WO2020114353A1 - 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统 - Google Patents

用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统 Download PDF

Info

Publication number
WO2020114353A1
WO2020114353A1 PCT/CN2019/122428 CN2019122428W WO2020114353A1 WO 2020114353 A1 WO2020114353 A1 WO 2020114353A1 CN 2019122428 W CN2019122428 W CN 2019122428W WO 2020114353 A1 WO2020114353 A1 WO 2020114353A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioisotope
tube
operating system
replaceable module
exhaust gas
Prior art date
Application number
PCT/CN2019/122428
Other languages
English (en)
French (fr)
Inventor
虞善友
岳正江
徐超
刘学文
李新平
Original Assignee
米度(南京)生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811465289.9A external-priority patent/CN111257921A/zh
Priority claimed from CN201811465285.0A external-priority patent/CN111261309A/zh
Priority claimed from CN201822012958.9U external-priority patent/CN209514084U/zh
Priority claimed from CN201822012495.6U external-priority patent/CN209515215U/zh
Application filed by 米度(南京)生物技术有限公司 filed Critical 米度(南京)生物技术有限公司
Priority to CN201980079355.5A priority Critical patent/CN113490514A/zh
Publication of WO2020114353A1 publication Critical patent/WO2020114353A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the invention relates to the field of radioisotope operations, in particular, a replaceable module for a radioisotope operating system and a radioisotope operating system with the replaceable module.
  • PET Positron emission computed tomography
  • positron emission tomography is a medicine that observes the metabolic activity of an organ after injection of a radioactive tracer (in which the biological performance of the tracer is known) Imaging technology.
  • radioisotope purification and synthesis operations are often required to obtain the radioisotope-labeled compounds used, and these operations are usually performed in hospitals. Therefore, radioisotopes are required.
  • the operated equipment is highly versatile, and many different operations can be performed on the same equipment.
  • the existing equipment for radioisotope operation will have residual radioactivity in the pipeline during use. Therefore, the pipeline usually needs to be cleaned before it can be used for subsequent operations, and the cleaning process is usually time-consuming and labor-intensive. , The operation is cumbersome, and it is difficult to ensure the cleaning effect.
  • the replaceable module for a radioisotope operating system includes: a base; a holding portion , The holding part is provided on the base, the holding part protrudes from the surface of the base; and the medium transmission part includes a tube, and the medium transmission part is mounted on the base through the holding part ;
  • the holding portion further includes: a clamping groove configured to fix the tube; a receiving cavity, the receiving cavity is configured to receive the pressing portion, and the tube passes through the ⁇ taining cavity.
  • the tube can be effectively deformed by receiving pressure from the pressing portion during radioisotope operation, and the displacement of the pressing portion can be prevented
  • the pressing part and the accommodating cavity can form a valve for opening and closing the tube passing through the accommodating cavity, and the reliable function of the valve can be guaranteed.
  • the holding portion includes a clamping groove, which is suitable for fixing the tube, so that it can be ensured that the tube does not occur during the radioisotope operation, especially when the tube is pressed by the pressing portion
  • the obvious movement improves the efficiency of closing the flow path when the pressing portion presses the tube, so the reliability of the device can be further improved.
  • the above replaceable module for a radioisotope operating system may also have at least one of the following additional technical features:
  • it further includes: a boss, the boss is disposed in the accommodating cavity, and the boss protrudes from the plane of the bottom of the accommodating cavity.
  • the efficiency of closing the flow path when the pressing portion presses the tube can be further improved, and the tube can be effectively prevented from moving significantly when the tube is pressed by the pressing portion.
  • the boss is configured to extend in a direction that is not parallel to the tube.
  • the boss is configured to extend in a direction perpendicular to the tube. Thereby, the boss can squeeze the tube at a certain angle with the flow path, thereby improving the effect of closing the flow path.
  • the surface where the boss contacts the tube is a flat surface or an arc surface.
  • the base is a flat plate.
  • the opening distance of the clamping slot does not exceed the outer diameter of the tube.
  • the base includes a protruding portion, and the clamping groove and the accommodating cavity are provided on the protruding portion.
  • the outer contour of the protruding portion is circular
  • the accommodating cavity is circular
  • two protruding portions are provided on the protruding portion diametrically opposite to each other.
  • a plurality of the protrusions are included, and the plurality of protrusions are laterally distributed in two rows. This makes it easy to control multiple parallel channels.
  • the card slot includes: a receiving portion, the receiving distance of the receiving portion does not exceed the outer diameter of the tube; an enlarged portion, the enlarged distance of the enlarged portion is not less than the outer diameter of the tube path.
  • the closing distance of the closing portion is smaller than the outer diameter of the tube, and the expanding distance of the expanding portion is larger than the outer diameter of the tube.
  • it further includes: a guide portion provided on the base in the form of a groove, the groove having a recessed distance smaller than the outer diameter of the tube.
  • the groove is in communication with the clamping slot and the receiving cavity.
  • the present invention further includes: an auxiliary positioning portion, the auxiliary positioning portion is provided on the base in a convex form; an accommodating groove, the accommodating groove is provided on the protrusion, and the accommodating groove It is suitable for the tube to pass through and guide the tube.
  • the auxiliary positioning portion is detachably or movably provided on the base.
  • the groove is in communication with the receiving groove.
  • the extending direction of the receiving groove is arc-shaped.
  • the height of the protrusion does not exceed the protrusion.
  • the receiving groove is adapted to guide the tube at a right angle.
  • the present invention further includes: a container, wherein the medium transmission portion includes a connection portion, the connection portion is connected to the container, and the connection portion includes: a housing, the housing and the container Threaded connection; a rubber plug, which is provided in the housing and has at least one through hole, and the housing presses the rubber plug to form a seal between the wall of the container and the housing; And a connecting pipe, the connecting pipe passes through the through hole and the housing, and the connecting pipe and the rubber plug are connected by a rubber seal.
  • an exhaust gas treatment device including: an inlet and an outlet; an exhaust gas treatment device housing, the exhaust gas treatment device housing communicating the inlet and the outlet; at least two different The filler, the at least two fillers are provided in the exhaust gas treatment device housing.
  • the exhaust gas treatment device housing is configured in the form of a column tube, and the inlet and the outlet are provided at both ends of the column tube, wherein the exhaust gas treatment device further includes: a sieve plate, The sieve plate is disposed in the column tube to define a plurality of receiving spaces in the column tube, and the at least two different fillers are respectively disposed in at least one of the plurality of receiving spaces, wherein the sieve plate is The shape of the flat plate is provided with through holes on the plate surface, and the shape of the sieve plate matches the cross-sectional shape of the inner wall of the column tube.
  • the at least two types include fibrous materials, acid-removing substances and adsorbent substances.
  • the fibrous material, the acid-removing substance, and the adsorption substance are sequentially arranged.
  • the fibrous material is cotton; the acid-removing substance is an alkaline substance; and/or the adsorption substance is activated carbon.
  • the moisture content of the cotton is 5-10% by weight; the alkaline substance is cotton containing soda lime, the soda lime is porous granular soda lime; and/or the activated carbon
  • the pore size is 10 to 500 angstroms.
  • it further includes: a purification device, and both ends of the purification device are respectively connected to the tubes and formed in the flow path.
  • the invention proposes a radioisotope operating system.
  • the radioisotope operating system includes: a fixed module; and a replaceable module, the replaceable module is the replaceable module for a radioisotope operating system described in any one of the foregoing, wherein
  • the fixing module includes: a main body part configured to be adapted to install a replaceable module; and a pressing part configured to be movably received in the receiving cavity.
  • the tube by providing a receiving chamber suitable for receiving the pressing portion, the tube can be effectively deformed by receiving pressure from the pressing portion during the operation of the radioisotope, thereby performing a flow path in the tube Controlling, for example, opening or closing of the tube, that is, the pressing part and the accommodating cavity can form a valve for opening and closing the tube passing through the accommodating cavity, and the reliable function of the valve can be guaranteed.
  • a receiving chamber suitable for receiving the pressing portion by providing a receiving chamber suitable for receiving the pressing portion, the tube can be effectively deformed by receiving pressure from the pressing portion during the operation of the radioisotope, thereby performing a flow path in the tube Controlling, for example, opening or closing of the tube, that is, the pressing part and the accommodating cavity can form a valve for opening and closing the tube passing through the accommodating cavity, and the reliable function of the valve can be guaranteed.
  • the holding portion includes a clamping groove, which is suitable for fixing the tube, so that it can be ensured that the tube does not occur during the radioisotope operation, especially when the tube is pressed by the pressing portion
  • the obvious movement improves the efficiency of closing the flow path when the pressing portion presses the tube, so the reliability of the device can be further improved.
  • the above radioisotope operating system may also have at least one of the following additional technical features:
  • the fixing module further includes: a door leaf portion, the door leaf portion is pivotally connected to the main body portion, and the pressing portion is provided on the door leaf portion.
  • it further includes: an accommodating portion detachably provided on the main body portion, the accommodating portion being configured to be adapted to accommodate the container, the exhaust gas treatment device, and the Purification device; and a media control section, the media control section includes: a drive assembly; a rotor, the rotor is driven to rotate by the drive assembly; a pressing element, the pressing element is provided in the rotor is adapted to follow the The rotor rotates and moves relative to the rotor; a cover that surrounds the rotor, at least a portion of the drive assembly is disposed inside the body portion, the rotor, the pressing element, and the cover are disposed on The front surface of the main body portion, at least a part of the tube is provided between the pressing element and the cover body, the pressing element is configured to be adapted to
  • it further includes: a reaction vessel, which is provided in the replaceable module, and is configured for radioisotope operation; an exhaust pipe, the exhaust pipe is connected to the reaction vessel; And an exhaust gas channel, the exhaust gas channel is provided in the fixed module, and the exhaust gas channel is respectively connected to the exhaust gas pipe and the exhaust gas treatment device.
  • it further includes: a vacuum pump, which is disposed in the fixed module.
  • the present invention provides a replaceable module for a radioisotope operating system, including a base and a medium transmission section, the medium transmission section is held by the base Part is installed on the base, the medium transmission part forms a flow path through which the fluid flows and includes a tube, and the holding part includes a clamping groove for clamping the tube and a receiving cavity through which the tube passes, the receiving cavity is formed Opening and closing the valve portion of the tube passing through the receiving chamber.
  • the replaceable module composed of the base and the medium transmission part can be replaced after the operation of one radioisotope is completed. There is no need to clean the pipeline, and no radioactive residue is caused.
  • the accommodating chamber can ensure the reliable function of the valve.
  • the base is a flat plate
  • the holding portion is configured as a protrusion on the flat plate
  • the clamping groove and the accommodating cavity are provided on the protrusion
  • the clamping groove closes and prevents the tube from accidentally coming off
  • the base and the card slot include a receiving portion and an enlarged portion connected to the receiving portion, the receiving portion has a receiving distance less than or equal to the outer diameter of the pipe, and the enlarged portion has an enlarged distance greater than the outer diameter of the pipe.
  • a guide portion is further provided on the base, and the guide portion is configured as a groove on the flat plate, the groove has a concave distance smaller than the outer diameter of the pipe and extends at least partially through the protrusion portion and The clamping slot is communicated with the accommodating cavity, and the guide portion guides the medium transmission portion.
  • an auxiliary positioning portion is provided on the base at the bend of the tube, and the auxiliary positioning portion is configured as a protrusion on the flat plate, and the protrusion is provided with a receiving groove through which the tube extends, The groove extends through the protrusion and communicates with the receiving groove, the receiving groove is curved in the extending direction of the tube, and the tube is guided and positioned in the curved receiving groove .
  • the replaceable module further includes a container, and the medium transmission portion includes a connection portion connected to the container, the connection portion includes a housing, and a glue disposed in the housing and having at least one through hole A plug, a connecting pipe passing through the through hole and the casing, the casing and the container are threadedly connected, the rubber plug and the connecting pipe are connected by a rubber seal, and the casing presses the rubber plug to the A seal is formed between the wall of the container and the housing.
  • the replaceable module includes an exhaust gas treatment device, and the exhaust gas generated by the radioisotope operating system is discharged through the exhaust gas treatment device.
  • the exhaust gas treatment device includes a housing and at least two disposed in the housing Different fillers and at least one sieve plate, the at least two different fillers are separated by the sieve plate.
  • the replaceable module includes a purification device, and both ends of the purification device are respectively connected to the tubes and formed in the flow path, and the purification device includes a housing and a filler disposed in the housing .
  • the present invention also provides a radioisotope operating system, including a fixed module and a replaceable module according to one of the preceding claims
  • the fixed module includes a main body portion and a pressing portion
  • the main body portion is used to install the replaceable module
  • the pressing portion and the accommodating cavity constitute a valve that opens and closes a tube passing through the accommodating cavity.
  • the accommodating cavity can limit the pressing part to prevent the relative position of the pressing part and the base from shifting when the tube is pressed.
  • the fixing module further includes a door leaf portion pivotally connected to the main body portion, the pressing portion is provided on the door leaf portion, and when the door leaf portion is closed, the pressing portion can enter
  • the accommodating cavity presses the tube
  • the bottom of the accommodating cavity is provided with a boss, which cooperates with the pressing portion to reliably press the tube.
  • the surface where the boss is in contact with the tube may be a flat surface, an arc surface, etc.; or the boss may not be provided.
  • the fixed module includes an accommodating part where the container, the exhaust gas treatment device, and the purification device are placed, and a media control part.
  • the accommodating part is detachably connected to the body part, and the medium
  • the control part includes a drive assembly, a rotor driven to rotate by the drive assembly, a squeezing element disposed on the rotor that rotates with the rotor and can move relative to the rotor, and a cover surrounding the rotor and rollers, the drive assembly is at least partially disposed on the Inside the main body, the rotor, the pressing element and the cover are provided on the front surface of the main body, the tube is at least partially placed between the pressing element and the cover, and the pressing element moves to press
  • the tube delivers fluid within the tube by squeezing and releasing forces.
  • the radioisotope operating system according to the embodiment of the present invention has high versatility, and the replaceable module can be replaced after one radioisotope operation is completed, without cleaning the pipeline or causing radioactive residue.
  • the radioisotope operating system solves the problems of corrosion and environmental pollution caused by acid gases and radioactive volatile substances discharged during the process of metal nuclide purification and labeling synthesis, etc., and the structure of the waste gas treatment device is simple , Low cost, can be used multiple times, easy to replace, and can also be used for other products.
  • FIG. 1 is a schematic diagram of a radioisotope operating system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a connection structure of a medium transmission part of a replaceable module and a container according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a base structure of a replaceable module according to an embodiment of the present invention.
  • FIG. 4 is a partially enlarged schematic view of a base structure of a replaceable module according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an exhaust gas treatment device with a replaceable module according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a second accommodating portion of a fixed module according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a fixing device for fixing a door leaf portion of a module according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another direction of a fixing device for fixing a door leaf portion of a module according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a media control portion of a fixed module according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the function of the control module according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a 89 Zr (zirconium oxalate) purification system according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a 89 Zr (zirconium chloride hydrochloride) purification system according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a 64 Cu (copper chloride hydrochloride) purification system according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a 64 Cu (neutral copper chloride) purification system according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a 68 Ga (gallium chloride hydrochloride) purification system according to an embodiment of the present invention.
  • 16 is a schematic diagram of a 89 Zr (zirconium chloride hydrochloride) purification system according to another embodiment of the present invention.
  • 17 is a schematic diagram of a 89 Zr (zirconium oxalate) labeled DFO modified monoclonal antibody synthesis system according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a 68 Ga (gallium chloride hydrochloride) labeled DOTA modified small molecule peptide synthesis system according to an embodiment of the present invention.
  • the present invention proposes a replaceable module 200 that can be applied to a radioisotope operating system 10 and a radioisotope operating system 10 including the replaceable module 200.
  • a radioisotope operating system 10 for ease of understanding, in the following, the structure of the radioisotope operating system 10 will be briefly described first, and in describing the radioisotope operating system 10, the main components included in the radioisotope operating system 10, such as the replaceable module 200 , The fixed module 100 and the exhaust gas treatment device 250 are described.
  • the radioisotope operating system 10 includes a fixed module 100 and a replaceable module 200.
  • the replaceable module 200 is a disposal box corresponding to a specific radioisotope operation (such as purification or labeling synthesis of radioisotopes), and includes a base 210, a medium transfer part 220, and a container 230.
  • the medium transmission part 220 is mounted on the base 210 to form a fixed shape or position.
  • the base 210 may be a rectangular or substantially rectangular flat plate.
  • the base 210 may be formed of a photosensitive resin, whereby the degree of curing of the base 210 may be improved, thereby reducing deformation during use.
  • the photosensitive resin has less swelling, which can ensure the base The accuracy of the seat 210.
  • the extension direction corresponding to the long side of the base is defined as the lateral direction
  • the extension direction corresponding to the short side of the base is defined as the longitudinal direction.
  • the container 230 (R0-R14) is used to accommodate various media or provide a holding space during the operation of the radioisotope operating system 10, and may be pre-installed with various necessary for radioisotope operations
  • the reagent bottle of the reagent has a predetermined capacity of, for example, about 5 ml or 10 ml; it may also be an empty waste liquid bottle, a product bottle, a target water bottle, and the like.
  • the person skilled in the art can understand that the person skilled in the art can select the material of the container 230 according to the type of medium or the purpose of use of the container 230.
  • the container 230 can be a glass bottle, a plastic bottle or other materials.
  • the container 230 may be a cylindrical glass bottle.
  • a different number of containers 230 can also be set, each container 230 can have a different capacity, and the container 230 can have a flat bottom, a round bottom, a tapered bottom or a weight-shaped bottom, to improve Reactivity.
  • the present invention provides a replaceable module 200 for a radioisotope operating system 10.
  • the replaceable module 200 includes : Base 210, holding portion 211, medium transmission portion 220, wherein the holding portion 211 is provided on the base 210, and the holding portion 211 protrudes from the surface of the base 210, the medium transmission portion 220 includes a tube 221, the medium transmission portion 220 may It is attached to the base 210 via the holding portion 211.
  • the holding portion 211 may further include: a clamping groove 2112 and a receiving cavity 2113 configured to fix the tube 221, the receiving cavity 2113 configured to receive the fixed module 100
  • the pressing portion C is provided, and the tube 221 passes through the receiving chamber 2113. Therefore, according to the embodiment of the present invention, by providing a receiving chamber 2113 suitable for receiving the pressing portion C, the tube 221 can be effectively deformed by receiving the pressure from the pressing portion C during the radioisotope operation, thereby
  • the flow path in 211 is controlled, for example, to open or close the tube, that is, the pressing portion C and the receiving chamber 2113 can form a valve for opening and closing the tube 221 passing through the receiving chamber 2113, and the reliable function of the valve can be guaranteed.
  • the holding portion 211 includes a clamping slot 2112 suitable for fixing the tube 221, therefore, it can be ensured that the tube 221 is pressed by the pressing portion C during the radioisotope operation At this time, the tube 221 does not move significantly, and the efficiency of closing the flow path when the pressing portion C presses the tube 221 is improved. Therefore, the reliability of the device can be further improved.
  • the medium transmission part 220 may provide a flow path for fluid to flow, including a plurality of tubes 221 and a joint 222, wherein the joint is used to connect the plurality of tubes 221 according to a predetermined position or relationship, each Each joint 222 can connect one or more ends of two or more pipes 221 to each other.
  • the tube 221 may be formed of a silicone tube or a platinum tube (that is, a layer of polytetrafluoroethylene material is attached to the inner wall of the silicone tube).
  • the tube 221 has good flexibility and is suitable for the pressing portion
  • the pressure of C makes a deformation response, and can quickly recover the shape after the pressure is removed.
  • it may be other hoses or other materials as long as it can respond to the pressure of the pressing portion C in a deformed manner, so as to realize the switch control of the flow path.
  • the connector 222 may be configured as a tee, and the material may be PP or the like, in order to reduce the residue of the reagent at the connector.
  • the joint 222 can also be configured as a three-way plug valve.
  • a corresponding driving part can be provided on the fixed module 100, which gives the driving force for switching the three-way plug valve.
  • the cock can be detachably connected to the drive part. Referring to FIG.
  • the medium transmission part 220 may further include a connection part 223 connected to the container 230, the container 230 has an external thread S1, and the connection part 223 includes an internal thread S2 (matching the external thread S1 )
  • the rubber plug 2232 accommodated in the housing 2231 and having at least one through hole S3 (not shown in the figure), the connecting tube 2233 passing through the through hole S3 and the housing 2231.
  • the housing 2231 has a flange a and a side wall b connecting the flange a, the internal thread S2 is provided on the side wall b, and the connecting tube 2233 passes through the through hole S4 provided on the flange a;
  • the plug 2232 has a main body c and an edge portion d, the main body c can at least partially extend into the container 230, and the through hole S3 is provided on the main body c.
  • the number of through holes S3 may be one, two or three.
  • the connecting tube 2233 includes an outer tube e and an inner tube f that are interference-fitted together.
  • the outer tube e is a silicone tube, which may be the end of the tube 221 extending directly from the ferrule or connected to the tube 221, the outer tube e It is connected with the rubber stopper 2232 through a rubber seal, and the length can be flush with the rubber stopper 2232 or slightly protruding;
  • the inner tube f is a peek tube, which can have different lengths, and extends longer to the bottom of the container for sucking liquid from the container, The shorter is flush with the outer tube e and is used to discharge gas or introduce liquid.
  • the connecting portion 223 may be connected to the container in advance in the reagent box, and the tube near the connecting portion 223 is stuck to prevent the outflow of the reagent; or the container may be sealed by a separate cover, and the cover may be unscrewed during use.
  • the operator connects the connection part to the container.
  • the medium transmission part 220 further includes a connection part 224 connected to the target solution, etc.
  • the tubes of the medium transmission part 220 and the target solution are connected by internal and external threads or other connection structures, and the tubes of the medium transmission part 220 may also be connected to the fixed module Interface I (I1, I2, I3) preset on 100.
  • a holding portion 211 and a guide portion 212 may be provided on the base 210 at the same time, and the medium transmission portion 220 is mounted on the base 210 through the holding portion 211, and the holding portion 211 is configured as a plurality of protrusions 2111 on the flat plate And is integral with the base 210, the guide portion 212 is configured as a groove on the flat plate.
  • the holding portion 211 may also be constructed separately and connected to the base.
  • the protruding portion 2111 is provided with a clamping groove 2112 for clamping the tube 221 and a receiving cavity 2113 through which the tube 221 passes.
  • the card slot 2112 has a closing section to prevent the tube from accidentally detaching from the base 210.
  • the card slot 2112 includes a receiving portion 2112a and an enlarged portion 2112b connected to the receiving portion 2112a. Distance, the enlarged portion 2112b has an enlarged distance greater than the outer diameter of the tube.
  • the slot 2112 is arc-shaped and matches the shape of the tube 221, and the accommodating cavity 2113 corresponds to the pressing portion C (which is provided on the fixing module 100 and described in detail later) of the pressing tube 221 and corresponds to The pressing portion C is limited to prevent the relative position of the pressing portion and the base 210 from shifting when the tube 221 is pressed.
  • the bottom of the accommodating cavity 2113 has a flat surface, which is slightly lower than or parallel to the plate surface of the base.
  • the flat surface accommodating the bottom of 2113 can apply pressure to the tube 221 together with the pressing portion C, and the uniformity can be improved, thereby avoiding tube displacement caused by uneven pressure.
  • a boss 2114 may be further provided on the plane, and the boss 2114 cooperates with the pressing portion to more firmly press the tube 221.
  • the boss 2114 extends in a manner not parallel to the groove on the tube 221 or the flat plate and protrudes beyond the plane of the bottom of the receiving cavity 2113 or the plate surface of the base.
  • the boss 2114 extends perpendicular to the groove on the tube 221 or the flat plate and protrudes above the plane of the bottom of the receiving cavity or the plate surface of the base. It can be understood that the surface where the boss contacts the tube may be a flat surface, an arc surface, or the like. According to an embodiment of the present invention, it is also possible to increase the switching efficiency of the tube 221 by increasing the pressure of the pressing portion C, thereby avoiding the use of a boss 2114.
  • the pressing portion C may be a cylinder and has a cylindrical piston rod, the accommodating cavity is correspondingly circular, and the outer contour of the protrusion is also circular, so that each protrusion is arranged diametrically opposite 2 slots, the tube passes through the slot and the receiving cavity along the diameter of the protrusion.
  • the number of protruding portions 2111 is the same as the number of pressing portions, and they are laterally distributed in two rows on the base corresponding to two edges of the long side. Thereby, the inlet and outlet of the flow path can be controlled, and the intermediate pipelines can be arranged in parallel by using a three-way connection or the like, whereby multiple pipelines can be controlled by a small number of control nodes.
  • the guide portion 212 guides the medium transmission portion
  • the groove is arc-shaped, matching the shape of the tube 221 or the joint 222, so that the tube 221 and the joint 222 can be partially accommodated in the groove
  • the groove It has a concave distance smaller than the outer diameter of the tube and at least partially extends through the holding portion 211 and communicates with the clamping groove 2112 and the accommodating cavity 2113, thereby guiding the medium transmission portion.
  • the groove includes lateral and longitudinal grooves, and the groove passing through the holding portion is longitudinal, and the corresponding boss extends in a laterally elongated shape to the side wall of the receiving cavity. For other directions, the guide portion may not be provided.
  • an auxiliary positioning portion 213 is provided at the bend of the tube 221.
  • the auxiliary positioning portion 213 is configured as a protrusion 2131 on the base 210, and a receiving groove 2132 is provided on the protrusion 2131.
  • the groove extends through the protrusion 2131 and
  • the accommodating groove 2132 is in communication, and the accommodating groove is arc-shaped in the extending direction of the tube 221, and the tube 221 is guided and positioned in the arc-shaped groove.
  • the height of the protrusion 2131 and the protrusion 2111 in the direction perpendicular to the board surface of the base is the same.
  • the protrusion 2131 can also be lower than the protrusion 2111.
  • the base 210 is also provided with a positioning member 214 for positioning and mounting the base to the fixed module.
  • a positioning member 214 for positioning and mounting the base to the fixed module.
  • the replaceable module 200 may further include a purification device 240 and an exhaust gas treatment device 250.
  • the two ends of the purification device 240 are respectively connected to the tube 221 and formed in the flow path for the purification of the reaction medium, which may be pre-connected, or may be placed separately in the reagent box by the operator Connect manually.
  • the purification device 240 may be configured as a purification column (Z3, Z4). When used for different radioisotope operations, the column tube of the purification column may have different packings (described later), and the column tube may Made of materials resistant to acid and alkali corrosion, such as polytetrafluoroethylene.
  • a large amount of strongly acidic waste gas and radioactive volatile substances are generated during the chemical reaction process of isotope operation, and most of the existing equipment does not treat the waste gas generated during the reaction process, which is not conducive to energy saving and environmental protection, and the equipment It itself causes corrosion; some are condensed with liquid nitrogen first, and the uncondensed part is compressed with a gas tank and stored. Frequent replacement of liquid nitrogen is required, and the equipment is bulky and the cost of use is high.
  • one end of the exhaust gas treatment device 250 is connected to an exhaust gas passage of the fixed module 100 (described in detail later), which is used to reduce the corrosion of the equipment and the environmental pollution caused by the acid gas and radioactive volatile substances discharged during the operation.
  • the exhaust gas treatment device 250 includes an inlet 251, an outlet 252, a housing 253 communicating the inlet 251 and the outlet 252, and at least two different fillers 254 provided in the housing 253.
  • the exhaust gas enters from the inlet 251 and passes through the filling Object 254 comes out of exit 252.
  • the exhaust gas treatment device 250 is configured as an exhaust gas treatment column (Z1, Z2)
  • the housing 253 is a column tube
  • the column tube may be made of a material resistant to acid and alkali corrosion, such as polytetrafluoroethylene
  • the inlet 251 and The outlets 252 are provided at both ends of the column tube, and at least two different fillers 254 are separated by at least one sieve plate 255 provided in the column tube.
  • the filling 254 in the direction from the inlet to the outlet is wet cotton, cotton containing soda lime, and activated carbon.
  • Moist cotton can quickly absorb acidic components in the exhaust gas by containing an appropriate amount of water (for example, 5%-10%), and the remaining gas can flow through the cotton; soda lime can use conventional commercially available loose porous granular soda lime, which Adsorbs a small amount of water contained in the gas after passing through cotton, and neutralizes the acid-containing components in the water; activated carbon can choose activated carbon particles with a pore size of 10 to 500A°, and its role is to adsorb other possible substances after the above two steps of treatment. Category ingredients. It can be understood that the filler 254 may have other structures, cotton may also be replaced with other fibrous materials, soda lime may be replaced with other acid-removing substances, and activated carbon may be replaced with other adsorbent substances.
  • each filler 254 is arranged between two sieve plates 255 and is accommodated in the space formed by the sieve plate 255 and the column tube.
  • the sieve plate 255 is a flat plate and has through holes on the plate surface.
  • the cross-sectional shape of the inner wall of the column tube is matched so that different fillers 254 can be separated from each other and the exhaust gas can be passed through in sequence.
  • the exhaust gas treatment device has a simple structure, low cost, can be used multiple times, is easy to replace, and can also be used for other products.
  • a part of the housing 253 may be made of a transparent material, so that the user can determine whether the exhaust gas treatment device 250 needs to be replaced as a whole by observing the shape change of the filler 254, for example, when soda lime is in use After a period of time, obvious morphological changes will occur.
  • the media transmission part composed of the required tubes and joints can be selected to form different flow paths on the base in different arrangements.
  • the media transfer part, base, container, etc. required for a reaction are constructed as a process box (replaceable module 200), which is convenient for operation.
  • a process box is only used for one or several operations , You can then replace the new disposal box without cleaning.
  • the fixed module 100 may be a cube-shaped or substantially cube-shaped component, including a main body portion 110 and a door leaf portion 120.
  • up, down, front and back, and left and right refer to the installation surface side when the main body 110 is installed as the lower side, and the side surface on which the replaceable module 200 is installed as the front direction.
  • the front surface of the main body portion 110 is provided with a mounting portion 111 on which the base 210 of the replaceable module 200 is mounted.
  • the mounting part 111 has a mounting part 1111 corresponding to the positioning part 214 on the base 210, which is a positioning pin according to an embodiment of the present invention; the mounting part 111 also has a stopper 1112 to prevent the base 210 from being separated from the main body part 110 .
  • the longitudinal direction of the base 210 extends in the vertical direction of the main body 110.
  • the fixed module 100 further includes a receiving portion 130 in which the container 230 is placed.
  • the receiving portion 130 may include first, second, and third receiving portions 131, 132, and 133.
  • the first accommodating portion 131 is provided on the upper surface of the main body portion 110, and the entire body is a rectangular parallelepiped.
  • a plurality of accommodating grooves 1311 at least partially accommodating reagent bottles, target water bottles, intermediate bottles, etc. are formed on the upper surface. , It is convenient for the operator to observe the container in the holding tank.
  • the second accommodating portion 132 is provided on the front surface of the main body portion 110 and below the mounting portion 111.
  • the whole is T-shaped, and a plurality of through holes 1321 are provided in the middle portion for accommodating product bottles, waste liquid bottles, and reactions Bottles, etc.; the shorter parts on both sides are respectively provided with through holes 1322 for accommodating the purification device 240, the purification device 240 has a flange 241, the flange 241 can be stuck on the upper surface of the second accommodating portion 132, and the purification device 240 is connected at both ends
  • the tube 221; the through hole 1322 and the side 1323 are completely connected in the up and down direction, so that after the purification device 240 is connected to the tube 221, the tube 221 can be passed through the side 1323, so that the purification device 240 can be disassembled without removing the tube 221 .
  • the third accommodating portion 133 is provided on the side surface of the main body portion 110 and has a plurality of through holes 1331 for accommodating the exhaust gas treatment device 250.
  • the exhaust gas treatment device 250 has a flange 256, and the flange 256 can be caught on the third accommodating portion 133
  • the through hole of the third accommodating portion may be completely in communication with the side in the vertical direction. It can be understood that the purification device may also be installed in the third accommodating part.
  • the first, second, and third accommodating portions 131, 132, and 133 are detachably fixed to the body portion 110, such as screw connection or snap connection, which can be replaced according to the type of product. It can be a non-removable connection or integrated. According to a specific operation, each container can be selectively placed in a receiving groove or a receiving hole of each receiving portion. It can be understood that the first, second, and third accommodating portions 131, 132, and 133 may also have other arrangements.
  • the door leaf portion 120 is pivotally connected to the main body portion 110, and can at least partially close or open a part of the front surface of the main body portion 110. In the closed position, the door leaf portion 120 covers the base mounted on the front surface of the main body portion 110
  • the seat 210 according to the embodiment of the present invention, the pivot shaft extends in the up-down direction of the main body portion, and the door leaf portion 120 can be opened and closed at least 90 degrees, and it can be understood that it can also be in other directions or other angles.
  • the door leaf portion 120 in the closed position, the door leaf portion 120 is fixed to the main body portion 110 by the fixing device 121, and the lock of the fixing device 121 may be released when opened.
  • the fixing device 121 includes a support 1211, an operating member 1212, and a locking member 1213.
  • the supporting member 1211 is fixedly installed on the door leaf portion 120 by screws or the like.
  • the operating member 1212 is pivotally disposed on the supporting member 1211 and can The locking member 1213 is driven to move.
  • the main body 110 is provided with an engaging member 112 that cooperates with the locking member 1213.
  • the locking member 1213 and the engaging member 112 are respectively provided with interacting inclined surfaces A and B.
  • the operating member 1212 is provided with an operating hole D.
  • the locking member 1213 In the release position, the locking member 1213 is biased by a spring or the like in the locked position and can be locked by the engaging member 112; the operating member D12 is pulled by the operating hole D relative to the supporting member 1211 Rotating, the locking member 1213 can move to the release position, and can be disengaged from the engaging member 112.
  • the operating member and the locking member may also have other arrangement methods, and the fixing device may also adopt other forms, such as screws and the like.
  • a plurality of cylinders C (pressing portions) are provided at predetermined positions inside the door leaf portion 120.
  • the cylinders C are powered by an air compressor (not shown), and air is supplied to each air via an air pipe (not shown) extending from the main body portion 110
  • a cylinder C which corresponds one-to-one with the accommodating cavity 2113 on the base 210.
  • the cylinder C can extend into the accommodating cavity 2113 and press the tube 221 as an opening and closing valve for flattening or restoring the tube 221 V comes into play.
  • a pressure reducing valve 140 is provided on the side surface of the main body 110 to adjust the gas pressure. It can be understood that the pressing portion may also adopt other structures.
  • a large amount of space can be saved by arranging the cylinder C (pressing portion C) in the door leaf portion.
  • the cylinder C pressing portion C
  • the fixed module 100 may further include first and second exhaust gas channels T1 and T2 (not shown in FIG. 1) provided in the main body 110, a waste liquid bottle and a product of the detachable module 200
  • the bottle or the like is connected to a preset exhaust gas inlet (preset interface) I1 on the main body through an exhaust pipe (pipe) connected to the connecting portion 223, the exhaust gas inlet I1 communicates with the first exhaust gas channel T1, and the first exhaust gas channel T1 communicates again
  • the waste gas outlet I2 preset on the main body 110 is connected to the first waste gas treatment column Z1, and the waste gas in the waste liquid bottle, product bottle, etc.
  • the target water bottle and the (target washing) waste liquid bottle are connected to the second exhaust gas channel T2 and the second exhaust gas treatment column Z2 in the same manner, and the second exhaust gas treatment column Z2 is connected to the interior of the main body through the preset vacuum pump inlet I3 on the main body
  • the vacuum pump P3 (not shown in Figure 1) is installed. Under the positive pressure of the target transmission of the accelerator and the negative pressure of the vacuum pump, the exhaust gas in the target water bottle and (target washing) waste liquid bottle passes through the exhaust pipe, the second exhaust passage T2, the second The exhaust gas treatment column Z2 and the vacuum pump P3 are discharged.
  • the vacuum pump P3 increases the negative pressure in order to shorten the target transmission time of the accelerator, reduce the residual loss of the pipeline, and increase the target recovery rate. It can be understood that the vacuum pump may not be provided, and there may be only one exhaust gas channel at this time; the exhaust gas channel may not be provided.
  • the exhaust gas outlet I2 may be provided above the third accommodating portion 133, the inlet 251 of the exhaust gas treatment device 250 is connected to the exhaust gas outlet I2 through a pipe, and the outlet 252 of the exhaust gas treatment device 250 is opened to directly discharge the treated exhaust gas to the atmosphere or It is connected to the vacuum pump inlet I3 and discharged to the atmosphere through the vacuum pump P3. It can be understood that the exhaust gas outlet I2 can also be provided in other places, as long as it is near the third accommodating portion 133 to facilitate connection with the exhaust gas treatment device 250.
  • an exhaust gas channel, an exhaust gas treatment column, a vacuum pump, etc. constitute an exhaust gas treatment system, which solves the corrosion and acid gas and radioactive volatile substances discharged by the metal nuclide purification and mark synthesis process during the operation of the equipment itself.
  • Environmental Pollution To verify the effect of exhaust gas treatment, there are the following comparative tests:
  • the fixed module 100 further includes a media control part 180 (P1, P2, P4).
  • the media control part 180 includes a drive assembly 181, a rotor 182 driven and rotated by the drive assembly 181, The roller 183 on the rotor 182 and the cover 184 surrounding the rotor 182 and the roller 183.
  • the driving assembly 181 is at least partially disposed inside the main body portion 110.
  • the rotor 182, the roller 183, and the cover 184 are disposed on both sides of the second accommodating portion 132 on the front surface of the main body portion 110.
  • the cover can also be provided at other locations, such as the upper surface of the main body.
  • the predetermined tube 221 is placed between the roller 183 and the cover body 184.
  • the roller 183 can also rotate relative to the rotor 182, and the roller 183 rotates
  • the squeezing tube 221 conveys the fluid E by the force of squeezing and releasing.
  • the number of rollers 183 is at least two. While rotating with the rotor 182, the tubes 221 are sequentially squeezed and crushed. With the movement of the roller 183, a positive pressure is formed in the front tube to move the fluid forward, and a negative pressure is continuously formed in the rear tube. The fluid is sucked and circulated back and forth, and the fluid flows accordingly.
  • roller 183 may also be replaced by other pressing elements that can rotate with the rotor and move relative to the rotor.
  • the flow rate of the fluid can be controlled.
  • the flow rate is stable and can be adjusted and controlled, which is conducive to controlling the effect of purification through the purification column to achieve full adsorption and rapid elution; by controlling the rotation of the rotor, the fluid can be set forward or reverse Flow direction makes the equipment easier to operate and multifunctional.
  • the medium control part isolates the medium in the pump tube, and the medium does not come into contact with the medium control part or other components of the fixed module, thereby avoiding corrosion of the equipment by strong acids, and extending the durability and service life of the equipment.
  • the fixed module 100 may also be provided with a heating device 190 (H1, H2, H3, not shown in FIG. 1) for heating the reaction flask, etc.
  • the heating device 190 is electrically connected to the inside of the main body 110 When the reaction flask is heated, it may be disposed under the second accommodating part 132, may be fixed on the second accommodating part 132, and may be separated from the main body part 110 together with the second accommodating part 132, or may be directly fixed on the main body part 110.
  • the fixed module 100 may also be provided with a cooling device for cooling the reaction bottle, a pressure sensor for confirming the pressure in the reaction bottle, a thermometer for confirming the temperature in the reaction bottle, and a confirmation device for confirming the content in the reaction bottle
  • a cooling device for cooling the reaction bottle
  • a pressure sensor for confirming the pressure in the reaction bottle
  • a thermometer for confirming the temperature in the reaction bottle
  • a confirmation device for confirming the content in the reaction bottle
  • the radioisotope operation device 10 further includes a control module 300, which is electrically connected to the fixed module 100 and can remotely control the operation of the radioisotope operation device 10.
  • the control module 300 controls the operation of the opening and closing valve V, the medium control unit 180, the vacuum pump P3, the heating device 190, and the like to operate the transmission and reaction of the medium in the medium transmission unit 220 and various containers 230. It can be understood that the control module can also control other components of the fixed module.
  • the control module 300 controls the opening or closing of each opening and closing valve V by supplying power to each cylinder C; it can also control the opening and closing of the medium control unit 180 and the vacuum pump P3, and the flow rate of the medium is controlled by the gear setting; and the heating device 190 The opening and closing, heating temperature setting.
  • the control module 300 includes a manual mode, an automatic mode, and a semi-automatic mode.
  • the manual mode controls the operation of the device by clicking on the corresponding controls on the operation interface of the control module 300, such as the opening and closing valve V, the media control part 180, the vacuum pump P3, the heating device 190, etc., and maintains the current state until the next command is issued; After selecting the corresponding reaction program, it runs automatically according to the software design sequence until all the steps under the program are completed; in semi-automatic mode, you can manually click each step under the corresponding reaction program and run it automatically according to the sequence until the end of the step. In the fully automatic and semi-automatic modes, you can also manually set the running time of each step.
  • FIGS. 11-16 For the convenience of explanation, the figure only shows the action part of the exchangeable module and the fixed module related to the purification reaction.
  • the medium transmission part is described by the flow path L formed by the tube and the joint.
  • the connection part is not shown, and V1-V22 is from the upper left.
  • the opening and closing valves composed of the pressing portion and the accommodating chamber are sequentially arranged.
  • the accelerator can be a cyclotron or linear accelerator; the irradiated charged particles are protons, deuterium, alpha particles, 3 He, or electrons; etc.; as a target Examples of materials include 90 Y, 64 Ni, and 68 Zn.
  • the replaceable module for 89 Zr (zirconium oxalate) purification has a base 210, a medium transmission part 220 composed of flow paths L111-L122, an exhaust gas treatment column Z1, Z2, a purification column Z3, a target water bottle R1, a reagent bottle R3, R4 , R5, waste liquid bottles R10, R12, product bottle R13; the fixed module has a media control part P1, exhaust gas channels T1, T2, vacuum pump P3.
  • the packing of the purification column Z3 is a resin containing hydroxamic acid functional groups.
  • the medium transfer section for purification of 89 Zr forms flow paths L111-L122.
  • L111 extends from the corresponding port of the accelerator to the waste bottle R10, through the valves V1 and V12;
  • L112 extends from L111 to the target water bottle R1, through the valve V2;
  • L113 extends from the target water bottle R1 to the purification column Z3, through the valve V3 and the medium control part P1
  • L114 extends from purification column Z3 to waste bottle R12, through valve V17;
  • L115 extends from L114 to product bottle R13, through valve V18;
  • L116 extends from reagent bottle R3 to L113, through valve V4;
  • L117 extends from reagent bottle R4 to L113, through valve V5;
  • L118 extends from reagent bottle R5 to L117, through valve V6;
  • L119, L120 respectively extend from target water bottle R1, waste liquid bottle R10 to exhaust channel T2, exhaust channel T2 is then connected to exhaust gas treatment column Z
  • the target was transferred, and L111 was connected to the port of the accelerator (not shown in the figure).
  • the 90 Y target bombarded by the cyclotron 12MeV proton beam was dissolved with 6M hydrochloric acid at the accelerator end and flowed out from the accelerator port. Open the V1 and V2 valves, and open the valve at the accelerator port to start the vacuum pump P3.
  • the target water flows into the target water bottle R1 through L111 and L112, and the exhaust gas flows through the exhaust gas through L119 and the exhaust gas channel T2 After processing column Z2, it is discharged through vacuum pump P3.
  • the accelerator end is operated to make the accelerator washing target waste liquid flow out from the accelerator port, open V1, V12, and open the valve of the accelerator port, start the vacuum pump P3, under the effect of the accelerator positive pressure and the vacuum pump P3, wash the target waste liquid It flows to the waste liquid bottle R10 through L111, and the exhaust gas flows through the exhaust gas treatment column Z2 through the L120 and the exhaust gas channel T2 and is discharged through the vacuum pump P3.
  • the liquid in the target water bottle R1 flows through the purification column Z3 through L113 and L114.
  • 89 Zr is adsorbed by the purification column Z3 and the waste liquid
  • the exhaust gas flows through the exhaust gas treatment column Z1 through the L121 and the exhaust gas channel T1 and is discharged.
  • the liquid (2M, 10mL hydrochloric acid) in the reagent bottle R3 flows through the purification column Z3 through L116, L113, L114, and elutes.
  • waste liquid enters the waste liquid bottle R12, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L121 and the exhaust gas channel T1; the V5 and V17 are opened, and the media control unit P1 is started to promote the role of the media control unit
  • the liquid (10mL ultrapure water) in the lower reagent bottle R4 flows through the Z3 purification column through L117, L113, L114, and the residual impurities on the elution column, the waste liquid enters the waste liquid bottle R12, and the waste gas flows through the waste gas treatment through L121 and the waste gas channel T1 After column Z1 is discharged.
  • the liquid (1M, 2mL oxalic acid solution) in the reagent bottle R5 is purified by L118, L117, L113, L114, L115 through Z3.
  • the column, 89 Zr on the elution column enters the product collection bottle R13, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L122 and the exhaust gas channel T1 and is discharged.
  • the replaceable module for 89 Zr (zirconium chloride hydrochloride) purification has a base 210, a medium transmission section 220 composed of flow paths L211-L229, exhaust gas treatment columns Z1, Z2, purification columns Z3, Z4, target water bottle R1, middle Bottle R2, reagent bottles R3, R4, R5, R8, R9, waste liquid bottle R10, waste liquid bottle R12, product bottle R13; the fixed module has media control parts P1, P2, waste gas channels T1, T2, vacuum pump P3.
  • the packing of the purification column Z3 is a resin containing hydroxamic acid functional groups
  • the packing of the purification column Z4 is a hydrophilic strong anion exchange adsorbent.
  • the medium transmission part for purification of 89 Zr forms flow paths L211-L225, L227-L229.
  • L211-L214, L216-L222 and 89 Zr (zirconium oxalate) purification channels L111-L114, L116-L122 are the same.
  • L215 extends from L214 to intermediate bottle R2, through valve V7;
  • L223 extends from intermediate bottle R2 and connects to exhaust gas channel T1;
  • L224 extends from intermediate bottle R2 to purification column Z4, through valve V8 and media control section P2;
  • L225 from purification column Z4 extends to waste bottle R12, through valve V19;
  • L227 extends from reagent bottle R8 to L224, through valve V10;
  • L228 extends from reagent bottle R9 to L227, through valve V11;
  • L229 extends from L225 to product bottle R13, through valve V20 .
  • the steps of target transfer, purification adsorption, and cleaning purification column Z3 are the same as those of 89 Zr (zirconium oxalate) purification.
  • the purification column Z3 After cleaning the purification column Z3, enter the elution zirconium oxalate, turn on V6 and V7, and start the media control part P1. Under the action of the media control part, the liquid (1M, 2mL oxalic acid solution) in the reagent bottle R5 passes through L218, L217, L213, L214 and L215 flow through the Z3 purification column, 89 Zr (zirconium oxalate) on the elution column, enter the intermediate bottle R2, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L223 and the exhaust gas channel T1 and is discharged.
  • the liquid (1M, 2mL oxalic acid solution) in the reagent bottle R5 passes through L218, L217, L213, L214 and L215 flow through the Z3 purification column, 89 Zr (zirconium oxalate) on the elution column, enter the intermediate bottle R2, and the exhaust gas flows through the
  • the zirconium oxalate is loaded on the column, V8 and V19 are turned on, and the media control part P2 is started. Under the action of the media control part, the liquid in the intermediate bottle R2 flows through the Z4 purification column through L224 and L225. 89 Zr is adsorbed on the column and oxalic acid flows in Waste liquid bottle R12.
  • the liquid (10 mL of water) in the reagent bottle R8 flows through the purification column Z4 through L227, L224, and L225.
  • the liquid (1M, 1mL hydrochloric acid) in the reagent bottle R9 flows through the purification column Z4 through L228, L227, L224, L225, L229 , Elute 89 Zr products to product bottle R13, exhaust gas flows through exhaust gas treatment column Z1 through L222 and exhaust gas channel T1.
  • the replaceable module for 64 Cu (copper chloride hydrochloride) purification has a base 210, a medium transmission section 220 composed of flow paths L311-L322, L330, L331, exhaust gas treatment columns Z1, Z2, purification column Z3, and target water bottle R1 , Reagent bottles R3, R4, R5, waste liquid bottles R10, R12, target recovery bottles R11, product bottles R13; the fixed module has a media control part P1, exhaust gas channels T1, T2, vacuum pump P3.
  • the packing of the purification column Z3 is anion exchange resin.
  • the medium transfer section for 64 Cu (copper chloride hydrochloride) purification forms flow paths L311-L322, L330, L331.
  • L330 extends from L314 to the target recovery bottle R11, through the valve V12;
  • L331 extends from the target recovery bottle R11 and is connected to the exhaust gas channel T2.
  • the target is transferred, and L311 is connected to the port of the accelerator (not shown in the figure).
  • the 64 Ni target plate bombarded by the 12MeV proton beam of the cyclotron is dissolved at the accelerator end with 6M hydrochloric acid, and then flows out from the accelerator port. Open the V1 and V2 valves, and open the valve at the accelerator port to start the vacuum pump P3.
  • the target water flows into the target water bottle R1 through L311 and L312, and the exhaust gas flows through the exhaust gas through L319 and the exhaust gas channel T2 After processing column Z2, it is discharged through vacuum pump P3.
  • the accelerator end is operated to make the accelerator washing target waste liquid flow out from the accelerator port, open V1, V12, and open the valve of the accelerator port, start the vacuum pump P3, under the effect of the accelerator positive pressure and the vacuum pump P3, wash the target waste liquid It flows to the waste liquid bottle R10 through L311, and the exhaust gas flows through the exhaust gas treatment column Z2 through the L320 and the exhaust gas channel T2 and is discharged through the vacuum pump P3.
  • the liquid in the target water bottle R1 flows through the purification column Z3 through L313, L314, L330, 64Cu is adsorbed by the purification column Z3, the target The material 64 Ni recovery liquid enters the target recovery bottle R11, and the exhaust gas flows through the exhaust gas treatment column Z1 through the exhaust gas channel L1 and the exhaust gas channel T1.
  • the liquid (6M, 2mL hydrochloric acid) in the reagent bottle R3 flows through the purification column Z3 through L316, L313, L314, L330,
  • the target material 64 Ni remains on the elution column, enters the target recovery bottle R11, the exhaust gas flows through the exhaust gas treatment column Z1 through the L331 and the exhaust gas channel T1, and is discharged; turn on V5, V17, and start the media control part P1, and push it in the media control part
  • the liquid (6M, 10mL hydrochloric acid) in the reagent bottle R4 flows through the Z3 purification column through L317, L313, L314, and the residual impurities on the elution column, the waste liquid enters the waste liquid bottle R12, and the exhaust gas flows through the exhaust gas through the L321 and the exhaust gas channel T1 Discharge after treating column Z1.
  • the liquid (1M, 2mL hydrochloric acid) in the reagent bottle R5 flows through the Z3 purification column through L318, L317, L313, L314, L315 , 64 Ni on the elution column, enter the product collection bottle R13, the exhaust gas flows through the exhaust gas treatment column Z1 through the L322 and the exhaust gas channel T1 and is discharged.
  • the replaceable module for 64 Cu (neutral copper chloride) purification has a base 210, a medium transmission part 220 composed of flow paths L411-L431, exhaust gas treatment columns Z1, Z2, purification columns Z3, Z4, and a target water bottle R1, Intermediate bottle R2, reagent bottles R3, R4, R5, R7, R8, R9, waste liquid bottles R10, R12, target recovery bottle R11, product bottle R13; the fixed module has media control parts P1, P2, exhaust gas channel T1 T2, vacuum pump P3.
  • the packing of purification columns Z3 and Z4 is anion exchange resin.
  • the medium transmission section for purification of 64 Cu forms flow paths L411-L431.
  • L411-L425, and 89 Zr zirconium chloride hydrochloride was purified flow path L211-L225, the same L427-L429 L227-L229.
  • L430 and L431 are the same as the flow channels L330 and L331 purified by 64 Cu (copper chloride hydrochloride).
  • L426 extends from reagent bottle R7 to L424, through valve V9.
  • the steps of target transfer, purification adsorption, and cleaning purification column Z3 are the same as those of 64 Cu (copper chloride hydrochloride) purification.
  • the purification column Z3 After cleaning the purification column Z3, enter the eluted copper chloride hydrochloride, turn on V6 and V7, and start the media control part P1. Under the action of the media control part, the liquid (1M, 2mL hydrochloric acid) in the reagent bottle R5 passes through L418, L417, L413 , L414, L415 flow through the Z3 purification column, 64 Cu (copper chloride) on the elution column, enter the intermediate bottle R2, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L423 and the exhaust gas channel T1 and is discharged.
  • the liquid (1M, 2mL hydrochloric acid) in the reagent bottle R5 passes through L418, L417, L413 , L414, L415 flow through the Z3 purification column, 64 Cu (copper chloride) on the elution column, enter the intermediate bottle R2, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L423 and the exhaust gas channel
  • the liquid (8M, 1.5mL hydrochloric acid) in the reagent bottle R7 flows through the purification column Z4 through L426, L424, L425, the column
  • the upper impurities are eluted to the waste liquid bottle R12; turn on V10, V19, and start the media control part P2, under the action of the media control part, the liquid in the reagent bottle R8 (0.2mL ultrapure water) flows through L427, L424, L425 Purify the column Z4, and the hydrochloric acid on the column is eluted to the waste bottle R12.
  • the liquid in the reagent bottle R9 (1mL ultrapure water) flows through the purification column Z4 through L428, L427, L424, L425, L429 , Elute 64 Cu product to product bottle R13, exhaust gas flows through exhaust gas treatment column Z1 through L422 and exhaust gas channel T1.
  • the replaceable module for purification of 68 Ga has a base 210, a medium transmission part 220 composed of flow paths L511-L522, L530, L531, exhaust gas treatment columns Z1, Z2, purification column Z3, and target water bottle R1 , Reagent bottles R3, R4, R5, waste liquid bottles R10, R12, target recovery bottles R11, product bottles R13; the fixed module has a media control part P1, exhaust gas channels T1, T2, vacuum pump P3.
  • the packing of the purification column Z3 is a resin containing hydroxamic acid functional groups.
  • the medium transmission part for purification of 68 Ga forms flow paths L511-L522, L530, L531. It is the same as the flow channels L311-L322, L330, L331 purified by 64 Cu (copper chloride hydrochloride).
  • the target was carried out, L511 was connected to the port of the accelerator (not shown in the figure), and the 68 Zn target bombarded by the cyclotron 12MeV proton beam was dissolved at the accelerator end with 10M hydrochloric acid, and then flowed out from the accelerator port. Open the V1 and V2 valves, and open the valve at the accelerator port to start the vacuum pump P3. Under the positive pressure of the accelerator and the vacuum pump P3, the target water flows into the target water bottle R1 through L511 and L512, and the exhaust gas flows through the exhaust gas through L519 and the exhaust gas channel T2 After processing column Z2, it is discharged through vacuum pump P3.
  • the accelerator end is operated to make the accelerator washing target waste liquid flow out from the accelerator port, open V1, V12, and open the valve of the accelerator port, start the vacuum pump P3, under the effect of the accelerator positive pressure and the vacuum pump P3, wash the target waste liquid It flows to the waste liquid bottle R10 through L511, and the exhaust gas flows through the exhaust gas treatment column Z2 through the L520 and the exhaust gas channel T2 and is discharged through the vacuum pump P3.
  • the liquid in the target water bottle R1 flows through the purification column Z3 through L513, L514, L530, 68Ga is adsorbed by the purification column Z3, the target The material 68 Zn recovery liquid enters the target recovery bottle R11, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L531 and the exhaust gas channel T1 and is discharged.
  • the liquid (10M, 2mL hydrochloric acid) in the reagent bottle R3 flows through the purification column Z3 through L516, L513, L514, L530 ,
  • the target material 68 Zn remains on the elution column, enters the target recovery bottle R11, the exhaust gas flows through the exhaust gas treatment column Z1 through the L531 and the exhaust gas channel T1, and is discharged; turn on V5, V17, and start the media control part P1, in the media control part
  • the liquid (10M, 2mL hydrochloric acid) in the reagent bottle R4 flows through the Z3 purification column through L517, L513, L514 under the impulse, the residual impurities on the elution column, the waste liquid enters the waste liquid bottle R12, the waste gas flows through the L521 and the waste gas channel T1
  • the exhaust gas treatment column Z1 is discharged.
  • the liquid in the reagent bottle R5 (2M, 2mL hydrochloric acid) flows through the Z3 purification column through L518, L517, L513, L514, L515
  • the 68 Ga on the elution column enters the product collection bottle R13, and the exhaust gas flows through the exhaust gas treatment column Z1 through the L522 and the exhaust gas channel T1 and is discharged.
  • the target bombarded by the cyclotron proton beam is dissolved at the accelerator end, flows out directly from the accelerator port and is connected to the corresponding interface of the medium transmission part. It can be understood that the target can also be transmitted from the accelerator end Dissolve in the radioisotope operation device and proceed to the next step after it is released, that is to say, the radioisotope operation device also includes a target dissolution part (from the target dissolution bottle R0, heating device H1, filter F1, medium described below)
  • the control unit P4 constitutes).
  • the purification with 89 Zr zirconium chloride hydrochloride
  • L611 extends from the target chip dissolving bottle R0 to the filter F1, and passes through the media control section P4;
  • L612 extends from the filter F1 to the target water bottle R1. It can be understood that L611 and L612 can also be controlled by valves for their flow paths, and according to the embodiment of the present invention, they are controlled only by the media control section P4.
  • the 90 Y target bombarded by the 12MeV proton beam of the cyclotron was transported to the end of the radioisotope operation device with a lead shielding tank after the accelerator end was sent out, and the target was placed in the target dissolution bottle R6.
  • dissolve the target add hydrochloric acid (usually 6M, 3mL) to the target dissolution bottle R6 in advance, and turn on the heating device H1 to heat the target dissolution bottle R6 to 40-60 degrees to assist dissolution for 2min.
  • the target is transferred, the medium control part P4 is turned on, and the liquid in the target dissolution bottle R6 flows through the filter F1 to remove undissolved solid impurities, and then enters the target water bottle R1.
  • the procedure after the target transmission is the same as the 89 Zr (zirconium chloride hydrochloride) purification reaction excluding the target dissolution section.
  • FIGS. 17-18 show the function part of the replaceable module and the fixed module related to the synthesis reaction of the mark.
  • the medium transmission part is described by the flow path L formed by the tube and the joint.
  • the connection part is not shown.
  • V1-V26 from The upper left shows the on-off valves composed of the pressing portion and the accommodating chamber in order.
  • Different radioactive isotopes for example, 68Ga, 64Cu, 89Zr, etc., may be labeled, and different substances may be labeled, for example, small molecules, polypeptides, proteins, monoclonal antibodies, and the like.
  • the replaceable module for 89 Zr (zirconium oxalate) labeled DFO modified monoclonal antibody has a base 210, a media transfer section 220 composed of flow paths L711-L722, a purification column Z3, an intermediate bottle R2, a reagent bottle R3-R8, waste Liquid bottle R12, product bottle R13, reaction bottle R14, sterile filter F2; the fixed module has media control parts P1, P2, heating device H2.
  • 89 Zr zirconium oxalate
  • the radioisotope operation device of the embodiment of the present invention automatically labels and synthesizes 89 Zr-DFO-mAb.
  • the purification column Z3 is a protein purification column.
  • the medium transmission part for labeling the DFO modified monoclonal antibody with 89 Zr forms flow paths L711-L122.
  • L711 extends from the intermediate bottle R2 to the reaction bottle R14, through valves V3, V17 and the media control part P1;
  • L712 extends from the reagent bottle R3 to L711, through the valve V1;
  • L713 extends from the reagent bottle R4 to L711, through the valve V2;
  • L714 from L711 extends to intermediate bottle R2, through valve V4;
  • L715 extends from reagent bottle R5 to purification column Z3, through valve V5 and media control section P2;
  • L716 extends from reagent bottle R6 to L715, through valve V6;
  • L717 extends from reagent bottle R7 To L715, through valve V7;
  • L718 from reagent bottle R8 to L717, through valve V8;
  • Transfer antibody turn on V2 and V17, start the media control part P1, and the liquid (DFO-mAb antibody solution) in the reagent bottle R4 is transferred to the reaction bottle R14 via L713 and L711.
  • Chelation reaction and purification preparation start the heating device H2 to heat the reaction bottle R14 to 30 degrees to maintain the reaction for 30-60min; turn on V5, V22, start the media control part P2, the liquid in the reagent bottle R5 (35mL ultrapure water) via L715, L720 flows through the purification column Z3, rinses, the waste liquid flows into the waste liquid bottle R12; after completion, open V6, V22, start the media control part P2, the liquid in the reagent bottle R6 (0.15M, 15mL acetic acid/sodium acetate buffer solution) L716, L715, L720 flow through the purification column Z3, salt saturation, the waste liquid flows into the waste bottle R12; open V7, V22, start the media control part P2, the liquid in the reagent bottle R7 (0.15M, 20mL acetic acid / sodium acetate buffer solution ) Flow through the purification column Z3 through L717, L715, L720, salt saturation again, the waste liquid flows into the waste liquid bottle R12.
  • Elution product turn on V8, V21, start the media control part P2, reagent bottle R8 bottle liquid (0.15M, 3mL acetic acid/sodium acetate solution) flows through the purification column Z3 through L718, L717, L715, L720, L721, and put on the column 89 Zr-DFO-mAb was eluted and filtered through a sterile filter F2, and then entered into the product bottle R13 to obtain the final product.
  • reagent bottle R8 bottle liquid (0.15M, 3mL acetic acid/sodium acetate solution
  • the replaceable module for labeling DOTA modified small molecule peptides with 68 Ga has a base 210, a medium transmission part 220 composed of flow paths L811-L822, a purification column Z3, an intermediate bottle R2, and a reagent bottle R3-R9 , Waste liquid bottle R12, product bottle R13, reaction bottle R14, sterile filter membrane F2; the fixed module has media control parts P1, P2, heating devices H2, H3.
  • 68 Ga gallium chloride hydrochloride
  • the purification column Z3 is a C-18 solid phase extraction column.
  • the medium transmission part for labeling the DOTA modified small molecule peptide with 68 Ga forms flow paths L811-L822.
  • L811 extends from the intermediate bottle R2 to the reaction bottle R14, through valves V3, V20 and the media control part P1;
  • L812 extends from the reagent bottle R3 to L811, through the valve V1;
  • L813 extends from the reagent bottle R4 to L811, through the valve V2;
  • L814 from L811 extends to intermediate bottle R2, through valve V4;
  • L815 extends from reagent bottle R5 to purification column Z3, through valves V5, V10 and media control section P2;
  • L816 extends from reagent bottle R6 to L815, through valve V6;
  • L817 from reagent bottle R7 extends to L815 through valve V7;
  • L818 extends from reagent bottle R8 to L817 through valve V8;
  • L819 extends from reagent bottle R9
  • Chelation reaction and purification preparation start the heating device H2 to heat the reaction bottle R14 to 80 degrees to maintain the reaction for 30-60min; turn on V5, V10, V26, start the media control part P2, the liquid in the reagent bottle R5 (10mL absolute ethanol) L815, L821 flow through the purification column Z3, rinse, waste liquid flows into the waste bottle R12; open V6, V10, V26, start the media control unit P2, the liquid in the reagent bottle R6 (20mL ultrapure water) through L816, L815, L821 After flowing through the purification column Z3 and flushing, the waste liquid flows into the waste liquid bottle R12.
  • Elution product turn on V8, V10, V25, start the media control part P2
  • the liquid (2mL absolute ethanol solution) in the reagent bottle R8 flows through the purification column Z3 through L818, L817, L815, L821, L822, and 68 Ga -DOTA-Small molecule peptide elutes and filters through sterile filter F2, then enters the product bottle R13, starts the heating device H3, and naturally evaporates anhydrous ethanol under heating at 80 degrees.
  • the present invention can also be applied to the operation of other radioisotopes; the purification column packings, reagent types, volumes, etc. used in the above specific embodiments can be changed within a certain range or replaced by similar reagents.
  • the specific action position of the valve can also be adjusted appropriately.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种用于放射性同位素操作系统(10)的可更换模块(200)以及放射性同位素操作系统(10),其中,用于放射性同位素操作系统(10)的可更换模块(200),包括:基座(210);保持部(211),保持部(211)设在基座(210)上,保持部(211)突出基座(210)的表面;和介质传输部(220),包括管子(221),介质传输部(220)通过保持部(211)安装在基座(210)上;其中,保持部(211)进一步包括:卡槽(2112),卡槽(2112)被配置为适于固定管子(221);容纳腔(2113),容纳腔(2113)被配置为适于容纳按压部(C),并且管子(221)穿过容纳腔(2113)。

Description

用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统
相关申请的交叉引用
本申请基于2018年12月3日提出申请号为201811465285.0和201822012495.6的中国专利申请和2018年12月3日提出申请号为201811465289.9和201822012958.9的中国专利申请提出,并要求这四项中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及放射性同位素操作领域,具体的,用于放射性同位素操作系统的可更换模块以及具有该可更换模块的放射性同位素操作系统。
背景技术
分子影像学(molecular imaging)是运用影像学手段的科学,通常用于显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对生物学行为在影像方面进行定性和定量研究。目前最为常用的分子影像学技术包括核医学成像技术,其中,PET的分子显像研究最活跃。正电子发射型计算机断层显像(PET,positron emission tomography)是在注射放射性示踪剂(在该器官中,该示踪剂的生物学性能是已知的)之后进行观察器官的代谢活动的医学成像技术。在诸如医院中,为了进行诸如PET等检查,往往需要对放射性同位素进行提纯、合成等操作以获得所使用的放射性同位素标记化合物,而这些操作通常在医院中进行,因此,这就要求进行放射性同位素操作的设备具有高通用性,多种不同的操作可以在同一设备上进行。另外,现有进行放射性同位素操作的设备在使用过程中,由于管路中会有残留的放射性,因此,通常管路需要被清洗后才能够被用于后续操作,而清洗过程通常耗时耗力,操作繁琐,且难以保证清洗的效果。
发明内容
为了解决上述技术问题,本发明一方面提供了一种用于放射性同位素操作系统的可更换模块,根据本发明的实施例,该用于放射性同位素操作系统的可更换模块包括:基座;保持部,所述保持部设在所述基座上,所述保持部突出所述基座的表面;和介质传输部,包括管子,所述介质传输部通过所述保持部安装在所述基座上;其中,所述保持部进一步包括:卡槽,所述卡槽被配置为适于固定所述管子;容纳腔,所述容纳腔被配置为适于容纳按压部,并且所述管子穿过所述容纳腔。根据本发明的实施例,在采用由基座和介质传输部构成的可更换模块进行放射性同位素操作之后,可以直接进行更换,不需要清洗管路,也不会造成放射性残留。另外,根据本发明的实施例,通过设置适于容纳按压部的容纳腔,能够在放射性同位素操作过程中,有效地通过接受来自按压部的压力使管子发生变形,并且防止按压部在的发生位移,从而对管子内的流路进行控制例如打开或者关闭管子,即按压部可以和容纳腔共同构成阀门用于开闭穿过容纳腔的管子,同时该阀门的可靠作用可以得到保证。另外,根据本发明的实施例,保持部包括卡槽,该卡槽适于固定管子,因此,可以保证在进行放射性同位素操作的过程中,尤其是通过按压部按压管子的时候,管子不会发生明显的移动,提高按压部按压管子时的关闭流路的效率,因此,设备的可靠性可以进一步得到提高。
根据本发明的实施例,上述用于放射性同位素操作系统的可更换模块还可以具有下列附加技术特征的至少之一:
根据本发明的实施例,进一步包括:凸台,所述凸台设置在所述容纳腔中,并且所述凸台突出所述容纳腔底部的平面。
根据本发明的实施例,通过采用该凸台,可以进一步提高按压部按压管子的时候封关闭流路的效率,并且能够有效地避免管子在被按压部按压时,管子不会发生明显的移动。
根据本发明的实施例,所述凸台被配置为沿着与所述管子不平行的方向延伸。优选的,根据本发明的实施例,所述凸台被配置为沿着与所述管子垂直的方向延伸。由此,凸台可以与流路呈一定夹角进行挤压管子,从而提高关闭流路的效果。
根据本发明的实施例,所述凸台与所述管子接触的面为平面或者圆弧面。由此,凸台挤压管子时,凸台能够均匀地为管子提供压力,从而可以避免管子受力不均匀的关闭不充分。
根据本发明的实施例,所述基座为平板。
根据本发明的实施例,所述卡槽的开口距离不超过所述管子的外径。
根据本发明的实施例,所述基座包括:突出部,所述卡槽和所述容纳腔设置在所述突出部上。
根据本发明的实施例,所述突出部的外轮廓为圆形,所述容纳腔为圆形,并且在所述突出部上径向相对设置两个所述卡槽。
根据本发明的实施例,包括多个所述突出部,多个所述突出部呈两排横向分布。由此,可以容易实现对多条并 联流路的控制。
根据本发明的实施例,所述卡槽包括:收口部,所述收口部的收口距离不超过所述管子的外径;扩大部,所述扩大部的扩大距离不低于所述管子的外径。
根据本发明的实施例,所述收口部的所述收口距离小于所述管子的外径,所述扩大部的扩大距离大于所述管子的外径。
根据本发明的实施例,进一步包括:导向部,所述导向部以凹槽的形式设置在所述基座上,所述凹槽具有小于所述管子外径的下凹距离。
根据本发明的实施例,所述凹槽与所述卡槽和所述容纳腔相通。
根据本发明的实施例,进一步包括:辅助定位部,所述辅助定位部以凸起形式设置在所述基座上;容纳槽,所容纳槽设置在所述凸起上,并且所述容纳槽适于所述管子穿过和对所述管子进行导向。
根据本发明的实施例,所述辅助定位部可拆卸地或者可移动地设置在所述基座上。
根据本发明的实施例,所述凹槽与所述容纳槽相通。
根据本发明的实施例,所述容纳槽的延伸方向为弧形。
根据本发明的实施例,所述凸起的高度不超过所述突出部。
根据本发明的实施例,所述容纳槽适于对所述管子进行直角导向。
根据本发明的实施例,进一步包括:容器,其中,所述介质传输部包括连接部,所述连接部与所述容器连接,所述连接部包括:壳体,所述壳体与所述容器螺纹连接;胶塞,所述胶塞设置在所述壳体内并具有至少一个通孔,所述壳体将所述胶塞压紧到所述容器的壁和所述壳体之间形成密封;和连接管,所述连接管穿过所述通孔和所述壳体,所述连接管和所述胶塞通过胶密封连接。
根据本发明的实施例,进一步包括:废气处理装置,所述废气处理装置包括:入口出口;废气处理装置壳体,所述废气处理装置壳体连通所述入口和所述出口;至少两种不同的填充物,所述至少两种的填充物设置在所述废气处理装置壳体内。
根据本发明的实施例,所述废气处理装置壳体被配置为柱管的形式,所述入口和所述出口设置在所述柱管的两端,其中,废气处理装置进一步包括:筛板,所述筛板设置在柱管内在所述柱管内限定出多个容纳空间,所述至少两种不同的填充物分别设置在所述多个容纳空间的至少一个中,其中,所述筛板为平板状且板面上设置有通孔,所述筛板的外形与所述柱管内壁的横截面形状匹配。根据本发明的实施例,所述至少两种的包括纤维状材料、除酸物质和吸附物质。
根据本发明的实施例,沿着由所述入口至所述出口的方向,依次设置所述纤维状材料、所述除酸物质和所述吸附物质。
根据本发明的实施例,所述纤维状材料为棉花;所述除酸物质为碱性物质;和/或所述吸附物质为活性炭。
根据本发明的实施例,所述棉花的含水量为5~10重量%;所述碱性物质为含碱石灰的棉花,所述碱石灰为多孔颗粒状碱石灰;和/或所述活性炭的孔径为10~500埃米。根据本发明的实施例,进一步包括:纯化装置,所述纯化装置两端分别与所述管子连接形成在所述流路中。
在本发明的第二方面,本发明提出了一种放射性同位素操作系统。根据本发明的实施例,该放射性同位素操作系统包括:固设模块;和可更换模块,所述可更换模块为前述任一项所述的用于放射性同位素操作系统的可更换模块,其中,所述固设模块包括:主体部,所述主体部被配置为适于安装所可更换模块;和按压部,所述按压部被配置为可移动地被容纳在所述容纳腔中。如前所述,根据本发明的实施例,在采用由基座和介质传输部构成的可更换模块进行放射性同位素操作之后,可以直接进行更换,不需要清洗管路,也不会造成放射性残留。另外,根据本发明的实施例,通过设置适于容纳按压部的容纳腔,能够在放射性同位素操作过程中,有效地通过接受来自按压部的压力使管子发生变形,从而对管子内的流路进行控制例如打开或者关闭管子,即按压部可以和容纳腔共同构成阀门用于开闭穿过容纳腔的管子,同时该阀门的可靠作用可以得到保证。另外,根据本发明的实施例,保持部包括卡槽,该卡槽适于固定管子,因此,可以保证在进行放射性同位素操作的过程中,尤其是通过按压部按压管子的时候,管子不会发生明显的移动,提高按压部按压管子时的关闭流路的效率,因此,设备的可靠性可以进一步得到提高。
根据本发明的实施例,上述放射性同位素操作系统还可以具有下列附加技术特征的至少之一:
根据本发明的实施例,所述固设模块进一步包括:门扇部,所述门扇部与所述主体部枢转连接,所述按压部设置在所述门扇部上。根据本发明的实施例,进一步包括:容纳部,所述容纳部可拆卸地设置在所述主体部上,所述容纳部被配置为适于容纳所述容器、所述废气处理装置和所述纯化装置;和介质控制部,所述介质控制部包括:驱 动组件;转子,所述转子由所述驱动组件驱动旋转;挤压元件,所述挤压元件设置在所述转子适于随所述转子旋转且相对转子运动;罩体,所述罩体包围所述转子,所述驱动组件的至少一部分设置在所述主体部的内部,所述转子、挤压元件和所述罩体设置在所述主体部的前表面,所述管子的至少一部分部分设置在所述挤压元件和所述罩体之间,所述挤压元件被配置为适于通过运动挤压和释放所述管子,以便输送所述管子内的流体。
根据本发明的实施例,进一步包括:反应容器,所述反应容器设置在所述可更换模块中,并且被配置为用于放射性同位素操作;废气管,所述废气管与所述反应容器相连;和废气通道,所述废气通道设置在所述固设模块中,并且所述废气通道分别与所述废气管和所述废气处理装置相连。
根据本发明的实施例,进一步包括:真空泵,所述真空泵设置在所述固设模块内。
本领域技术人员能够理解的是,前面针对近用于放射性同位素操作系统的可更换模块所描述的特征和优点,同样适用于该放射性同位素操作系统。
由此,根据本发明的实施例,本发明提供了一种用于放射性同位素操作系统的可更换模块,包括基座和介质传输部,所述介质传输部通过设置在所述基座上的保持部安装在所述基座上,所述介质传输部形成流体流过的流路并包括管子,所述保持部包括卡住管子的卡槽和由管子穿过的容纳腔,所述容纳腔构成开闭穿过所述容纳腔的管子的阀的部分。基座和介质传输部构成的可更换模块在一次放射性同位素操作完成后即可更换,不需要清洗管路,也不会造成放射性残留,容纳腔能够保证阀的可靠作用。
作为一种优选地,所述基座为平板,所述保持部构造为平板上的突出部,所述卡槽和容纳腔设置在所述突出部上,所述卡槽收口且防止管子意外脱离所述基座,所述卡槽包括收口部和与所述收口部连接的扩大部,所述收口部具有小于等于管子外径的收口距离,所述扩大部具有大于管子外径的扩大距离。
进一步地,所述基座上还设置导向部,所述导向部构造为平板上的凹槽,所述凹槽具有小于管子外径的下凹距离且至少部分延伸穿过所述突出部并与所述卡槽和容纳腔相通,所述导向部对所述介质传输部进行导向。
更进一步地,所述基座上在管子折弯处设置辅助定位部,所述辅助定位部构造为所述平板上的凸起,所述凸起上设置所述管子延伸穿过的容纳槽,所述凹槽延伸穿过所述凸起与所述容纳槽相通,所述容纳槽在所述管子的延伸方向为弧形的,所述管子在所述弧形的容纳槽中被导向和定位。
作为一种优选地,所述可更换模块还包括容器,所述介质传输部包括与所述容器连接的连接部,连接部包括壳体、设置在所述壳体内并具有至少一个通孔的胶塞、穿过所述通孔和壳体的连接管,所述壳体与所述容器螺纹连接,所述胶塞和连接管通过胶密封连接,所述壳体将胶塞压紧到所述容器的壁和所述壳体之间形成密封。
作为一种优选地,所述可更换模块包括废气处理装置,所述放射性同位素操作系统产生的废气通过所述废气处理装置后排出,所述废气处理装置包括壳体、设置在壳体内的至少两种不同的填充物和至少一个筛板,所述至少两种不同的填充物由所述筛板隔开。
作为一种优选地,所述可更换模块包括纯化装置,所述纯化装置两端分别与所述管子连接形成在所述流路中,所述纯化装置包括壳体和设置在壳体内的填充物。
另外,根据本发明的实施例,本发明还提供了一种放射性同位素操作系统,包括固设模块和如上述权利要求之一所述的可更换模块,所述固设模块包括主体部和按压部,所述主体部用于安装所述可更换模块,所述按压部与所述容纳腔构成开闭穿过所述容纳腔的管子的阀。容纳腔能够对按压部进行限位防止按压管子时按压部与基座的相对位置偏移。
作为一种优选地,所述固设模块还包括与所述主体部枢转连接的门扇部,所述按压部设置在所述门扇部上,当所述门扇部闭合,所述按压部能够进入所述容纳腔按压管子,所述容纳腔底部设置有凸台,所述凸台与所述按压部配合以可靠的压紧管子。凸台与管子接触的面可以是平面、圆弧面等;也可以不设置凸台。
作为一种优选地,所述固设模块包括放置所述容器、废气处理装置、纯化装置的容纳部和介质控制部,所述容纳部可拆卸连接地设置在所述主体部上,所述介质控制部包括驱动组件、由驱动组件驱动旋转的转子、设置在转子上随转子一同旋转且能够相对转子运动的挤压元件、包围转子和辊的罩体,所述驱动组件至少部分设置在所述主体部内部,所述转子、挤压元件和罩体设置在所述主体部前表面,所述管子至少部分放置在所述挤压元件和罩体之间,所述挤压元件运动挤压所述管子通过挤压和释放的力来输送所述管子内的流体。根据本发明实施例的放射性同位素操作系统通用性高,可更换模块在一次放射性同位素操作完成后即可更换,不需要清洗管路,也不会造成放射性残留。
另外,根据本发明实施例的放射性同位素操作系统解决了金属核素纯化及标记合成等工艺运行过程中所排出的酸性气体及放射性挥发物质对设备本身的腐蚀及环境污染问题,废气处理装置结构简单、成本低、可多次使用,便 于更换,还可使用到其他产品。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的放射性同位素操作系统的示意图;
图2为根据本发明实施例的可更换模块的介质传输部与容器连接结构示意图;
图3为根据本发明一个实施例的可更换模块的基座结构示意图;
图4为根据本发明一个实施例的可更换模块的基座结构局部放大示意图;
图5为根据本发明一个实施例的可更换模块的废气处理装置的结构示意图;
图6为根据本发明一个实施例的固设模块的第二容纳部的结构示意图;
图7为根据本发明一个实施例的固设模块的门扇部的固定装置示意图;
图8为根据本发明一个实施例的固设模块的门扇部的固定装置的另一方向的示意图;
图9为根据本发明一个实施例的固设模块的介质控制部的结构示意图;
图10为根据本发明一个实施例的控制模块作用示意图;
图11为根据本发明一个实施例的 89Zr(草酸锆)提纯系统示意图;
图12为根据本发明一个实施例的 89Zr(盐酸氯化锆)提纯系统示意图;
图13为根据本发明一个实施例的 64Cu(盐酸氯化铜)提纯系统示意图;
图14为根据本发明一个实施例的 64Cu(中性氯化铜)提纯系统示意图;
图15为根据本发明一个实施例的 68Ga(盐酸氯化镓)提纯系统示意图;
图16为根据本发明另一个实施例的 89Zr(盐酸氯化锆)提纯系统示意图;
图17为根据本发明一个实施例的 89Zr(草酸锆)标记DFO修饰单克隆抗体合成系统示意图;和
图18为根据本发明一个实施例的 68Ga(盐酸氯化镓)标记DOTA修饰小分子肽合成系统示意图。
需要说明的是,为了便于显示及防止构建之间互相干扰,附图中并未展示出产品的全部部件,例如图1中安装在基座210上与基座210重叠的管子未示出,部分附图中的管子(仅使用线条代替的)可以是参考图2中的外管e描述的管子,也可以是与外管e相连的不同直径和壁厚的管子。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
参考图1,根据本发明的实施例,本发明提出了可以应用于放射性同位素操作系统10的可更换模块200和包括该可更换模块200的放射性同位素操作系统10。为了方便理解,在下文中,将首先对放射性同位素操作系统10的结构进行简单描述,并在描述放射性同位素操作系统10的过程中,对该放射性同位素操作系统10所包含的主要部件例如可更换模块200、固设模块100和废气处理装置250等进行描述。
参考图1所示,根据本发明本实施例的放射性同位素操作系统10包括固设模块100和可更换模块200。可更换模块200为对应具体的放射性同位素操作(如放射性同位素的提纯或标记合成)的处置盒,包括基座210、介质传输部220和容器230。介质传输部220安装在基座210上,形成固定的形状或位置,基座210可以为矩形或者大致矩形的平板。根据本发明的实施例,基座210可以由光敏树脂形成,由此,可以提高基座210的固化程度,进而减少使用过程过程中的变形,另外,光敏树脂具有的溶胀较小,能够保证基座210的精度。当然,本领域技术人员根据应用场景,也可以选择其他材料。另外,为了方便描述,在本文中,除非特别说明,将定义相当于基座长边的延伸方向为横向,相当于基座短边的延伸方向为纵向。
根据本发明的实施例,容器230(R0-R14)在放射性同位素操作系统10的操作过程中,用于容纳各种介质或者提供容纳空间,可以是内部预装有进行放射性同位素操作所需的各种试剂的试剂瓶,具有预定的容量例如为5ml、10ml左右;也可以是空的废液瓶、产品瓶、靶水瓶等。本领域技术人员能够理解的,本领域技术人员可以根据介质的类型或者容器230的使用目的,选择容器230的材质,例如,容器230可以为玻璃瓶、塑料瓶或其他材质。根据本发明的实施例,容器230可以圆柱形的玻璃瓶。另外,根据操作的类型或者应用场景,还可以设置不同数量的容器230,每个容器230可以有不同的容量,另外容器230可以有平底、圆底、锥形底或者砝码形底,以提高反应性。
接下来对可更换模块200进行详细描述,参考图1~图4,根据本发明的实施例,本发明提出了一种用于放射性 同位素操作系统10的可更换模块200,该可更换模块200包括:基座210、保持部211、介质传输部220,其中,保持部211设在基座210上,并且保持部211突出基座210的表面,介质传输部220包括管子221,介质传输部220可以通过保持部211安装在基座210上。根据本发明的实施例,保持部211可以进一步包括:卡槽2112和容纳腔2113,该卡槽2112被配置为适于固定管子221,该容纳腔2113被配置为适于容纳固设模块100上设置的按压部C,并且管子221穿过容纳腔2113。由此,根据本发明的实施例,通过设置适于容纳按压部C的容纳腔2113,能够在放射性同位素操作过程中,有效地通过接受来自按压部C的压力使管子221发生变形,从而对管子211内的流路进行控制例如打开或者关闭管子,即按压部C可以和容纳腔2113共同构成阀门用于开闭穿过容纳腔2113的管子221,同时该阀门的可靠作用可以得到保证。另外,根据本发明的实施例,保持部211包括卡槽2112,该卡槽2112适于固定管子221,因此,可以保证在进行放射性同位素操作的过程中,尤其是通过按压部C按压管子221的时候,管子221不会发生明显的移动,提高按压部C按压管子221时的关闭流路的效率,因此,设备的可靠性可以进一步得到提高。
根据本发明的实施例,本领域技术人员能够理解的是,卡槽2112和容纳部2113是可以分开设置的,也可以是一体的。另外,根据本发明的实施例,介质传输部220可以为流体流过提供流路,包括多个管子221及接头222,其中接头用于将多个管子221按照预定的位置或关系进行连通,每个接头222可以将2个以上的管子221的一端相互连通。根据本发明的实施例,管子221可以由硅胶管或铂金管(即硅胶管内壁附着一层聚四氟乙烯材料)构形成,由此,管子221具有较好的柔软性,适于对按压部C的压力做出形变响应,并且在压力去除后能够快速恢复形状。当然,本领域技术人员能够理解,也可以为其他软管或其他材料,只要能够对按压部C的压力做出形变响应,从而实现对流路的开关控制即可。
根据本发明的实施例,接头222可以构造为三通,材料可以为PP等,为减少接头处试剂的残留。另外,根据本发明的实施例,接头222还可以构造为三通旋塞阀,相应的,固设模块100上可以设置对应的驱动部,其赋予用于切换三通旋塞阀的驱动力,三通旋塞阀能够与驱动部可拆卸地连接。参考图2,根据本发明的实施例,介质传输部220还可以包括与容器230连接的连接部223,容器230具有外螺纹口S1,连接部223包括具有内螺纹S2(与外螺纹口S1匹配)的壳体2231、容纳在壳体2231内并具有至少一个通孔S3(图未标)的胶塞2232、穿过通孔S3及壳体2231的连接管2233。
根据本发明的实施例,壳体2231具有凸缘a及连接凸缘a的侧壁b,内螺纹S2设置在侧壁b上,连接管2233穿过凸缘a上设置的通孔S4;胶塞2232具有主体c及边缘部d,主体c能够至少部分伸入容器230内,通孔S3设置在主体c上。根据本发明的实施例,通孔S3的个数可以为1个、2个或3个。在将连接部223与壳体2231连接时,通过旋拧壳体2231使拧壳体2231的内螺纹S2与容器230的外螺纹S1配合,壳体2231的凸缘a将胶塞2232的边缘部d压紧到容器230的壁231和凸缘a之间形成密封。连接管2233包括过盈插接在一起的外管e和内管f,外管e为硅胶管,可以是从卡套上直接延伸出来的管子221的端部或与管子221连接,外管e与胶塞2232通过胶密封连接,长度可以是与胶塞2232平齐或稍微突出;内管f为peek管,可以具有不同的长度,较长的延伸到容器底部用于从容器中吸出液体,较短的与外管e平齐用于排出气体或导入液体。根据本发明的实施例,连接部223可以是在试剂盒中预先与容器连接,靠近连接部223的管子被卡住防止试剂流出;也可以是容器由单独的盖子密封,使用时拧开盖子,操作者将连接部连接到容器上。可以理解,连接部223也可以有其他的构造。介质传输部220还包括与靶溶液等连接的连接部224,介质传输部220的管子与靶溶液的管子通过内外螺纹或其他连接结构进行连接,介质传输部220的管子也可以连接到固设模块100上预设的接口I(I1、I2、I3)。
参考图3和图4,基座210上可以同时设置保持部211和导向部212,介质传输部220通过保持部211安装在基座210上,保持部211构造为平板上的多个突出部2111并与基座210是一体的,导向部212构造为平板上的凹槽。本领域技术人员可以理解的是,保持部211也可以是单独构造并连接到基座上的。突出部2111上设置卡住管子221的卡槽2112和由管子221穿过的容纳腔2113。卡槽2112具有收口段可以防止管子意外脱离基座210,具体的,卡槽2112包括收口部2112a和与所述收口部2112a连接的扩大部2112b,收口部2112a具有小于等于管子221外径的收口距离,扩大部2112b具有大于管子外径的扩大距离。根据本发明的实施例,卡槽2112为圆弧形且与管子221的外形匹配,容纳腔2113与按压管子221的按压部C(设置在固设模块100上,后面详述)相对应并对按压部C进行限位防止按压管子221时按压部与基座210的相对位置偏移。容纳腔2113底部具有平面,平面稍低于基座的板面或与基座的板面相平。由此,容纳2113底部的平面可以与按压部C共同为管子221施加压力,并且能够提高的均匀性,从而避免有压力不均匀导致的管子位移。另外,平面上还可以进一步设置凸台2114,凸台2114与按压部配合以更可靠地压紧管子221。根据本发明的实施例,凸台2114以不平行于管子221或平板上的凹槽的方式延伸并突出于容 纳腔2113底部的平面或基座的板面,根据本发明的实施例,凸台2114以垂直于管子221或平板上的凹槽的方式延伸并突出于容纳腔底部的平面或基座的板面。可以理解,凸台与管子接触的面可以是平面、圆弧面等。根据本发明的实施例,也可以通过提高按压部C的压力来提高管子221的开关效率,从而避面采用凸台2114.
根据本发明的实施例,按压部C可以为气缸并具有圆柱形的活塞杆,容纳腔相应为圆形的,突出部外轮廓也为圆形的,从而每一个突出部上径向相对的设置2个卡槽,管子沿突出部的直径穿过卡槽和容纳腔。突出部2111的个数与按压部的个数相同,呈两排横向分布在基座相当于长边的两个边缘。由此,可以地通过对流路的入口和出口进行控制,另外,中间管路可以通过采用三通等方式进行并联设置,由此,可以通过少量的控制节点,控制多个管路。
根据本发明的实施例,导向部212对介质传输部进行导向,凹槽为圆弧形,与管子221或接头222的外形匹配,使得管子221和接头222可以部分容纳在凹槽内,凹槽具有小于管子外径的下凹距离且至少部分延伸穿过保持部211并与卡槽2112和容纳腔2113相通,从而对介质传输部进行导向。根据本发明的实施例,凹槽包括横向和纵向的,穿过保持部的凹槽均为纵向的,相应的凸台为横向的长条状延伸到容纳腔的侧壁,可以理解,也可以为其他方向的,也可以不设置导向部。为提高稳固性,在管子221折弯处设置辅助定位部213,辅助定位部213构造为基座210上的凸起2131,凸起2131上设置容纳槽2132,凹槽延伸穿过凸起2131与容纳槽2132相通,容纳槽在管子221的延伸方向为弧形的,管子221在弧形槽中被导向和定位。优选的是,凸起2131与突出部2111在垂直于基座的板面方向上的高度相同。当然,本领域技术人员能够理解,凸起2131也可以低于突出部2111。基座210上还设置有定位件214,用于将基座定位安装到固设模块,根据本发明的实施例为三个通孔,其中两个对称设置在基座相当于短边的一个边缘,一个设置在基座相当于短边的另一个边缘的中间位置,可以理解,还可以有其他的设置方式。
根据本发明的实施例,可更换模块200还可以包括纯化装置240和废气处理装置250。根据本发明的实施例,纯化装置240两端分别与管子221连接形成在流路中,用于反应介质的纯化,可以是预先连接好的,也可以是单独放置在试剂盒内,由操作者手动连接。根据本发明的实施例,纯化装置240可以构造为纯化柱(Z3、Z4),用于不同的放射性同位素操作时,纯化柱的柱管内可以有不同的填充物(后面详述),柱管可以由聚四氟乙烯等耐酸碱腐蚀的材料制成。
根据本发明的实施例,同位素操作的化学反应过程中会产生大量的强酸性废气及放射性挥发物质,而现有设备大多没有对反应过程中产生的废气进行处理,不利于节能环保,且对设备本身造成腐蚀;有的先用液氮冷凝,未冷凝部分用储气罐压缩后存储,需频繁更换液氮,且设备体积庞大,使用成本较高。根据本发明的实施例,废气处理装置250一端连接到固设模块100的废气通道(后面详述),用于减少操作过程中排出的酸性气体及放射性挥发物质对设备的腐蚀和环境的污染。
参考图5,废气处理装置250包括入口251、出口252、连通入口251和出口252的壳体253、设置在壳体253内的至少两种不同的填充物254,废气从入口251进入,通过填充物254从出口252出来。根据本发明的实施例,废气处理装置250构造为废气处理柱(Z1、Z2),壳体253为柱管,柱管可以由聚四氟乙烯等耐酸碱腐蚀的材料制成,入口251和出口252设置在柱管的两端,至少两种不同的填充物254由设置在柱管内的至少一个筛板255隔开。本领域技术人员能够理解,可以根据实际需求采用其他设置方式。填充物254在从入口到出口的方向依次为潮湿的棉花、含碱石灰的棉花、活性炭。潮湿的棉花通过内部含有适量的水(例如,5%-10%)能够快速吸收废气中的酸性成分,其余气体则能流通过棉花;碱石灰可采用常规市售疏松多孔颗粒状碱石灰,其吸附通过棉花后的气体中含有的少量水分,并中和水分中含酸的成分;活性炭可以选择10~500A°孔径的活性炭颗粒,其作用为吸附上述两步骤处理后,还可能存在的其他各类成分。可以理解,填充物254还可以有其他的构造,棉花也可用其他纤维状材料代替,碱石灰可以替换为其他除酸物质,活性炭可以替换为其他吸附物质。各填充物的填充量可根据所需的柱管体积设置,可以理解,柱管体积越大其允许的废气单位时间流速越大,寿命越长。每种填充物254均设置在两个筛板255之间并容纳在筛板255和柱管形成的空间内,筛板255为平板状且其板面上设置通孔,筛板255的外形与柱管内壁的横截面形状匹配,从而不同的填充物254之间可以相互隔开又能够使废气依次通过。废气处理装置结构简单、成本低、可多次使用,便于更换,还可使用到其他产品。
另外,根据本发明的实施例,壳体253的一部分可以为透明材料制成,从而使用者可以通过观察填充物254的形态变化,判断是否需要整体更换废气处理装置250,例如当碱石灰在使用一段时间后,会发生明显的形态变化。
另外,根据不同的放射性同位素操作的反应不同,可以选择所需的管子和接头组成的介质传输部在基座上以不同的排布方式形成不同的流路。将一种反应所需的介质传输部、基座、容器等构造为一个处置盒(可更换模块200),便于操作,同时,由于放射性的残留,通常一个处置盒仅用于一次或数次操作,之后即可更换新的处置盒,而无需进行清洗。
根据本发明的实施例,固设模块100可以为外形为立方体或者大致为立方体的部件,包括主体部110和门扇部120。在以下说明中,上下、前后、左右是指设置主体部110时的设置面侧作为下方,安装有可更换模块200的侧面作为前方时的方位。主体部110的前表面设置有安装可更换模块200的基座210的安装部111。安装部111具有与基座210上的定位件214相应的安装件1111,根据本发明的实施例为定位销;安装部111还具有限位件1112,用于防止基座210与主体部110脱离。安装好后,基座210的纵向沿主体部110的上下方向延伸。固设模块100还包括放置容器230的容纳部130。
根据本发明的实施例,容纳部130可以包括第一、第二、第三容纳部131、132、133。第一容纳部131设置在主体部110的上表面,整体为长方体,其上表面开设有若干至少部分容纳试剂瓶、靶水瓶、中间瓶等的容纳槽1311,容纳槽的前表面可以是开口的,便于操作者观察容纳槽内的容器。结合图6,第二容纳部132设置在主体部110的前表面且在安装部111下方的位置,整体呈T形,中间部分开设有若干通孔1321用于容纳产品瓶、废液瓶、反应瓶等;两边较短的部分分别开设有通孔1322用于容纳纯化装置240,纯化装置240具有凸缘241,凸缘241能够卡在第二容纳部132上表面,纯化装置240两端分别连接管子221;通孔1322与侧边1323在上下方向完全相通,使得纯化装置240与管子221连接好后能够将管子221穿过侧边1323,从而不需要拆掉管子221就能拆装纯化装置240。第三容纳部133设置在主体部110的侧表面,开设有若干通孔1331,用于容纳废气处理装置250,废气处理装置250具有凸缘256,凸缘256能够卡在第三容纳部133上表面,第三容纳部的通孔也可以是与侧边在上下方向完全相通的。可以理解,纯化装置也可以安装在第三容纳部。
根据本发明的实施例,第一、第二、第三容纳部131、132、133可拆卸地固定在主体部110上,如螺钉连接或卡接,可以根据产品类型进行更换,可以理解,也可以是不可拆卸的连接或是一体的。根据具体的操作,可选择地将各个容器放置在各个容纳部的容纳槽或容纳孔中。可以理解,第一、第二、第三容纳部131、132、133还可以有其他的设置方式。
根据本发明的实施例,门扇部120与主体部110可枢转地连接,能够至少部分闭合或打开主体部110前表面的一部分,在闭合位置门扇部120覆盖安装在主体部110前表面的基座210,根据本发明的实施例,枢转轴沿主体部的上下方向延伸,门扇部120可以开闭至少90度,可以理解,也可以是其他方向或其他角度。根据本发明的实施例,在闭合位置,该门扇部120通过固定装置121固定到主体部110,打开时解除固定装置121的锁定即可。结合图7和图8,固定装置121包括支撑件1211、操作件1212、锁定件1213,支撑件1211通过螺钉等固定安装在门扇部120上,操作件1212枢转设置在支撑件1211上并能够带动锁定件1213运动,主体部110上设置有与锁定件1213配合的卡合件112,锁定件1213和卡合件112上分别设置有相互作用的斜面A、B。操作件1212上设置有操作孔D,在释放位置,锁定件1213由弹簧等偏压处于锁定位置且能够被卡合件112卡止;由操作孔D拉动操作件1212使其相对于支撑件1211旋转,锁定件1213能够移动到释放位置,并能够与卡合件112脱开。可以理解,操作件和锁定件还可以有其他的设置方式,固定装置也可以采用其他形式,如螺钉等。
门扇部120的内侧的预定位置设置有多个气缸C(按压部),气缸C由空气压缩机(未示出)供给动力,空气经由从主体部110延伸的气管(未示出)供给到每一个气缸C,气缸C与基座210上的容纳腔2113一一对应,在门扇部120闭合时,气缸C能够伸入容纳腔2113内按压管子221,作为压扁或恢复管子221的开闭阀V来发挥作用。主体部110侧表面设置有减压阀140用于调整气体压力。可以理解,按压部也可以采用其他构造。根据本发明的实施例,通过将气缸C(按压部C)设置在门扇部可以节省大量的空间,另外,门扇部关闭时,可以保证在启动时各管路处于关闭状态,从而提高了操作的安全性。
根据本发明的实施例,固设模块100还可以包括设置在主体部110内的第一、第二废气通道T1、T2(图1中未示出),可拆卸模块200的废液瓶、产品瓶等通过连接部223上连接的废气管(管子)连接到主体部上预设的废气入口(预设的接口)I1,废气入口I1连通到第一废气通道T1,第一废气通道T1再连通主体部110上预设的废气出口I2,废气出口I2连接第一废气处理柱Z1,废液瓶、产品瓶等内的废气通过废气管、第一废气通道T1、第一废气处理柱Z1后排出。靶水瓶、(洗靶)废液瓶以相同的方式连接第二废气通道T2和第二废气处理柱Z2,第二废气处理柱Z2再通过主体部上预设的真空泵入口I3连接到主体部内部设置的真空泵P3(图1中未示出),在加速器传靶正压及真空泵负压下,靶水瓶、(洗靶)废液瓶内的废气通过废气管、第二废气通道T2、第二废气处理柱Z2和真空泵P3后排出,真空泵P3增加负压以便于缩短加速器传靶时间,减少管道残留损失,增加传靶回收率。可以理解,也可以不设置真空泵,此时也可以仅有一个废气通道;也可以不设置废气通道。
为连接方便,废气出口I2可以设置在第三容纳部133上方,废气处理装置250的入口251通过管子连接到废气出口I2,废气处理装置250的出口252敞开将处理后的废气直接排到大气或连接到真空泵入口I3通过真空泵P3排 到大气,可以理解,废气出口I2也可以设置在其他地方,只要在第三容纳部133附近,方便与废气处理装置250的连接即可。
根据本发明的实施例,废气通道、废气处理柱、真空泵等组成废气处理系统,解决了金属核素纯化及标记合成等工艺运行过程中所排出的酸性气体及放射性挥发物质对设备本身的腐蚀及环境污染问题。为验证废气处理的效果,有如下对比试验:
在柱管中按以下顺序操作:放置筛板,填充400mg棉花、400uL水,放置筛板,间隔填充棉花和颗粒状碱石灰3次(碱石灰总量2.5g左右),放置筛板,填充活性炭,放置筛板压死。使用氮气通入密封的装有浓盐酸的玻璃瓶,用管道将排出的气体引入装满水的长试管,从玻璃瓶内挥发的氯化氢气体会被水吸附,从而导致长试管中水呈酸性,本试验在排气管道中加装废气处理柱,如长试管中水不呈酸性,则证明挥发的氯化氢气体被废气处理柱除去。
不加废气处理柱的对比试验,8mL浓盐酸直接氮气鼓泡接入装满水的长试管中(水量约20mL),几秒后测量试管中水pH值<1。
废气处理柱吸附实验,8mL浓盐酸依次接入废气处理柱、1mL水、10mL水、200mL水。在氮气鼓泡30min后对1mL水测量pH值为5。
在确认空柱类型、更换填充方式后继续验证处理柱的使用时长实验。
上述试验数据说明废气处理柱除酸效果明显。
根据本发明的实施例,固设模块100还包括介质控制部180(P1、P2、P4),参考图9,介质控制部180包括驱动组件181、由驱动组件181驱动旋转的转子182、设置在转子182上的辊183、包围转子182和辊183的罩体184。驱动组件181至少部分设置在主体部110内部,根据本发明的实施例转子182、辊183和罩体184设置在主体部110前表面的第二容纳部132两侧,可以理解,转子、辊和罩体也可以设置在其他位置,如主体部的上表面。操作者将可拆卸模块200安装到安装部111后,将预定的管子221放置到辊183和罩体184之间,辊183除了随着转子182一同旋转,还可相对转子182自转,辊183旋转挤压管子221通过挤压和释放的力来输送流体E。辊183的数量至少为2个,一边随转子182旋转一边依次挤压并压扁管子221,随着辊183的移动,移动前方管内形成正压推动流体向前流动,移动后方管内形成负压持续吸入流体,循环往复,流体随之流动。可以理解,辊183也可以由其他能够随转子一同旋转且能够相对转子运动的挤压元件代替。通过控制转子的转速可以控制流体的流速,流速稳定并可调节控制,有利于控制经过纯化柱的纯化的效果,实现充分吸附,快速洗脱;通过控制转子的转向,可设置流体正向或反向流动,使设备更易于操作,多功能化。根据本发明的实施例的介质控制部将介质隔离在泵管中,介质不与介质控制部或固设模块的其他部件接触,从而避免强酸对设备的腐蚀,设备耐用性和使用寿命延长。
根据具体的放射性同位素操作类型,固设模块100还可以设置有用于加热反应瓶等的加热装置190(H1、H2、H3,图一中未示出),加热装置190与主体部110内部电连接,加热反应瓶时可以设置在第二容纳部132下方,可以是固定在第二容纳部132上能够与第二容纳部132一起与主体部110分离,也可以是直接固定在主体部110上。可以理解,固设模块100还可以设置有用于冷却反应瓶的冷却装置、用于确认反应瓶内的压力的压力传感器、用于确认反应瓶内的温度的温度计、用于确认反应瓶内所含的放射线量的放射线传感器、用于在线加热气体的电炉、控制气体流量的质流控制器等。
结合图10,根据本发明的实施例,放射性同位素操作装置10还包括控制模块300,控制模块300与固设模块100电连接,能够远程控制放射性同位素操作装置10的运行。控制模块300通过控制开闭阀V、介质控制部180、真空泵P3、加热装置190等的动作来操作介质在介质传输部220和各种容器230中的传输和反应。可以理解,控制模块还可以控制固设模块的其他部件。控制模块300通过供给各个气缸C动力来控制各开闭阀V的打开或开闭;还可以控制介质控制部180及真空泵P3的开闭,通过档位设置来控制介质的流速;及加热装置190的开闭、加热温度的设置。控制模块300包括手动模式、自动模式、半自动模式。手动模式通过点击控制模块300操作界面上与各开闭阀V、介质控制部180、真空泵P3、加热装置190等相应的控件来控制设备运行,在下一条指令发出之前保持目前状态;全自动模式在选择相应的反应程序后根据软件设计时序自动运行直至该程序下各步骤全部结束;半自动模式可以在相应的反应程序下手动点击各步骤并根据时序全自动运行直至该步骤结束。在全自动和半自动模式中还可以手动设置各步骤的运行时间。
以下,结合图11-图16对放射性同位素操作装置用于放射性同位素提纯时的实施例进行说明。为说明方便,图中仅示意出可更换模块和固设模块与提纯反应相关的作用部分,介质传输部通过管子和接头形成的流路L进行说明,连接部未示出,V1-V22从左上依次排布示出按压部与容纳腔构成的开闭阀。通过在加速器端(未示出)由带电粒子束照射金属靶材,在靶材中生成微量放射性同位素。可提纯的放射性同位素,例如可举出 89Zr、 64Cu、 68Ga等; 加速器可以为回旋加速器或直线加速器等;照射的带电粒子为质子、氘、α粒子、 3He或电子等;作为靶材可举出 90Y、 64Ni、 68Zn等。
实施例1[ 89Zr(草酸锆)的提纯]
用于 89Zr(草酸锆)提纯的可更换模块具有基座210,流路L111-L122构成的介质传输部220,废气处理柱Z1、Z2,纯化柱Z3,靶水瓶R1,试剂瓶R3、R4、R5,废液瓶R10、R12,产品瓶R13;固设模块具有介质控制部P1,废气通道T1、T2,真空泵P3。纯化柱Z3的填料为含异羟肟酸官能团的树脂。
参考图11,用于 89Zr(草酸锆)提纯的介质传输部形成流路L111-L122。L111从加速器相应端口延伸到废液瓶R10,通过阀V1和V12;L112从L111延伸到靶水瓶R1,通过阀V2;L113从靶水瓶R1延伸到纯化柱Z3,通过阀V3和介质控制部P1;L114从纯化柱Z3延伸到废液瓶R12,通过阀V17;L115从L114延伸到产品瓶R13,通过阀V18;L116从试剂瓶R3延伸到L113,通过阀V4;L117从试剂瓶R4延伸到L113,通过阀V5;L118从试剂瓶R5延伸到L117,通过阀V6;L119、L120分别从靶水瓶R1、废液瓶R10伸出连接到废气通道T2,废气通道T2再连接到废气处理柱Z2入口,废气处理柱Z2出口连接到真空泵P3,;L121、L122分别从废液瓶R12、产品瓶R13伸出连接到废气通道T1,废气通道T1再连接到废气处理柱Z1入口,废气处理柱Z1出口通向大气。
接下来对使用上述模块进行 89Zr(草酸锆)提纯的反应进行说明。下文中,所有阀门和固设模块的介质控制部、真空泵、加热装置等的初始状态为关闭,运行过程中,除描述为打开状态,其余皆为关闭状态。
首先进行传靶,将L111连接至加速器(图中未示出)端口,经回旋加速器12MeV质子束流轰击后的 90Y靶片,在加速器端用6M盐酸溶解后,从加速器端口流出。打开V1、V2阀,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,靶水经L111、L112流至靶水瓶R1内,废气经L119和废气通道T2流经废气处理柱Z2后经真空泵P3排出。传靶完成后,操作加速器端,使加速器洗靶废液从加速器端口流出,打开V1、V12,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,洗靶废液经L111流至废液瓶R10,废气经L120和废气通道T2流经废气处理柱Z2后经真空泵P3排出。
然后进行纯化吸附,打开V3、V17阀,并启动介质控制部P1,在介质控制部推动作用下靶水瓶R1内液体经L113、L114流过纯化柱Z3, 89Zr被纯化柱Z3吸附,废液进入废液瓶R12,废气经L121和废气通道T1流经废气处理柱Z1后排出。
然后清洗纯化柱Z3,打开V4、V17,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R3内液体(2M,10mL盐酸)经L116、L113、L114流过纯化柱Z3,洗脱柱上残留靶材等杂质,废液进入废液瓶R12,废气经L121和废气通道T1流经废气处理柱Z1后排出;打开V5、V17,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R4内液体(10mL超纯水)经L117、L113、L114流过Z3纯化柱,洗脱柱上残留杂质,废液进入废液瓶R12,废气经L121和废气通道T1流经废气处理柱Z1后排出。
最后洗脱产品,打开V6、V18,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R5内液体(1M,2mL草酸溶液)经L118、L117、L113、L114、L115流过Z3纯化柱,洗脱柱上 89Zr,进入产品收集瓶R13,废气经L122和废气通道T1流经废气处理柱Z1后排出。
实施例2[ 89Zr(盐酸氯化锆)的提纯]
用于 89Zr(盐酸氯化锆)提纯的可更换模块具有基座210,流路L211-L229构成的介质传输部220,废气处理柱Z1、Z2,纯化柱Z3、Z4,靶水瓶R1,中间瓶R2,试剂瓶R3、R4、R5、R8、R9,废液瓶R10,废液瓶R12,产品瓶R13;固设模块具有介质控制部P1、P2,废气通道T1、T2,真空泵P3。纯化柱Z3的填料为含异羟肟酸官能团的树脂,纯化柱Z4的填料为亲水性的强阴离子交换吸附剂。
参考图12,用于 89Zr(盐酸氯化锆)提纯的介质传输部形成流路L211-L225、L227-L229。L211-L214、L216-L222与 89Zr(草酸锆)提纯的流路L111-L114、L116-L122相同。L215从L214延伸到中间瓶R2,通过阀V7;L223从中间瓶R2伸出连接到废气通道T1;L224从中间瓶R2延伸到纯化柱Z4,通过阀V8和介质控制部P2;L225从纯化柱Z4延伸到废液瓶R12,通过阀V19;L227从试剂瓶R8延伸到L224,通过阀V10;L228从试剂瓶R9延伸到L227,通过阀V11;L229从L225延伸到产品瓶R13,通过阀V20。
接下来对使用上述模块进行 89Zr(盐酸氯化锆)提纯的反应进行说明。
其中传靶、纯化吸附、清洗纯化柱Z3的步骤与 89Zr(草酸锆)提纯的步骤相同。
清洗纯化柱Z3后,进入洗脱草酸锆,打开V6、V7,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R5内液体(1M,2mL草酸溶液)经L218、L217、L213、L214、L215流过Z3纯化柱,洗脱柱上 89Zr(草酸锆),进入中间瓶R2,废气经L223和废气通道T1流经废气处理柱Z1后排出。
然后草酸锆上柱,打开V8、V19,并启动介质控制部P2,在介质控制部推动作用下中间瓶R2内液体经L224、L225流过Z4纯化柱, 89Zr被吸附在柱上,草酸流入废液瓶R12。
然后清洗纯化柱Z4,打开V10、V19,并启动介质控制部P2,在介质控制部推动作用下试剂瓶R8内液体(10mL水)经L227、L224、L225流过纯化柱Z4,柱上草酸被洗脱至废液瓶R12。
最后洗脱产品,打开V11、V20,并启动介质控制部P2,在介质控制部推动作用下试剂瓶R9内液体(1M,1mL盐酸)经L228、L227、L224、L225、L229流过纯化柱Z4,洗脱 89Zr产品至产品瓶R13,废气经L222和废气通道T1流经废气处理柱Z1后排出。
实施例3[ 64Cu(盐酸氯化铜)的提纯]
用于 64Cu(盐酸氯化铜)提纯的可更换模块具有基座210,流路L311-L322、L330、L331构成的介质传输部220,废气处理柱Z1、Z2,纯化柱Z3,靶水瓶R1,试剂瓶R3、R4、R5,废液瓶R10、R12,靶材回收瓶R11,产品瓶R13;固设模块具有介质控制部P1,废气通道T1、T2,真空泵P3。纯化柱Z3的填料为阴离子交换树脂。
参考图13,用于 64Cu(盐酸氯化铜)提纯的介质传输部形成流路L311-L322、L330、L331。L311-L322与 89Zr(草酸锆)提纯的流路L111-L122相同。L330从L314延伸到靶材回收瓶R11,通过阀V12;L331从靶材回收瓶R11伸出连接到废气通道T2。
接下来对使用上述模块进行 64Cu(盐酸氯化铜)提纯的反应进行说明。
首先进行传靶,将L311连接至加速器(图中未示出)端口,经回旋加速器12MeV质子束流轰击后的 64Ni靶片,在加速器端用6M盐酸溶解后,从加速器端口流出。打开V1、V2阀,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,靶水经L311、L312流至靶水瓶R1内,废气经L319和废气通道T2流经废气处理柱Z2后经真空泵P3排出。传靶完成后,操作加速器端,使加速器洗靶废液从加速器端口流出,打开V1、V12,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,洗靶废液经L311流至废液瓶R10,废气经L320和废气通道T2流经废气处理柱Z2后经真空泵P3排出。
然后进行纯化吸附,打开V3、V16阀,并启动介质控制部P1,在介质控制部推动作用下靶水瓶R1内液体经L313、L314、L330流过纯化柱Z3,64Cu被纯化柱Z3吸附,靶材料 64Ni回收液进入靶材回收瓶R11,废气经L331和废气通道T1流经废气处理柱Z1后排出。
然后清洗纯化柱Z3,打开V4、V16,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R3内液体(6M,2mL盐酸)经L316、L313、L314、L330流过纯化柱Z3,洗脱柱上残留靶材 64Ni,进入靶材回收瓶R11,废气经L331和废气通道T1流经废气处理柱Z1后排出;打开V5、V17,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R4内液体(6M,10mL盐酸)经L317、L313、L314流过Z3纯化柱,洗脱柱上残留杂质,废液进入废液瓶R12,废气经L321和废气通道T1流经废气处理柱Z1后排出。
最后洗脱产品,打开V6、V18,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R5内液体(1M,2mL盐酸)经L318、L317、L313、L314、L315流过Z3纯化柱,洗脱柱上 64Ni,进入产品收集瓶R13,废气经L322和废气通道T1流经废气处理柱Z1后排出。
实施例4[ 64Cu(中性氯化铜)的提纯]
用于 64Cu(中性氯化铜)提纯的可更换模块具有基座210,流路L411-L431构成的介质传输部220,废气处理柱Z1、Z2,纯化柱Z3、Z4,靶水瓶R1,中间瓶R2,试剂瓶R3、R4、R5、R7、R8、R9,废液瓶R10、R12,靶材回收瓶R11,产品瓶R13;固设模块具有介质控制部P1、P2,废气通道T1、T2,真空泵P3。纯化柱Z3、Z4的填料为阴离子交换树脂。
参考图14,用于 64Cu(中性氯化铜)提纯的介质传输部形成流路L411-L431。L411-L425、L427-L429与 89Zr(盐酸氯化锆)提纯的流路L211-L225、L227-L229相同。L430、L431与 64Cu(盐酸氯化铜)提纯的流路L330、L331相同。L426从试剂瓶R7延伸到L424,通过阀V9。
接下来对使用上述模块进行 64Cu(中性氯化铜)提纯的反应进行说明。
其中传靶、纯化吸附、清洗纯化柱Z3的步骤与 64Cu(盐酸氯化铜)提纯的步骤相同。
清洗纯化柱Z3后,进入洗脱盐酸氯化铜,打开V6、V7,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R5内液体(1M,2mL盐酸)经L418、L417、L413、L414、L415流过Z3纯化柱,洗脱柱上 64Cu(盐酸氯化铜),进入中间瓶R2,废气经L423和废气通道T1流经废气处理柱Z1后排出。
然后盐酸氯化铜上柱,打开V8、V19,并启动介质控制部P2,在介质控制部推动作用下中间瓶R2内液体经L424、L425流过Z4纯化柱, 64Cu被吸附在柱上,盐酸流入废液瓶R12。
然后清洗纯化柱Z4,打开V9、V19,并启动介质控制部P2,在介质控制部推动作用下试剂瓶R7内液体(8M,1.5mL盐酸)经L426、L424、L425流过纯化柱Z4,柱上杂质被洗脱至废液瓶R12;打开V10、V19,并启动介质控制部P2,在介质控制部推动作用下试剂瓶R8内液体(0.2mL超纯水)经L427、L424、L425流过纯化柱Z4,柱上盐酸被洗脱至废液瓶R12。
最后洗脱产品,打开V11、V20,并启动介质控制部P2,在介质控制部推动作用下试剂瓶R9内液体(1mL超纯水)经L428、L427、L424、L425、L429流过纯化柱Z4,洗脱 64Cu产品至产品瓶R13,废气经L422和废气通道T1流经废气处理柱Z1后排出。
实施例5[ 68Ga(盐酸氯化镓)的提纯]
用于 68Ga(盐酸氯化镓)提纯的可更换模块具有基座210,流路L511-L522、L530、L531构成的介质传输部220,废气处理柱Z1、Z2,纯化柱Z3,靶水瓶R1,试剂瓶R3、R4、R5,废液瓶R10、R12,靶材回收瓶R11,产品瓶R13;固设模块具有介质控制部P1,废气通道T1、T2,真空泵P3。纯化柱Z3的填料为含异羟肟酸官能团的树脂。
参考图15,用于 68Ga(盐酸氯化镓)提纯的介质传输部形成流路L511-L522、L530、L531。与 64Cu(盐酸氯化铜)提纯的流路L311-L322、L330、L331相同。
接下来对使用上述模块进行 68Ga(盐酸氯化镓)提纯的反应进行说明。
首先进行传靶,将L511连接至加速器(图中未示出)端口,经回旋加速器12MeV质子束流轰击后的 68Zn靶片,在加速器端用10M盐酸溶解后,从加速器端口流出。打开V1、V2阀,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,靶水经L511、L512流至靶水瓶R1内,废气经L519和废气通道T2流经废气处理柱Z2后经真空泵P3排出。传靶完成后,操作加速器端,使加速器洗靶废液从加速器端口流出,打开V1、V12,并打开加速器端口的阀门,启动真空泵P3,在加速器正压及真空泵P3作用下,洗靶废液经L511流至废液瓶R10,废气经L520和废气通道T2流经废气处理柱Z2后经真空泵P3排出。
然后进行纯化吸附,打开V3、V16阀,并启动介质控制部P1,在介质控制部推动作用下靶水瓶R1内液体经L513、L514、L530流过纯化柱Z3,68Ga被纯化柱Z3吸附,靶材料 68Zn回收液进入靶材回收瓶R11,废气经L531和废气通道T1流经废气处理柱Z1后排出。
然后清洗纯化柱Z3,打开V4、V16阀,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R3内液体(10M,2mL盐酸)经L516、L513、L514、L530流过纯化柱Z3,洗脱柱上残留靶材 68Zn,进入靶材回收瓶R11,废气经L531和废气通道T1流经废气处理柱Z1后排出;打开V5、V17,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R4内液体(10M,2mL盐酸)经L517、L513、L514流过Z3纯化柱,洗脱柱上残留杂质,废液进入废液瓶R12,废气经L521和废气通道T1流经废气处理柱Z1后排出。
最后洗脱产品,打开V6、V18,并启动介质控制部P1,在介质控制部推动作用下试剂瓶R5内液体(2M,2mL盐酸)经L518、L517、L513、L514、L515流过Z3纯化柱,洗脱柱上 68Ga,进入产品收集瓶R13,废气经L522和废气通道T1流经废气处理柱Z1后排出。
在上述实施例中,经回旋加速器质子束流轰击后的靶片是在加速器端溶解后,从加速器端口直接流出并连接到介质传输部的相应接口,可以理解,靶片也可以从加速器端传出后在放射性同位素操作装置中进行溶解并进行下一步的操作,也就是说放射性同位素操作装置还包括靶溶解部(由下文所述的靶片溶解瓶R0、加热装置H1、过滤器F1、介质控制部P4构成)。参考图16,以 89Zr(盐酸氯化锆)的提纯进行说明,相对于图12所示的实施例,可更换模块增设了靶片溶解瓶R0和过滤器F1,固设模块增设了对靶片溶解瓶R0进行加热的加热装置H1和介质控制部P4,同时取消了废液瓶R10。介质传输部形成流路L611-L619、L621-L625、L627-L629,其中L613-L619、L621-L625、L627-L629与L213-L219、L221-L225、L227-L229相同。L611从靶片溶解瓶R0延伸到过滤器F1,通过介质控制部P4;L612从过滤器F1延伸到靶水瓶R1。可以理解,L611和L612也可以通过阀来对其流路进行控制,根据本发明的实施例仅通过介质控制部P4来进行控制。
经回旋加速器12MeV质子束流轰击后的 90Y靶片,在加速器端传出后,用铅屏蔽罐运输至放射性同位素操作装置端,将靶片放入靶片溶解瓶R6中。首先进行靶片溶解,靶片溶解瓶R6中预先加入所需浓度的盐酸(通常为6M,3mL),开启加热装置H1加热靶片溶解瓶R6到40-60度辅助溶解2min。然后进行传靶,开启介质控制部P4,靶片溶解瓶R6内液体流经过滤器F1除去未溶解固体杂质后,进入靶水瓶R1中。传靶之后的步骤与不包括靶溶解部的 89Zr(盐酸氯化锆)提纯反应的步骤相同。
以下,结合图17-图18对放射性同位素操作装置用于放射性同位素标记合成时的实施例进行说明。为说明方便,图中仅示意出可更换模块和固设模块与标记合成反应相关的作用部分,介质传输部通过管子和接头形成的流路L进 行说明,连接部未示出,V1-V26从左上依次排布示出按压部与容纳腔构成的开闭阀。可以由不同的放射性同位素,例如可举出68Ga、64Cu、89Zr等,标记不同的物质,例如可举出小分子、多肽、蛋白、单抗等。
实施例6[ 89Zr(草酸锆)标记DFO修饰单克隆抗体]
用于 89Zr(草酸锆)标记DFO修饰单克隆抗体的可更换模块具有基座210,流路L711-L722构成的介质传输部220,纯化柱Z3,中间瓶R2,试剂瓶R3-R8,废液瓶R12,产品瓶R13,反应瓶R14,无菌滤膜F2;固设模块具有介质控制部P1、P2,加热装置H2。其中 89Zr(草酸锆)可以由上述用于放射性同位素提纯的实施例中的放射性同位素操作装置合成,合成的 89Zr-草酸溶液放入根据本发明的实施例的中间瓶R2内,可以由根据本发明的实施例的放射性同位素操作装置自动化标记合成 89Zr-DFO-mAb。纯化柱Z3为蛋白纯化柱。
参考图17,用于 89Zr(草酸锆)标记DFO修饰单克隆抗体的介质传输部形成流路L711-L122。L711从中间瓶R2延伸到反应瓶R14,通过阀V3、V17和介质控制部P1;L712从试剂瓶R3延伸到L711,通过阀V1;L713从试剂瓶R4延伸到L711,通过阀V2;L714从L711延伸到中间瓶R2,通过阀V4;L715从试剂瓶R5延伸到纯化柱Z3,通过阀V5和介质控制部P2;L716从试剂瓶R6延伸到L715,通过阀V6;L717从试剂瓶R7延伸到L715,通过阀V7;L718从试剂瓶R8延伸到L717,通过阀V8;L719从反应瓶R14延伸到L715,通过阀V18;L720从纯化柱Z3延伸到废液瓶R12,通过阀V22;L721从L720延伸到产品瓶R13,通过阀V21和无菌滤膜F2。
下面对使用上述模块进行 89Zr(草酸锆)标记DFO修饰单克隆抗体的反应进行说明。
中和:开启V1、V4,启动介质控制部P1,试剂瓶R3中液体(0.15M,0.5mL醋酸/醋酸钠缓冲溶液(或HEPES溶液)+0.1mL,1M Na2CO3溶液)经L712、L711、L714转移到预先加入 89Zr-草酸溶液的中间瓶R2中,转移完成后保持20秒,中和 89Zr溶液至pH 7,获得 89Zr中和液。
转移中和液:打开V3、V17,启动介质控制部P1,中间瓶R2内中和液经L711转移至反应瓶R14内。
转移抗体:打开V2、V17,启动介质控制部P1,试剂瓶R4内液体(DFO-mAb抗体溶液)经L713、L711转移至反应瓶R14内。
螯合反应及纯化准备:启动加热装置H2加热反应瓶R14至30度,维持反应30-60min;打开V5、V22,启动介质控制部P2,试剂瓶R5内液体(35mL超纯水)经L715、L720流经纯化柱Z3,进行冲洗,废液流入废液瓶R12;完成后,打开V6、V22,启动介质控制部P2,试剂瓶R6内液体(0.15M,15mL醋酸/醋酸钠缓冲溶液)经L716、L715、L720流经纯化柱Z3,进行盐饱和,废液流入废液瓶R12;打开V7、V22,启动介质控制部P2,试剂瓶R7内液体(0.15M,20mL醋酸/醋酸钠缓冲溶液)经L717、L715、L720流经纯化柱Z3,再次进行盐饱和,废液流入废液瓶R12。
分离纯化:待反应瓶R14内反应结束后,打开V18、V22,启动介质控制部P2,反应瓶R14内反应液经L719、L715、L720流经纯化柱Z3后,废液流入废液瓶R12,目标产物 89Zr-DFO-mAb滞留在纯化柱Z3上。
洗脱产品:打开V8、V21,启动介质控制部P2,试剂瓶R8瓶液体(0.15M,3mL醋酸/醋酸钠溶液)经L718、L717、L715、L720、L721流经纯化柱Z3,将柱上 89Zr-DFO-mAb洗脱并经过无菌滤膜F2过滤后进入产品瓶R13,即得最终产物。
实施例7[ 68Ga(盐酸氯化镓)标记DOTA修饰小分子肽]
用于 68Ga(盐酸氯化镓)标记DOTA修饰小分子肽的可更换模块具有基座210,流路L811-L822构成的介质传输部220,纯化柱Z3,中间瓶R2,试剂瓶R3-R9,废液瓶R12,产品瓶R13,反应瓶R14,无菌滤膜F2;固设模块具有介质控制部P1、P2,加热装置H2、H3。其中 68Ga(盐酸氯化镓)可以由上述用于放射性同位素提纯的实施例中的放射性同位素操作装置合成,合成的 68Ga(盐酸氯化镓)溶液放入根据本发明的实施例的试剂瓶R3内,可以由根据本发明的实施例的放射性同位素操作装置自动化标记合成 68Ga-DOTA-多肽。纯化柱Z3为C-18固相萃取柱。
参考图18,用于 68Ga(盐酸氯化镓)标记DOTA修饰小分子肽的介质传输部形成流路L811-L822。L811从中间瓶R2延伸到反应瓶R14,通过阀V3、V20和介质控制部P1;L812从试剂瓶R3延伸到L811,通过阀V1;L813从试剂瓶R4延伸到L811,通过阀V2;L814从L811延伸到中间瓶R2,通过阀V4;L815从试剂瓶R5延伸到纯化柱Z3,通过阀V5、V10和介质控制部P2;L816从试剂瓶R6延伸到L815,通过阀V6;L817从试剂瓶R7延伸到L815,通过阀V7;L818从试剂瓶R8延伸到L817,通过阀V8;L819从试剂瓶R9延伸到L817,通过阀V9;L820从反应瓶R14延伸到L815,通过阀V21;L821从纯化柱Z3延伸到废液瓶R12,通过阀V26;L822从L821延伸到产品瓶R13,通过阀V25和无菌滤膜F2;L823从L815延伸到产品瓶R13,通过阀V24和无菌滤膜F3。
下面对使用上述模块进行 68Ga(盐酸氯化镓)标记DOTA修饰小分子肽的反应进行说明。
转移核素:开启V1、V4,启动介质控制部P1,试剂瓶R3中液体( 68Ga-GaCl 3+HCl溶液)经L812、L811、 L814转移到中间瓶R2中。
中和:开启V2、V4,启动介质控制部P1,试剂瓶R4内液体(0.1M NaOH溶液)经L813、L811、L814转移到中间瓶R2中,中和中间瓶R2内液体pH至4.0。
转移中和液:打开V3、V20,启动介质控制部P1,中间瓶R2内中和液经L811转移至反应瓶R14内,反应瓶R14内预先加入了待标记的DOTA-小分子肽溶液。
螯合反应及纯化准备:启动加热装置H2加热反应瓶R14至80度,维持反应30-60min;打开V5、V10、V26,启动介质控制部P2,试剂瓶R5内液体(10mL无水乙醇)经L815、L821流经纯化柱Z3,进行冲洗,废液流入废液瓶R12;打开V6、V10、V26,启动介质控制部P2,试剂瓶R6内液体(20mL超纯水)经L816、L815、L821流经纯化柱Z3,进行冲洗,废液流入废液瓶R12。
分离纯化:待反应瓶R14内反应结束后,打开V21、V10、V26,启动介质控制部P2,反应瓶R14内反应液经L820、L815、L821流经纯化柱Z3后,废液流入废液瓶R12,目标产物 68Ga-DOTA-小分子肽滞留在纯化柱Z3上;打开V7、V10、V26,启动介质控制部P2,试剂瓶R7内液体(10mL超纯水)经L817、L815、L821流经纯化柱Z3,洗脱纯化柱Z3上杂质,废液流入废液瓶R12。
洗脱产品:打开V8、V10、V25,启动介质控制部P2,试剂瓶R8内液体(2mL无水乙醇溶液)经L818、L817、L815、L821、L822流经纯化柱Z3,将柱上 68Ga-DOTA-小分子肽洗脱并经过无菌滤膜F2过滤后进入产品瓶R13,启动加热装置H3,在80度加热下,自然挥干无水乙醇。
溶解产品:打开V9、V24,启动介质控制部P2,试剂瓶R9内液体(2mL生理盐水溶液)经L819、L817、L815、L823并经过无菌滤膜F3后进入产品瓶R13内,溶解 68Ga-DOTA-小分子肽。
可以理解,本发明还可以应用于其他放射性同位素的操作;上述具体实施例中使用的纯化柱填料、试剂种类、体积等均可在一定范围内变动或用同类试剂替代,流路的排布及阀的具体作用位置也可以做适当的调整。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (33)

  1. 一种用于放射性同位素操作系统的可更换模块,其特征在于,包括:
    基座;
    保持部,所述保持部设在所述基座上,所述保持部突出所述基座的表面;和
    介质传输部,包括管子,所述介质传输部通过所述保持部安装在所述基座上;
    其中,所述保持部进一步包括:
    卡槽,所述卡槽被配置为适于固定所述管子;
    容纳腔,所述容纳腔被配置为适于容纳按压部,并且所述管子穿过所述容纳腔。
  2. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    凸台,所述凸台设置在所述容纳腔中,并且所述凸台突出所述容纳腔底部的平面。
  3. 根据权利要求2所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凸台被配置为沿着与所述管子不平行的方向延伸。
  4. 根据权利要求2所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凸台被配置为沿着与所述管子垂直的方向延伸。
  5. 根据权利要求2所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凸台与所述管子接触的面为平面或者圆弧面。
  6. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述基座为平板。
  7. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述卡槽的开口距离不超过所述管子的外径。
  8. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述基座包括:
    突出部,所述卡槽和所述容纳腔设置在所述突出部上。
  9. 根据权利要求8所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述突出部的外轮廓为圆形,所述容纳腔为圆形,并且在所述突出部上径向相对设置两个所述卡槽。
  10. 根据权利要求8所述的用于放射性同位素操作系统的可更换模块,其特征在于,包括多个所述突出部,多个所述突出部呈两排横向分布。
  11. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述卡槽包括:
    收口部,所述收口部的收口距离不超过所述管子的外径;
    扩大部,所述扩大部的扩大距离不低于所述管子的外径。
  12. 根据权利要求11所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述收口部的所述收口距离小于所述管子的外径,所述扩大部的扩大距离大于所述管子的外径。
  13. 根据权利要求4所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    导向部,所述导向部以凹槽的形式设置在所述基座上,所述凹槽具有小于所述管子外径的下凹距离。
  14. 根据权利要求13所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凹槽与所述卡槽和所述容纳腔相通。
  15. 根据权利要求13所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    辅助定位部,所述辅助定位部以凸起形式设置在所述基座上;
    容纳槽,所容纳槽设置在所述凸起上,并且所述容纳槽适于所述管子穿过和对所述管子进行导向。
  16. 根据权利要求15所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述辅助定位部可拆卸地或者可移动地设置在所述基座上。
  17. 根据权利要求15所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凹槽与所述容纳槽相通。
  18. 根据权利要求15所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述容纳槽的延伸方向为弧形。
  19. 根据权利要求15所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述凸起的高度不超过所述突出部。
  20. 根据权利要求15所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述容纳槽适于对所述 管子进行直角导向。
  21. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    容器,
    其中,所述介质传输部包括连接部,所述连接部与所述容器连接,所述连接部包括:
    壳体,所述壳体与所述容器螺纹连接;
    胶塞,所述胶塞设置在所述壳体内并具有至少一个通孔,所述壳体将所述胶塞压紧到所述容器的壁和所述壳体之间形成密封;和
    连接管,所述连接管穿过所述通孔和所述壳体,所述连接管和所述胶塞通过胶密封连接。
  22. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    废气处理装置,所述废气处理装置包括:
    入口;
    出口;
    废气处理装置壳体,所述废气处理装置壳体连通所述入口和所述出口;
    至少两种不同的填充物,所述至少两种的填充物设置在所述废气处理装置壳体内。
  23. 根据权利要求22所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述废气处理装置壳体被配置为柱管的形式,所述入口和所述出口设置在所述柱管的两端,其中,废气处理装置进一步包括:
    筛板,所述筛板设置在柱管内在所述柱管内限定出多个容纳空间,所述至少两种不同的填充物分别设置在所述多个容纳空间的至少一个中,
    其中,所述筛板为平板状且板面上设置有通孔,所述筛板的外形与所述柱管内壁的横截面形状匹配。
  24. 根据权利要求23所述的用于放射性同位素操作系统的可更换模块,其特征在于,所述至少两种的包括纤维状材料、除酸物质和吸附物质。
  25. 根据权利要求24所述的用于放射性同位素操作系统的可更换模块,其特征在于,沿着由所述入口至所述出口的方向,依次设置所述纤维状材料、所述除酸物质和所述吸附物质。
  26. 根据权利要求25所述的用于放射性同位素操作系统的可更换模块,其特征在于,
    所述纤维状材料为棉花;
    所述除酸物质为碱性物质;和/或
    所述吸附物质为活性炭。
  27. 根据权利要求26所述的用于放射性同位素操作系统的可更换模块,其特征在于,
    所述棉花的含水量为5~10重量%;
    所述碱性物质为含碱石灰的棉花,所述碱石灰为多孔颗粒状碱石灰;和/或
    所述活性炭的孔径为10~500埃米。
  28. 根据权利要求1所述的用于放射性同位素操作系统的可更换模块,其特征在于,进一步包括:
    纯化装置,所述纯化装置两端分别与所述管子连接形成在所述流路中。
  29. 一种放射性同位素操作系统,其特征在于,包括:
    固设模块;和
    可更换模块,所述可更换模块为前述任一项所述的用于放射性同位素操作系统的可更换模块,
    其中,所述固设模块包括:
    主体部,所述主体部被配置为适于安装所可更换模块;和
    按压部,所述按压部被配置为可移动地被容纳在所述容纳腔中。
  30. 根据权利要求29所述的放射性同位素操作系统,其特征在于,所述固设模块进一步包括:
    门扇部,所述门扇部与所述主体部枢转连接,所述按压部设置在所述门扇部上。
  31. 根据权利要求29所述的放射性同位素操作系统,其特征在于,所述固设模块进一步包括:
    容纳部,所述容纳部可拆卸地设置在所述主体部上,所述容纳部被配置为适于容纳所述容器、所述废气处理装置和所述纯化装置;和
    介质控制部,所述介质控制部包括:
    驱动组件;
    转子,所述转子由所述驱动组件驱动旋转;
    挤压元件,所述挤压元件设置在所述转子适于随所述转子旋转且相对转子运动;
    罩体,所述罩体包围所述转子,
    所述驱动组件的至少一部分设置在所述主体部的内部,
    所述转子、挤压元件和所述罩体设置在所述主体部的前表面,
    所述管子的至少一部分部分设置在所述挤压元件和所述罩体之间,
    所述挤压元件被配置为适于通过运动挤压和释放所述管子,以便输送所述管子内的流体。
  32. 根据权利要求29所述的放射性同位素操作系统,其特征在于,进一步包括:
    反应容器,所述反应容器设置在所述可更换模块中,并且被配置为用于放射性同位素操作;
    废气管,所述废气管与所述反应容器相连;和
    废气通道,所述废气通道设置在所述固设模块中,并且所述废气通道分别与所述废气管和所述废气处理装置相连。
  33. 根据权利要求29所述的放射性同位素操作系统,其特征在于,进一步包括:
    真空泵,所述真空泵设置在所述固设模块内。
PCT/CN2019/122428 2018-12-03 2019-12-02 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统 WO2020114353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980079355.5A CN113490514A (zh) 2018-12-03 2019-12-02 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201822012495.6 2018-12-03
CN201822012958.9 2018-12-03
CN201811465289.9A CN111257921A (zh) 2018-12-03 2018-12-03 放射性同位素操作系统及其可更换模块
CN201811465285.0A CN111261309A (zh) 2018-12-03 2018-12-03 放射性同位素操作系统及其废气处理装置
CN201811465285.0 2018-12-03
CN201822012958.9U CN209514084U (zh) 2018-12-03 2018-12-03 放射性同位素操作系统及其可更换模块
CN201811465289.9 2018-12-03
CN201822012495.6U CN209515215U (zh) 2018-12-03 2018-12-03 放射性同位素操作系统及其废气处理装置

Publications (1)

Publication Number Publication Date
WO2020114353A1 true WO2020114353A1 (zh) 2020-06-11

Family

ID=70974503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122428 WO2020114353A1 (zh) 2018-12-03 2019-12-02 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统

Country Status (1)

Country Link
WO (1) WO2020114353A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430133A (zh) * 2011-12-02 2012-05-02 无锡江原安迪科分子核医学研究发展有限公司 一种可当日多次使用的放射性药物合成模块
CN103301484A (zh) * 2012-03-13 2013-09-18 住友重机械工业株式会社 放射性同位素操作装置用盒、操作装置及操作系统
US20140072482A1 (en) * 2012-09-12 2014-03-13 Atomic Energy Council-Institute Of Nuclear Energy Research Automated synthesis system for iodine-123-ibzm nuclear medicine
CN105555740A (zh) * 2013-09-26 2016-05-04 通用电气公司 用于制造放射性同位素的系统、方法和设备
CN209514084U (zh) * 2018-12-03 2019-10-18 米度(南京)生物技术有限公司 放射性同位素操作系统及其可更换模块
CN209515215U (zh) * 2018-12-03 2019-10-18 米度(南京)生物技术有限公司 放射性同位素操作系统及其废气处理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430133A (zh) * 2011-12-02 2012-05-02 无锡江原安迪科分子核医学研究发展有限公司 一种可当日多次使用的放射性药物合成模块
CN103301484A (zh) * 2012-03-13 2013-09-18 住友重机械工业株式会社 放射性同位素操作装置用盒、操作装置及操作系统
US20140072482A1 (en) * 2012-09-12 2014-03-13 Atomic Energy Council-Institute Of Nuclear Energy Research Automated synthesis system for iodine-123-ibzm nuclear medicine
CN105555740A (zh) * 2013-09-26 2016-05-04 通用电气公司 用于制造放射性同位素的系统、方法和设备
CN209514084U (zh) * 2018-12-03 2019-10-18 米度(南京)生物技术有限公司 放射性同位素操作系统及其可更换模块
CN209515215U (zh) * 2018-12-03 2019-10-18 米度(南京)生物技术有限公司 放射性同位素操作系统及其废气处理装置

Similar Documents

Publication Publication Date Title
CN106457068B (zh) 氧化锆再填装的方法和装置
KR101221483B1 (ko) F-18 표지 방사성의약품 합성 장치 및 방법
CN105169507B (zh) 透析系统、部件和方法
EP2585187B1 (en) A bag for a circuit of a biological liquid treatment installation
KR100835591B1 (ko) 방사성 약액 합성장치의 사용방법, 및 방사성 약액합성장치
JPS6256464B2 (zh)
WO2022127927A1 (zh) 一种液相自动化合成仪
CN108218651B (zh) 用于制备放射性药物的一次性辅助装置及方法
JP3008329B2 (ja) ラジオアイソトープ標識試薬調整用プレフィルドキット
JP2001521616A (ja) 電気化学的に再生されたイオン中和および濃縮装置およびシステム
CN111272521B (zh) 一种对稻曲毒素a进行提取净化的预处理装置与方法
US7530258B2 (en) Method for the preparation of samples for an analyzer and sample preparation station therefor
EA023197B1 (ru) Способ очистки реакционной смеси, содержащей [f]флутеметамол
CN103380058A (zh) 放射性药物制造和装置
WO2020114353A1 (zh) 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统
US9240253B2 (en) Column geometry to maximize elution efficiencies for molybdenum-99
KR101487345B1 (ko) 방사성동위원소 취급장치용 카세트, 방사성동위원소 취급장치, 및 방사성동위원소 취급시스템
CN111257921A (zh) 放射性同位素操作系统及其可更换模块
CN111261309A (zh) 放射性同位素操作系统及其废气处理装置
KR102159425B1 (ko) 플루오라이드 포획 배열체
TW201201844A (en) Gallium-68 radioisotope generator and generating method thereof
CN209514084U (zh) 放射性同位素操作系统及其可更换模块
CN209515215U (zh) 放射性同位素操作系统及其废气处理装置
CN113490514A (zh) 用于放射性同位素操作系统的可更换模块以及放射性同位素操作系统
US20130240449A1 (en) Device for material purification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892941

Country of ref document: EP

Kind code of ref document: A1