to the temperature or humidity of the air passing through the air supply air passage.
  • the ventilation space may be acquired from the input interface 61.
  • the set temperature and the set humidity of the air conditioner may be acquired via the input interface 61.
  • the set temperature or set humidity acquired via the input interface corresponds to the temperature or humidity of the air passing through the exhaust air passage.
  • the ventilator 200 of the fourth embodiment derives the dry/wet bulb temperature difference ⁇ T of the pre-supply air humidifying air 55 from the temperature and humidity of the intake air 53 and the temperature and humidity of the exhaust air 57.
  • a temperature sensor and a humidity sensor are arranged on the air supply outlet 46 side of the temperature control coil 38 and on the air supply suction port 45 side of the humidification element 39 to directly measure the temperature and humidity of the air 55 before air supply and humidification.
  • a configuration in which the dry-wet bulb temperature difference ⁇ T is derived by measurement may be used. In the case of this configuration, the four sensors of the supply air temperature sensor 34, the supply air humidity sensor 35, the exhaust gas temperature sensor 36, and the exhaust gas humidity sensor 37 are unnecessary, and the two sensors can derive the wet and dry bulb temperature difference ⁇ T.
  • the storage unit 64 stores the equation of Expression 7 as a method of deriving the overdrying determination value fd, and substitutes the respective numerical values into the equation to determine the overdrying determination value fd. Is calculated, but is not limited to this.
  • the storage unit 64 stores a table simulating the correlation of the equation 7 in each wet and dry bulb temperature difference ⁇ T having the supply air volume Qoa and the supply water flow rate Qw as rows or columns and the overdrying determination value fd as an element.
  • the overdrying determination value fd may be derived by referring to the acquired supply air flow rate Qoa and the acquired supply water flow rate Qw in a table.
  • the ventilation device 200 has the temperature control coil 38, the damper 42, and the bypass air passage 52, but is not limited to this, and the temperature control coil, the ventilation device damper, and the bypass air passage are provided. You don't have to.
  • the main body casing 1 includes the heat exchanger 31, the supply air blower 32, the exhaust air blower 33, the supply air temperature sensor 34, the supply air humidity sensor 35, and the exhaust temperature sensor. 36, the exhaust humidity sensor 37, the temperature control coil 38, the humidification element 39, the water supply pipe 40, the water supply valve 41, the damper 42, and the control device 43 are housed, but not limited thereto.
  • one casing has a heat exchanger 31, an air supply blower 32, an exhaust air blower 33, an air supply temperature sensor 34, an air supply humidity sensor 35, an exhaust gas temperature sensor 36,
  • the exhaust humidity sensor 37, the damper 42, and the control device 43 may be housed, and the temperature control coil 38, the humidification element 39, the water supply pipe 40, and the water supply valve 41 may be housed in the other casing.
  • the two casings correspond to the main casing.
  • Embodiment 5 Next, the ventilation device 200 of the fifth embodiment will be described.
  • the ventilation device 200 of the fifth embodiment differs from the ventilation device 200 of the fourth embodiment in the control of the overdrying suppression operation.
  • the configuration and control of the ventilation device 200 according to the fourth embodiment excluding the control of the overdrying suppression operation are the same as the configuration and control of the ventilation device 200 according to the fourth embodiment, and a description thereof will be omitted.
  • FIG. 18 is a flowchart of control of overdrying suppression operation in the ventilation device according to the fifth embodiment.
  • steps S502, S503, and S504 of the control of the overdrying suppression operation in the fifth embodiment are mainly performed by the timer unit 22 from steps S102, S103, and S104 of the control of the overdrying suppression operation in the first embodiment.
  • the only difference is that the timer unit 67 is changed, and the control contents are the same, so a description thereof will be omitted.
  • step S501 the control unit 65 reduces the supply air volume as compared to immediately before performing the overdrying suppression operation. Specifically, the control unit 65 transmits a control signal for reducing the air volume of the air supply blower 32, so that the air volume of the air supply blower 32 decreases and the air supply air volume decreases.
  • the control unit 65 may perform control to set the air supply air amount preselected by the user or the manufacturer, control to decrease the air supply air amount by a predetermined ratio or step, and drying.
  • the state determination unit 66 may calculate a supply air volume that is lost in the overdry state when the overdry determination value fd is derived, and set the calculated air volume.
  • the control unit 65 controls the air supply blower 32 so that the air volume becomes weak.
  • the ventilation device 200 according to the fifth embodiment is different from the ventilation device 200 according to the fourth embodiment described above as an additional configuration in the overdrying suppression operation, in which the control unit 65 immediately before performing the overdrying suppression operation.
  • a configuration for performing control to reduce the air volume of the supply air blower 32 is added. With this configuration, the supply air volume is reduced in the overdrying suppression operation.
  • the temperature exchange efficiency and the enthalpy exchange efficiency of the heat exchanger 31 change depending on the ratio of the exhaust air volume to the supply air volume, and when the exhaust air volume rate increases, the temperature exchange efficiency and the enthalpy exchange efficiency of the heat exchanger 31 increase. As a result, the dry-wet bulb temperature difference ⁇ T of the supply air before humidification 55 becomes smaller. Therefore, the additional configuration can make the humidifying element 39 a condition in which scale does not easily deposit.
  • the additional configuration shown in the fifth embodiment may be added to the configuration of the ventilation device 200 according to the fourth embodiment together with the other additional configurations shown in the fourth embodiment.
  • the overdrying suppression operation for reducing the air volume of the air supply blower 32 described in the fifth embodiment may be performed simultaneously with the other overdrying suppression operation described in the fourth embodiment.
  • the ventilation device 200 of the sixth embodiment is different from the ventilation device 200 of the fourth embodiment in the control of the overdrying suppression operation.
  • the configuration and control of the ventilation device 200 according to the fourth embodiment excluding the control of the overdrying suppression operation are the same as the configuration and control of the ventilation device 200 according to the fourth embodiment, and a description thereof will be omitted.
  • FIG. 19 is a flowchart of control of overdrying suppression operation in the ventilation device according to the sixth embodiment.
  • steps S603, S604, and S605 of the control of the overdrying suppression operation in the sixth embodiment are mainly composed of a timer unit as compared with steps S102, S103, S12, and S104 of the control of the overdrying suppression operation in the first embodiment.
  • the only difference is that the timer unit 67 is changed from No. 22 and the control contents are the same, so the description will be omitted.
  • step S601 the control unit 65 opens the second air passage of the heat exchanger 31 and closes the bypass air passage 52. Specifically, the control unit 65 sends a control signal to the damper 42 to move the second air passage of the heat exchanger 31 to a position where the second air passage of the heat exchanger 31 is closed and the bypass air passage 52 is closed. The air passage 2 is opened and the bypass air passage 52 is closed.
  • step S602 the control unit 65 increases the exhaust air volume. Specifically, the control unit 65 increases the exhaust air volume by transmitting a control signal for increasing the air volume of the exhaust blower 33.
  • the control unit 65 may perform control to set the exhaust air volume preselected by the user or the manufacturer, or control to increase the exhaust air volume by a predetermined ratio or step. As an example, in the sixth embodiment, the control unit 65 controls the air supply blower 32 so that the air volume becomes strong.
  • the ventilation device 200 according to the fifth embodiment is different from the ventilation device 200 according to the fourth embodiment described above as an additional configuration in the overdrying suppression operation, in which the control unit 65 immediately before performing the overdrying suppression operation.
  • a configuration for performing control to increase the air volume of the exhaust blower 33 is added.
  • the additional configuration can make the humidifying element 39 a condition in which scale does not easily deposit.
  • the additional configuration shown in the sixth embodiment may be added to the configuration of the ventilation device 200 according to the fourth embodiment together with the other additional configurations shown in the fourth or fifth embodiment.
  • the overdrying suppression operation for increasing the air volume of the exhaust blower 33 shown in the sixth embodiment may be performed simultaneously with the other overdrying suppression operation shown in the fourth or fifth embodiment.
  • the ventilation device 200 according to the fourth embodiment has the damper 42 and the bypass air passage 52, the present invention is not limited to this, and the ventilation device damper and the bypass air passage may not be provided. In this case, since the exhaust suction air 57 always passes through the second air passage of the heat exchanger 31, the process of step S601 becomes unnecessary.
  • Embodiment 7 Next, the ventilation device 200 of the seventh embodiment will be described.
  • the ventilation device 200 according to the sixth embodiment is different from the ventilation device 200 according to the fourth embodiment in that the contents of the control for suppressing overdrying of the humidifying element 39 of the ventilation device 200 and a plurality of overdrying suppressing operations are performed. Is different.
  • the other configurations and controls of the ventilation device 200 of the fourth embodiment are the same as the configurations and controls of the ventilation device 200 of the fourth embodiment, and a description thereof will be omitted.
  • FIG. 20 is a flowchart of control for suppressing the overdrying state of the humidifying element of the ventilation device according to the seventh exemplary embodiment.
  • the control of the flowchart of FIG. 20 starts when the user performs an operation for starting the operation of the ventilation device 200 from the operation terminal 44.
  • step S1001 the dry state determination unit 66 derives the overdrying determination value fd.
  • the method of deriving the overdrying determination value fd in step S1001 is the same as step S11 in the flowchart of FIG.
  • step S1002 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S1001 is larger than the overdrying determination threshold value ⁇ .
  • the overdrying determination threshold value ⁇ is a predetermined constant and is stored in the storage unit 64.
  • step S1002 determines in step S1002 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S1002, Yes)
  • the process proceeds to step S1003.
  • step S1003 the control unit 65 stops the control of the normal operation in the flowchart of FIG.
  • step S1003 After the processing of step S1003 ends, the process proceeds to step S1004.
  • step S1004 the control unit 65 controls the ventilation device 200 to perform the first overdrying suppression operation. Details of the first overdrying suppression operation will be described later.
  • step S1004 After the processing of step S1004 ends, the process proceeds to step S1005.
  • step S1005 similarly to step S1001, the dry state determination unit 66 derives the overdrying determination value fd.
  • step S1005 After the processing of step S1005 ends, the process proceeds to step S1006.
  • step S1006 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S1005 is larger than the overdrying determination threshold value ⁇ .
  • step S1006 determines in step S1006 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S1006, Yes)
  • the control unit 65 controls the ventilation device 200 to perform the first overdrying suppression operation. Details of the second overdrying suppression operation will be described later.
  • step S1007 After the processing of step S1007 ends, the process proceeds to step S1008.
  • step S1008 similarly to step S1001, the dry state determination unit 66 derives the overdrying determination value fd.
  • step S1009 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S1008 is greater than the overdrying determination threshold value ⁇ .
  • step S1009 the control unit 65 controls the ventilation device 200 to perform the third overdrying suppression operation. Details of the third overdrying suppression operation will be described later.
  • step S1010 After the processing of step S1010 ends, the process proceeds to step S1011.
  • step S1011 the dry state determination unit 66 derives the overdrying determination value fd as in step S1001.
  • step S1011 After the process of step S1011 ends, the process proceeds to step S1012.
  • step S1012 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S1011 is larger than the overdrying determination threshold value ⁇ .
  • step S1012 determines in step S1012 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S1012, Yes)
  • the control unit 65 controls the ventilation device 200 to perform the fourth overdrying suppression operation. Details of the fourth overdrying suppression operation will be described later.
  • step S1014 similarly to step S1001, the dry state determination unit 66 derives the overdrying determination value fd.
  • step S1015 the dry state determination unit 66 determines whether the overdrying determination value fd derived in step S1014 is larger than the overdrying determination threshold value ⁇ .
  • step S1015 determines in step S1015 that the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ (step S1015, Yes)
  • the process proceeds to step S1004 and the first overdrying suppression operation is performed again.
  • step S1016 the control unit 65 controls the ventilation device 200 to resume normal operation.
  • step S1016 After the processing of step S1016 is completed, or when the overdrying determination value fd is equal to or less than the overdrying determination threshold value ⁇ in step S1002 (No in step S1002), the process proceeds to step S1017.
  • step S1017 the dry state determination unit 66 determines whether the control unit 65 has stopped the operation of the ventilation device 200.
  • step S1017 determines that the control unit 65 has stopped the operation of the ventilation device 200 in step S1017 (Yes in step S1017)
  • the control for suppressing the overdry state of the humidifying element 39 is ended.
  • step S1017 determines that the control unit 20 has not stopped the operation of the ventilation device 200 (step S1017, No)
  • the process proceeds to step S1001 and the dry state determination unit 66 determines the overdrying determination value fd. Derive.
  • FIG. 21 is an example of a table showing first to fourth overdrying suppression operations of the ventilation device according to the seventh embodiment. Next, the first to fourth overdrying suppression operations will be described.
  • the storage unit 64 stores the contents of control performed by the control unit 65 in the first to fourth overdrying suppression operations as shown in FIG. Further, the storage unit 64 stores a plurality of patterns of control contents of the first to fourth overdrying suppression operations.
  • the contents of the control performed by the control unit 65 in the first to fourth overdrying suppression operations in each pattern are the control to increase the water supply flow rate of the water supply unit as compared to immediately before performing the overdrying suppression operation as in the first embodiment.
  • the control content may be set by either the user or the manufacturer.
  • control unit 65 maintains the immediately preceding overdrying suppression operation.
  • the control unit 65 performs the first to fourth overdrying suppression operations according to the control content stored in one predetermined pattern among the patterns.
  • the determination of the pattern may be performed by the user from the operation terminal 44 or may be performed by the manufacturer at the time of shipment, and the control unit 65 automatically determines the pattern from the operating state of the ventilation device 200. You may go. For example, when the dry state determination unit 66 determines that the overdry determination value fd is larger than the overdry determination threshold value ⁇ during the humidification ventilation operation, the control unit 65 is stored in a pattern preset by the user or the manufacturer.
  • the control unit 66 determines that the overdry determination value fd is greater than the overdry determination threshold value ⁇ during the drying operation, the control unit determines from the first according to the control content stored in the pattern 5.
  • the fourth overdrying suppression operation is performed.
  • control unit 65 performs control so as to move the damper 42 to a position that blocks the bypass air passage 52.
  • the control unit 65 controls the feed water flow rate to 100%.
  • the control unit 65 controls the heating amount to be 50%.
  • control is performed so that the air volume of the supply air blower 32 is weak and the air volume of the exhaust air blower 33 is strong.
  • control unit 65 controls the damper 42 to move to a position where the bypass air passage 52 is closed in the first overdrying suppression operation.
  • the control unit 65 controls the feed water flow rate to 100%.
  • the control unit 65 controls the heating amount to be 25%. Note that the fourth overdrying suppression operation is not set.
  • control unit 65 performs control so as to move the damper 42 to a position that closes the bypass air passage 52 in the first overdrying suppression operation.
  • control unit 65 controls the heating amount to be 25%. Note that the third and fourth overdrying suppression operations are not set.
  • control unit 65 performs control so as to move the damper 42 to a position that closes the bypass air passage 52 in the first overdrying suppression operation.
  • the control unit 65 controls the heating amount to be 50%.
  • the control unit 65 controls the heating amount to be 25%. Note that the fourth overdrying suppression operation is not set.
  • control unit 65 controls in the first overdrying suppression operation such that the air volume of the supply air blower 32 becomes weak and the exhaust air blower 33 becomes strong in the fourth overdrying suppression operation.
  • the control unit 65 controls the heating amount to be 0%.
  • the control unit 65 controls the water supply flow rate to be 50%. Note that the fourth overdrying suppression operation is not set.
  • control unit 65 controls different targets in the first to fourth overdrying suppression operations, the respective overdrying suppressing operations overlap.
  • the control unit 65 moves the damper 42 to a position where the damper closes the bypass air passage 52, the feed water flow rate becomes 100%, and the heating amount becomes 50%. .. Control is performed so that the air volume of the supply air blower 32 is weak and the air volume of the exhaust air blower 33 is strong.
  • control unit 65 controls the same target in the first to fourth overdrying suppression operations
  • control content of the overdrying suppression operation performed later is prioritized.
  • the damper 42 is moved to a position where it blocks the bypass air passage 52, and control is performed so that the heating amount becomes 25%.
  • the overdrying suppression operation is at least the first overdrying suppression operation and the second overdrying suppression operation in the configuration of the ventilation device 200 according to the above-described fourth embodiment as an additional configuration.
  • the overdrying determination value fd is larger than the overdrying determination threshold value ⁇
  • the dry state determination unit 66 determines that Then, the control unit 65 controls to perform the first overdrying suppression operation, and if the overdrying determination value fd is larger than the overdrying determination threshold value ⁇ when the first overdrying suppression operation is performed, the dry state determination unit 66.
  • control unit 65 is added with a configuration for performing control so as to perform the second overdrying suppression operation.
  • the overdrying state of the humidifying element 39 continues even if the first overdrying suppressing operation is performed, the overdrying state of the humidifying element 39 is suppressed by performing the second overdrying suppressing operation.
  • the control unit 65 controls different targets in the first overdrying suppression operation and the second overdrying suppression operation
  • the first overdrying operation is performed.
  • the suppression operation and the second overdrying suppression operation are added with overlapping configurations. With this configuration, it is possible to further suppress the over-dried state of the humidifying element 39 and suppress the precipitation of scale components on the humidifying element 39.
  • the control unit 65 controls the same target in the first overdrying suppression operation and the second overdrying suppression operation, the first overdrying operation is performed.
  • a configuration is added in which the second overdrying suppression operation is prioritized over the suppression operation. With this configuration, it is possible to further suppress the over-dried state of the humidifying element 39 and suppress the precipitation of scale components on the humidifying element 39.
  • the storage unit 64 stores five patterns for the first to fourth overdrying suppression operations, but the present invention is not limited to this. Regarding the overdrying suppression operation, the storage unit 64 only needs to store at least the first overdrying suppression operation and the second overdrying suppression operation. As for the patterns, the storage unit 64 may store one or a plurality of patterns.
  • the seventh embodiment is an embodiment relating to the ventilation device 200, but the humidifying device 100 described in the first embodiment may be added with the additional configuration of the seventh embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Humidification (AREA)

Abstract

スケール成分が加湿エレメント析出することを抑制する加湿装置を提供する。 加湿装置100は、内部に風路13が形成された本体ケーシング1と、風路13に設けられ通過する空気を加湿する加湿エレメント5と、加湿エレメント5に給水する給水手段と、風路13内の空気を送風する送風機2と、給水手段の給水流量と送風機2の風量とを制御する制御部20と、風路13を通過する空気の温度に関する情報と風路13を通過する空気の湿度に関する情報を受信する入力インターフェース16と、入力インターフェース16を介して取得した温度並びに湿度と送風機2の風量と給水手段の給水流量に基づき加湿エレメント5が過乾燥状態であるか否かを判断する乾燥状態判断部21と、を備え、乾燥状態判断部21は加湿エレメント5が過乾燥状態であると判断すると、制御部20は加湿エレメント5の過乾燥を抑制する過乾燥抑制運転を行うよう制御する。

Description

加湿装置および換気装置
 本発明は、加湿装置および加湿機能を備えた換気装置に関する。
 従来、加湿運転の終了後に加湿エレメントを乾燥させる乾燥運転を行う加湿装置が提案されていた。
 例えば、特許文献1に記載の加湿装置のように、給水弁を開放し送風手段を回転させる加湿モードを開始し、加湿モードの終了時に給水弁を開放し送風手段を停止させる洗浄モードを行い、洗浄モードの終了後に給水弁を閉塞し送風手段を乾燥させる乾燥モードを行う構成を備える加湿装置が提案されていた。特許文献1に記載の加湿装置は、上記の構成を備えることによって、乾燥モードの際に水に含まれるスケール成分が加湿エレメントに析出することを抑制する効果を奏していた。
特開2015-152214号公報
 ところで、加湿エレメントを通過する空気の温度と湿度又は加湿エレメントに送風される空気量などの要因によって、加湿を行っている間に加湿エレメントが過度に乾燥した状態(以降、過乾燥状態と称する)になり、スケール成分が析出してしまう状況が生じる。
 本発明は上述の課題を解決するためになされたものであり、スケール成分が加湿エレメント析出することを抑制する加湿装置および加湿機能を備えた換気装置を提供する。
 第一の発明に係る加湿装置は、吸込口及び吹出口が形成され、内部に吸込口と吹出口とが連通する風路が形成された本体ケーシングと、本体ケーシングの風路に設けられ、通過する空気を加湿する加湿エレメントと、加湿エレメントに給水する給水手段と、風路内の空気を吸込口から吹出口へ送風する送風機と、給水手段の給水流量と送風機の風量とを制御する制御部と、風路を通過する空気の温度に関する情報と、風路を通過する空気の湿度に関する情報とを受信する入力インターフェースと、入力インターフェースを介して取得した温度並びに湿度と送風機の風量と給水手段の給水流量とに基づき加湿エレメントが過乾燥状態であるか否かを判断する乾燥状態判断部と、を備え、乾燥状態判断部は加湿エレメントが過乾燥状態であると判断すると、制御部は加湿エレメントの過乾燥を抑制する過乾燥抑制運転を行うよう制御する。
 第二の発明に係る換気装置は、給気吸込口と給気吹出口と排気吸込口と排気吹出口とが形成され、内部に給気吸込口と給気吹出口とが連通する給気風路と排気吸込口と排気吹出口とが連通する排気風路とが形成された本体ケーシングと、給気風路に設けられ、給気吸込口から給気吹出口へ空気を送風する給気送風機と、排気風路に設けられ、排気吸込口から排気吹出口へ空気を送風する排気送風機と、給気風路と排気風路に設けられ、給気風路を流れる空気と排気風路を流れる空気との間で熱交換を行う熱交換器と、給気風路において熱交換器よりも給気吹出口側に設けられ、通過する空気を加湿する加湿エレメントと、加湿エレメントに給水する給水手段と、給水手段の給水流量と給気送風機の風量とを制御する制御部と、給気風路を通過する空気の温度に関する情報と給気風路を通過する空気の湿度に関する情報とを受信する入力インターフェースと、入力インターフェースを介して取得した温度並びに湿度と給気送風機の風量と給水手段の給水流量とに基づき加湿エレメントが過乾燥状態であるか否かを判断する乾燥状態判断部と、を備え、乾燥状態判断部が加湿エレメントは過乾燥状態であると判断すると、制御部は加湿エレメントの過乾燥を抑制する過乾燥抑制運転を行うよう制御する。
 第一の発明に係る加湿装置と第二の発明に係る換気装置はいずれも乾燥状態判断部は加湿エレメントが過乾燥状態であると判断すると、制御部は加湿エレメントの過乾燥を抑制する過乾燥抑制運転を行うよう制御する構成を備えている。当該構成によって加湿エレメントが過乾燥してしまうことを抑制し、加湿エレメントにスケールが析出されることを抑制する効果を奏する。
実施の形態1に係る加湿装置の内部構成を示す概略図である。 実施の形態1に係る加湿装置の機能ブロック線図である。 実施の形態1に係る加湿装置の通常運転の一例を示すフローチャートである。 実施の形態1に係る加湿装置の加湿エレメントの過乾燥状態を抑制する制御のフローチャートである。 実施の形態1に係る加湿装置における過乾燥判定値fdを導出するフローチャートである。 実施の形態1に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態2に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態3に係る加湿装置の内部構成を示す概略図である。 実施の形態3に係る加湿装置の加湿装置の機能ブロック線図である。 実施の形態3に係る加湿装置における過乾燥判定値fdを導出するフローチャートである。 実施の形態3に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態4に係る換気装置のバイパス風路を閉塞した場合における内部構成を示す概略図である。 実施の形態4に係る換気装置のバイパス風路を開放した場合における内部構成を示す概略図である。 実施の形態4に係る換気装置の機能ブロック線図である。 実施の形態4に係る換気装置の通常運転の制御の一例を示すフローチャートである。 実施の形態4に係る換気装置における過乾燥判定値fdを導出するフローチャートである。 実施の形態4に係る換気装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態5に係る換気装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態6に係る換気装置における過乾燥抑制運転の制御のフローチャートである。 実施の形態7に係る換気装置の加湿エレメントの過乾燥状態を抑制する制御のフローチャートである。 実施の形態7に係る換気装置の第一から第四の過乾燥抑制運転を示す表の一例である。
 実施の形態1.
 図1は実施の形態1に係る加湿装置の内部構成を示す概略図である。加湿装置100は、本体ケーシング1と、送風機2と、温度センサ3と、湿度センサ4と、加湿エレメント5と、給水配管6と、給水弁7と、制御装置8と、操作端末9とを備える。なお、給水配管6と給水弁7が本発明の給水手段に該当する。
 本体ケーシング1は加湿装置100の外装を形成する部材である。本体ケーシング1は送風機2と、温度センサ3と、湿度センサ4と、加湿エレメント5と、給水配管6と、給水弁7と、制御装置8とを収納している。また、本体ケーシング1の外面には、吸込口10と、吹出口11と、給水配管接続口12が形成されている。吸込口10と吹出口11は加湿装置100が加湿を行う空間である加湿空間とそれぞれ繋がっている。給水配管接続口12は水道などの給水源と繋がっている。また、吸込口10と吹出口11は本体ケーシング1の内部に形成された風路13により連通されている。
 送風機2は風路13の内部の空気を吸込口10側から吹出口11側へ送風する機器である。送風機2は風路13の内部に配置されている。また、送風機2は、例えばファンと回転数を制御することができるモータとによって構成されるなど、風量を制御可能なように構成されている。実施の形態1では送風機2は風量が大きい順に、強、中、弱、の三段階の風量に制御可能とする。
 温度センサ3は温度を検出することが可能な素子であり、湿度センサ4は湿度を検出することが可能な素子である。温度センサ3と湿度センサ4は風路13の内部に配置されている。
 加湿エレメント5は通過する空気を加湿する部材である。例えば、水分を含むフィルターなどが加湿エレメント5として用いられる。加湿エレメント5は風路13の内部に配置されており、少なくとも温度センサ3と湿度センサ4よりも吹出口11側に配置されている。
 給水配管6は加湿エレメント5と給水配管接続口12を連通させる配管である。加湿エレメント5は、給水配管6と給水配管接続口12を介して水源の水が給水される。
 給水弁7は加湿エレメント5の給水流量を調整する弁である。給水弁7は給水配管6の途中に配置されている。給水弁7は例えば弁の開度を制御することができる二方弁など、加湿エレメント5の給水流量を制御可能なように構成される。実施の形態1では弁が全開の状態を100%、弁が全閉の状態を0%として、100%、75%、50%、25%、0%の五段階に給水流量を制御可能とする。
 制御装置8は温度センサ3が検出した温度と湿度センサ4が検出した湿度に基づき、送風機2の風量と加湿エレメント5への給水流量の制御を行う。
 操作端末9は少なくとも利用者が加湿装置100の運転の開始と加湿装置100の運転の停止に関する操作を行うための端末である。操作端末9は例えばリモートコントローラや、操作用のアプリケーションがインストールされたコンピュータ、タブレット端末又はスマートフォンなどが該当する。
 次に実施の形態1に係る加湿装置100の内部の空気の流れについて説明を行う。まず、送風機2が運転することによって、加湿空間の空気が吸込口10より加湿装置100の内部に流入する。吸込口10より流入した空気を吸込空気14と称する。
 吸込空気14は風路13に流入する。温度センサ3は風路13に流入した吸込空気14の温度を検出する。また、湿度センサ4は風路13に流入した吸込空気14の湿度を検出する。吸込空気14は送風機2を通過し、加湿エレメント5へ向かって流れる。
 吸込空気14は加湿エレメント5を通過して加湿される。ここで加湿エレメント5によって加湿された空気を加湿後空気15と称する。加湿後空気15は吹出口11より流出し、再び加湿空間に吹き出される。
 図2は実施の形態1に係る加湿装置の機能ブロック線図である。次に実施の形態1に係る加湿装置100の機能ブロック線図を説明する。制御装置8は入力インターフェース16と出力インターフェース17とマイコン18とで構成されている。
 入力インターフェース16は温度センサ3と湿度センサ4と操作端末9と通信可能に接続されており、温度センサ3が検出した温度に関する情報と湿度センサ4が検出した湿度に関する情報と操作端末9で操作された操作内容の情報をそれぞれ受信する。出力インターフェース17は送風機2と給水弁7と通信可能に接続されており、送風機2の風量に関する制御信号と給水弁7の開度に関する制御信号をそれぞれ送信する。
 マイコン18は、記憶部19と、制御部20と、乾燥状態判断部21と、タイマー部22の機能を有している。また、マイコン18は、CPU(Central Processing Unit)などのプロセッサーと、RAM(Randam Access Memory)及びROM(Read Only Memory)などのメモリーと、タイマーを備えている。
 記憶部19は、プロセッサーにより実行されるソフトウェアのプログラムと、送風機2の風量と給水弁7の開度を制御するために用いられる数値を記憶している。記憶部19は、メモリーにプログラム及び数値が記憶されることで実現される。
 制御部20は、送風機2の風量に関する制御信号と給水弁7の開度に関する制御信号を生成し、送風機2と給水弁7を制御する。乾燥状態判断部21は、加湿エレメント5が乾燥状態か否かを判断する。制御部20と乾燥状態判断部21は、プロセッサーがメモリーに記憶にされたソフトウェアのプログラムに従って処理を実行することにより実現される。
 タイマー部22は時間の計測を行う。タイマー部22はタイマーによって実現される。
 次に実施の形態1に係る加湿装置の通常運転の一例について説明する。なお、本発明における通常運転とは次に説明する一例に限らず、後述する過乾燥抑制運転を除く運転のことを指す。図3は実施の形態1に係る加湿装置の通常運転の一例を示すフローチャートである。図3のフローチャートは利用者が操作端末9より加湿装置100の運転を開始させる操作を行った際に開始する。
 ステップS1では、タイマー部22は加湿運転時間taをリセットする。
 ステップS1の処理の終了後、ステップS2へ進む。ステップS2では、タイマー部22は加湿運転時間taの計測を開始する。
 ステップS2の処理の終了後、ステップS3へ進む。ステップS3では、制御部20は加湿装置100に加湿運転を行わせる制御を行う。加湿運転とは、加湿空間を予め定められた湿度に調整する運転である。加湿運転では、制御部20は給水弁7を開き加湿エレメント5に水を給水し、送風機2を運転し加湿エレメント5に空気を送風するように制御を行う。実施の形態1における加湿運転では、風量は中、給水流量は75%に制御されるとする。
 ステップS3の処理の終了後、ステップS4へ進む。ステップS4では、制御部20は利用者が操作端末9より加湿装置100の運転を停止させる操作を行ったか否かを判断する。
 利用者が操作端末9より加湿装置100の運転を停止させる操作を行ったと制御部20が判断した場合(ステップS4、YES)、ステップS5へ進む。ステップS5では、予め定められた時間の間、制御部20は加湿装置100に乾燥運転を行わせる制御を行う。乾燥運転とは、加湿運転で湿潤した加湿エレメント5を乾燥させる運転である。乾燥運転では、制御部20は給水弁7を閉じて加湿エレメント5への水の給水を止め、送風機2を運転し加湿エレメント5に空気を送風するように制御を行い、加湿エレメント5を乾燥させる。実施の形態1における乾燥運転では、風量は強、給水流量は0%に制御されるとする。
 ステップS5の処理の終了後、ステップS6へ進む。ステップS6では制御部20は加湿装置100の運転を停止させる。運転の停止では、制御部20は給水弁7を閉じて加湿エレメント5への水の給水を止め送風機2を停止させよう制御を行う。ステップS6の処理の終了後、加湿装置100の通常運転を終了する。
 利用者が操作端末9より加湿装置100の運転を停止させる操作を行っていないと制御部20が判断した場合(ステップS4、NO)、ステップS7へ進む。ステップS7ではタイマー部22は加湿運転時間taが予め定められた乾燥運転開始時間tsよりも大きいか否か判断する。
 タイマー部22は加湿運転時間taが乾燥運転開始時間tsよりも大きいと判断した場合(ステップS7、YES)、ステップS8へ進む。ステップS8では制御部20は、予め定められた時間の間、制御部20は加湿装置100に乾燥運転を行わせる制御を行う。なお、ステップS8における乾燥運転はステップS5で説明した乾燥運転と同様であり、説明を割愛する。ステップS8の終了後、ステップS1へ進み、タイマー部22は加湿運転時間taのリセットを行う。
 タイマー部22は加湿運転時間taが乾燥運転開始時間ts以下であると判断した場合(ステップS7、NO)、ステップS4へ進み、再び制御部20は利用者が操作端末9より加湿装置100の運転を停止させる操作を行ったか否かを判断する。
 図4は、実施の形態1に係る加湿装置の加湿エレメントの過乾燥状態を抑制する制御のフローチャートである。図4のフローチャートの制御は、利用者が操作端末9より加湿装置100の運転を開始させる操作を行った際に開始する。つまり、図3のフローチャートの制御と図4のフローチャートの制御は同時に行われる。
 ステップS11では、乾燥状態判断部21は過乾燥判定値fdを導出する。過乾燥判定値fdとは加湿エレメント5が過乾燥状態であるか否かを判断するために用いられる値である。過乾燥判定値fdは加湿エレメント5を通過する直前の空気の乾球温度と湿球温度の差ΔTと、加湿エレメント5を通過する風量Qaと、加湿エレメント5に供給される給水流量Qwに基づいて導出される。過乾燥判定値fdの導出の詳細については後述する。
 ステップS11の処理の終了後、ステップS12へ進む。ステップS12では、乾燥状態判断部21はステップS11で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否か判断する。過乾燥判定閾値εは予め定められた定数であり、記憶部19に記憶されている。
 ステップS12において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部21が判断した場合(ステップS12、Yes)、ステップS13へ進む。ステップS13では、制御部20は図3のフローチャートの通常運転の制御を停止させる。つまり、加湿装置100が加湿運転又は乾燥運転を行っていた場合はそれらの運転は停止される。
 ステップS13の処理の終了後、ステップS14へ進む。ステップS14では、制御部20は加湿装置100に過乾燥抑制運転を行わせる制御を行う。過乾燥抑制運転とは、加湿エレメント5の過乾燥状態を抑制するために行われる運転である。過乾燥抑制運転の詳細については後述する。
 ステップS14の処理の終了後、ステップS15へ進む。ステップS15では、ステップS11と同様に乾燥状態判断部21は過乾燥判定値fdを導出する。
 ステップS15の処理の終了後、ステップS16へ進む。ステップS16では、乾燥状態判断部21はステップS15で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否か判断する。
 ステップS16において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部21が判断した場合(ステップS16、Yes)、ステップS14へ進み、再び過乾燥抑制運転を行う。
 ステップS16において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部21が判断した場合(ステップS16、No)、ステップS17へ進む。ステップS17では、制御部20は加湿装置100に通常運転を再開させる制御を行う。なお、ステップS17において、ステップS13で停止させた際に加湿装置100が行っていた運転を行わせるよう制御を行う。例えば、ステップS13で加湿運転を停止させた場合には、ステップS17で制御部20は加湿装置100に加湿運転を行わせる制御を行う。
 ステップS17の処理の終了後、又はステップS12において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部21が判断した場合(ステップS12、No)、ステップS18へ進む。ステップS18では乾燥状態判断部21は制御部20が加湿装置100の運転を停止させたか判断する。
 ステップS18において制御部20が加湿装置100の運転を停止させたと乾燥状態判断部21が判断した場合(ステップS17、Yes)、過乾燥状態を抑制する制御を終了させる。ステップS18において制御部20が加湿装置100の運転を停止させていないと乾燥状態判断部21が判断した場合(ステップS17、No)、ステップS11へ進み、乾燥状態判断部21は過乾燥判定値fdを導出する。
 図5は実施の形態1に係る加湿装置における過乾燥判定値fdを導出するフローチャートである。図5のフローチャートは、図4のフローチャートのステップS11又はステップS15の処理が行われる際に開始する。ここで乾燥状態判断部21が行う過乾燥判定値fdの導出方法について詳細な説明を行う。
 ステップS21では、乾燥状態判断部21は温度センサ3が検出した温度を吸込空気14の乾球温度Td1として入力インターフェース16を介して取得する。
 ステップS22の処理の終了後、ステップS22へ進む。ステップS22では、乾燥状態判断部21は湿度センサ4が検出した湿度を吸込空気14の相対湿度φ1として入力インターフェース16を介して取得する。
 ステップS22の処理の終了後、ステップS23へ進む。ステップS23では、乾燥状態判断部21は加湿エレメント5を通過する風量Qaを導出する。風量Qaは制御部20で制御されているため、風量Qaの導出の方法として制御部20より送信する風量Qaに関する制御値を参照して導出する方法がある。一例として、実施の形態1では、風量が強、中、弱のそれぞれの場合における風量Qaの値を記憶部19が記憶しており、乾燥状態判断部21は制御部20で制御された風量に関する制御値を参照して風量Qaの値を記憶部19から取得する。
 ステップS23の処理の終了後、ステップS24へ進む。ステップS24では、乾燥状態判断部21は加湿エレメント5に供給される給水流量Qwを導出する。給水流量Qwは制御部20で制御しているため、給水流量Qwの導出の方法として制御部20より送信する給水流量Qwに関する制御値を参照して導出する方法がある。一例として、実施の形態1では、給水流量が100%、75%、50%、25%、0%のそれぞれの場合における給水流量Qwの値を記憶部19が記憶しており、乾燥状態判断部21は制御部20で制御された給水流量に関する制御値を参照して給水流量Qwの値を記憶部19から取得する。
 ステップS24の処理の終了後、ステップS25へ進む。ステップS25では、乾燥状態判断部21はステップS21で取得した乾球温度Td1とステップS22で取得した相対温度φ1に基づき吸込空気14の湿球温度Tw1を導出する。湿球温度Tw1の導出の方法としては、乾球温度Td1および相対湿度φ1を行又は列とし湿球温度Tw1を要素とする湿り空気線図における相関関係を模擬した表を記憶部19が記憶しており、ステップS21で取得した乾球温度Td1とステップS22で取得した相対温度φ1を表と参照して湿球温度Tw1を導出する方法がある。また、湿り空気線図における乾球温度Td1および相対湿度φ1と湿球温度Twとの相関関係の近似式を記憶部19が記憶しており、ステップS21で取得した乾球温度Td1とステップS22で取得した相対温度φ1を式に代入して湿球温度Tw1を算出する方法もある。
 ステップS25の処理の終了後、ステップS26へ進む。ステップS26では、乾燥状態判断部21はステップS21で取得した乾球温度Td1よりステップS25で導出した湿球温度Tw1を減算し、吸込空気14の乾湿球温度差ΔT1を導出する。
 ステップS26の処理の終了後、ステップS27へ進む。ステップS27では、乾燥状態判断部21はステップS23で導出した風量Qaと、ステップS24で導出した給水流量Qwと、ステップS26で導出した吸込空気14の乾湿球温度差ΔTに基づき過乾燥判定値fdを導出する。過乾燥判定値fdの導出の方法としては数1の式を記憶部19が記憶しており、それぞれの数値を式に代入して過乾燥判定値fdを算出する方法がある。
Figure JPOXMLDOC01-appb-M000001
 数1のf(ΔT,Qa,Qw)は、乾湿球温度差ΔTと風量Qaと給水流量Qwの3つの変数によって決まる関数である。関数fは実験的に導出される。具体的には加湿装置100の設計者は、乾湿球温度差ΔT、風量Qa、給水流量Qwをそれぞれ変化させて加湿エレメント5にスケール成分が析出される条件か否かを実験的に求める。実験で求めた結果に基づき、設計者は加湿エレメント5よりスケール成分が析出される条件では過乾燥判定値fdが過乾燥判定閾値εを超え(fd>ε)、加湿エレメント5よりスケール成分が析出されない条件では過乾燥判定値fdが過乾燥判定閾値ε以下(fd≦ε)になるような関数fを導出する。
 また、関数fは乾湿球温度差ΔTが大きくなれば過乾燥判定値fdが大きくなる関係を満たす。これは、乾湿球温度差ΔTが大きいほど乾燥した空気が加湿エレメント5に流れるため、加湿エレメント5が乾燥しスケール成分が析出され易い条件になるからである。
 また、関数fは風量Qaが大きくなれば過乾燥判定値fdが大きくなる関係を満たす。これは、風量Qaが大きいほど加湿エレメント5を通過する空気の量が増え、加湿エレメント5が乾燥しスケール成分が析出され易い条件になるからである。
 また、関数fは給水流量Qwが大きくなれば過乾燥判定値fdが小さくなる関係を満たす。これは、給水流量Qwが大きいほど加湿エレメントに供給される水の量が増え、加湿エレメント5が湿潤しスケール成分が析出され難い条件になるからである。
 ステップS27の処理の終了後、乾燥状態判断部21は過乾燥判定値fdの導出を終了する。
 図6は、実施の形態1に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。図6のフローチャートは、図4のフローチャートのステップS14の処理が行われる際に開始する。次に過乾燥抑制運転について説明する。
 ステップS101では、制御部20は加湿エレメント5への給水流量を増加させるよう制御を行う。具体的には、制御部20は給水弁7の開度を大きくする制御信号を給水弁7に送信する。制御信号を受信した給水弁7は、過乾燥抑制運転を行う直前よりも開度を大きくし、過乾燥抑制運転を行う直前よりも加湿エレメント5への給水流量を増加する。なお、ステップS101において制御部20は、使用者又は製造者が予め選択した給水流量に設定する制御でも良いし、予め定められた割合又は段階だけ給水流量を増加させる制御でも良いし、乾燥状態判断部21が過乾燥判定値fdの導出時に乾燥状態で無くなる給水流量の算出を行い算出された給水流量に設定する制御でも良い。一例として、実施の形態1では、制御部20は給水流量が100%になるよう制御を行う。
 ステップS101の処理の終了後、ステップS102へ進む。ステップS102では、タイマー部22は経過時間tをリセットする。
 ステップS102の処理の終了後、ステップS103へ進む。ステップS103では、タイマー部22は経過時間tの計測を開始する。
 ステップS103の処理の終了後、ステップS104へ進む。ステップS104では、タイマー部22は経過時間tが過乾燥抑制運転を維持する時間Tsを経過したか否かを判定する。Tsは記憶部28に予め記憶されており、例えば10分など予め定められた値である。
 経過時間tがTsを経過していないとタイマー部22が判定した場合(ステップS104、No)には、タイマー部22は再度ステップS104の判定を行う。経過時間tがTsを経過したとタイマー部22が判定した場合(ステップS104、Yes)には、給水流量の制御による過乾燥抑制を終了する。
 以上のように実施の形態1に係る加湿装置100は、給水手段の給水流量と送風機の風量とを制御する制御部20と、入力インターフェース16を介して取得した温度並びに湿度と送風機2の風量と給水手段の給水流量とに基づき加湿エレメント5が過乾燥状態であるか否かを判断する乾燥状態判断部21と、を備え、乾燥状態判断部21は加湿エレメント5が過乾燥状態であると判断すると、制御部は加湿エレメントの過乾燥状態を抑制する過乾燥抑制運転を行う構成である。この構成によって、加湿エレメント5が過乾燥状態になることを抑制し、加湿エレメント5にスケールが析出されることを抑制する効果を奏する。また、スケールが析出され難くなるため、スケールによる異臭の発生や雑菌の発生を抑制する効果も奏する。
 さらに、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、制御部20は過乾燥抑制運転を開始してから予め定められた時間Tsを経過するまで過乾燥抑制運転を維持するように制御を行う構成を付加しても良い。この構成によって、加湿装置100が通常運転と過乾燥抑制運転を短時間で切り替わることを防止でき、制御の安定性を高めることができる。
 さらに、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、過乾燥抑制運転において、制御部20は過乾燥抑制運転を行う直前よりも給水手段の給水流量を増加させる制御を行う構成を付加しても良い。この構成によって、過乾燥抑制運転では給水流量が増加するため加湿エレメント5をスケールが析出し難い条件にすることができる。
 さらに、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、乾燥状態判断部21は給水手段が加湿エレメント5に給水し送風機2が風路13内の空気を送風する加湿運転時に加湿エレメント5が過乾燥状態あるか否かを判断する構成を付加しても良い。この構成によって、加湿運転時に加湿エレメントが過乾燥状態になりスケールが析出することを抑制することができる。
 さらに、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、乾燥状態判断部21は給水手段が加湿エレメント5に給水を行わず送風機2が風路13内の空気を送風する乾燥運転時に加湿エレメント5が過乾燥状態あるか否かを判断する構成を付加しても良い。この構成によって、乾燥運転時に加湿エレメントが過乾燥状態になりスケールが析出することを抑制することができる。
 なお、実施の形態1に係る加湿装置100では本体ケーシング1の内部に温度センサ3と湿度センサ4が配置されているが、これに限らない。例えば、入力インターフェース16が加湿空間の温度又は湿度を測定する温度センサと湿度センサと通信可能に接続され、入力インターフェースより加湿空間の温度又は湿度を取得してもよい。この場合、入力インターフェース16より取得した温度又は湿度が風路を通過する空気の温度又は湿度に相当する。
 また、実施の形態1に係る加湿装置100では過乾燥判定値fdの導出の方法として数1の式を記憶部19が記憶しており、それぞれの数値を式に代入して過乾燥判定値fdを算出しているがこれに限らない。例えば、各々の乾湿球温度差ΔTにおいて風量Qaおよび給水量Qwを行又は列とし過乾燥判定値fdを要素とする数1の相関関係を模擬した表を記憶部19が記憶しており、取得した風量Qaと給水流量Qwを表と参照して過乾燥判定値fdを導出しても良い。
 実施の形態2.
 次に実施の形態2の加湿装置100について説明する。実施の形態2の加湿装置100は、実施の形態1の加湿装置100と比較して、過乾燥抑制運転の制御が異なる。なお、過乾燥抑制運転の制御を除く実施の形態2の加湿装置100の構成及び制御は実施の形態1の加湿装置100の構成及び制御と同様であり、説明を割愛する。
 図7は実施の形態2に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。なお、図7の過乾燥抑制運転の制御のステップS202、S203、S204は、実施の形態1における過乾燥抑制運転の制御のステップS102、S103、S104と同様の処理を行うため、説明を割愛する。
 ステップS201では、制御部20は加湿エレメント5を通過する風量を減少させる。具体的には、制御部20は送風機2の風量を減少させる制御信号を送風機2に送信する。制御信号を受信した送風機2は過乾燥抑制運転を行う直前よりも風量を減少させ、過乾燥抑制運転を行う直前よりも加湿エレメント5を通過する風量を減少させる。なお、ステップS201において制御部20は、使用者又は製造者が予め選択した風量に設定する制御でも良いし、予め定められた割合又は段階だけ風量を減少させる制御でも良いし、乾燥状態判断部21が過乾燥判定値fdの導出時に過乾燥状態で無くなる風量の算出を行い算出された風量に設定する制御でも良い。一例として、実施の形態1では、制御部20は送風機2の風量が弱になるよう制御を行う。
 以上のように実施の形態2の加湿装置100は、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、過乾燥抑制運転において制御部20は過乾燥抑制運転を行う直前よりも送風機2の風量を減少させる制御を行う構成を付加している。この構成によって、過乾燥抑制運転では風量が減少するため加湿エレメント5をスケールが析出し難い条件にすることができる。
 また、実施の形態2で示した付加的構成は、実施の形態1で示した他の付加的構成と共に実施の形態1に係る加湿装置100の構成に付加しても構わない。特に実施の形態1で示した図6の給水流量を増加させる過乾燥抑制運転と、実施の形態2で示した図7の風量の減少による過乾燥抑制運転を同時に行っても構わない。
 実施の形態3.
 次に実施の形態3の加湿装置101について説明する。実施の形態3の加湿装置101は、実施の形態1の加湿装置100と比較して、加湿装置101が温調コイル23を備える点と、過乾燥判定値fdの導出方法と、過乾燥抑制運転の制御が異なる。なお、これらを除く実施の形態3の加湿装置101の構成及び制御は実施の形態1の加湿装置100の構成及び制御と同様であり、説明を割愛する。
 図8は実施の形態3に係る加湿装置の内部構成を示す概略図である。図9は実施の形態3に係る加湿装置の加湿装置の機能ブロック線図である。次に実施の形態3の加湿装置101について説明する。
 実施の形態3の加湿装置101は、通過する空気を加熱する温調コイル23を備える。温調コイル23は風路13の内部に配置されており、温度センサ3と湿度センサ4よりも吹出口11側に配置され、加湿エレメント5より吸込口10側に配置されている。また、温調コイル23は、例えば冷凍サイクルの凝縮器など、加熱量を制御可能なように構成されている。制御部20は温調コイル23の加熱量に関する制御信号を生成し、温調コイルの制御を行う。実施の形態3では温調コイル23が加熱できる最大の加熱量を100%、温調コイル23が加熱していない状態の加熱量を0%として、100%、75%、50%、25%、0%の五段階に加熱量を制御可能とする。また、実施の形態2の加湿運転では温調コイルの加熱量は100%から25%のいずれかの値に制御され、実施の形態2の乾燥運転では温調コイルの加熱量は25%に制御されるとする。
 次に実施の形態3に係る加湿装置101の内部の空気の流れについて説明を行う。送風機2が運転することによって、吸込空気14が吸込口10より風路13に流入する。温度センサ3は風路13に流入した吸込空気14の温度を検出する。また、湿度センサ4は風路13に流入した吸込空気14の湿度を検出する。吸込空気14は送風機2を通過し、温調コイル23へ向かう。
 吸込空気14は温調コイル23を通過して加熱される。ここで温調コイル23によって加熱された空気を加湿前空気24と称する。加湿前空気24は加湿エレメント5を通過して加湿される。加湿エレメント5によって加湿された加湿後空気15は吹出口11より流出し、再び加湿空間に吹き出される。
 図10は実施の形態3に係る加湿装置における過乾燥判定値fdを導出するフローチャートである。図10のフローチャートは、実施の形態3において図4のフローチャートのステップS11又はステップS14の処理が行われる際に開始する。ここで実施の形態3に係る乾燥状態判断部21が行う過乾燥判定値fdの導出方法について説明を行う。なお、図3のステップS31、S32、S33、S34は、実施の形態1の図5のステップS21、S22、S23、S24と同様の処理を行うため、説明を割愛する。
 ステップS34の処理の終了後、ステップS35へ進む。ステップS35では乾燥状態判断部21はステップS31で取得した乾球温度Td1とステップS32で取得した相対温度φ1に基づき吸込空気14のエンタルピーH1を導出する。エンタルピーH1の導出の方法は、乾球温度および相対湿度を行又は列としエンタルピーを要素とする湿り空気線図における相関関係を模擬した表を記憶部19が記憶しており、ステップS31で取得した乾球温度Td1とステップS32で取得した相対温度φ1を表と参照してエンタルピーH1を導出する方法がある。また、湿り空気線図における相関関係の近似式を記憶部19が記憶しており、ステップS31で取得した乾球温度Td1とステップS32で取得した相対温度φ1を式に代入してエンタルピーH1を算出する方法もある。
 ステップS35の処理の終了後、ステップS36へ進む。ステップS36では乾燥状態判断部21は吸込空気14の絶対湿度x1を導出する。絶対湿度x1は、エンタルピーH1の導出方法と同様に、乾球温度および相対湿度を行又は列とし絶対湿度を要素とする湿り空気線図における相関関係を模擬した表又は相関関係の近似式を記憶部19が記憶しており、ステップS31で取得した乾球温度Td1とステップS32で取得した相対湿度φ1を表と参照又は近似式に代入して絶対湿度x1を導出する方法がある。
 ステップS36の処理の終了後、ステップS37へ進む。ステップS37では加湿前空気24のエンタルピーH2を導出する。具体的には数2に示す式によって導出する。ここで数2において使用している記号を定義する。Qhは温調コイル23の加熱量(単位はW)である。温調コイルの加熱量は制御部20で制御されているため、加熱量Qhの制御値又は加熱量Qhに関する制御値を参照して決まる。一例として、実施の形態1では、加熱量が100%、75%、50%、25%、0%のそれぞれの場合における加熱量Qhを記憶部19が記憶しており、乾燥状態判断部21は制御部20で制御された加熱量における加熱量Qhを記憶部19から取得する。ρaは空気の密度(単位はkg/m)である。ρaは定数であり、記憶部19にρaの値は記憶されている。Qaは風量(単位はm/s)である。QaはステップS33で導出した値を使用する。
Figure JPOXMLDOC01-appb-M000002
 ステップS37の処理の終了後、ステップS38へ進む。ステップS38では、乾燥状態判断部21は加湿前空気24の乾湿球温度差ΔTを導出する。温調コイル23では絶対湿度は変動しないため、加湿前空気24の絶対湿度は吸込空気14の絶対湿度x1と同値である。従って、加湿前空気24の乾球温度Td2と、加湿前空気24の湿球温度Tw2は、それぞれエンタルピーおよび絶対湿度を行又は列とし乾球温度又は湿球温度を要素とする湿り空気線図における相関関係を模擬した表又は相関関係の近似式に基づいて導出することができる。導出した加湿前空気24の乾球温度Td2より加湿前空気24の乾球温度Tw2を減算することで加湿前空気24の乾湿球温度差ΔTを導出することができる。
 ステップS38の処理の終了後、ステップS39へ進む。ステップS39では、乾燥状態判断部21はステップS33で導出した風量Qaと、ステップS34で導出した給水流量Qwと、ステップS38で導出した加湿前空気24の乾湿球温度差ΔTより過乾燥判定値fdを導出する。過乾燥判定値fdの導出については、実施の形態1のステップS27と同様のため、説明を割愛する。
 ステップS39の処理の終了後、乾燥状態判断部21は過乾燥判定値fdの導出を終了する。
 図11は実施の形態3に係る加湿装置における過乾燥抑制運転の制御のフローチャートである。次に実施の形態3の加湿装置101の過乾燥抑制運転の制御について説明する。なお、加熱量の制御による過乾燥抑制運転の制御のステップS302、S303、S304は、実施の形態1の過乾燥抑制運転の制御のステップS102、S103、S104と同様の処理を行うため、説明を割愛する。
 ステップS301では、制御部20は温調コイル23の加熱量を減少させる。具体的には、制御部20は温調コイル23の加熱量を減少させる制御信号を温調コイル23に送信することで、温調コイル23が加熱量を減少させる。なお、ステップS301において制御部20は、使用者又は製造者が予め選択した加熱量に設定する制御でも良いし、予め定められた割合又は段階だけ加熱量を減少させる制御でも良いし、乾燥状態判断部21が過乾燥判定値fdの導出時に乾燥状態で無くなる加熱量の算出を行い算出された加熱量に設定する制御でも良い。一例として、実施の形態1では、制御部20は加熱量が0%になるよう制御を行う。
 以上のように実施の形態3の加湿装置101は、付加的構成として前述の実施の形態1に係る加湿装置100の構成に、加湿エレメント5に送風される空気を加熱する温調コイル23を備え、制御部20は温調コイル38の加熱量を制御し、過乾燥抑制運転において、制御部20は過乾燥抑制運転を行う直前よりも温調コイル23の加熱量を減少させる構成を付加している。この構成によって、過乾燥抑制運転では温調コイル23の加熱量が減少するため、乾湿球温度差ΔTが小さくなり加湿エレメント5をスケールが析出し難い条件にすることができる。
 また、実施の形態3で示した付加的構成は、実施の形態1又は2で示した他の付加的構成と共に実施の形態1に係る加湿装置100の構成に付加しても構わない。特に実施の形態1で示した図6の給水流量を増加させる過乾燥抑制運転と実施の形態2で示した図7の風量の減少による過乾燥抑制運転との一方又は両方を実施の形態3で示した図11の温調コイルの加熱量の減少による過乾燥抑制運転と同時に行っても構わない。
 なお、実施の形態3の加湿装置101は、吸込空気14の温度と湿度より加湿前空気24の乾湿球温度差ΔTを導出しているがこれに限らない。例えば、温度センサと湿度センサを温調コイル23よりも吹出口11側であり加湿エレメント5よりも吸込口10側に配置して、加湿前空気24の温度と湿度を直接測定して乾湿球温度差ΔTを導出しても構わない。
 また、加湿前空気24の乾湿球温度差ΔTを導出せず、吸込空気14の乾湿球温度差ΔTを用いて過乾燥判定値fdを導出しても良い。この場合、図4のステップS12及びS15において過乾燥判定値fdに予め定められたマージンαを加えた値が過乾燥判定閾値εより大きいか否か判断する(fd+α>ε)。マージンαを加える理由は、加湿前空気24は吸込空気14が温調コイル23によって加熱された空気であるため、加湿前空気24の乾湿球温度差ΔTは吸込空気14の乾湿球温度差ΔTよりも大きくなり、加湿前空気24における過乾燥判定値fdは吸込空気14における過乾燥判定値fdよりも大きいためである。マージンαは実験的に求めた定数でも良いし、温調コイル23の加熱量に比例した関数でも良い。
 実施の形態4.
 図12は実施の形態4に係る換気装置のバイパス風路を閉塞した場合における内部構成を示す概略図である。図13は実施の形態4に係る換気装置のバイパス風路を開放した場合における内部構成を示す概略図である。換気装置200は、本体ケーシング30と、熱交換器31と、給気送風機32と、排気送風機33と、給気温度センサ34と、給気湿度センサ35と、排気温度センサ36と、排気湿度センサ37と、温調コイル38と、加湿エレメント39と、給水配管40と、給水弁41と、ダンパ42と、制御装置43と、操作端末44と、を備える。
 本体ケーシング30は換気装置200の外装を形成する部材である。本体ケーシング1は熱交換器31と、給気送風機32と、排気送風機33と、給気温度センサ34と、給気湿度センサ35と、排気温度センサ36と、排気湿度センサ37と、温調コイル38と、加湿エレメント39と、給水配管40と、給水弁41と、ダンパ42と、制御装置43とを収納している。本体ケーシング1の外面には、給気吸込口45と、給気吹出口46と、排気吸込口47と、排気吹出口48と、給水配管接続口49が形成されている。給気吹出口46と排気吸込口47は換気装置200が換気を行う空間である換気空間とそれぞれ繋がっている。給気吸込口45と排気吹出口48は屋外などの換気空間とは異なる他の空間とそれぞれ繋がっている。給水配管接続口49は水道などの給水源と繋がっている。
 また、給気吸込口45と給気吹出口46は本体ケーシング30の内部に形成された給気風路50により連通されている。排気吸込口47と排気吹出口48は本体ケーシング30の内部に形成された排気風路51により連通されている。排気風路51の一部には後述する熱交換器31の第2の風路を迂回するようにバイパス風路52が形成されている。
 熱交換器31は、内部に第1の風路と第2の風路を有し、第1の風路内に流れる空気と第2の風路内に流れる空気とが熱と水分を交換する構成になっている。熱交換器31が換気装置200に収納されると、第1の風路は給気風路50の一部を形成し、第2の風路は排気風路51の一部を形成する。
 給気送風機32は給気風路50の内部の空気を給気吸込口45側から給気吹出口46側へ送風する機器である。給気送風機32は給気風路50の内部に配置されている。また、排気送風機33は排気風路51の内部の空気を排気吸込口47側から排気吹出口48側へ送風する機器である。排気送風機33は排気風路51の内部に配置されている。なお、給気送風機32と排気送風機33は、例えばファンと回転数を制御することができるモータとによって構成されるなど、それぞれ風量を制御可能なように構成されている。実施の形態4では給気送風機32及び排気送風機33は風量が大きい順に、強、中、弱、の三段階の風量にそれぞれ制御可能とする。
 給気温度センサ34と排気温度センサ36は温度を検出することが可能な素子であり、給気湿度センサ35と排気湿度センサ37は湿度を検出することが可能な素子である。給気温度センサ34と給気湿度センサ35は給気風路50の内部に配置されており、熱交換器31の第1の風路よりも給気吸込口45側に配置されている。排気温度センサ36と排気湿度センサ37は排気風路51の内部に配置されており、熱交換器31の第2の風路並びにバイパス風路52よりも排気吸込口47側に配置されている。
 温調コイル38は通過する空気を加熱する部材である。温調コイル38は給気風路50の内部に配置されており、熱交換器31の第1の風路よりも給気吹出口46側に配置されている。また、温調コイル38は、例えば冷凍サイクルの凝縮器など、加熱量を制御可能なように構成されている。実施の形態4では温調コイル38が加熱できる最大の加熱量を100%、温調コイル38が動作していない状態の加熱量を0%として、100%、75%、50%、25%、0%の五段階に加熱量を制御可能とする。
 加湿エレメント39は通過する空気を加湿する部材である。例えば、水分を含むフィルターなどが加湿エレメント39として用いられる。加湿エレメント39は給気風路50の内部に配置されており、温調コイル38よりも給気吹出口46側に配置されている。
 給水配管40は加湿エレメント39と給水配管接続口49を連通させる配管である。加湿エレメント39は、給水配管40と給水配管接続口49を介して水源の水が給水される。
 給水弁41は加湿エレメント39の給水流量を調整する弁である。給水弁41は給水配管40の途中に配置されている。給水弁41は例えば弁の開度を制御することができる二方弁など、加湿エレメント39の給水流量を制御可能なように構成される。実施の形態4では弁が全開の状態を100%、弁が全閉の状態を0%として、100%、75%、50%、25%、0%の五段階に給水流量を制御可能とする。
 ダンパ42はバイパス風路52を開放するか閉塞するかを切り替える部材である。ダンパ42は排気風路51の内部に配置されている。ダンパ42は、例えばモータなどのアクチュエータによって、図12のように熱交換器31の第2の風路を開放しバイパス風路52を閉塞する位置と、図13のように熱交換器31の第2の風路を閉塞しバイパス風路52を開放する位置とを移動可能なように構成されている。
 制御装置43は、給気温度センサ34並び排気温度センサ36が検出した温度と給気湿度センサ35並びに排気湿度センサ37が検出した湿度とに基づき、給気送風機32並びに排気送風機33の風量と温調コイル38の加熱量と加湿エレメント39への給水流量の制御を行う。
 操作端末44は少なくとも利用者が換気装置200の運転の開始と換気装置200の運転の停止に関する操作を行うための端末である。操作端末44は例えばリモートコントローラや、操作用のアプリケーションがインストールされたコンピュータ、タブレット端末又はスマートフォンなどが該当する。
 次に実施の形態4に係る換気装置200の内部の空気の流れについて説明を行う。まず、給気風路50の空気の流れについて説明を行う。給気送風機32が運転することによって、換気空間とは異なる他の空間の空気が給気吸込口45より換気装置200の内部に流入する。給気吸込口45より流入した空気を給気吸込空気53と称する。
 給気吸込空気53は給気風路50に流入する。給気温度センサ34は給気風路50に流入した給気吸込空気53の温度を検出する。また、給気湿度センサ35は給気風路50に流入した給気吸込空気53の湿度を検出する。
 給気温度センサ34と給気湿度センサ35で温度と湿度を検出された給気吸込空気53は、熱交換器31の第1の風路を通過する。熱交換器31の第1の風路を通過する空気を給気熱交換空気54と称する。熱交換器31の第2の風路に後述する排気熱交換空気58が流れている場合には、給気熱交換空気54は排気熱交換空気58と熱並びに水分の交換を行いつつ熱交換器31の第1の風路を通過する。また、熱交換器31の第2の風路に排気熱交換空気58が流れていない場合には、給気熱交換空気54は熱並びに水分の交換を行わずに熱交換器31の第1の風路を通過する。
 熱交換器31の第1の風路を通過した給気熱交換空気54は、給気送風機32を通過した後に、温調コイル38を通過して加熱される。ここで温調コイル38を通過して加湿エレメント39を通過する前の空気を給気加湿前空気55と称する。
 給気加湿前空気55は加湿エレメント39を通過して加湿される。ここで加湿エレメント39によって加湿された空気を給気加湿後空気56と称する。給気加湿後空気56は給気吹出口46より流出し、換気空間に吹き出される。
 次に排気風路51の空気の流れについて説明を行う。排気送風機33が運転することによって、換気空間の空気が排気吸込口47より換気装置200の内部に流入する。排気吸込口47より流入した空気を排気吸込空気57と称する。
 排気吸込空気57は排気風路51に流入する。排気温度センサ36は排気風路51に流入した排気吸込空気57の温度を検出する。また、排気湿度センサ37は排気風路51に流入した排気吸込空気57の湿度を検出する。
 ダンパ42が図12のように熱交換器31の第2の風路を開放しバイパス風路52を閉塞する位置にある場合には、排気温度センサ36と排気湿度センサ37で温度と湿度を検出された排気吸込空気57は熱交換器31の第2の風路を通過する。熱交換器31の第2の風路を通過する空気を排気熱交換空気58と称する。排気熱交換空気58は給気熱交換空気54と熱並びに水分の交換を行いつつ熱交換器31の第2の風路を通過する。
 ダンパ42が図13のように熱交換器31の第2の風路を閉塞しバイパス風路52を解放する位置にある場合には、給気温度センサ34と給気湿度センサ35で温度と湿度を検出された排気吸込空気57はバイパス風路52を通過する。バイパス風路52を通過する空気を排気バイパス通過空気60と称する。排気バイパス通過空気60は給気熱交換空気54と熱並びに水分の交換を行わずバイパス風路52を通過する。
 熱交換器31の第2の風路を通過した排気熱交換空気58およびバイパス風路52を通過した排気バイパス通過空気60は、排気送風機33を通過した後に、排気吹出口48より流出し、換気空間とは異なる他の空間に吹き出される。排気吹出口48より流出する空気を排気吹出空気59と称する。
 図14は実施の形態4に係る換気装置の機能ブロック線図である。次に実施の形態4に係る換気装置200の機能ブロック線図を説明する。制御装置43は入力インターフェース61と出力インターフェース62とマイコン63とで構成されている。
 入力インターフェース61は給気温度センサ34と給気湿度センサ35と排気温度センサ36と排気湿度センサ37と通信可能に接続されており、給気温度センサ34が検出した温度に関する情報と、給気湿度センサ35が検出した湿度に関する情報と、排気温度センサ36が検出した温度に関する情報と、排気湿度センサ37が検出した湿度に関する情報をそれぞれ受信する。出力インターフェース62は給気送風機32と排気送風機33と温調コイル38と給水弁41とダンパ42と通信可能に接続されており、給気送風機32の風量に関する制御信号と、排気送風機33の風量に関する制御信号と、温調コイル38の加熱量に関する制御信号と、給水弁41の開度に関する制御信号と、ダンパ42の位置に関する制御信号を送信する。
 マイコン63は、記憶部64と、制御部65と、乾燥状態判断部66と、タイマー部67の機能を有している。また、マイコン63は、実施の形態1のマイコン18と同様にプロセッサーと、メモリーと、タイマーを備えている。
 記憶部64は、プロセッサーにより実行されるソフトウェアのプログラムと、給気送風機32の風量と、排気送風機33の風量と、温調コイル38の加熱量と、給水弁41の開度と、ダンパ42の位置とをそれぞれ制御するために用いられる数値を記憶している。記憶部64は、メモリーにプログラム及び各種数値が記憶されることで実現される。
 制御部65は、給気送風機32の風量と、排気送風機33の風量と、温調コイル38の加熱量と、給水弁41の開度と、ダンパ42の位置とのそれぞれに関する制御信号を生成し、給気送風機32と排気送風機33と温調コイル38と給水弁41とダンパ42とを制御する。また、乾燥状態判断部66は、加湿エレメント39が乾燥状態か否かを判断する。制御部65と乾燥状態判断部66は、プロセッサーがメモリーに記憶にされたソフトウェアのプログラムに従って処理を実行することにより実現される。
 タイマー部67は経過時間の計測を行う。タイマー部67はタイマーによって実現される。
 次に実施の形態4に係る換気装置の通常運転の一例について説明する。なお、本発明における通常運転とは次に説明する一例に限らず、後述する過乾燥抑制運転を除く運転のことを指す。図15は実施の形態4に係る換気装置の通常運転の制御の一例を示すフローチャートである。図15のフローチャートの制御は利用者が操作端末44より換気装置200の運転を開始させる操作を行った際に開始する。
 ステップS1aでは、タイマー部67は加湿運転時間taをリセットする。
 ステップS1aの処理の終了後、ステップS2aへ進む。ステップS2aでは、タイマー部67は加湿運転時間taの計測を開始する。
 ステップS2aの処理の終了後、ステップS3aへ進む。ステップS3aでは、制御部65は換気装置200に加湿換気運転を行わせる制御を行う。加湿換気運転とは、換気空間の空気を排気し換気空間とは異なる他の空間の空気を加湿して給気する運転である。例えば、加湿換気運転では、制御部65は給水弁41を開き加湿エレメント39に水を供給し、給気送風機32と排気送風機33を運転し、温調コイル38を加熱するよう制御を行う。実施の形態4における加湿換気運転では、給気風量は中、排気風量は中、給水流量は75%、温調コイル38の加熱量は100%から25%のいずれかの値、ダンパ42の位置はバイパス風路52を閉塞する位置もしくはバイパス風路52を開放する位置のいずれかに制御されるとする。
 ステップS3aの処理の終了後、ステップS4aへ進む。ステップS4aでは、制御部65は利用者が操作端末44より換気装置200の運転を停止させる操作を行ったか否かを判断する。
 利用者が操作端末44より換気装置200の運転を停止させる操作を行ったと制御部65が判断した場合(ステップS4a、YES)、ステップS5aへ進む。ステップS5aでは、予め定められた時間の間、制御部65は換気装置200に乾燥運転を行わせる制御を行う。例えば、乾燥運転では、制御部65は給水弁41を閉じて加湿エレメント39への水の給水を止め、給気送風機32と排気送風機33を運転し、温調コイル38を加熱するよう制御を行う。実施の形態4における乾燥運転では、給気風量は強、排気風量は強、給水流量は0%、温調コイル38の加熱量は25%、ダンパ42の位置はバイパス風路52を閉塞する位置に制御されるとする。
 ステップS5aの処理の終了後、ステップS6aへ進む。ステップS6aでは制御部65は換気装置200の運転を停止させる。運転の停止では、給水弁41を閉じて加湿エレメント39への水の給水を止め給気送風機32と排気送風機33と温調コイル38を停止させる。ステップS6aの処理の終了後、換気装置200の通常運転を終了する。
 利用者が操作端末44より換気装置200の運転を停止させる操作を行っていないと制御部20が判断した場合(ステップS4a、NO)、ステップS7aへ進む。ステップS7aではタイマー部67は加湿運転時間taが予め定められた乾燥運転開始時間tsよりも大きいか否か判断する。
 タイマー部67は加湿運転時間taが乾燥運転開始時間tsよりも大きいと判断した場合(ステップS7a、YES)、ステップS8aへ進む。ステップS8aでは制御部65は、予め定められた時間の間、制御部65は換気装置200に乾燥運転を行わせる制御を行う。なお、ステップS8aにおける乾燥運転はステップS5aで説明した乾燥運転と同様であり、説明を割愛する。ステップS8aの終了後、ステップS1aへ進み、タイマー部67は加湿運転時間taのリセットを行う。
 タイマー部67は加湿運転時間taが乾燥運転開始時間ts以下であると判断した場合(ステップS7a、NO)、ステップS4aへ進み、再び制御部65は利用者が操作端末44より換気装置200の運転を停止させる操作を行ったか否かを判断する。
 次に実施の形態4に係る換気装置200の加湿エレメント39の過乾燥状態を抑制する制御について説明する。当該制御のフローチャートは、実施の形態1に係る加湿装置100の過乾燥状態を抑制する制御のフローチャートと比較して各処理の主体が異なるだけであるため、図4のフローチャートを利用して説明する。なお、図4のフローチャートの制御は利用者が操作端末44より換気装置200の運転開始の操作を行った際に開始する。つまり、図15のフローチャートの制御と図4のフローチャートの制御は同時に行われる。
 ステップS11では、乾燥状態判断部66は過乾燥判定値fdを導出する。実施の形態4の換気装置200における過乾燥判定値fdの導出の詳細については後述する。
 ステップS11の処理の終了後、ステップS12へ進む。ステップS12では、乾燥状態判断部66はステップS11で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否か判断する。過乾燥判定閾値εは予め定められた定数であり、記憶部64に記憶されている。
 ステップS12において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS12、Yes)、ステップS13へ進む。ステップS13では、制御部65は図15のフローチャートの通常運転の制御を停止させる。つまり、換気装置200が加湿換気運転又は乾燥運転を行っていた場合はそれらの運転は停止される。
 ステップS13の処理の終了後、ステップS14へ進む。ステップS14では、制御部65は換気装置200に過乾燥抑制運転を行わせる制御を行う。実施の形態4の換気装置200における過乾燥抑制運転の詳細については後述する。
 ステップS14の処理の終了後、ステップS15へ進む。ステップS15では、ステップS11と同様に乾燥状態判断部66は過乾燥判定値fdを導出する。
 ステップS15の処理の終了後、ステップS16へ進む。ステップS16では、乾燥状態判断部66はステップS15で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否か判断する。
 ステップS16において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS16、Yes)、ステップS14へ進み、再び過乾燥抑制運転を行う。
 ステップS16において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部66が判断した場合(ステップS16、No)、ステップS17へ進む。ステップS17では、制御部65は換気装置200に通常運転を再開させる制御を行う。
 ステップS17の処理の終了後、又はステップS12において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部66が判断した場合(ステップS12、No)、ステップS18へ進む。ステップS18では乾燥状態判断部66は制御部65が換気装置200の運転を停止させたか判断する。
 ステップS18において制御部65が換気装置200の運転を停止させたと乾燥状態判断部66が判断した場合(ステップS18、Yes)、加湿エレメント39の過乾燥状態を抑制する制御を終了させる。ステップS18において制御部20が換気装置200の運転を停止させていないと乾燥状態判断部66が判断した場合(ステップS18、No)、ステップS11へ進み、乾燥状態判断部66は過乾燥判定値fdを導出する。
 図16は実施の形態4に係る換気装置における過乾燥判定値fdを導出するフローチャートである。図16のフローチャートは、図4のフローチャートのステップS11又はステップS14の処理が行われる際に開始する。ここで乾燥状態判断部66が行う過乾燥判定値fdの導出方法について説明を行う。
 ステップS41では、乾燥状態判断部66は給気温度センサ34が検出した温度を給気吸込空気53の乾球温度Tdoaとして入力インターフェース61を介して取得する。
 ステップS41の処理の終了後、ステップS42へ進む。ステップS42では、乾燥状態判断部66は給気湿度センサ35が検出した湿度を給気吸込空気53の相対湿度φoaとして入力インターフェース61を介して取得する。
 ステップS42の処理の終了後、ステップS43へ進む。ステップS43では、乾燥状態判断部66は給気風量Qoaを導出する。給気風量Qoaは制御部65で制御されているため、図5のステップS23と同様に給気風量Qoaに関する制御値を参照して給気風量Qoaを導出する。
 ステップS43の処理の終了後、ステップS44へ進む。ステップS44では、乾燥状態判断部66は加湿エレメント39に供給される給水流量Qwを導出する。給水流量Qwは制御部65で制御しているため、図5のステップS24と同様に給水流量Qwに関する制御値を参照しての給水流量Qwを導出する。
 ステップS44の処理の終了後、ステップS45へ進む。ステップS45では、乾燥状態判断部66は給気吸込空気53のエンタルピーHoaを導出する。エンタルピーHoaは、図10のステップS35と同様に乾球温度および相対湿度を行又は列としエンタルピーを要素とする湿り空気線図における相関関係を模擬した表又は相関関係の近似式を記憶部19が記憶しており、ステップS41で取得した乾球温度TdoaとステップS42で取得した相対湿度φoaを表と参照又は近似式に代入してエンタルピーHoaを導出する方法がある。
 ステップS45の処理の終了後、ステップS46へ進む。ステップS46では、乾燥状態判断部66はダンパ42がバイパス風路52を閉塞しているか否かを判断する。ダンパ42の位置は制御部65に制御されているため、乾燥状態判断部66は制御部65よりダンパ42の位置に関する情報を取得し判断を行う。
 ステップS46においてダンパ42がバイパス風路52を閉塞していると乾燥状態判断部66が判断した場合(ステップS46、Yes)、ステップS47へ進む。ステップS47では、乾燥状態判断部66は排気温度センサ36が検出した温度を排気吸込空気57の乾球温度Tdraとして入力インターフェース61を介して取得する。
 ステップS47の処理の終了後、ステップS48へ進む。ステップS48では、乾燥状態判断部66は排気湿度センサ37が検出した湿度を排気吸込空気57の相対湿度φraとして入力インターフェース61を介して取得する。
 ステップS48の処理の終了後、ステップS49へ進む。ステップS49では、乾燥状態判断部66は排気吸込空気57のエンタルピーHraを導出する。エンタルピーHraは、ステップS45と同様に乾球温度および相対湿度を行又は列としエンタルピーを要素とする湿り空気線図における相関関係を模擬した表又は相関関係の近似式を記憶部64が記憶しており、ステップS47で取得した乾球温度TdraとステップS48で取得した相対湿度φraを表と参照又は近似式に代入してエンタルピーHraを導出する方法がある。
 ステップS49の処理の終了後、ステップS50へ進む。ステップS50では、乾燥状態判断部66は排気風量Qraを導出する。排気風量Qraは制御部65で制御されているため、ステップS44と同様に排気風量Qraに関する制御値を参照して排気風量Qraを導出する。
 ステップS50の処理の終了後、ステップS51へ進む。ステップS51では、乾燥状態判断部66は給気熱交換空気54の乾球温度Tdoa2を導出する。具体的には、数3に示す式によって導出する。ここで数3に使用している記号を定義する。ηtは熱交換器31の温度交換効率(単位は無次元)である。温度交換効率ηtは給気風量Qoa及び排気風量Qraと相関関係にあり、相関関係は熱交換器31の種類によって決まっている。記憶部64は給気風量Qoa及び排気風量Qraを行又は列とし温度交換効率ηtを要素とする相関関係を模擬した表又は近似式を記憶しており、ステップS43で導出した給気風量QoaとステップS50で導出した排気風量Qraとを表又は近似式に代入することによって温度交換効率ηtが決定される。なお、温度交換効率ηtは給気風量Qoaが増加すると温度交換効率ηtは小さくなり、排気風量Qraが増加すると温度交換効率ηtは大きくなる。
Figure JPOXMLDOC01-appb-M000003
 ステップS51の処理の終了後、ステップS52へ進む。ステップS52では、乾燥状態判断部66は給気熱交換空気54のエンタルピーHoa2を導出する。具体的には、数4に示す式によって導出する。ここで数4に使用している記号を定義する。ηhは熱交換器31のエンタルピー交換効率(単位は無次元)である。エンタルピー交換効率ηhも温度交換効率ηtと同様に給気風量Qoa及び排気風量Qraと相関関係にあり、相関関係は熱交換器31の種類によって決まっている。従って、記憶部64はエンタルピー交換効率ηhと給気風量Qoa及び排気風量Qraの相関関係を模擬した表又は近似式を記憶しており、ステップS43で導出した給気風量QoaとステップS50で導出した排気風量Qraとを表又は近似式に代入することによってエンタルピー交換効率ηhが決定される。なお、エンタルピー交換効率ηtも給気風量Qoaが増加するとエンタルピー交換効率ηhは小さくなり、排気風量Qraが増加するとエンタルピー交換効率ηhは大きくなる。
Figure JPOXMLDOC01-appb-M000004
 ステップS52の処理の終了後、並びにステップS46においてダンパ42がバイパス風路52を閉塞していないと乾燥状態判断部66が判断した場合(ステップS46、No)ステップS53へ進む。ステップS53では乾燥状態判断部66は給気熱交換空気54の絶対湿度xoa2を導出する。具体的には、湿り空気線図における乾球温度およびエンタルピーを行又は列とし絶対湿度を要素とする相関関係を模擬した表又は相関関係の近似式を記憶部64が記憶しており、給気熱交換空気54の乾球温度とエンタルピーを表と参照又は近似式に代入して絶対湿度xoa2を導出する。ここでステップS46においてダンパ42がバイパス風路52を閉塞していると乾燥状態判断部66が判断した場合(ステップS46、Yes)には、給気熱交換空気54は排気熱交換空気58と熱並びに水分の交換が行われるため、乾燥状態判断部はステップS51で導出した乾球温度Tdoa2とステップS52で導出したエンタルピーHoa2を表と参照又は近似式に代入する。また、ステップS46においてダンパ42がバイパス風路52を閉塞していると乾燥状態判断部66が判断していない場合(ステップS46、No)には、給気熱交換空気54は熱並びに水分の交換が行われないため、乾燥状態判断部はステップS41で取得した乾球温度TdoaとステップS45で導出したエンタルピーHoaを表と参照又は近似式に代入する。
 ステップS53の処理の終了後、ステップS54へ進む。ステップS54では給気加湿前空気55のエンタルピーHoa3を導出する。具体的にはステップS46においてダンパ42がバイパス風路52を閉塞していると乾燥状態判断部66が判断した場合(ステップS46、Yes)には数5に示す式で導出し、ステップS46においてダンパ42がバイパス風路52を閉塞していないと乾燥状態判断部66が判断した場合(ステップS46、No)には数6に示す式で導出する。数5,数6において使用している記号を定義する。Qhは温調コイル38の加熱量(単位はW)温調コイルの加熱量は制御部65で制御されているため、加熱量Qhの制御値又は加熱量Qhに関する制御値を参照して決まる。ρaは空気の密度(単位はkg/m)である。ρaは定数であり、記憶部64にρaの値は記憶されている。Qoaは給気風量(単位はm/s)である。QaはステップS42で導出した値を使用する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 ステップS54の処理の終了後、ステップS55へ進む。ステップS55では、乾燥状態判断部66は給気加湿前空気55の乾湿球温度差ΔTを導出する。給気加湿前空気55の乾球温度と、給気加湿前空気55の湿球温度は、それぞれ記憶部64に記憶されているエンタルピーおよび絶対湿度を行又は列とし乾球温度又は湿球温度を要素とする湿り空気線図における相関関係を模擬した表又は相関関係の近似式にステップS54で導出したエンタルピーHoa3とステップS53で導出した絶対湿度xoa2を参照又は代入することで導出される。導出した加湿前空気24の乾球温度より加湿前空気24の乾球温度を減算することで給気加湿前空気55の乾湿球温度差ΔTを導出することができる。
 ステップS55の終了後、ステップS56へ進む。ステップS56では、乾燥状態判断部66は、ステップS43で導出した給気風量Qoaと、ステップS44で導出した給水流量Qwと、ステップS55で導出した給気加湿前空気55の乾湿球温度差ΔTに過乾燥判定値fdを導出する。過乾燥判定値fdの導出の方法としては図4のステップS27と同様に、数7の式を記憶部64が記憶しており、それぞれの数値を式に代入してfdを算出する方法がある。
Figure JPOXMLDOC01-appb-M000007
 数7のf(ΔT,Qoa,Qw)は、乾湿球温度差ΔTと給気風量Qoaと給水流量Qwの3つの変数によって決まる関数である。数1と同様の手法によって、関数fは実験的に導出される。
 また、関数fは乾湿球温度差ΔTが大きくなれば過乾燥判定値fdが大きくなる関係を満たす。さらに、関数fは給気風量Qoaが大きくなれば過乾燥判定値fdが大きくなる関係を満たす。さらに、関数fは給水流量Qwが大きくなれば過乾燥判定値fdが小さくなる関係を満たす。
 ステップS56の処理の終了後、乾燥状態判断部66は過乾燥判定値fdの導出を終了する。
 図17は、実施の形態4に係る換気装置における過乾燥抑制運転の制御のフローチャートである。次に実施の形態4における過乾燥抑制運転の制御について説明する。なお、実施の形態4における過乾燥抑制運転の制御のステップS402、S403、S404は、実施の形態1における過乾燥抑制運転の制御のステップS102、S103、S104と比較して主体がタイマー部22からタイマー部67に変更された点のみが異なり、制御内容は同様のため説明を割愛する。
 ステップS401では、制御部65は熱交換器31の第2の風路を開放しバイパス風路52を閉塞させる。具体的には、制御部65はダンパ42に熱交換器31の第2の風路を開放しバイパス風路52を閉塞する位置に移動させる制御信号に送信することで、熱交換器31の第2の風路を開放しバイパス風路52を閉塞させる。
 以上のように実施の形態4に係る換気装置200は、給水手段の給水流量と給気送風機32の風量とを制御する制御部65と、入力インターフェース61を介して取得した温度並びに湿度と給気送風機32の風量と給水手段の給水流量とに基づき加湿エレメント39が過乾燥状態であるか否かを判断する乾燥状態判断部66と、を備え、乾燥状態判断部66は加湿エレメント39が過乾燥状態であると判断すると、制御部65は加湿エレメント39の過乾燥状態を抑制する過乾燥抑制運転を行うよう制御する構成である。この構成によって、加湿エレメント39が過乾燥状態になることを抑制し、加湿エレメント39にスケールが析出されることを抑制する効果を奏する。また、スケールが析出され難くなるため、スケールによる異臭の発生や雑菌の発生を抑制する効果も奏する。
 さらに付加的構成として前述の実施の形態4に係る換気装置200の構成に、排気風路51に形成され排気風路51を流れる空気が熱交換器31を迂回して流れるよう形成されたバイパス風路52と、排気風路51内に設けられ、バイパス風路52を開放する位置とバイパス風路52を閉塞する位置に移動可能なダンパ42と、を備え、制御部65はダンパ42の位置を制御し、過乾燥抑制運転において、制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるよう制御を行う構成を付加しても良い。一般的に加湿エレメント39が過乾燥状態である場合、排気熱交換空気58は給気熱交換空気54よりも暖かく湿った空気である。このため、熱交換を行った給気熱交換空気54の乾湿球温度差ΔTは熱交換を行う前である給気吸込空気53の乾湿球温度差ΔTよりも小さくなり、スケールが析出され難くなる。従って、当該付加的構成によって、過乾燥抑制運転では確実に排気風路51を流れる空気は熱交換器31を経由して流れるようになり、加湿エレメント39にスケールが析出し難い条件にすることができる効果を奏する。
 さらに、付加的構成として前述の実施の形態4に係る換気装置200の構成に、制御部65は過乾燥抑制運転を開始してから予め定められた時間Tsを経過するまで過乾燥抑制運転を維持するように制御を行う構成を付加しても良い。この構成によって、換気装置200が通常運転と過乾燥抑制運転を短時間で切り替わることを防止でき、制御の安定性を高めることができる。
 さらに、付加的構成として前述の実施の形態4に係る換気装置200の構成に、乾燥状態判断部66は給水手段が加湿エレメント39に給水し給気送風機32が給気風路50内の空気を送風する加湿換気運転時に加湿エレメント39が過乾燥状態あるか否かを判断する構成を付加しても良い。この構成によって、加湿換気運転時に加湿エレメント39が過乾燥状態になりスケールが析出することを抑制することができる。
 さらに、付加的構成として前述の実施の形態4に係る換気装置200の構成に、乾燥状態判断部66は給水手段が加湿エレメント39に給水を行わず給気送風機32が給気風路50内の空気を送風する乾燥運転時に加湿エレメント39が過乾燥状態あるか否かを判断する構成を付加しても良い。この構成によって、乾燥運転時に加湿エレメント39が過乾燥状態になりスケールが析出することを抑制することができる。
 なお、実施の形態4に係る換気装置200は、過乾燥抑制運転において制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるように制御しているが、これに限らない。例えば、実施の形態1で示した図6の給水流量を増加させる過乾燥抑制運転のように、過乾燥抑制運転において制御部65は過乾燥抑制運転を行う直前よりも給水手段の給水流量を増加させる制御を行っても良い。一例として、実施の形態4の変形例では、過乾燥抑制運転において制御部65は給水流量が100%になるよう制御を行う。
 また、実施の形態3で示した図11の過乾燥抑制運転のように、過乾燥抑制運転において制御部65は過乾燥抑制運転を行う直前よりも温調コイル38の加熱量を減少させる制御を行っても良い。一例として、実施の形態4の変形例では、過乾燥抑制運転において制御部65は加熱量が0%になるよう制御を行う。
 さらに、給水流量を増加させる過乾燥抑制運転と、温調コイル38の加熱量を減少させる過乾燥抑制運転と、バイパス風路52を閉塞させる過乾燥抑制運転とを同時に行っても構わない。
 なお、実施の形態4の換気装置200は、給気吸込空気53の温度と湿度より給気加湿前空気55の乾湿球温度差ΔTを導出しているがこれに限らない。実施の形態3の加湿装置101と同様に、例えば、温度センサと湿度センサを温調コイル38よりも給気吹出口46側であり加湿エレメント39よりも給気吸込口45側に配置して、給気加湿前空気55の温度と湿度を直接測定して乾湿球温度差ΔTを導出しても構わない。また、給気加湿前空気55の乾湿球温度差ΔTを導出せず、給気吸込空気53の乾湿球温度差ΔTを用いて過乾燥判定値fdを導出しても良い。この場合、図4のステップS12及びS15において過乾燥判定値fdに予め定められたマージンαを加えた値が過乾燥判定閾値εより大きいか否か判断する(fd+α>ε)。マージンαは実験的に求めた定数でも良いし、温調コイル38の加熱量に比例した関数でも良い。この場合、排気温度センサ36と排気湿度センサ37は不要となる。
 また、実施の形態4に係る換気装置200では本体ケーシング30の内部に給気温度センサ34と給気湿度センサ35と排気温度センサ36と排気湿度センサ37とが配置されているが、これに限らない。給気温度センサ34と給気湿度センサ35の代わりに入力インターフェース61より換気空間とは異なる他の空間の空気の温度及び湿度を取得できるようにすれば良い。例えば換気空間とは異なる他の空間が室外空間である場合、インターネットなどのネットワークから室外空間の温度及び湿度を取得すればよい。この場合、入力インターフェース61より取得した温度又は湿度が給気風路を通過する空気の温度又は湿度に相当する。また、排気温度センサ36と排気湿度センサ37の代わりに入力インターフェース61より換気空間を取得できるようにすれば良い。例えば換気空間に取り付けられた空気調和装置と通信可能になっており、当該空気調和装置の設定温度と設定湿度について入力インターフェース61を介して取得しても良い。この場合、入力インターフェースを介して修得した設定温度又は設定湿度が排気風路を通過する空気の温度又は湿度に相当する。
 また、実施の形態4の換気装置200は、給気吸込空気53の温度と湿度及び排気吸込空気57の温度と湿度より給気加湿前空気55の乾湿球温度差ΔTを導出しているがこれに限らない。例えば、温度センサと湿度センサを温調コイル38よりも給気吹出口46側であり加湿エレメント39よりも給気吸込口45側に配置して、給気加湿前空気55の温度と湿度を直接測定して乾湿球温度差ΔTを導出する構成でも構わない。この構成の場合、給気温度センサ34と給気湿度センサ35と排気温度センサ36と排気湿度センサ37の4つのセンサが不要になり、2つのセンサで乾湿球温度差ΔTを導出できる。
 また、実施の形態4に係る換気装置200では過乾燥判定値fdの導出の方法として数7の式を記憶部64が記憶しており、それぞれの数値を式に代入して過乾燥判定値fdを算出しているがこれに限らない。例えば、給気風量Qoa及び給水流量Qwを行又は列とし過乾燥判定値fdを要素とする各々の乾湿球温度差ΔTにおける数7の相関関係を模擬した表を記憶部64が記憶しており、取得した給気風量Qoa、給水流量Qwを表と参照して過乾燥判定値fdを導出しても良い。
 また、実施の形態4に係る換気装置200では温調コイル38とダンパ42とバイパス風路52を有しているが、これに限らず、温調コイルと換気装置ダンパとバイパス風路は有していなくても構わない。
 また、実施の形態4に係る換気装置200では本体ケーシング1は熱交換器31と、給気送風機32と、排気送風機33と、給気温度センサ34と、給気湿度センサ35と、排気温度センサ36と、排気湿度センサ37と、温調コイル38と、加湿エレメント39と、給水配管40と、給水弁41と、ダンパ42と、制御装置43とを収納しているがこれに限らない。例えば、ケーシングが2つあり、片方のケーシングには熱交換器31と、給気送風機32と、排気送風機33と、給気温度センサ34と、給気湿度センサ35と、排気温度センサ36と、排気湿度センサ37と、ダンパ42と、制御装置43とを収納し、もう片方のケーシングに温調コイル38と、加湿エレメント39と、給水配管40と、給水弁41とを収納する構成でも構わない。この場合、2つのケーシングが本体ケーシングに相当する。
 実施の形態5.
 次に実施の形態5の換気装置200について説明する。実施の形態5の換気装置200は、実施の形態4の換気装置200と比較して、過乾燥抑制運転の制御が異なる。なお、過乾燥抑制運転の制御を除く実施の形態4の換気装置200の構成及び制御は実施の形態4の換気装置200の構成及び制御と同様であり、説明を割愛する。
 図18は、実施の形態5に係る換気装置における過乾燥抑制運転の制御のフローチャートである。次に実施の形態5における過乾燥抑制運転の制御について説明する。なお、実施の形態5における過乾燥抑制運転の制御のステップS502、S503、S504は、実施の形態1における過乾燥抑制運転の制御のステップS102、S103、S104と比較して主体がタイマー部22からタイマー部67に変更された点のみが異なり、制御内容は同様のため説明を割愛する。
 ステップS501では、制御部65は過乾燥抑制運転を行う直前よりも給気風量を減少させる。具体的には、制御部65は給気送風機32の風量を減少させる制御信号を送信することで、給気送風機32の風量が減少し、給気風量が減少する。なお、ステップS501において制御部65は、使用者又は製造者が予め選択した給気風量に設定する制御でも良いし、予め定められた割合又は段階だけ給気風量を減少させる制御でも良いし、乾燥状態判断部66が過乾燥判定値fdの導出時に過乾燥状態で無くなる給気風量の算出を行い算出された風量に設定する制御でも良い。一例として、実施の形態5では、制御部65は給気送風機32の風量が弱になるよう制御を行う。
 以上のように実施の形態5の換気装置200は、付加的構成として前述の実施の形態4に係る換気装置200の構成に、過乾燥抑制運転において、制御部65は過乾燥抑制運転を行う直前よりも給気送風機32の風量を減少させる制御を行う構成を付加している。この構成によって、過乾燥抑制運転では給気風量が減少する。また、一般的に熱交換器31の温度交換効率及びエンタルピー交換効率は給気風量に対する排気風量の割合によって変化し、排気風量の割合が大きくなると熱交換器31の温度交換効率及びエンタルピー交換効率が増加し、給気加湿前空気55の乾湿球温度差ΔTが小さくなる。従って、当該付加的構成によって加湿エレメント39をスケールが析出し難い条件にすることができる。
 また、実施の形態5で示した付加的構成は実施の形態4で示した他の付加的構成と共に実施の形態4に係る換気装置200の構成に付加しても構わない。特に実施の形態5で示した給気送風機32の風量を減少させる過乾燥抑制運転を、実施の形態4で示した他の過乾燥抑制運転と同時に行っても構わない。
 実施の形態6.
 次に実施の形態6の換気装置200について説明する。実施の形態6の換気装置200は、実施の形態4の換気装置200と比較して、過乾燥抑制運転の制御が異なる。なお、過乾燥抑制運転の制御を除く実施の形態4の換気装置200の構成及び制御は実施の形態4の換気装置200の構成及び制御と同様であり、説明を割愛する。
 図19は、実施の形態6に係る換気装置における過乾燥抑制運転の制御のフローチャートである。次に実施の形態6における過乾燥抑制運転の制御について説明する。なお、実施の形態6における過乾燥抑制運転の制御のステップS603、S604、S605は、実施の形態1における過乾燥抑制運転の制御のステップS102、S103、S12、S104と比較して主体がタイマー部22からタイマー部67に変更された点のみが異なり、制御内容は同様のため説明を割愛する。
 ステップS601では、制御部65は熱交換器31の第2の風路を開放しバイパス風路52を閉塞させる。具体的には、制御部65はダンパ42に熱交換器31の第2の風路を開放しバイパス風路52を閉塞する位置に移動させる制御信号に送信することで、熱交換器31の第2の風路を開放しバイパス風路52を閉塞させる。
 ステップS601の処理の終了後、ステップS602へ進む。ステップS602では、制御部65は排気風量を増加させる。具体的には、制御部65は排気送風機33の風量を増加させる制御信号を送信することで、排気風量を増加させる。なお、ステップS602において制御部65は、使用者又は製造者が予め選択した排気風量に設定する制御でも良いし、予め定められた割合又は段階だけ排気風量を増加させる制御でも良い。一例として、実施の形態6では、制御部65は給気送風機32の風量が強になるよう制御を行う。
 以上のように実施の形態5の換気装置200は、付加的構成として前述の実施の形態4に係る換気装置200の構成に、過乾燥抑制運転において、制御部65は過乾燥抑制運転を行う直前よりも排気送風機33の風量を増加させる制御を行う構成を付加している。この構成によって、過乾燥抑制運転では排気風量が増加し、熱交換器の31の温度交換効率及びエンタルピー交換効率が増加し、給気加湿前空気55の乾湿球温度差ΔTが小さくなる。従って、当該付加的構成によって加湿エレメント39をスケールが析出し難い条件にすることができる。
 また、実施の形態6で示した付加的構成は実施の形態4又は実施の形態5で示した他の付加的構成と共に実施の形態4に係る換気装置200の構成に付加しても構わない。特に実施の形態6で示した排気送風機33の風量を増加させる過乾燥抑制運転を、実施の形態4又は5で示した他の過乾燥抑制運転と同時に行っても構わない。
 また、実施の形態4に係る換気装置200ではダンパ42とバイパス風路52を有しているが、これに限らず、換気装置ダンパとバイパス風路は有していなくても構わない。この場合、排気吸込空気57は必ず熱交換器31の第2の風路を通過するため、ステップS601の処理は不要となる。
 実施の形態7.
 次に実施の形態7の換気装置200について説明する。実施の形態6の換気装置200は、実施の形態4の換気装置200と比較して、換気装置200の加湿エレメント39の過乾燥を抑制する制御の内容と、複数の過乾燥抑制運転を行う点が異なる。なお、それ以外の実施の形態4の換気装置200の構成及び制御は実施の形態4の換気装置200の構成及び制御と同様であり、説明を割愛する。
 図20は、実施の形態7に係る換気装置の加湿エレメントの過乾燥状態を抑制する制御のフローチャートである。図20のフローチャートの制御は、利用者が操作端末44より換気装置200の運転を開始させる操作を行った際に開始する。
 ステップS1001では、乾燥状態判断部66は過乾燥判定値fdを導出する。ステップS1001における過乾燥判定値fdの導出方法は、実施の形態4の図15のフローチャートのステップS11と同様であるため、説明を割愛する。
 ステップS1001の処理の終了後、ステップS1002へ進む。ステップS1002では、乾燥状態判断部66はステップS1001で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否かを判断する。過乾燥判定閾値εは予め定められた定数であり、記憶部64に記憶されている。
 ステップS1002において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS1002、Yes)、ステップS1003へ進む。ステップS1003では、制御部65は図15のフローチャートの通常運転の制御を停止させる。
 ステップS1003の処理の終了後、ステップS1004へ進む。ステップS1004では、制御部65は換気装置200に第一の過乾燥抑制運転を行わせる制御を行う。第一の過乾燥抑制運転の詳細は後述する。
 ステップS1004の処理の終了後、ステップS1005へ進む。ステップS1005ではステップS1001と同様に乾燥状態判断部66は過乾燥判定値fdを導出する。
 ステップS1005の処理の終了後、ステップS1006へ進む。ステップS1006では、乾燥状態判断部66はステップS1005で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否かを判断する。
 ステップS1006において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS1006、Yes)、ステップS1007へ進む。ステップS1007では、制御部65は換気装置200に第一の過乾燥抑制運転を行わせる制御を行う。第二の過乾燥抑制運転の詳細は後述する。
 ステップS1007の処理の終了後、ステップS1008へ進む。ステップS1008ではステップS1001と同様に乾燥状態判断部66は過乾燥判定値fdを導出する。
 ステップS1008の処理の終了後、ステップS1009へ進む。ステップS1009では、乾燥状態判断部66はステップS1008で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否かを判断する。
 ステップS1009において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS1009、Yes)、ステップS1010へ進む。ステップS1010では、制御部65は換気装置200に第三の過乾燥抑制運転を行わせる制御を行う。第三の過乾燥抑制運転の詳細は後述する。
 ステップS1010の処理の終了後、ステップS1011へ進む。ステップS1011ではステップS1001と同様に乾燥状態判断部66は過乾燥判定値fdを導出する。
 ステップS1011の処理の終了後、ステップS1012へ進む。ステップS1012では、乾燥状態判断部66はステップS1011で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否かを判断する。
 ステップS1012において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS1012、Yes)、ステップS1013へ進む。ステップS1013では、制御部65は換気装置200に第四の過乾燥抑制運転を行わせる制御を行う。第四の過乾燥抑制運転の詳細は後述する。
 ステップS1013の処理の終了後、ステップS1014へ進む。ステップS1014ではステップS1001と同様に乾燥状態判断部66は過乾燥判定値fdを導出する。
 ステップS1014の処理の終了後、ステップS1015へ進む。ステップS1015では、乾燥状態判断部66はステップS1014で導出した過乾燥判定値fdが過乾燥判定閾値εより大きいか否かを判断する。
 ステップS1015において過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合(ステップS1015、Yes)、ステップS1004へ進み、再び第一の過乾燥抑制運転を行う。
 ステップS1006、S1009、S1012、S1015において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部66が判断した場合(ステップS1006、S1009、S1012、S1015、No)、ステップS1016へ進む。ステップS1016では、制御部65は換気装置200に通常運転を再開させる制御を行う。
 ステップS1016の処理の終了後、又はステップS1002において過乾燥判定値fdが過乾燥判定閾値ε以下と乾燥状態判断部66が判断した場合(ステップS1002、No)、ステップS1017へ進む。ステップS1017では、乾燥状態判断部66は制御部65が換気装置200の運転を停止させたか判断する。
 ステップS1017において制御部65が換気装置200の運転を停止させたと乾燥状態判断部66が判断した場合(ステップS1017、Yes)、加湿エレメント39の過乾燥状態を抑制する制御を終了させる。ステップS1017において制御部20が換気装置200の運転を停止させていないと乾燥状態判断部66が判断した場合(ステップS1017、No)、ステップS1001へ進み、乾燥状態判断部66は過乾燥判定値fdを導出する。
 図21は、実施の形態7に係る換気装置の第一から第四の過乾燥抑制運転を示す表の一例である。次に第一から第四の過乾燥抑制運転について説明する。
 記憶部64は図21に示すように第一から第四の過乾燥抑制運転で制御部65が行う制御の内容を記憶している。また、記憶部64には第一から第四の過乾燥抑制運転の制御内容は複数のパターンが記憶されている。
 各パターンにおける第一から第四の過乾燥抑制運転で制御部65が行う制御の内容は、実施の形態1のように過乾燥抑制運転を行う直前よりも給水手段の給水流量を増加させる制御と、実施の形態3のように過乾燥抑制運転を行う直前よりも温調コイル38の加熱量を減少させる制御と、実施の形態4のようにバイパス風路52を閉塞させる制御と、実施の形態5のように過乾燥抑制運転を行う直前よりも給気風量を減少させる制御と、実施の形態6のように過乾燥抑制運転を行う直前よりも排気風量を増加させる制御から1つ又は複数が設定されている。なお、制御の内容は使用者又は製造者のいずれが設定しても構わない。また、第一から第四の過乾燥抑制運転全てが設定される必要はなく、少なくとも第一と第二の過乾燥抑制運転の制御内容が設定されていれば良い。制御内容が設定されていない場合は、制御部65は直前の過乾燥抑制運転を維持する。
 図20のフローチャートにおいて、制御部65は各パターンのうち予め決定された1つのパターンに記憶されている制御の内容に従って第一から第四の過乾燥抑制運転を行う。なお、また、パターンの決定は、使用者が操作端末44より設定しても良いし、製造者が出荷時に設定しても良いし、制御部65が換気装置200の運転状態から自動的にパターンを行っても良い。例えば、加湿換気運転時に過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合には制御部65は予め使用者又は製造者が設定したパターンに記憶されている制御の内容に従い、乾燥運転時に過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断した場合には制御部はパターン5に記憶されている制御の内容に従って第一から第四の過乾燥抑制運転を行う。
 例えば、パターン1では、第一の過乾燥抑制運転において制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるように制御を行う。第二の過乾燥抑制運転において制御部65は給水流量が100%になるよう制御を行う。第三の過乾燥抑制運転において制御部65は加熱量が50%になるよう制御を行う。第四の過乾燥抑制運転において給気送風機32の風量が弱に排気送風機33の風量が強になるよう制御を行う。
 また、パターン2では、第一の過乾燥抑制運転において制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるように制御を行う。第二の過乾燥抑制運転において制御部65は給水流量が100%になるよう制御を行う。第三の過乾燥抑制運転において制御部65は加熱量が25%になるよう制御を行う。なお、第四の過乾燥抑制運転は設定されていない。
 また、パターン3では、第一の過乾燥抑制運転において制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるように制御を行う。第二の過乾燥抑制運転において制御部65は加熱量が25%になるよう制御を行う。なお、第三と第四の過乾燥抑制運転は設定されていない。
 また、パターン4では、第一の過乾燥抑制運転において制御部65はバイパス風路52を閉塞する位置にダンパ42を移動させるように制御を行う。第二の過乾燥抑制運転において制御部65は加熱量が50%になるよう制御を行う。第三の過乾燥抑制運転において制御部65は加熱量が25%になるよう制御を行う。なお、第四の過乾燥抑制運転は設定されていない。
 また、パターン5では、第一の過乾燥抑制運転において制御部65は第四の過乾燥抑制運転では給気送風機32の風量が弱に排気送風機33の風量が強になるよう制御を行う。第二の過乾燥抑制運転において制御部65は加熱量が0%になるよう制御を行う。第三の過乾燥抑制運転において制御部65は給水流量が50%になるよう制御を行う。なお、第四の過乾燥抑制運転は設定されていない。
 なお、第一から第四の過乾燥抑制運転で制御部65が異なる対象に制御を行う場合、各過乾燥抑制運転はそれぞれ重複する。例えば、パターン1の第四の過乾燥抑制運転では、制御部65はダンパがバイパス風路52を閉塞する位置にダンパ42を移動し、給水流量が100%になり、加熱量が50%になり。給気送風機32の風量が弱に排気送風機33の風量が強になるように制御を行う。
 また、第一から第四の過乾燥抑制運転で制御部65が同じ対象に制御を行う場合には、後に行われた過乾燥抑制運転の制御の内容が優先される。例えばパターン4の第三の過乾燥抑制運転ではダンパがバイパス風路52を閉塞する位置にダンパ42を移動し、加熱量が25%になるよう制御を行う。
 以上のように、実施の形態7の換気装置200では、付加的構成として前述の実施の形態4に係る換気装置200の構成に、過乾燥抑制運転は少なくとも第一の過乾燥抑制運転と第二の過乾燥抑制運転があり、第一の過乾燥抑制運転と第二の過乾燥抑制運転を行っていない場合に過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断すると制御部65は第一の過乾燥抑制運転を行うよう制御し、第一の過乾燥抑制運転を行っている場合に過乾燥判定値fdが過乾燥判定閾値εより大きいと乾燥状態判断部66が判断すると制御部65は第二の過乾燥抑制運転を行うよう制御を行う構成を付加している。この構成によって、第一の過乾燥抑制運転を行っても加湿エレメント39の過乾燥状態が続く場合であっても、第二の過乾燥抑制運転を行うことで加湿エレメント39の過乾燥状態を抑制し、加湿エレメント39にスケール成分が析出することを抑制することができる効果を奏する。
 さらに、実施の形態7の換気装置200では、付加的構成として、第一の過乾燥抑制運転と第二の過乾燥抑制運転において制御部65が異なる対象に制御を行う場合、第一の過乾燥抑制運転と第二の過乾燥抑制運転はそれぞれ重複する構成を付加している。この構成によってより加湿エレメント39の過乾燥状態を抑制し、加湿エレメント39にスケール成分が析出することを抑制することができる効果を奏する。
 さらに、実施の形態7の換気装置200では、付加的構成として、第一の過乾燥抑制運転と第二の過乾燥抑制運転において制御部65が同じ対象に制御を行う場合、第一の過乾燥抑制運転よりも第二の過乾燥抑制運転が優先される構成を付加している。この構成によってより加湿エレメント39の過乾燥状態を抑制し、加湿エレメント39にスケール成分が析出することを抑制することができる効果を奏する。
 また、実施の形態7では、記憶部64は第一から第四の過乾燥抑制運転について5つのパターンを記憶しているがこれに限らない。記憶部64は過乾燥抑制運転については少なくとも第1の過乾燥抑制運転と第2の過乾燥抑制運転さえ記憶していれば良い。また、パターンについては1つ又は2以上の複数のパターンを記憶部64は記憶していれば良い。
 また、実施の形態7は換気装置200に係る実施の形態であるが、実施の形態1で示した加湿装置100に実施の形態7の付加的構成を付加しても構わない。
1 本体ケーシング、2 送風機、3 温度センサ、4 湿度センサ、5 加湿エレメント、6 給水配管、7 給水弁、8 制御装置、9 操作端末、10 吸込口、11 吹出口、12 給水配管接続口、13 風路、14 吸込空気、15 加湿後空気、16 入力インターフェース、17 出力インターフェース、18 マイコン、19 記憶部、20 制御部、21 乾燥状態判断部、22 タイマー部、23 温調コイル、24 加湿前空気、30 本体ケーシング、31 熱交換器、32 給気送風機、33 排気送風機、34 給気温度センサ、35 給気湿度センサ、36 排気温度センサ、37 排気湿度センサ、38 温調コイル、39 加湿エレメント、40 給水配管、41 給水弁、42 ダンパ、43 制御装置、44 操作端末、45 給気吸込口、46 給気吹出口、47 排気吸込口、48 排気吹出口、49 給水配管接続口、50 給気風路、51 排気風路、52 バイパス風路、53 給気吸込空気、54 給気熱交換空気、55 給気加湿前空気、56 給気加湿後空気、57 排気吸込空気、58 排気熱交換空気、59 排気吹出空気、60 排気バイパス通過空気、61 入力インターフェース、62 出力インターフェース、63 マイコン、64 記憶部、65 制御部、66 乾燥状態判断部、67 タイマー部、100 加湿装置、101 加湿装置、200 換気装置

Claims (12)

  1.  吸込口及び吹出口が形成され、内部に前記吸込口と前記吹出口とが連通する風路が形成された本体ケーシングと、
     前記本体ケーシングの前記風路に設けられ、通過する空気を加湿する加湿エレメントと、
     前記加湿エレメントに給水する給水手段と、
     前記風路内の空気を前記吸込口から前記吹出口へ送風する送風機と、
     前記給水手段の給水流量と前記送風機の風量とを制御する制御部と、
     前記風路を通過する空気の温度に関する情報と前記風路を通過する空気の湿度に関する情報を受信する入力インターフェースと、
     前記入力インターフェースを介して取得した前記温度並びに前記湿度と前記送風機の風量と前記給水手段の給水流量とに基づき前記加湿エレメントが過乾燥状態であるか否かを判断する乾燥状態判断部と、を備え、
     前記乾燥状態判断部は前記加湿エレメントが過乾燥状態であると判断すると、前記制御部は前記加湿エレメントの過乾燥を抑制する過乾燥抑制運転を行うよう制御する加湿装置。
  2.  前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記給水手段の給水流量を増加させる制御を行う請求項1に記載の加湿装置。
  3.  前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記送風機の風量を減少させる制御を行う請求項1又は2に記載の加湿装置。
  4.  前記加湿エレメントに送風される空気を加熱する温調コイルを備え、
     前記制御部は、前記温調コイルの加熱量を制御し、
     前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記温調コイルの加熱量を減少させる請求項1から3のいずれか一つに記載の加湿装置。
  5.  給気吸込口と給気吹出口と排気吸込口と排気吹出口とが形成され、内部に前記給気吸込口と前記給気吹出口とが連通する給気風路と前記排気吸込口と前記排気吹出口とが連通する排気風路とが形成された本体ケーシングと、
     前記給気風路に設けられ、前記給気吸込口から前記給気吹出口へ空気を送風する給気送風機と、
     前記排気風路に設けられ、前記排気吸込口から前記排気吹出口へ空気を送風する排気送風機と、
     前記給気風路と前記排気風路に設けられ、前記給気風路を流れる空気と前記排気風路を流れる空気との間で熱交換を行う熱交換器と、
     前記給気風路において前記熱交換器よりも前記給気吹出口側に設けられ、通過する空気を加湿する加湿エレメントと、
     前記加湿エレメントに給水する給水手段と、
     前記給水手段の給水流量と前記給気送風機の風量とを制御する制御部と、
     前記給気風路を通過する空気の温度に関する情報と前記給気風路を通過する空気の湿度に関する情報とを受信する入力インターフェースと、
     前記入力インターフェースを介して取得した前記温度並びに前記湿度と前記給気送風機の風量と前記給水手段の給水流量とに基づき前記加湿エレメントが過乾燥状態であるか否かを判断する乾燥状態判断部と、を備え、
     前記乾燥状態判断部は前記加湿エレメントが過乾燥状態であると判断すると、前記制御部は前記加湿エレメントの過乾燥を抑制する過乾燥抑制運転を行うよう制御する換気装置。
  6.  前記排気風路に形成され、前記排気風路を流れる空気が前記熱交換器を迂回して流れるよう形成されたバイパス風路と、
     前記排気風路内に設けられ、前記バイパス風路を開放する位置と前記バイパス風路を閉塞する位置に移動可能なダンパと、を備え、
     前記制御部はダンパの位置を制御し、
     前記過乾燥抑制運転において、前記制御部は前記バイパス風路を閉塞する位置にダンパを移動させるよう制御を行う請求項5に記載の換気装置。
  7.  前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記排気送風機の風量を増加させる制御を行う請求項5又は6に記載の換気装置。
  8.  前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記給気送風機の風量を減少させる制御を行う請求項5から7のいずれか一つに記載の換気装置。
  9.  前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記給水手段の給水流量を増加させる制御を行う請求項5から8のいずれか一つに記載の換気装置。
  10.  前記熱交換器よりも前記給気吹出口側の前記給気風路の内部に配置され、前記加湿エレメントに送風される空気を加熱する温調コイルを備え、
     前記制御部は、前記温調コイルの加熱量を制御し、
     前記過乾燥抑制運転において、前記制御部は前記過乾燥抑制運転を行う直前よりも前記温調コイルの加熱量を減少させる請求項5から9のいずれか一つに記載の換気装置。
  11.  前記温調コイルよりも前記給気吹出口側であり前記加湿エレメントよりも前記給気吸込口側の前記給気風路の内部に配置され、前記入力インターフェースと通信可能に接続された給気温度センサ及び給気湿度センサを備え、
     前記乾燥状態判断部は前記給気温度センサが取得した温度並びに前記給気湿度センサが取得した湿度と前記給気送風機の風量と前記給水手段の給水流量に基づき前記加湿エレメントが過乾燥状態であるか否かを判断する請求項10に記載の換気装置。
  12.  前記熱交換器よりも前記給気吸込口側の前記給気風路の内部に配置され、前記入力インターフェースと通信可能に接続された給気温度センサ及び給気湿度センサと、
     前記熱交換器よりも前記排気吸込口側の前記排気風路の内部に配置され、前記入力インターフェースと通信可能に接続された排気温度センサ及び排気湿度センサと、を備え、
     前記前記乾燥状態判断部は前記給気温度センサが取得した温度と前記給気湿度センサが取得した湿度と排気温度センサが取得した温度と前記排気湿度センサが取得した温度と前記前記給気送風機の風量と前記給水手段の給水流量とに基づき前記加湿エレメントが過乾燥状態であるか否かを判断する請求項5から10のいずれか一つに記載の換気装置。
PCT/JP2018/044516 2018-12-04 2018-12-04 加湿装置および換気装置 WO2020115810A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020558707A JP7047938B2 (ja) 2018-12-04 2018-12-04 換気装置
PCT/JP2018/044516 WO2020115810A1 (ja) 2018-12-04 2018-12-04 加湿装置および換気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044516 WO2020115810A1 (ja) 2018-12-04 2018-12-04 加湿装置および換気装置

Publications (1)

Publication Number Publication Date
WO2020115810A1 true WO2020115810A1 (ja) 2020-06-11

Family

ID=70975311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044516 WO2020115810A1 (ja) 2018-12-04 2018-12-04 加湿装置および換気装置

Country Status (2)

Country Link
JP (1) JP7047938B2 (ja)
WO (1) WO2020115810A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136641A (ja) * 1990-09-27 1992-05-11 P S Kogyo Kk 気化式加湿器及びこれを用いた加湿システム
WO2014045668A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 加湿器、加湿材の親水化処理方法
JP2014137201A (ja) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp 加湿器
WO2018078782A1 (ja) * 2016-10-27 2018-05-03 三菱電機株式会社 加湿装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136641A (ja) * 1990-09-27 1992-05-11 P S Kogyo Kk 気化式加湿器及びこれを用いた加湿システム
WO2014045668A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 加湿器、加湿材の親水化処理方法
JP2014137201A (ja) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp 加湿器
WO2018078782A1 (ja) * 2016-10-27 2018-05-03 三菱電機株式会社 加湿装置

Also Published As

Publication number Publication date
JPWO2020115810A1 (ja) 2021-05-20
JP7047938B2 (ja) 2022-04-05

Similar Documents

Publication Publication Date Title
JP6884799B2 (ja) 熱交換型換気装置
JP5591329B2 (ja) 換気空調装置及びその制御方法
CN109196287B (zh) 空气调节系统
WO2016002071A1 (ja) 空調換気装置
JP6800333B2 (ja) 空気調和機及び空気調和システム
CN106524390A (zh) 严密的湿度和温度控制方法
US20220146123A1 (en) Air treatment system
JP2006313027A (ja) 換気空調装置
JP4579810B2 (ja) 空調制御システム
JP2005265401A (ja) 空気調和機
WO2020003446A1 (ja) 空気調和装置
WO2019193680A1 (ja) 空気調和システム
JP2013231556A (ja) 空調システム
JP3966441B2 (ja) 空気調和装置及びその方法
JP3753182B1 (ja) 分流式空気調和装置及びその制御システム
CN115956181A (zh) 空调机
WO2020115810A1 (ja) 加湿装置および換気装置
JP6842858B2 (ja) 換気装置および給気量調整方法
JP2019148408A (ja) 換気装置
JP6793850B2 (ja) 熱交換換気装置
JP2006234345A (ja) 換気装置および空気調和機
JP3519380B2 (ja) 下降流式冷却器を備えた環境試験装置
KR100912617B1 (ko) 양방향 급배기가 가능한 환기시스템 및 그 방법
JP4675075B2 (ja) 空気調和装置及び空気調和装置の制御方法
CN110030657A (zh) 新风系统及其控制方法、控制装置、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942629

Country of ref document: EP

Kind code of ref document: A1