WO2020113351A1 - 一种纳米电池 - Google Patents

一种纳米电池 Download PDF

Info

Publication number
WO2020113351A1
WO2020113351A1 PCT/CN2018/000414 CN2018000414W WO2020113351A1 WO 2020113351 A1 WO2020113351 A1 WO 2020113351A1 CN 2018000414 W CN2018000414 W CN 2018000414W WO 2020113351 A1 WO2020113351 A1 WO 2020113351A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
positive electrode
negative electrode
battery
conductive
Prior art date
Application number
PCT/CN2018/000414
Other languages
English (en)
French (fr)
Inventor
冯启勇
郑伟
孙志勇
Original Assignee
山东康洋电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东康洋电源有限公司 filed Critical 山东康洋电源有限公司
Publication of WO2020113351A1 publication Critical patent/WO2020113351A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of electric batteries, in particular to a nano battery.
  • Nano batteries are batteries made with nano materials (such as nano MnO2, LiMn2O4, Ni(OH)2, etc.). Nano materials have special microstructures and physicochemical properties (such as quantum size effect, surface effect and tunnel quantum effect, etc.).
  • the domestically mature nano battery is a nano activated carbon fiber battery.
  • the nano-battery is composed of positive and negative electrodes, electrolyte, and polymer separator.
  • the negative material of the nano-battery is nano-sized natural graphite.
  • the positive electrode of the nano-battery is nano-sized material.
  • the multi-layer microporous membrane composed of PP and PE is used for isolation. Membrane, and conductive nano carbon fiber is added to the electrolyte.
  • the positive electrode of the battery is connected to the positive electrode of the battery by aluminum foil, with a polymer separator in the middle, which separates the positive electrode from the negative electrode. Between the upper and lower ends of the battery is the electrolyte of the battery, and the battery is hermetically sealed by a metal casing.
  • the nano battery is mainly used in electric vehicles, electric motorcycles and electric mopeds. This kind of battery can be recharged 1000 times, and it can only be charged for about 20 minutes on a single charge after 10 years of continuous use.
  • the purpose of the invention is to find a nano battery with stable performance, high voltage and good discharge efficiency.
  • the present invention adopts the following technical solutions:
  • a nano battery including a positive electrode, a negative electrode, a polymer separator, an electrolyte, and a case, characterized in that
  • the positive electrode is composed of a positive electrode active material, a binder, a conductive agent, and aluminum foil, wherein the positive electrode active material is lithium manganate, the binder is polyvinylidene fluoride, and the conductive agent is conductive graphite and nanocarbon; the weight of each component of the positive electrode The percentage is 75-90% lithium manganate, 3-8% conductive graphite, 5-10% nano carbon, 3-5% polyvinylidene fluoride, and the balance is aluminum foil;
  • the negative electrode is composed of a negative electrode material, a binder, a conductive agent, a thickener, and a copper foil.
  • the negative electrode material is natural graphite
  • the binder is styrene-butadiene rubber
  • the conductive agent is conductive graphite
  • the thickener is carboxymethyl fiber.
  • the weight percentage of each component of the negative electrode is: natural graphite 90-92%, styrene-butadiene rubber 1-2%, conductive graphite 3-5%, carboxymethyl cellulose sodium 1-2%
  • the balance is copper foil ;
  • the polymer separator is a cellulose film, a polyester film coated with a coating, a polyimide film or a polyamide film;
  • the electrolyte is added with conductive nano carbon fiber.
  • the weight percentage of each component of the positive electrode is 80-85% of lithium manganate, 4-6% of conductive graphite, 6-8% of nano carbon, 3-5% of polyvinylidene fluoride, and the balance is aluminum foil.
  • the weight percentage of each component of the negative electrode is 90% of natural graphite, 2% of styrene-butadiene rubber, 5% of conductive graphite, 1% of sodium carboxymethyl cellulose, and the balance is copper foil.
  • the polymer separator is a cellulose film or a polyamide film.
  • the polymer separator is a cellulose membrane.
  • the preparation method of the nano battery of the present invention is as follows:
  • Preparation of positive electrode Weigh the raw materials according to the above weight ratio relationship, mix lithium manganese oxide, conductive graphite, and nanocarbon uniformly to obtain mixed solution A for use; add polyvinylidene fluoride to N-methylmethylpyrrolidone, Stir in vacuum for 2 hours under the condition of circulating water cooling, then add the mixed solution A and continue to stir for 5 hours, then pass through a 150 mesh sieve to obtain slurry B, and apply slurry B to the positive electrode coating on aluminum foil;
  • Battery molding roll the above-mentioned uniformly coated pole pieces, cut them into the required size after rolling, then vacuum-bake for 2 hours, and then assemble into the cell structure; then carry out the electrode lug welding and packaging 3. Formation operation to get nano battery.
  • the nano battery obtained by the present invention has a positive electrode compaction density of 3.8-4.9 g/cm 3 and a negative electrode compaction density of 1.5-2.0 g/cm 3 .
  • the positive electrode active material is improved, lithium manganate is used, and the amount of conductive graphite and nano carbon is increased, and the composition of the negative electrode is also improved.
  • Natural graphite is used and the amount of conductive graphite is increased.
  • the polymer separator is also improved, and the component dosage of the three of the nano batteries is adjusted reasonably to improve the performance of the battery, increase the battery capacity by about 20%, and increase the charge and discharge performance by 30%.
  • a nano battery including a positive electrode, a negative electrode, a polymer separator, an electrolyte, and a case, characterized in that:
  • the positive electrode is composed of a positive electrode active material, a binder, a conductive agent, and aluminum foil, wherein the positive electrode active material is lithium manganate, the binder is polyvinylidene fluoride, and the conductive agent is conductive graphite and nanocarbon; the weight of each component of the positive electrode The percentage is 75% of lithium manganate, 8% of conductive graphite, 5% of nano carbon, 3% of polyvinylidene fluoride, and the balance is aluminum foil;
  • the negative electrode is composed of a negative electrode material, a binder, a conductive agent, a thickener, and a copper foil.
  • the negative electrode material is natural graphite
  • the binder is styrene-butadiene rubber
  • the conductive agent is conductive graphite
  • the thickener is carboxymethyl fiber.
  • Sodium the weight percentage of each component of the negative electrode is: natural graphite 91%, styrene-butadiene rubber 2%, conductive graphite 4%, sodium carboxymethyl cellulose 1%, and the balance is copper foil;
  • the polymer isolation film is a polyimide film
  • the electrolyte is added with conductive nano carbon fiber.
  • the preparation method of the nano battery of the present invention is as follows:
  • Preparation of positive electrode Weigh the raw materials according to the above weight ratio, mix lithium manganese oxide, conductive graphite, and nanocarbon uniformly to obtain mixed solution A for use; add polyvinylidene fluoride to N-methylmethylpyrrolidone, Stir in vacuum for 2 hours under the condition of circulating water cooling, then add the mixed solution A and continue to stir for 5 hours, then pass through a 150 mesh sieve to obtain slurry B, and apply slurry B to the positive electrode coating on aluminum foil;
  • Battery molding roll the above-mentioned uniformly coated pole pieces, cut them into the required size after rolling, then vacuum-bake for 2 hours, and then assemble into the cell structure; then carry out the electrode lug welding and packaging 3. Formation operation to get nano battery.
  • a nano battery including a positive electrode, a negative electrode, a polymer separator, an electrolyte, and a case, characterized in that:
  • the positive electrode is composed of a positive electrode active material, a binder, a conductive agent, and aluminum foil, wherein the positive electrode active material is lithium manganate, the binder is polyvinylidene fluoride, and the conductive agent is conductive graphite and nanocarbon; the weight of each component of the positive electrode The percentage is 90% of lithium manganese oxide, 3% of conductive graphite, 10% of nano carbon, 5% of polyvinylidene fluoride, and the balance is aluminum foil;
  • the negative electrode is composed of a negative electrode material, a binder, a conductive agent, a thickener, and a copper foil.
  • the negative electrode material is natural graphite
  • the binder is styrene-butadiene rubber
  • the conductive agent is conductive graphite
  • the thickener is carboxymethyl fiber.
  • Sodium the weight percentage of each component of the negative electrode is: natural graphite 92%, styrene-butadiene rubber 2%, conductive graphite 3%, sodium carboxymethyl cellulose 2%, and the balance is copper foil;
  • the polymer separator is a polyester film coated with a coating
  • the electrolyte is added with conductive nano carbon fiber.
  • the preparation method of the nano battery of the present invention is as follows:
  • Preparation of positive electrode Weigh the raw materials according to the above weight ratio relationship, mix lithium manganese oxide, conductive graphite, and nanocarbon uniformly to obtain mixed solution A for use; add polyvinylidene fluoride to N-methylmethylpyrrolidone, Stir in vacuum for 2 hours under the condition of circulating water cooling, then add the mixed solution A and continue to stir for 5 hours, then pass through a 150 mesh sieve to obtain slurry B, and apply slurry B to the positive electrode coating on aluminum foil;
  • Battery molding roll the above-mentioned uniformly coated pole pieces, cut them into the required size after rolling, then vacuum-bake for 2 hours, and then assemble into the cell structure; then carry out the electrode lug welding and packaging 3. Formation operation to get nano battery.
  • a nano battery including a positive electrode, a negative electrode, a polymer separator, an electrolyte, and a case, characterized in that:
  • the positive electrode is composed of a positive electrode active material, a binder, a conductive agent, and aluminum foil, wherein the positive electrode active material is lithium manganate, the binder is polyvinylidene fluoride, and the conductive agent is conductive graphite and nanocarbon; the weight of each component of the positive electrode The percentage is: lithium manganate 85%, conductive graphite 5%, nano carbon 6%, polyvinylidene fluoride 4%, and the balance is aluminum foil;
  • the negative electrode is composed of a negative electrode material, a binder, a conductive agent, a thickener, and a copper foil.
  • the negative electrode material is natural graphite
  • the binder is styrene-butadiene rubber
  • the conductive agent is conductive graphite
  • the thickener is carboxymethyl fiber.
  • the weight percentage of each component of the negative electrode is: natural graphite 90%, styrene-butadiene rubber 1%, conductive graphite 5%, sodium carboxymethyl cellulose 1%, and the balance is copper foil;
  • the polymer separation membrane is cellulose membrane
  • the electrolyte is added with conductive nano carbon fiber.
  • the preparation method of the nano battery of the present invention is as follows:
  • Preparation of positive electrode Weigh the raw materials according to the above weight ratio relationship, mix lithium manganese oxide, conductive graphite, and nanocarbon uniformly to obtain mixed solution A for use; add polyvinylidene fluoride to N-methylmethylpyrrolidone, Stir in vacuum for 2 hours under the condition of circulating water cooling, then add the mixed solution A and continue to stir for 5 hours, then pass through a 150 mesh sieve to obtain slurry B, and apply slurry B to the positive electrode coating on aluminum foil;
  • Battery molding roll the above-mentioned uniformly coated pole pieces, cut them into the required size after rolling, then vacuum-bake for 2 hours, and then assemble into the cell structure; then carry out the electrode lug welding and packaging 3. Formation operation to get nano battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种涉及电动电池领域的纳米电池。该纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,将正极活性物质进行改进,采用锰酸锂,并增加了导电石墨和纳米碳的用量,将负极的组分也进行改进,采用天然石墨,并增加了导电石墨的用量,对于聚合物隔离膜也进行改进,采用将纳米电池中三者的组分用量进行合理调整,提高了电池的性能,使电池容量提高20%左右,充放电性能提高30%。

Description

一种纳米电池 技术领域
本发明涉及电动电池的技术领域,具体为一种纳米电池。
背景技术
纳米电池即用纳米材料(如纳米MnO2,LiMn2O4,Ni(OH)2等)制作的电池,纳米材料具有特殊的微观结构和物理化学性能(如量子尺寸效应,表面效应和隧道量子效应等。目前国内技术成熟的纳米电池是纳米活性碳纤维电池。
纳米电池由正负电极、电解质、聚合物隔离膜组成,纳米电池的负极材料是纳米化的天然石墨,纳米电池的正极是纳米化材料,采用由PP和PE复合的多层微孔膜作为隔离膜,并在电解质中加入导电的纳米碳纤维。电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,由纳米石墨组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。
该纳米电池主要用于电动汽车,电动摩托车,电动助力车上。该种电池可充电循环1000次,连续使用达10年左右一次充电只需20分钟左右。
但是目前的纳米电池存在的问题是,电压低、比能量低、放电效率低等,然而目前有采用锰酸锂与镍钴锰酸锂混合作为电池的正极材料,存在的问题是,两者混合后存在放电效率不稳定的情况、电压也容易出现波动,因此,需要寻找一种性能稳定,电压高,放电效率好的纳米电池。
发明内容
本发明的目的是为了寻找一种性能稳定,电压高,放电效率好的纳米电池。
为实现上述目的,本发明采用以下技术方案:
一种纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,其特征在于,
正极由正极活性物质、粘结剂、导电剂以及铝箔组成,其中,正极活性物质为锰酸锂,粘结剂为聚偏氟乙烯,导电剂为导电石墨和纳米碳;正极各个组分的重量百分比为,锰酸锂75-90%、导电石墨3-8%、纳米碳5-10%、聚偏氟乙烯3-5%,余量为铝箔;
负极由负极材料、粘结剂、导电剂、增稠剂以及铜箔组成,其中,负极材料为天然石墨,粘结剂为丁苯橡胶,导电剂为导电石墨,增稠剂为羧甲基纤维素钠;负极各个组分的重量百分比为,天然石墨90-92%、丁苯橡胶1-2%、导电石墨3-5%、羧甲基纤维素钠1-2%,余量为铜箔;
聚合物隔离膜为纤维素膜、涂层处理的聚酯膜、聚酰亚胺膜或聚酰胺膜;
电解质加入导电的纳米碳纤维。
本发明的特点还有:
进一步优选,正极各个组分的重量百分比为,锰酸锂80-85%、导电石墨4-6%、纳米碳6-8%、聚偏氟乙烯3-5%,余量为铝箔。
进一步优选,负极各个组分的重量百分比为,天然石墨90%、丁苯橡胶2%、导电石墨5%、羧甲基纤维素钠1%,余量为铜箔。
进一步优选,聚合物隔离膜为纤维素膜或聚酰胺膜。
进一步优选,聚合物隔离膜为纤维素膜。
本发明的纳米电池的制备方法具体如下:
(1)正极制备:按照上述重量比例关系称取好原料,将锰酸锂、导电石墨、纳米碳混合均匀,得到混合液A备用;将聚偏氟乙烯加入N-甲基甲基吡咯烷酮中,在有循环水冷却的条件下真空搅拌2小时,然后加入混合液A继续搅拌5小时,然后过150目筛,得到浆料B,将浆料B在铝箔上进行正极涂布;
(2)负极制备:按照上述重量比例关系称取好原料,将羧甲基纤维素钠加入去离子水中搅拌3小时,之后加入导电石墨继续搅拌6小时,使得导电石墨分散均匀,再加入天然石墨、丁苯橡胶继续搅拌6小时,搅拌均匀后过150目筛,得到浆料C,将浆料C在铜箔上进行负极涂布;
(3)电池成型:辊压上述涂布均匀的极片,辊压好后切割为需要的尺寸,然后进行真空烘烤2小时,然后组装为电芯结构;再依次进行极耳焊接、装壳、化成操作,得到纳米电池。
本发明得到的纳米电池的正极压实密度为3.8-4.9g/cm 3,负极压实密度为1.5-2.0g/cm 3
本发明的有益效果为:
本发明的纳米电池,将正极活性物质进行改进,采用锰酸锂,并增加了导电石墨和纳米碳的用量,将负极的组分也进行改进,采用天然石墨,并增加了导电石墨的用量,对于聚合物隔离膜也进行改进,采用将纳米电池中三者的组分用量进行合理调整,提高了电池的性能,使电池容量提高20%左右,充放电性能提高30%。
具体实施方式
下面对本发明的实施作进一步的描述。
实施例1
一种纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,其特征在于,
正极由正极活性物质、粘结剂、导电剂以及铝箔组成,其中,正极活性物质为锰酸锂,粘结剂为聚偏氟乙烯,导电剂为导电石墨和纳米碳;正极各个组分的重量百分比为,锰酸锂75%、导电石墨8%、纳米碳5%、聚偏氟乙烯3%,余量为铝箔;
负极由负极材料、粘结剂、导电剂、增稠剂以及铜箔组成,其中,负极材料为天然石墨,粘结剂为丁苯橡胶,导电剂为导电石墨,增稠剂为羧甲基纤维素钠;负极各个组分的重量百分比为,天然石墨91%、丁苯橡胶2%、导电石墨4%、羧甲基纤维素钠1%,余量为铜箔;
聚合物隔离膜为聚酰亚胺膜;
电解质加入导电的纳米碳纤维。
本发明的纳米电池的制备方法具体如下:
(1)正极制备:按照上述重量比例关系称取好原料,将锰酸锂、导电石墨、纳米碳混合均匀,得到混合液A备用;将聚偏氟乙烯加入N-甲基甲基吡咯烷酮中,在有循环水冷却的条件下真空搅拌2小时,然后加入混合液A继续搅拌5小时,然后过150目筛,得到浆料B,将浆料B在铝箔上进行正极涂布;
(2)负极制备:按照上述重量比例关系称取好原料,将羧甲基纤维素钠加入去离子水中搅拌3小时,之后加入导电石墨继续搅拌6小时,使得导电石墨分散均匀,再加入天然石墨、丁苯橡胶继续搅拌6小时,搅拌均匀后过150目筛,得到浆料C,将浆料C在铜箔上进行负极涂布;
(3)电池成型:辊压上述涂布均匀的极片,辊压好后切割为需要的尺寸,然后进行真空烘烤2小时,然后组装为电芯结构;再依次进行极耳焊接、装壳、化成操作,得到纳米电池。
实施例2
一种纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,其特征在于,
正极由正极活性物质、粘结剂、导电剂以及铝箔组成,其中,正极活性物质为锰酸锂,粘结剂为聚偏氟乙烯,导电剂为导电石墨和纳米碳;正极各个组分的重量百分比为,锰酸锂90%、导电石墨3%、纳米碳10%、聚偏氟乙烯5%,余量为铝箔;
负极由负极材料、粘结剂、导电剂、增稠剂以及铜箔组成,其中,负极材料为天然石墨,粘结剂为丁苯橡胶,导电剂为导电石墨,增稠剂为羧甲基纤维素钠;负极各个组分的重量百分比为,天然石墨92%、丁苯橡胶2%、导电石墨3%、羧甲基纤维素钠2%,余量为铜箔;
聚合物隔离膜为涂层处理的聚酯膜;
电解质加入导电的纳米碳纤维。
本发明的纳米电池的制备方法具体如下:
(1)正极制备:按照上述重量比例关系称取好原料,将锰酸锂、导电石墨、纳米碳混合均匀,得到混合液A备用;将聚偏氟乙烯加入N-甲基甲基吡咯烷酮中,在有循环水冷却的条件下真空搅拌2小时,然后加入混合液A继续搅拌5小时,然后过150目筛,得到浆料B,将浆料B在铝箔上进行正极涂布;
(2)负极制备:按照上述重量比例关系称取好原料,将羧甲基纤维素钠加入去离子水中搅拌3小时,之后加入导电石墨继续搅拌6小时,使得导电石墨分散均匀,再加入天然石墨、丁苯橡胶继续搅拌6小时,搅拌均匀后过150目筛,得到浆料C,将浆料C在铜箔上进行负极涂布;
(3)电池成型:辊压上述涂布均匀的极片,辊压好后切割为需要的尺寸,然后进行真空烘烤2小时,然后组装为电芯结构;再依次进行极耳焊接、装壳、化成操作,得到纳米电池。
实施例3
一种纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,其特征在于,
正极由正极活性物质、粘结剂、导电剂以及铝箔组成,其中,正极活性物质为锰酸锂,粘结剂为聚偏氟乙烯,导电剂为导电石墨和纳米碳;正极各个组分的重量百分比为,锰酸锂85%、导电石墨5%、纳米碳6%、聚偏氟乙烯4%,余量为铝箔;
负极由负极材料、粘结剂、导电剂、增稠剂以及铜箔组成,其中,负极材料为天然石墨,粘结剂为丁苯橡胶,导电剂为导电石墨,增稠剂为羧甲基纤维素钠;负极各个组分的重量百分比为,天然石墨90%、丁苯橡胶1%、导电石墨5%、羧甲基纤维素钠1%,余量为铜箔;
聚合物隔离膜为纤维素膜;
电解质加入导电的纳米碳纤维。
本发明的纳米电池的制备方法具体如下:
(1)正极制备:按照上述重量比例关系称取好原料,将锰酸锂、导电石墨、纳米碳混合均匀,得到混合液A备用;将聚偏氟乙烯加入N-甲基甲基吡咯烷酮中,在有循环水冷却的条件下真空搅拌2小时,然后加入混合液A继续搅拌5小时,然后过150目筛,得到浆料B,将浆料B在铝箔上进行正极涂布;
(2)负极制备:按照上述重量比例关系称取好原料,将羧甲基纤维素钠加入去离子水中搅拌3小时,之后加入导电石墨继续搅拌6小时,使得导电石墨分散均匀,再加入天然石 墨、丁苯橡胶继续搅拌6小时,搅拌均匀后过150目筛,得到浆料C,将浆料C在铜箔上进行负极涂布;
(3)电池成型:辊压上述涂布均匀的极片,辊压好后切割为需要的尺寸,然后进行真空烘烤2小时,然后组装为电芯结构;再依次进行极耳焊接、装壳、化成操作,得到纳米电池。
上述实施例仅供说明本发明之用,而并非是对本发明的限制,所属技术领域的技术人员在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明保护范围。因此,本发明保护范围应以各权利要求限定。

Claims (7)

  1. 一种纳米电池,包括正极、负极、聚合物隔离膜、电解质、壳体,其特征在于,
    正极由正极活性物质、粘结剂、导电剂以及铝箔组成,其中,正极活性物质为锰酸锂,粘结剂为聚偏氟乙烯,导电剂为导电石墨和纳米碳;正极各个组分的重量百分比为,锰酸锂75-90%、导电石墨3-8%、纳米碳5-10%、聚偏氟乙烯3-5%,余量为铝箔;
    负极由负极材料、粘结剂、导电剂、增稠剂以及铜箔组成,其中,负极材料为天然石墨,粘结剂为丁苯橡胶,导电剂为导电石墨,增稠剂为羧甲基纤维素钠;负极各个组分的重量百分比为,天然石墨90-92%、丁苯橡胶1-2%、导电石墨3-5%、羧甲基纤维素钠1-2%,余量为铜箔;
    聚合物隔离膜为纤维素膜、涂层处理的聚酯膜、聚酰亚胺膜或聚酰胺膜;
    电解质加入导电的纳米碳纤维。
  2. 根据权利要求1所述的纳米电池,其特征在于,正极各个组分的重量百分比为,锰酸锂80-85%、导电石墨4-6%、纳米碳6-8%、聚偏氟乙烯3-5%,余量为铝箔。
  3. 根据权利要求1所述的纳米电池,其特征在于,负极各个组分的重量百分比为,天然石墨90%、丁苯橡胶2%、导电石墨5%、羧甲基纤维素钠1%,余量为铜箔。
  4. 根据权利要求1所述的纳米电池,其特征在于,聚合物隔离膜为纤维素膜或聚酰胺膜。
  5. 根据权利要求1所述的纳米电池,其特征在于,聚合物隔离膜为纤维素膜。
  6. 根据权利要求1所述的纳米电池,其特征在于,该纳米电池的制备方法具体如下:
    (1)正极制备:按照上述重量比例关系称取好原料,将锰酸锂、导电石墨、纳米碳混合均匀,得到混合液A备用;将聚偏氟乙烯加入N-甲基甲基吡咯烷酮中,在有循环水冷却的条件下真空搅拌2小时,然后加入混合液A继续搅拌5小时,然后过150目筛,得到浆料B,将浆料B在铝箔上进行正极涂布;
    (2)负极制备:按照上述重量比例关系称取好原料,将羧甲基纤维素钠加入去离子水中搅拌3小时,之后加入导电石墨继续搅拌6小时,使得导电石墨分散均匀,再加入天然石墨、丁苯橡胶继续搅拌6小时,搅拌均匀后过150目筛,得到浆料C,将浆料C在铜箔上进行负极涂布;
    (3)电池成型:辊压上述涂布均匀的极片,辊压好后切割为需要的尺寸,然后进行真空烘烤2小时,然后组装为电芯结构;再依次进行极耳焊接、装壳、化成操作,得到纳米电池。
  7. 根据权利要求1所述的纳米电池,其特征在于,该纳米电池的正极压实密度为3.8-4.9g/cm 3,负极压实密度为1.5-2.0g/cm 3
PCT/CN2018/000414 2018-12-04 2018-12-07 一种纳米电池 WO2020113351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811475690.0A CN109786804B (zh) 2018-12-04 2018-12-04 一种纳米电池
CN201811475690.0 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020113351A1 true WO2020113351A1 (zh) 2020-06-11

Family

ID=66496666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000414 WO2020113351A1 (zh) 2018-12-04 2018-12-07 一种纳米电池

Country Status (2)

Country Link
CN (1) CN109786804B (zh)
WO (1) WO2020113351A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799155A (zh) * 2023-06-27 2023-09-22 肇庆理士电源技术有限公司 一种负极人造石墨材料的干法电极制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173387A1 (zh) * 2015-04-27 2016-11-03 江苏华东锂电技术研究院有限公司 电极粘结剂、正极材料以及锂离子电池
CN106252712A (zh) * 2016-08-20 2016-12-21 深圳市比克动力电池有限公司 一种锂离子二次电池
CN106450156A (zh) * 2016-09-28 2017-02-22 湖南立方新能源科技有限责任公司 一种电极片及其制作方法
CN107482166A (zh) * 2017-07-03 2017-12-15 深圳市比克动力电池有限公司 一种锂离子电池
CN108091824A (zh) * 2017-12-12 2018-05-29 桑顿新能源科技有限公司 锂电池正极极片及其制备方法与采用该正极极片的锂电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208646A (zh) * 2012-12-31 2013-07-17 深圳宏泰电池科技有限公司 一种锰酸锂和镍钴锰酸锂纳米电池及其制作方法
CN103208632B (zh) * 2012-12-31 2015-04-08 深圳宏泰电池科技有限公司 一种纳米碳管和镍锰酸锂纳米电池的制作方法
CN105118970B (zh) * 2015-10-14 2018-06-29 中航锂电(洛阳)有限公司 一种锂离子电池复合极片及其制备方法以及一种锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173387A1 (zh) * 2015-04-27 2016-11-03 江苏华东锂电技术研究院有限公司 电极粘结剂、正极材料以及锂离子电池
CN106252712A (zh) * 2016-08-20 2016-12-21 深圳市比克动力电池有限公司 一种锂离子二次电池
CN106450156A (zh) * 2016-09-28 2017-02-22 湖南立方新能源科技有限责任公司 一种电极片及其制作方法
CN107482166A (zh) * 2017-07-03 2017-12-15 深圳市比克动力电池有限公司 一种锂离子电池
CN108091824A (zh) * 2017-12-12 2018-05-29 桑顿新能源科技有限公司 锂电池正极极片及其制备方法与采用该正极极片的锂电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116799155A (zh) * 2023-06-27 2023-09-22 肇庆理士电源技术有限公司 一种负极人造石墨材料的干法电极制作方法
CN116799155B (zh) * 2023-06-27 2023-12-19 肇庆理士电源技术有限公司 一种负极人造石墨材料的干法电极制作方法

Also Published As

Publication number Publication date
CN109786804B (zh) 2021-04-16
CN109786804A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
JP5335264B2 (ja) 正極形成材、その材料と製造方法、およびリチウムイオン二次電池
CN105355877B (zh) 一种石墨烯‑金属氧化物复合负极材料及其制备方法
CN106252659A (zh) 柔性一体化薄膜锂硫或锂离子电池电芯、电池及制备方法
CN109560249A (zh) 一种双层结构正极极片、及其制备方法和用途
JP2011086405A (ja) 非水電解液型リチウムイオン二次電池
Ma et al. Progress and perspective of aqueous zinc-ion battery
CN111785898A (zh) 一种基于纤维素的一体化锌离子电池及其制备方法
WO2022199505A1 (zh) 一种负极及其制备方法和应用
CN108400286A (zh) 一种基于高弹性电极的储能器件制备方法
CN112103509B (zh) 正极集流体、正极片、锂离子电池及电池模组
WO2011070748A1 (ja) 非水電解質二次電池及びその充電方法
CN112635773A (zh) 一种用于一次电池的正极极片和一次电池
CN112614976A (zh) 一种锂离子电池硅负极材料及其制备方法和应用
KR20140070407A (ko) 복합체 및 이를 포함하는 음극 슬러리의 제조방법
CN112542571A (zh) 一种新型锂离子电池正极极片及其制备方法和用途
CN112542572A (zh) 一种新型锂离子电池正极极片及其制备方法和用途
CN113130907A (zh) 一种电池电芯及其制备方法和快充锂离子电池
CN109037675A (zh) 一种蓄电池负极铅膏
CN110649249B (zh) 一种硅碳复合电极浆料及其电极的制备方法
CN102637861A (zh) 炭膏及和电池炭负极及它们的制备方法、超级铅酸电池
WO2020113351A1 (zh) 一种纳米电池
JP2002231247A (ja) 制御弁式鉛蓄電池
CN109659475A (zh) 一种高性能高压锂离子电池的制备方法
CN115036458B (zh) 一种锂离子电池
CN213150817U (zh) 一种铜集流体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942092

Country of ref document: EP

Kind code of ref document: A1