WO2020113846A1 - 一种薄膜封装结构及薄膜封装方法 - Google Patents

一种薄膜封装结构及薄膜封装方法 Download PDF

Info

Publication number
WO2020113846A1
WO2020113846A1 PCT/CN2019/078456 CN2019078456W WO2020113846A1 WO 2020113846 A1 WO2020113846 A1 WO 2020113846A1 CN 2019078456 W CN2019078456 W CN 2019078456W WO 2020113846 A1 WO2020113846 A1 WO 2020113846A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic layer
grid
retaining wall
layer
thin film
Prior art date
Application number
PCT/CN2019/078456
Other languages
English (en)
French (fr)
Inventor
王蕊
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/462,535 priority Critical patent/US20200343474A1/en
Publication of WO2020113846A1 publication Critical patent/WO2020113846A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the invention relates to a film packaging structure and a film packaging method.
  • OLED display technology has the advantages of self-luminescence, wide viewing angle, almost infinitely high contrast, low power consumption, and extremely high response speed, etc., which has attracted more and more attention from academia and industry. After years of active exploration and further optimization of device structures and processes and related materials, organic electroluminescence has achieved long-term progress.
  • the OLED display includes an organic light-emitting unit, which generates excitons in the organic light-emitting layer by combining electrons and holes transitioning from an excited state to an organic state, and the organic light-emitting unit emits light by generating energy generated when generating an exciton.
  • the cathode (Cathode) and light-emitting layer (EML) of the OLED device easily react with the water and oxygen infiltrated, greatly affecting the life and efficiency. Therefore, it is an indispensable process to protect the driving unit and the organic light-emitting unit on the flexible machine board by encapsulating water and oxygen.
  • the existing OLED thin-film encapsulation structure 10 includes, in order from the inside out: 1) the bottom 11 of the machine, this layer can be made of glass or a flexible substrate; 2) the electroluminescent unit 12, this layer includes R, G , B three-color pixel array of organic light-emitting units; 3) The first inorganic layer 13, using chemical vapor deposition (Plasma) on the electroluminescent unit Enhanced Chemical Vapor Deposition (referred to as PECVD); 4) Organic layer 14, prepared by inkjet printing (IJP); 5) Second inorganic layer 15, again deposited using PEVCD.
  • the above method of surrounding the barrier wall makes the existing process more complicated, and the ink material has the risk of overflow, which affects the reliability of the package; in addition, during the above leveling process, the ink will overlap each other, and the film layer will fluctuate, affecting the uniformity of the film thickness;
  • the inorganic layer acts as a barrier layer to prevent the penetration of water and oxygen
  • the organic layer acts as a buffer layer to release the stress of the inorganic layer and increase the water and oxygen penetration path.
  • the two membrane layers have different functions, different materials, and large differences in properties. Therefore, it will cause poor adhesion between the inorganic layer and the organic layer film layer, and there will be problems such as delamination, film peeling, and device failure.
  • An object of the present invention is to provide a thin-film encapsulation structure, which can effectively solve the problems of ink stagnation overflow and overlap, and prevent the delamination phenomenon between the inorganic layer and the organic layer.
  • the invention provides a thin film packaging structure, including an OLED device, a first inorganic layer, a grid barrier, an organic layer and a second inorganic layer; the first inorganic layer covers the upper surface of the OLED device; the grid The retaining wall is formed on the upper surface of the first inorganic layer, the grid retaining wall includes a plurality of grids; and the organic layer is filled into the grid and is deposited on the upper surface of the first inorganic layer The second inorganic layer covers the grid retaining wall, the upper surface of the organic layer and the OLED device, the grid retaining wall, and the side of the first inorganic layer.
  • the height of the grid retaining wall is greater than the thickness of the organic layer.
  • the shape of the grid retaining wall is a Japanese character shape, a mesh character shape, a field character shape, a zigzag shape, and the like.
  • the grid is a quadrilateral; and/or, the number of the grid is 2-16.
  • first inorganic layer, the grid barrier and the second inorganic layer are all silicon-based compounds.
  • the material of the organic layer includes any one or a combination of two or more of polyvinyl alcohol, urethane acrylate polymer, and polyimide resin.
  • Another object of the present invention is to provide a thin film encapsulation method, which can effectively solve the problems of ink stagnation overflow and overlap, and prevent the delamination phenomenon between the inorganic layer and the organic layer.
  • the present invention also provides a thin film packaging method, including the following steps: a preparation step, providing an OLED device; a first inorganic layer preparation step, preparing a first inorganic layer on the upper surface of the OLED device; a grid retaining wall preparation step, in A grid retaining wall is prepared on the upper surface of the first inorganic layer, and the grid retaining wall includes a plurality of quadrilateral grids; an organic layer preparation step is to fill the grid with organic matter, and the organic stream is deposited on the surface after flattening An organic layer is formed on the upper surface of the first inorganic layer; a second inorganic layer preparation step is to prepare a second inorganic layer on the grid barrier wall and the upper surface of the organic layer to cover the OLED device, the The side wall of the grid retaining wall and the first inorganic layer.
  • the thickness of the organic layer is smaller than the height of the grid retaining wall.
  • the first inorganic layer is deposited by vapor deposition; and/or, in the step of preparing the grid retaining wall, the first inorganic layer is deposited by vapor deposition Grid barrier; and/or, in the step of preparing the second inorganic layer, the second inorganic layer is deposited by vapor deposition.
  • an organic substance is filled in the grid by an inkjet printing method.
  • the present invention proposes a thin film packaging structure and a thin film packaging method, by adding a grid retaining wall to the thin film packaging structure. In this way, in the ink leveling step, the overflow and overlap of ink stagnation points are prevented, thereby improving the manufacturing efficiency, and making the organic film layer uniform, and improving the light-emitting performance of the device.
  • Figure 1 is a schematic diagram of the structure of the prior art thin film package
  • FIG. 2 is a schematic diagram of the structure of the ink stagnation point of the prior art inkjet printing process
  • FIG. 3 is a schematic diagram of ink leveling structure of the prior art inkjet printing process
  • Example 4 is a schematic structural view of the thin film package of Example 1;
  • FIG. 5 is a schematic diagram of a longitudinal cross-sectional structure of a glass substrate and an organic light-emitting display device of Example 1;
  • Example 6 is a schematic diagram of a longitudinal cross-sectional structure of a glass substrate, an organic light-emitting display device, and a first inorganic layer in Example 1;
  • Example 7 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid retaining wall of Example 1;
  • Example 8 is a schematic structural view of the ink stagnation point of the inkjet printing process of Example 1;
  • Example 9 is a schematic view of the ink leveling structure of the inkjet printing process of Example 1.
  • Example 10 is a flow chart of the preparation method of the thin film package of Example 1;
  • FIG. 11 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid retaining wall of Example 2;
  • Example 12 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid retaining wall of Example 3;
  • FIG. 13 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid retaining wall of Example 4;
  • FIG. 14 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid barrier wall of Example 5.
  • FIG. 14 is a schematic structural view of a glass substrate, an organic light-emitting display device, a first inorganic layer, and a grid barrier wall of Example 5.
  • this embodiment provides a thin film packaging structure, including an OLED device 22, a first inorganic layer 23, a grid barrier 24, an organic layer 26, and a second inorganic layer 27.
  • the first inorganic layer 23 covers the upper surface of the OLED device 22; the grid barrier 24 is formed on the upper surface of the first inorganic layer 23.
  • the grid retaining wall 24 includes a plurality of grids 241, and the grid 241 is circular or polygonal, preferably rectangular or square; and/or, the number of grids 241 is 2 to 36, in this embodiment preferably 16, In other embodiments, there may be 2, 4, 8, 9, 12, 15, or 25.
  • the organic layer 26 is filled into the grid 241 and deposited on the upper surface of the first inorganic layer 23.
  • the second inorganic layer 27 covers the upper surface of the grid retaining wall 24, the organic layer 26, and the sides of the OLED device 22, the grid retaining wall 24, and the first inorganic layer 23 to effectively prevent the intrusion of external water and oxygen.
  • the height of the grid retaining wall 24 is greater than the thickness of the organic layer 26.
  • the grid retaining wall 24 and each grid 241 control the ink leveling range to make adjacent droplets There is no overlap, so that the uniformity of the film layer is optimized, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.
  • the first inorganic layer 23, the grid barrier 24, and the second inorganic layer 27 all belong to the same material, and are any of inorganic materials such as silicon nitride, silicon oxynitride, silicon oxide, and silicon nitride. Or a combination of multiple, and deposited by chemical vapor deposition (PECVD).
  • the material of the organic layer 26 includes any one or a combination of two or more of polyvinyl alcohol, urethane acrylate polymer, and polyimide resin, and is prepared by an inkjet printing process.
  • the grid retaining wall 24 and the organic layer 26 should be in the same IJP chamber during the preparation process.
  • the present invention also provides a thin film packaging method, including the following steps S1 to S5.
  • a thin film packaging method including the following steps S1 to S5.
  • an OLED device 22 is provided; it is attached to one side of the glass substrate 21, and the OLED device includes a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer.
  • a first inorganic layer preparation step a first inorganic layer 23 is prepared on the upper surface of the OLED device 22; the material of the first inorganic layer 23 is any one of inorganic materials such as silicon nitride, silicon oxynitride, silicon oxide, silicon nitride, etc. One or more combinations, and deposited on the OLED device 22 by chemical vapor deposition PECVD.
  • a grid retaining wall is prepared on the upper surface of the first inorganic layer.
  • the grid retaining wall includes a plurality of quadrilateral grids. In this embodiment, there are 16 retaining walls.
  • the preparation method adopts the chemical vapor deposition PECVD method to deposit on the upper surface of the first inorganic layer 23, and the material of the grid retaining wall 24 is any one or a combination of inorganic materials such as silicon nitride, silicon oxynitride, silicon oxide, silicon nitride, etc. .
  • an organic substance is filled in the grid 241 by an inkjet printing method, and the organic layer is deposited on the upper surface of the first inorganic layer 23 to form an organic layer 26; the thickness of the organic layer 26 is less than The height of the grid retaining wall 24.
  • the grid retaining wall 24 and each grid 241 control the leveling range of the droplets 25, so that the adjacent droplets 25 do not overlap and the film layer is uniform
  • the best performance can further ensure that it will not overflow during the preparation process, thereby preventing water and oxygen from invading.
  • a second inorganic layer 27 is prepared on the upper surfaces of the grid retaining wall 24 and the organic layer 26 to cover the side surfaces of the OLED device 22, the grid retaining wall 24 and the first inorganic layer 23 .
  • the second inorganic layer 27 is made of any one or a combination of inorganic materials such as silicon nitride, silicon oxynitride, silicon oxide, and silicon nitride, and is deposited by chemical vapor deposition PECVD.
  • the height of the grid retaining wall 24 is greater than the thickness of the organic layer 26.
  • the grid retaining wall 24 controls the ink leveling range. Adjacent droplets will not overlap, and the uniformity of the film layer is optimal, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.
  • Embodiment 2 is the same as most of the technical solutions of Embodiment 1. The difference is that, in Embodiment 2, the grid barrier 34 is deposited on the first inorganic layer 33 and consists of two grids 341 The shape of the grid retaining wall is "Japanese”.
  • the height of the grid retaining wall 34 is greater than the thickness of the organic layer 36.
  • the grid retaining wall 34 controls the ink leveling range. Adjacent droplets will not overlap, and the uniformity of the film layer is optimal, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.
  • Example 3 is the same as most of the technical solutions of Example 1. The difference is that in Example 3, the grid retaining wall 44 is deposited on the first inorganic layer 43 and consists of three grids 431 The shape of the grid retaining wall is "mesh".
  • the height of the grid retaining wall 44 is greater than the thickness of the organic layer 46.
  • the grid retaining wall 44 controls the ink leveling range. Adjacent droplets will not overlap, and the uniformity of the film layer is optimal, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.
  • Embodiment 4 is the same as most of the technical solutions of Embodiment 1. The difference is that in Embodiment 4, the grid retaining wall 54 is deposited on the first inorganic layer 53 and is composed of four grids 541 The shape of the grid retaining wall is "Tian".
  • the height of the grid retaining wall 54 is greater than the thickness of the organic layer 56.
  • the grid retaining wall 54 controls the ink leveling range. Adjacent droplets will not overlap, and the uniformity of the film layer is optimal, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.
  • Example 5 is the same as most of the technical solutions of Example 1. The difference is that, in Example 5, the grid barrier 64 is deposited on the first inorganic layer 63 and consists of two grids 641 Composition, the shape of the grid retaining wall is "back" shape.
  • the height of the grid retaining wall 64 is greater than the thickness of the organic layer 66.
  • the grid retaining wall 64 controls the ink leveling range. Adjacent droplets will not overlap, and the uniformity of the film layer is optimal, which can ensure that it will not overflow during the preparation process, thereby preventing the intrusion of water and oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种薄膜封装结构,包括OLED器件、第一无机层、栅格挡墙、有机层和第二无机层;所述第一无机层覆盖至所述OLED器件上表面;所述栅格挡墙形成于所述第一无机层上表面,所述栅格挡墙包括多个栅格;以及所述有机层被填充至所述栅格内,且沉积在所述第一无机层上表面;所述第二无机层包覆所述栅格挡墙、所述有机层上表面及所述OLED器件、所述栅格挡墙、所述第一无机层的侧面。本发明还提供一种薄膜封装方法,包括以下步骤:准备步骤、栅格挡墙制备步骤、有机层制备步骤和第二无机层制备步骤。本发明通过在薄膜封装结构中增加了栅格挡墙,可以有效地防止墨水驻点的溢出和重叠,从而提高制作效率,并且使有机膜层均匀,提高器件发光的性能。

Description

一种薄膜封装结构及薄膜封装方法 技术领域
本发明涉及一种薄膜封装结构及薄膜封装方法。
背景技术
OLED显示技术具有自发光、广视角、几乎无穷高的对比度、较低耗电、极高反应速度等优点,受到越来越多的学界和产业界的关注。经过多年不断的积极探索,器件结构和工艺以及相关的材料进一步优化,有机电致发光已经取得长远进步。OLED显示器包括有机发光单元,通过从激发状态过渡至机态的电子和空穴结合,在有机发光层中生成激子,有机发光单元通过生成胡激子时产生的能量进行发光。然而,OLED器件的阴极(Cathode)和发光层(EML)容易和渗透进来的水氧发生反应,极大影响寿命和效率。因此通过封装隔绝水氧的形式保护柔性机板上的驱动单元和有机发光单元是必不可少的一个过程。
目前主流的封装方式有薄膜封装、玻璃粉封装、挡墙封装、面胶封装。而由于薄膜封装由于可以制作可绕式显示技术,受到各大面板厂的青睐。如图1所示,在现有OLED薄膜封装结构10由内而外依次包括:1)机底11,该层可用玻璃或柔性衬底;2)电致发光单元12,该层包括R、G、B三色像素阵列分布的有机发光单元;3)第一无机层13,在电致发光单元上使用化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)进行沉积;4)有机层14,通过喷墨打印(IJP)进行制备;5)第二无机层15,再次使用PEVCD方式进行沉积。
如图2、3所示,在现有的IJP流平中,墨水向四周扩展,当墨水液滴超出PECVD边界,可能发生溢出的现象,那么水氧会先进入有机层,再从无机层的小孔渗透到器件内部,造成器件出现黑点和寿命衰减。一般解决方案是在通过IJP在电致发光单元周围制作2圈挡墙,将有机层包围。
上述挡墙包围方法使现有工艺变得更加复杂,墨水材料有溢出风险,影响封装可靠性;此外上述流平过程中,墨水会相互重叠,膜层出现起伏,影响膜厚均匀性;在封装结构中,无机层作为阻挡层起到防止水氧渗透的作用,有机层作为缓冲层,释放无机层的应力且增加水氧渗透路径。两种膜层功能不同,材料不同,性质差异较大。因此,会导致无机层和有机层膜层间的附着力不良,会出现分层、膜层脱落、造成器件失效等问题。
技术问题
本发明的一个目的在于,提供一种薄膜封装结构,可以有效解决了墨水驻点溢出、重叠等问题,防止无机层与有机层之间的分层现象。
技术解决方案
本发明提供一种薄膜封装结构,包括OLED器件、第一无机层、栅格挡墙、有机层和第二无机层;所述第一无机层覆盖至所述OLED器件上表面;所述栅格挡墙形成于所述第一无机层上表面,所述栅格挡墙包括多个栅格;以及所述有机层被填充至所述栅格内,且沉积在所述第一无机层上表面;所述第二无机层包覆所述栅格挡墙、所述有机层上表面及所述OLED器件、所述栅格挡墙、所述第一无机层的侧面。
进一步地,所述栅格挡墙的高度大于所述有机层的厚度。
进一步地,所述栅格挡墙的形状为日字形、目字形、田字形、回字形等。
进一步地,所述栅格为四边形;和/或,所述栅格数量为2~16个。
进一步地,所述第一无机层、所述栅格挡墙和所述第二无机层皆为硅系化合物。
进一步地,所述有机层材质包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中任意一种或两种以上的组合。
本发明的另一目的在于,提供一种薄膜封装方法,可以有效解决了墨水驻点溢出、重叠等问题,防止无机层与有机层之间的分层现象。
本发明还提供一种薄膜封装方法,包括以下步骤:准备步骤,提供一OLED器件;第一无机层制备步骤,在所述OLED器件上表面制备第一无机层;栅格挡墙制备步骤,在所述第一无机层上表面制备栅格挡墙,所述栅格挡墙包括多个四边形栅格;有机层制备步骤,在所述栅格内填充有机物,所述有机物流平后沉积在所述第一无机层上表面,形成有机层;第二无机层制备步骤,在所述栅格挡墙、所述有机层上表面制备第二无机层,使其包覆所述OLED器件、所述栅格挡墙及所述第一无机层的侧面。
进一步地,在所述有机层制备步骤中,所述有机层的厚度小于所述栅格挡墙的高度。
进一步地,在所述第一无机层制备步骤中,采用气相沉积法沉积出所述第一无机层;和/或,在所述栅格挡墙制备步骤中,采用气相沉积法沉积出所述栅格挡墙;和/或,在所述第二无机层制备步骤中,采用气相沉积法沉积出所述第二无机层。
进一步地,在所述有机层制备步骤中,采用喷墨打印法在所述栅格内填充有机物。
有益效果
本发明的有益效果是:本发明提出一种薄膜封装结构、薄膜封装方法,通过在薄膜封装结构中增加了栅格挡墙。这样在墨水流平步骤中,防止墨水驻点的溢出和重叠,从而提高制作效率,并且使有机膜层均匀,提高器件发光的性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术薄膜封装的结构示意图;
图2为现有技术喷墨打印工艺墨水驻点结构示意图;
图3为现有技术喷墨打印工艺墨水流平结构示意图;
图4为实施例1的薄膜封装的结构示意图;
图5为实施例1玻璃基板、有机发光显示器件纵向剖面结构示意图;
图6为实施例1玻璃基板、有机发光显示器件和第一无机层纵向剖面结构示意图;
图7为实施例1玻璃基板、有机发光显示器件、第一无机层和栅格挡墙结构示意图;
图8为实施例1喷墨打印工艺墨水驻点的结构示意图;
图9为实施例1喷墨打印工艺墨水流平结构示意图;
图10为实施例1薄膜封装制备方法流程图;
图11为实施例2玻璃基板、有机发光显示器件、第一无机层和栅格挡墙结构示意图;
图12为实施例3玻璃基板、有机发光显示器件、第一无机层和栅格挡墙结构示意图;
图13为实施例4玻璃基板、有机发光显示器件、第一无机层和栅格挡墙结构示意图;
图14为实施例5玻璃基板、有机发光显示器件、第一无机层和栅格挡墙结构示意图。
本发明实施方式
以下是各实施例的说明是参考附加的图式,用以例示本发明可以用湿湿的特定实施例。本发明所提到的方向用语,例如上、下、前、后、左、右、内、外、侧等,仅是参考附图式的方向。本发明提到的元件名称,例如第一、第二等,仅是区分不同的元部件,可以更好的表达。在图中,结构相似的单元以相同标号表示。
本文将参照附图来详细描述本发明的实施例。本发明可以表现为许多不同形式,本发明不应仅被解释为本文阐述的具体实施例。本发明提供实施例是为了解释本发明的实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改方案。
实施例1
如图4~9所示,本实施例提供一种薄膜封装结构,包括OLED器件22、第一无机层23、栅格挡墙24、有机层26和第二无机层27。第一无机层23覆盖至所述OLED器件22上表面;栅格挡墙24形成于第一无机层23上表面。栅格挡墙24包括多个栅格241,栅格241为圆形或多边形,优选矩形或正方形;和/或,栅格241数量为2~36个,在本实施例中优选16个,在其他实施例中可为2、4、8、9、12、15或25个。有机层26被填充至栅格241内,且沉积在第一无机层23上表面。
第二无机层27包覆栅格挡墙24、有机层26上表面及OLED器件22、栅格挡墙24和第一无机层23的侧面,有效防止外部水氧侵入。
栅格挡墙24的高度大于有机层26的厚度,当墨水液滴向四边形挡墙四周扩展流平时,栅格挡墙24以及每个栅格241控制墨水流平范围,使相邻的液滴不会发生重叠,让膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。在本实施例中,第一无机层23、栅格挡墙24和第二无机层27都属于同种材料,为氮化硅、氮氧化硅、氧化硅、氮化硅等无机材料任意一种或者多种的组合,并且采用化学气相沉积(PECVD)方式沉积。有机层26材料包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中任意一种或两种以上的组合,采用喷墨打印工艺制备而成。栅格挡墙24和有机层26在制备过程中应处同一个IJP腔室。
如图10所示,为了可以制备上述的薄膜封装结构,本发明还提供一种薄膜封装方法,包括以下步骤S1~S5。S1准备步骤,提供一OLED器件22;其贴附在玻璃基板21的一侧,所述OLED器件包括空穴注入层,空穴传输层,有机发光层,电子传输层,电子注入层。
S2第一无机层制备步骤,在所述OLED器件22上表面制备第一无机层23;第一无机层23的材料为氮化硅、氮氧化硅、氧化硅、氮化硅等无机材料任意一种或者多种的组合,并且采用化学气相沉积PECVD方式沉积在OLED器件22上。
S3栅格挡墙制备步骤,在第一无机层上表面制备栅格挡墙,所述栅格挡墙包括多个四边形栅格,本实施例为16个挡墙。制备方式采用化学气相沉积PECVD方式沉积在第一无机层23上表面,栅格挡墙24材料为氮化硅、氮氧化硅、氧化硅、氮化硅等无机材料任意一种或者多种的组合。
S4有机层制备步骤,在所述栅格241内采用喷墨打印法填充有机物,所述有机物流平后沉积在所述第一无机层23上表面,形成有机层26;有机层26的厚度小于所述栅格挡墙24的高度。这样当墨水液滴25向四边形挡墙四周扩展流平时,栅格挡墙24以及每个栅格241控制液滴25流平范围,使相邻的液滴25不会发生重叠,让膜层均匀性达到最佳,进一步可以保证在制备过程中不会溢出,进而防止水氧侵入。
S5第二无机层制备步骤,在栅格挡墙24、有机层26上表面制备第二无机层27,使其包覆OLED器件22、栅格挡墙24及所述第一无机层23的侧面。第二无机层27材料氮化硅、氮氧化硅、氧化硅、氮化硅等无机材料任意一种或者多种的组合,并且采用化学气相沉积PECVD方式沉积。
在实施例1中,栅格挡墙24的高度大于有机层26的厚度,当墨水液滴25向四边形挡墙四周扩展流平时,栅格挡墙24控制墨水流平范围。相邻的液滴不会发生重叠,膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。
实施例2
如图11所示,实施例2与实施例1大部分技术方案相同,其区别特征在于,在实施例2中,栅格挡墙34沉积在第一无机层33,且由2个栅格341组成,栅格挡墙的形状为“日”字形。
在实施例2中,栅格挡墙34的高度大于有机层36的厚度,当墨水液滴向四边形挡墙四周扩展流平时,栅格挡墙34控制墨水流平范围。相邻的液滴不会发生重叠,膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。
实施例3
如图12所示,实施例3与实施例1大部分技术方案相同,其区别特征在于,在实施例3中,栅格挡墙44沉积在第一无机层43,且由3个栅格431组成,栅格挡墙的形状为“目”字形。
在实施例3中,栅格挡墙44的高度大于有机层46的厚度,当墨水液滴向四边形挡墙四周扩展流平时,栅格挡墙44控制墨水流平范围。相邻的液滴不会发生重叠,膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。
实施例4
如图13所示,实施例4与实施例1大部分技术方案相同,其区别特征在于,在实施例4中,栅格挡墙54沉积在第一无机层53,且由4个栅格541组成,栅格挡墙的形状为“田”字形。
在实施例4中,栅格挡墙54的高度大于有机层56的厚度,当墨水液滴向四边形挡墙四周扩展流平时,栅格挡墙54控制墨水流平范围。相邻的液滴不会发生重叠,膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。
实施例5
如图14所示,实施例5与实施例1大部分技术方案相同,其区别特征在于,在实施例5中,栅格挡墙64沉积在第一无机层63,且由2个栅格641组成,栅格挡墙的形状为“回”字形。
在实施例5中,栅格挡墙64的高度大于有机层66的厚度,当墨水液滴向四边形挡墙四周扩展流平时,栅格挡墙64控制墨水流平范围。相邻的液滴不会发生重叠,膜层均匀性达到最佳,这可以保证在制备过程中不会溢出,进而防止水氧侵入。
本发明的技术范围不仅仅局限于所述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对所述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种薄膜封装结构,其中,包括
    OLED器件;
    第一无机层,覆盖至所述OLED器件上表面;
    栅格挡墙,形成于所述第一无机层上表面,所述栅格挡墙包括两个以上栅格,以及
    一有机层,被填充至所述栅格内,且沉积在所述第一无机层上表面;
    第二无机层,包覆所述栅格挡墙、所述有机层上表面及所述OLED器件、所述栅格挡墙、所述第一无机层的侧面。
  2. 根据权利要求1所述的薄膜封装结构,其中,
    所述栅格挡墙的高度大于所述有机层的厚度。
  3. 根据权利要求1所述的薄膜封装结构,其中,
    所述栅格挡墙的形状为日字形、目字形、田字形、回字形等。
  4. 根据权利要求1所述的薄膜封装结构,其中,
    所述栅格为四边形。
  5. 根据权利要求1所述的薄膜封装结构,其中,
    所述第一无机层、所述栅格挡墙和所述第二无机层皆为硅系化合物。
  6. 根据权利要求1所述的薄膜封装结构,其中,
    所述有机层材质包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中任意一种或两种以上的组合。
  7. 一种薄膜封装方法,其中,包括以下步骤:
    准备步骤,提供一OLED器件;
    第一无机层制备步骤,在所述OLED器件上表面制备第一无机层;
    栅格挡墙制备步骤,在所述第一无机层上表面制备栅格挡墙,所述栅格挡墙包括两个以上栅格;
    有机层制备步骤,在所述栅格内填充有机物,所述有机物流平后沉积在所述第一无机层上表面,形成有机层;
    第二无机层制备步骤,在所述栅格挡墙、所述有机层上表面制备第二无机层,使其包覆所述OLED器件、所述栅格挡墙及所述第一无机层的侧面。
  8. 根据权利要求1所述的薄膜封装方法,其中,
    在所述有机层制备步骤中,
    所述有机层的厚度小于所述栅格挡墙的高度。
  9. 根据权利要求7所述的薄膜封装方法,其中,
    在所述第一无机层制备步骤中,采用气相沉积法沉积出所述第一无机层;和/或,
    在所述栅格挡墙制备步骤中,采用气相沉积法沉积出所述栅格挡墙;和/或,
    在所述第二无机层制备步骤中,采用气相沉积法沉积出所述第二无机层。
  10. 根据权利要求1所述的薄膜封装方法,其中,
    在所述有机层制备步骤中,采用喷墨打印法在所述栅格内填充有机物。
PCT/CN2019/078456 2018-12-04 2019-03-18 一种薄膜封装结构及薄膜封装方法 WO2020113846A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/462,535 US20200343474A1 (en) 2018-12-04 2019-03-18 Thin film encapsulation structure and thin film encapsulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811472511.8A CN109686855A (zh) 2018-12-04 2018-12-04 一种薄膜封装结构及薄膜封装方法
CN201811472511.8 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020113846A1 true WO2020113846A1 (zh) 2020-06-11

Family

ID=66186599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078456 WO2020113846A1 (zh) 2018-12-04 2019-03-18 一种薄膜封装结构及薄膜封装方法

Country Status (3)

Country Link
US (1) US20200343474A1 (zh)
CN (1) CN109686855A (zh)
WO (1) WO2020113846A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752315B (zh) * 2019-11-06 2021-04-27 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN111276629B (zh) * 2020-01-22 2023-08-29 京东方科技集团股份有限公司 柔性显示屏、柔性显示装置及柔性显示屏的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715359A (zh) * 2013-10-21 2014-04-09 昆山维信诺显示技术有限公司 一种oled器件及其制作方法
CN106876612A (zh) * 2017-02-23 2017-06-20 深圳市华星光电技术有限公司 一种oled器件的封装结构及其制备方法、金属掩膜板
CN107154465A (zh) * 2017-05-26 2017-09-12 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置
CN107565066A (zh) * 2017-08-28 2018-01-09 武汉华星光电半导体显示技术有限公司 Oled面板的制作方法及oled面板
CN107689425A (zh) * 2017-08-31 2018-02-13 昆山国显光电有限公司 薄膜封装结构及薄膜封装方法和显示面板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647339B1 (ko) * 2006-01-11 2006-11-23 삼성전자주식회사 평판표시장치
CN106784398B (zh) * 2016-12-15 2019-12-03 武汉华星光电技术有限公司 Oled封装方法与oled封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715359A (zh) * 2013-10-21 2014-04-09 昆山维信诺显示技术有限公司 一种oled器件及其制作方法
CN106876612A (zh) * 2017-02-23 2017-06-20 深圳市华星光电技术有限公司 一种oled器件的封装结构及其制备方法、金属掩膜板
CN107154465A (zh) * 2017-05-26 2017-09-12 深圳市华星光电技术有限公司 Oled器件的封装组件及封装方法、显示装置
CN107565066A (zh) * 2017-08-28 2018-01-09 武汉华星光电半导体显示技术有限公司 Oled面板的制作方法及oled面板
CN107689425A (zh) * 2017-08-31 2018-02-13 昆山国显光电有限公司 薄膜封装结构及薄膜封装方法和显示面板

Also Published As

Publication number Publication date
US20200343474A1 (en) 2020-10-29
CN109686855A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN108630732B (zh) Oled显示面板及其制作方法
WO2020155441A1 (zh) 显示面板以及显示装置
WO2018113006A1 (zh) 柔性oled显示面板的制作方法
US10910590B2 (en) Hermetically sealed isolated OLED pixels
WO2018094801A1 (zh) Oled显示装置及其制作方法
US10333105B2 (en) Organic light emitting display packaging structure and manufacturing method thereof
WO2018086194A1 (zh) 用于打印oled显示器件的凹槽结构及oled显示器件的制作方法
WO2020118842A1 (zh) 阵列基板及其制作方法、显示装置
WO2021027112A1 (zh) 一种显示面板及显示装置
WO2021109210A1 (zh) 显示面板及其制作方法
WO2020113846A1 (zh) 一种薄膜封装结构及薄膜封装方法
US11335882B2 (en) Organic light-emitting diode display device and manufacturing method thereof
KR101676764B1 (ko) 유기발광 소자 및 이의 제조방법
CN101000948B (zh) 像素结构及包括该像素结构的有机发光器件
KR100428447B1 (ko) 산소 및 수분의 침투를 방지할 수 있는 유기 이엘 패널 및그의 제조방법
KR102107109B1 (ko) 유기 발광 장치 및 이의 제조 방법
WO2024055821A9 (zh) 显示基板及其制备方法、显示面板
CN107425126A (zh) 像素界定结构、有机发光器件及其封装方法、显示装置
CN109244260B (zh) 一种显示面板的制备方法
CN110391346B (zh) 一种显示面板及其制备方法、显示装置
CN104779333A (zh) 大面积量子点发光装置
CN111162188A (zh) 薄膜封装结构及其制备方法和显示面板
CN109686857B (zh) 一种显示器件及其封装方法
WO2019218558A1 (zh) Oled封装方法及oled封装结构
KR20210018888A (ko) 유기 발광 장치 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892427

Country of ref document: EP

Kind code of ref document: A1