WO2020111550A1 - 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 - Google Patents

열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 Download PDF

Info

Publication number
WO2020111550A1
WO2020111550A1 PCT/KR2019/014841 KR2019014841W WO2020111550A1 WO 2020111550 A1 WO2020111550 A1 WO 2020111550A1 KR 2019014841 W KR2019014841 W KR 2019014841W WO 2020111550 A1 WO2020111550 A1 WO 2020111550A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
battery
lead
constant voltage
thermoelectric element
Prior art date
Application number
PCT/KR2019/014841
Other languages
English (en)
French (fr)
Inventor
이한영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980028882.3A priority Critical patent/CN112042047B/zh
Priority to EP19889489.1A priority patent/EP3809513B1/en
Priority to ES19889489T priority patent/ES2978267T3/es
Priority to US17/048,450 priority patent/US11342612B2/en
Priority to JP2021514276A priority patent/JP7189331B2/ja
Publication of WO2020111550A1 publication Critical patent/WO2020111550A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6572Peltier elements or thermoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, and more particularly, to a battery module that improves heat dissipation by allowing electronic cooling to occur above a certain voltage.
  • the present invention also relates to a battery pack including such a battery module and an automobile including such a battery pack.
  • lithium secondary batteries are in the spotlight due to their advantages such as free charging and discharging, very low self-discharge rate, and high energy density, as they have little memory effect compared to nickel-based secondary batteries.
  • the lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • a lithium secondary battery includes an electrode assembly in which a unit cell having a structure in which a positive electrode active material is coated on a positive electrode current collector and a negative electrode plate on which a negative electrode active material is coated on a negative electrode collector is disposed with a separator interposed therebetween, and this electrode It is provided with an exterior material for sealingly storing the assembly together with the electrolyte, that is, a battery case.
  • Lithium secondary batteries are classified into can-type secondary batteries in which the electrode assembly is embedded in a metal can and pouch-type secondary batteries in which the electrode assembly is embedded in a pouch of an aluminum laminate sheet, according to the shape of the battery case.
  • the pouch-type battery cell has a structure in which an electrode assembly to which an electrode lead is connected is received and sealed together with an electrolyte in a pouch case. A part of the electrode lead is exposed outside the pouch case, and the exposed electrode lead is electrically connected to a device on which the pouch type battery cell is mounted, or used to electrically connect each other between the pouch type battery cells.
  • lithium secondary batteries have a risk of explosion if overheated.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs)
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • a number of high-capacity batteries In a battery module or battery pack that uses cells to be connected, it is one of the main tasks to secure safety because a very large accident may occur in an explosion.
  • a PTC (Positive Temperature Coefficient) element, a fuse, etc. have been proposed as a means to prevent an explosion by blocking the current.
  • PTC Positive Temperature Coefficient
  • Securing safety is very important in that the explosion of the battery module or battery pack not only causes damage to the electronic device or the car in which it is employed, but can also lead to a user's safety threat and fire.
  • the secondary battery overheats, the risk of explosion and/or ignition increases, and rapid combustion or explosion due to overheating can cause personal and property damage. Therefore, there is a demand for introduction of a means for sufficiently securing the safety in use of the secondary battery.
  • the present invention was created to solve the above problems, and in the present invention, heat accumulation is improved by improving heat dissipation, rather than applying a safety enhancement mechanism such as a CID or PTC device in a medium-to-large battery module in which a pouch-type battery cell is integrated. It is suggested to solve the safety problem according to the.
  • the problem to be solved by the present invention is to provide a battery module that improves heat dissipation by allowing electronic cooling to occur at a specific voltage or higher, a battery pack including the battery module, and a vehicle including the battery pack.
  • a battery module according to the present invention for solving the above problems includes a plurality of battery cells and a lead junction in which leads of each of the battery cells are bonded to each other, wherein the thermoelectric module mounted on the lead junction device; And a constant voltage element that bypasses the current of the battery module toward the thermoelectric element when the battery module overvoltage occurs; further comprising, electronically cooling the lead junction of the battery module by driving the thermoelectric element when the battery module overvoltage occurs.
  • the constant voltage element may be mounted on the lead junction.
  • the constant voltage element may be connected in parallel between the positive lead of one battery cell and the negative lead of another battery cell among the lead junctions.
  • the constant voltage element may be a Zener diode or a varistor.
  • the breakdown voltage of the constant voltage element is greater than the full charge voltage of the battery module.
  • the constant voltage element is provided in a sensing circuit that senses the voltage state of the battery module, and a circuit capable of flowing a current of the battery module toward the thermoelectric element when the breakdown voltage of the constant voltage element is reached is between the constant voltage element and the thermoelectric element. It may be provided.
  • the lead junction portion includes a flat portion welded by overlapping a bent portion prepared by bending a battery cell lead on one side 90 degrees and a bent portion provided by bending another battery cell lead adjacent to the battery cell on one side 90 degrees in the opposite direction,
  • the thermoelectric element may be mounted on the flat portion.
  • thermoelectric element may be mounted for each lead junction.
  • the battery cells may be pouch-type battery cells.
  • the present invention the battery pack, at least one battery module according to the present invention; And it provides a battery pack comprising a pack case for packaging the at least one battery module.
  • the present invention provides an automobile, comprising at least one battery pack according to the invention.
  • the battery module according to the present invention is further provided with a constant voltage element and a thermoelectric element.
  • a constant voltage element capable of flowing a current in a desired direction above a specific voltage
  • the flow of current through the constant voltage element is bypassed to the thermoelectric element side.
  • the bypassed current to drive the thermoelectric element to electronically cool the battery module, it is possible to prevent a phenomenon in which the temperature of the battery module rapidly increases due to overvoltage.
  • thermoelectric element is mounted on a lead junction between battery cells.
  • immediate cooling of the most exothermic area is possible, and the heat dissipation effect is excellent.
  • the constant voltage element and the thermoelectric element can be disposed at a short distance, the battery module structure is also simplified.
  • heat generation in the battery module can be prevented by cooling the electrode lead by performing an endothermic reaction by sending an electric current to the thermoelectric element when an overvoltage occurs. Therefore, overheating of the battery module can be prevented, and the safety of the battery module is excellent.
  • FIG. 1 is a block diagram showing a battery module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a battery module according to another embodiment of the present invention.
  • FIG. 3 is a top view of a pouch-type battery cell as a unit battery cell included in the battery module of FIG. 2.
  • FIG. 4 schematically shows a portion of a lead junction between two adjacent battery cells in the battery module of FIG. 2.
  • thermoelectric element 5 is a partially cutaway perspective view for describing a thermoelectric element included in a battery module according to the present invention.
  • thermoelectric element 6 is a front view of the thermoelectric element shown in FIG. 5.
  • FIG. 7 is a view for explaining a battery pack according to another embodiment of the present invention.
  • FIG. 8 is a view for explaining a vehicle according to another embodiment of the present invention.
  • a battery module according to the present invention includes a plurality of battery cells 10, a thermoelectric element 60, and a constant voltage element 80.
  • the battery cells 10 are shown with a minimum number.
  • a typical battery module includes only a plurality of battery cells 10.
  • the battery module according to the present invention is further provided with a thermoelectric element 60 and a constant voltage element 80.
  • the battery cells 10 each lead is bonded to each other to form a lead junction 40, the thermoelectric element 60 is mounted to this lead junction 40.
  • the constant voltage element 80 bypasses the current of the battery module to the thermoelectric element 60 side when the battery module overvoltage occurs.
  • the constant voltage element 80 is a device capable of flowing a current in a desired direction above a specific voltage.
  • the constant voltage element 80 has a characteristic that a current flows rapidly when a voltage equal to or higher than a specific voltage (breakdown voltage) is applied between both terminals. That is, the constant voltage element 80 provided in the present invention is a device capable of bypassing or bypassing the current at a specific voltage or higher, and the flow of current is blocked at a voltage lower than the specified voltage and at a voltage higher than the specified voltage It means a device that makes electric current flow rapidly.
  • a necessary circuit can be configured using the constant voltage element 80 so that the current flows above the breakdown voltage of the constant voltage element 80 to the thermoelectric element 60 side.
  • the specific value of the breakdown voltage can be appropriately adjusted by a person skilled in the art as necessary. In the present invention, it is not necessary to use the constant voltage element 80 in which the breakdown voltage is higher than necessary. The maximum value of the breakdown voltage depends on each battery module.
  • the constant voltage element 80 is applied to the battery module according to the present invention to drive the thermoelectric element 60 by bypassing the current to the thermoelectric element 60 side when overvoltage.
  • the safety of the battery module can be improved by protecting the battery module from overheating or heat accumulation.
  • the thermoelectric element 60 is driven by the bypassed current.
  • the thermoelectric element 60 is composed of a Peltier element capable of absorbing heat and generating heat by supplying electric current.
  • the heat absorbing portion of the Peltier element is on the lead junction 40 and the heat generating portion of the Peltier element is on the air side, electromagnetic cooling by supply of electric current can be performed.
  • the Peltier element is composed of a heat absorbing portion and a heat generating portion, and in the present invention, the heat absorbing portion is brought into contact with the lead bonding portion 40 and the heat generating portion is configured to be exposed in the air.
  • the Peltier effect refers to a phenomenon in which when one type of metal is paired and an electric current flows, one contact generates heat and the other contact absorbs heat (cooling).
  • the thermoelectric element 60 of the present invention is a device that implements such a Peltier effect, and is currently in the form of connecting an n-type and p-type semiconductor made of an alloy of V-VI and its solid solution as a cooling contact and connecting through a copper plate. It is common. If the direction in which the current flows is changed, the endothermic and exothermic parts can be interchanged, and the amount of heat absorption and heat generation can be adjusted according to the amount of current.
  • the heat absorbing portion of the thermoelectric element 60 is in contact with the lead junction 40 and the heat generating portion considers the current flow direction applied to the thermoelectric element 60 so as to be exposed in the air.
  • the lead junction portion 40 is a portion where heat is severe because it forms a path through which current flows directly. In the present invention, since the lead junction 40 is preferentially cooled, it is efficient in terms of heat dissipation of the battery module.
  • the battery module is electronically cooled by driving the thermoelectric element 60 using the current of the battery module when an overvoltage occurs. Accordingly, a phenomenon in which the temperature of the battery module rapidly increases due to the occurrence of overvoltage can be prevented.
  • thermoelectric element 60 is mounted on the lead junction 40 between the battery cells 10. By doing this, immediate cooling of the most exothermic area is possible, and the heat dissipation effect is excellent.
  • the constant voltage element 80 and the thermoelectric element 60 can be disposed at a short distance, the battery module structure is also simplified.
  • FIG. 2 is a perspective view schematically showing a battery module according to another embodiment of the present invention.
  • 3 is a top view of a pouch-type battery cell as a unit battery cell included in the battery module of FIG. 2.
  • the battery module 100 of FIG. 2 shows an example in which a plurality of battery cells 110a, 110b, 110c, ... are electrically connected in series.
  • Each of the plurality of battery cells 110a, 110b, 110c, ... is a pouch-shaped battery cell 110 as illustrated in FIG. 3, and may have the same structure.
  • the pouch-type battery cell 110 is sealed by receiving the electrode assembly 120 and the electrolyte together in the pouch 115.
  • the pouch 115 may be configured to include a metal layer, an outer resin layer, and an inner resin layer to seal the electrode assembly 120 and the electrolyte stored therein and protect them from the outside.
  • One end of the positive electrode lead 125 and the negative electrode lead 130 formed in a plate shape is connected to both ends of the electrode assembly 120, and each other end is exposed outside the pouch 115.
  • One end of the positive electrode lead 125 is electrically connected to the positive electrode plate of the electrode assembly 120, and one end of the negative electrode lead 130 is electrically connected to the negative electrode plate of the electrode assembly 120.
  • the other ends of the electrode leads 125 and 130 exposed outside the pouch 115 are used to electrically connect a plurality of pouch-type battery cells to each other as shown in FIG. 2.
  • a lead film 135 is interposed between the pouch 115 and the electrode leads 125 and 130.
  • the lead film 135 is provided to further improve the adhesion between the pouch 115 and the electrode leads 125 and 130.
  • the lead film 135 not only prevents a short circuit from occurring between the electrode leads 125 and 130 and the metal layer of the pouch 115, but also improves the sealing property of the pouch 115.
  • the contact resistance is somewhat large, and the surface adhesion may be reduced.
  • the lead film 135 when the lead film 135 is provided, such a decrease in adhesion may be prevented.
  • the lead film 135 is preferably an insulating material that can block the application of current from the electrode leads 125 and 130 to the pouch 115.
  • the lead film 135 is made of a film having insulating properties and heat fusion properties.
  • the lead film 135 may be made of any one or more material layers (single film or multiple films) selected from, for example, polyimide (PI), polypropylene, polyethylene, and polyethylene terephthalate (PET). .
  • the electrode assembly 120 is a collection of unit cells having a structure in which a positive electrode plate and a negative electrode plate are disposed with a separator therebetween.
  • the unit cell can be simply stacked, stacked and folded, or made of an electrode assembly in the form of a jelly roll. Since the method of manufacturing the electrode assembly in various types is widely known, detailed description will be omitted.
  • the electrode assembly 120 may be formed by stacking a negative electrode plate, a separator, and a positive electrode plate.
  • the electrode assembly 120 may be in the form of a monocell composed of a negative electrode plate/separator/anode plate or a bicell composed of a negative electrode plate/separator/anode plate/separator/cathode plate or a positive electrode plate/separator/cathode plate/separator/anode plate.
  • the positive electrode lead 125 and the negative electrode lead 130 are exemplified as bi-directional batteries that are drawn in opposite directions from the pouch 115, both the positive electrode lead 125 and the negative electrode lead 130 are pouches. It is not intended to exclude the unidirectional battery aspect drawn out in one direction from 115.
  • the battery cells 110a and 110b have electrode leads protruding from both ends thereof, and the electrode leads 125a of the battery cell 110a, for example, have opposite electrode polarities.
  • the battery cells 110b are stacked so as to be placed side by side with the negative lead 130b. That is, several battery cells are alternately stacked so that electrode leads placed side by side are of opposite polarity to each other.
  • the battery cells 110a, 110b, 110c, ... are connected in series, and in FIG. 2, the other end of the electrode leads 125a, 130b is bent to the left or right in a bent form to form a flat contact surface. It shows a configuration that is connected to each other by welding by overlapping them after providing them.
  • the electrode leads of each battery cell are vertically bent, so that the vertically bent portions of the electrode leads of other neighboring battery cells overlap each other to form a lead junction 140. More specifically, the inner electrode leads except the electrode leads positioned at the outermost side of one side of the stacked battery cells 110a, 110b, 110c, ... are bent and overlapped with each other, and then the bent electrode lead parts are electrically connected. . On the other side of the stacked battery cells 110a, 110b, 110c, ..., all of the electrode leads are bent to overlap each other, and then welded to electrically connect the bent electrode lead parts.
  • the battery cells 110a, 110b, 110c, ... are erected and stacked in the vertical direction.
  • the lead junctions 140 to be combined are'c' shaped, so that electrode leads of different polarities are bent and overlapped.
  • the lead joints 140 are arranged side by side along the horizontal direction. This process can be performed in the reverse process, for example, by bending the electrode leads first, stacking the battery cells in a bent state, and then welding the corresponding portion.
  • FIG. 2 illustrates a method of directly connecting the electrode leads by overlapping, but of course, an indirect connection method using a busbar is also possible.
  • the present invention can also be applied to a case where a battery module is constructed by welding a bus bar together to an electrode lead or when a battery module is constructed by welding an electrode lead and an external circuit.
  • FIG. 4 schematically shows a portion of a lead junction between two adjacent battery cells in the battery module of FIG. 2.
  • first battery cell 110a and a second battery cell 110b when each of the two battery cells adjacent to each other in the battery module 100 is referred to as a first battery cell 110a and a second battery cell 110b, the first battery cell The positive lead 125a of 110a and the negative lead 130b of the second battery cell 110b are connected. In this way, the first and second battery cells 110a and 110b are electrically connected in series.
  • the connection may be made by a method conventionally made in the art, and may be combined and connected by, for example, ultrasonic welding, but is not limited thereto.
  • the other end of the positive lead 125a of the first battery cell 110a and the other end of the negative lead 130b of the second battery cell 110b are the first and second battery cells 110a, 110b. It is bent toward each other along the lamination direction of the lead joints 140 are formed to include a flat portion welded by overlapping the bent portions provided bent at each electrode lead (125a, 130b).
  • a thermoelectric element 160 is mounted on the flat portion.
  • the constant voltage element 180 is also mounted to the lead junction 140.
  • the constant voltage element 180 may be mounted on the flat portion of the lead junction 140 or the other portion other than the flat portion, like the thermoelectric element 160.
  • the constant voltage element 180 may be provided at a location other than the lead junction 140, but the constant voltage element 180 and the thermoelectric element 160 are disposed at a short distance to simplify the battery module 100 structure. In, it is preferable to mount the constant voltage element 180 to the lead junction 140.
  • FIG. 4 shows an example in which the thermoelectric element 160 is mounted on a flat portion (ie, the upper portion of the flat portion in the figure) facing the outside of the battery module 100 in the lead junction portion 140, but the opposite side, that is, the battery
  • the thermoelectric element 160 may be mounted on a flat portion facing the inside of the module 100 (that is, a lower portion of the flat portion in the drawing).
  • the mounting position of the thermoelectric element 160 may be determined in consideration of convenience of mounting work, utilization of space as a whole battery module, and the like.
  • thermoelectric element 5 is a partially cutaway perspective view for describing a thermoelectric element included in a battery module according to the present invention.
  • 6 is a front view of the thermoelectric element shown in FIG. 5.
  • 5 and 6 show a thermoelectric module as an example of a thermoelectric element. Since the thermoelectric module can be manufactured in a plate shape, it is easy to mount the flat portion of the lead junction 140.
  • the thermoelectric element 160 includes an upper substrate 161 and a lower substrate 162, and a metal electrode 163 provided on one surface of the upper substrate 161 and the lower substrate 162. , It may include a plurality of p-type thermoelectric semiconductor 164 and n-type thermoelectric semiconductor 165 spaced between the metal electrode 163.
  • the metal electrode 163 allows current to flow through the p-type thermoelectric semiconductor 164 and the n-type thermoelectric semiconductor 165 when power is applied to the thermoelectric element 160.
  • the upper substrate 161 It may be composed of an upper metal electrode provided on the lower surface and a lower metal electrode provided on the upper surface of the lower substrate 162.
  • the metal electrode 163 may be formed of a material having high electrical conductivity in order to minimize the loss of current supplied to the thermoelectric element 160. More specifically, it is preferable to form a material having excellent conductivity such as silver or copper. Do.
  • the p-type thermoelectric semiconductor 164 and the n-type thermoelectric semiconductor 165 may be provided on one surface of the upper metal electrode and the lower metal electrode, respectively. More specifically, a p-type thermoelectric semiconductor 164 may be provided on the left side of the lower surface of the upper electrode, and an n-type thermoelectric semiconductor 165 may be provided at a spaced distance from the p-type thermoelectric semiconductor 164 to the right. . In addition, an n-type thermoelectric semiconductor 165 may be provided on the left side of the upper surface of the lower electrode, and a p-type thermoelectric semiconductor 164 may be provided in a spaced distance from the n-type thermoelectric semiconductor 165 to the right.
  • thermoelectric element 160 When a current is applied to the thermoelectric element 160, the p-type thermoelectric semiconductor 164 and the n-type thermoelectric semiconductor 165 are electrically connected in series to flow current, and holes in the p-type thermoelectric semiconductor 164 are generated by the Peltier effect.
  • the electrons in the n-type thermoelectric semiconductor 165 move with heat toward the (-) side, and the heat moves toward the (+) side with the heat, so that the upper substrate 161 is heated, and the lower substrate 162 is cooled.
  • the lower substrate 162 of the thermoelectric element 160 used in the present invention can act as the heat absorbing part of the lead junction 140 in the battery module 100 according to the present invention, and the upper substrate 161 is used as the heating part. It is possible to operate, and accordingly, it is preferable that the lower substrate 162 is configured to be in thermal contact with the flat portion of the lead junction 140.
  • a plurality of lead junctions 140 may be formed in one battery module 100.
  • the thermoelectric element 160 may be mounted for each lead junction 140, or may be mounted to any one of the multiple lead junctions 140. From the overall cooling point of view of the battery module 100, it is preferable that it is mounted for each lead junction 140.
  • thermoelectric element 160 is provided in thermal contact with the lead junction 140 corresponding to a plurality of battery cells 110a, 110b, ..., so that the overall size of the battery module 100 is It does not grow, there are no more parts added, and the manufacturing process is not complicated. In addition, since a batch cooling of the lead junction 140 is performed, temperature variation is not caused. Since the structure of the thermoelectric element 160 is simple and there are no additional auxiliary devices, it is possible to manufacture a very compact battery module 100. Therefore, the available space of the entire system is secured, such as the battery module 100 and a battery pack including the same.
  • the constant voltage element 180 drives the thermoelectric element 160 by bypassing the current of the battery module 100 toward the thermoelectric element 160 when an overvoltage occurs in the battery module 100 to cool the lead junction 140 as described above. It is a factor that enables so-called electronic cooling.
  • the constant voltage element 180 is a device capable of flowing a current in a desired direction above a specific voltage, and is preferably composed of a Zener diode or a varistor.
  • Zener diodes are devices that use the Zener effect.
  • the Zener effect When the Zener effect is applied to a semiconductor or other high voltage, the energy at the top of the valence band is the same as the energy at the bottom of the conduction band in the very close part, and the tunnel effect increases the probability of electrons moving from the valence band to the conduction band. It is a phenomenon that current flows. In other words, it refers to a phenomenon in which current increases due to a strong electric field generated in a semiconductor, which increases the probability that a consumer moves to a conduction band due to a tunnel effect. Zener diodes using these characteristics can be made of semiconductor pn junctions. When a relatively large reverse voltage is applied, a large current starts to flow rapidly at a certain voltage, and it is a device having a characteristic that the voltage is kept constant. Is known.
  • a varistor is a non-linear semiconductor resistance element whose resistance value changes according to a voltage applied to both ends of the varistor, and is an abbreviation of variable resistor.
  • Varistor types include a symmetrical varistor whose resistance is determined only by the magnitude of the voltage regardless of the polarity of the applied voltage, and an asymmetrical varistor whose resistance varies depending on the polarity of the applied voltage.
  • thermoelectric element 160 may be driven in the overvoltage situation of the battery module 100 to prevent heat accumulation in the battery module 100.
  • the breakdown voltage of the constant voltage element 180 is greater than the full charge voltage of the battery module 100.
  • the breakdown voltage is set to 4.73V or 15% greater to 4.945V or 20% greater to 5.16V, which is 10% greater, and the circuit configuration is selected by selecting a constant voltage device 180 accordingly. can do.
  • the constant voltage device 180 may be commercially available and used. Since constant voltage elements having various breakdown voltages are commercially available, those skilled in the art can purchase and use appropriate constant voltage elements as necessary.
  • the constant voltage element 180 may be provided in a sensing circuit that senses the voltage state of the battery module 100.
  • the normal battery module 100 has a sensing circuit that senses a voltage state and a control circuit that controls charging and discharging of the battery module 100 using the sensed voltage state.
  • it can be implemented in a manner that further includes a constant voltage element 180 in the sensing circuit.
  • thermoelectric element 160 a circuit must be provided between the constant voltage element 180 and the thermoelectric element 160 to allow the current of the battery module 100 to flow toward the thermoelectric element 160 when the breakdown voltage of the constant voltage element 180 is reached.
  • the configuration of various circuits for providing the current flow path is easily implemented by those skilled in the art, and thus detailed description thereof will be omitted.
  • the constant voltage element 180 has any one battery cell, for example, the positive lead 125a of the first battery cell 110a and the other battery cell, such as the second battery cell 110b, among the lead junctions 140. It is connected in parallel between the negative lead (130b) of the.
  • the battery module 100 when the overvoltage occurs, the battery module 100 is electronically cooled by driving the thermoelectric element 160 using the current of the battery module 100. Accordingly, it is possible to prevent a phenomenon in which the temperature of the battery module 100 rapidly increases due to overvoltage.
  • thermoelectric element 160 is mounted on the lead junction 140 between the battery cells 110. By doing this, immediate cooling of the most exothermic area is possible, and the heat dissipation effect is excellent. In addition, since the constant voltage element 180 and the thermoelectric element 160 can be disposed at a short distance, there is an effect of simplifying the battery module structure.
  • the battery module according to the present invention is suitable for use as a power source for medium-to-large-sized devices that require high temperature stability, long cycle characteristics, and high rate characteristics because there is no heat accumulation and thus have excellent safety.
  • a preferred example of the medium-to-large-sized device includes a power tool that is powered by an electric motor and moves; Electric vehicles including EV, HEV, PHEV, etc.; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; And ESS, but are not limited thereto.
  • Ordinary battery modules are provided with a protection circuit to prevent overcharging.
  • the protection circuit blocks a charging/discharging circuit to block a charging current or a discharging current when a voltage above a chargeable voltage (ie, an overcharge situation) or a voltage below a dischargeable voltage is detected (ie, an overdischarge situation).
  • a battery protection circuit is provided to prevent damage to the secondary battery due to overcharging or overdischarging, but most of the protection circuit IC is provided or a separate complex overcharge protection circuit is constructed, and thus in terms of cost and efficiency. There is an undesirable problem.
  • the battery protection circuit when the battery protection circuit does not operate normally, particularly when the control of overcharge prevention does not function normally, it is difficult to ensure the safety of the battery module. In addition, safety is very vulnerable if the protection circuit fails to operate properly.
  • the battery module of the present invention regardless of whether or not such a protection circuit is provided, can greatly improve heat dissipation characteristics when the battery module is over-voltage, and thus is very helpful in securing safety.
  • the constant voltage device of the present invention is convenient to use because it is not very difficult to construct a new circuit by additionally inserting it into the sensing circuit of the existing battery module.
  • a bare cell (bare) without a protection circuit is provided at the manufacturing cost level. cell) to increase the number of attempts to construct a secondary battery.
  • the present invention is sufficiently utilized as a basic and minimal safety device because it can prevent problems such as heat accumulation during overvoltage with minimal components such as thermoelectric elements and constant voltage elements. Can be.
  • FIG. 7 is a view for explaining a battery pack according to an embodiment of the present invention.
  • 8 is a view for explaining a vehicle according to an embodiment of the present invention.
  • the battery pack 200 may include at least one battery module according to the previous embodiment, for example, the battery module 100 of the second embodiment and a pack case 210 for packaging it.
  • various devices for controlling charging and discharging of the battery module 100 in addition to the battery module 100 and the pack case 210 such as BMS (Battery Management System), current Sensors, fuses, and the like may be further included.
  • the battery pack 200 is a fuel source of the vehicle 300 and may be provided in the vehicle 300.
  • the battery pack 200 may be provided in the vehicle 300 in an electric vehicle, a hybrid vehicle, and other ways in which other battery packs 200 can be used as a fuel source.
  • the vehicle 300 may be an electric vehicle.
  • the battery pack 200 may be used as an electric energy source for driving the vehicle 300 by providing driving force to the motor 310 of the electric vehicle.
  • the battery pack 200 has a high nominal voltage of 100 V or more. For hybrid vehicles, it is set to 270V.
  • the battery pack 200 may be charged or discharged by the inverter 320 according to the driving of the motor 310 and/or the internal combustion engine.
  • the battery pack 200 may be charged by a regenerative charging device combined with a break.
  • the battery pack 200 may be electrically connected to the motor 310 of the vehicle 300 through the inverter 320.
  • the battery pack 200 also includes a BMS.
  • the BMS estimates the state of the battery cells in the battery pack 200 and manages the battery pack 200 using the estimated state information.
  • the battery pack 200 state information such as state of charge (SOC), state of health (SOH), maximum input/output power allowance, and output voltage is estimated and managed.
  • the charging or discharging of the battery pack 200 is controlled by using the state information, and further, it is possible to estimate the replacement time of the battery pack 200.
  • the ECU 330 is an electronic control device that controls the state of the vehicle 300. For example, torque information is determined based on information such as an accelerator, a brake, and speed, and the output of the motor 310 is controlled to match the torque information.
  • the ECU 330 sends a control signal to the inverter 320 so that the battery pack 200 can be charged or discharged based on state information such as SOC and SOH of the battery pack 200 received by the BMS.
  • the inverter 320 allows the battery pack 200 to be charged or discharged based on the control signal of the ECU 330.
  • the motor 310 drives the vehicle 300 based on control information (eg, torque information) transmitted from the ECU 330 using electric energy of the battery pack 200.
  • the vehicle 300 includes a battery pack 200 according to the present invention, and the battery pack 200 includes a battery module 100 with improved safety as described above. Therefore, the stability of the battery pack 200 is improved, and since the battery pack 200 has excellent stability and can be used for a long time, the vehicle 300 including the same is safe and easy to operate.
  • the battery pack 200 may be provided in other devices, apparatus and equipment, such as ESS using a secondary battery in addition to the vehicle 300, of course.
  • a device, apparatus, and equipment provided with the battery pack 200 such as the battery pack 200 and the vehicle 300 according to the present embodiment includes the above-described battery module 100, and the above-described battery module It is possible to implement devices, apparatus and equipment such as a battery pack 200 having all of the advantages due to 100 and a vehicle 300 equipped with the battery pack 200.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

특정 전압 이상에서 전자 냉각이 일어나도록 하여 열 방출을 개선한 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차를 제공한다. 본 발명에 따른 배터리 모듈은 복수 개의 배터리 셀들을 포함하고 상기 배터리 셀들 각각의 리드가 서로 접합된 리드 접합부가 형성되어 있는 배터리 모듈에 있어서, 상기 리드 접합부에 장착된 열전 소자; 및 상기 배터리 모듈 과전압 발생시 상기 배터리 모듈의 전류를 상기 열전 소자 측으로 우회시키는 정전압 소자;를 더 포함하여, 상기 배터리 모듈 과전압 발생시 상기 열전 소자를 구동함으로써 상기 배터리 모듈의 리드 접합부를 전자 냉각하는 것이다.

Description

열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
본 발명은 배터리 모듈에 관한 것으로, 보다 상세하게는 특정 전압 이상에서 전자 냉각이 일어나도록 하여 열 방출을 개선한 배터리 모듈에 관한 것이다. 본 발명은 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차에 관한 것이기도 하다. 본 출원은 2018년 11월 29일자로 출원된 대한민국 특허출원 번호 제10-2018-0151275호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
현재 상용화된 이차전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차전지 등이 있다. 이 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 인해 각광을 받고 있다.
이러한 리튬 이차전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차전지는, 양극 활물질이 양극 집전체에 코팅된 양극판과, 음극 활물질이 음극 집전체에 코팅된 음극판이, 분리막을 사이에 두고 배치된 구조를 가진 단위 셀을 집합시킨 전극 조립체와, 이 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다. 리튬 이차전지는 전지 케이스의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차전지로 분류된다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치(ESS)와 같은 중대형 장치에도 이차전지가 널리 이용되고 있다. 이러한 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차전지가 전기적으로 접속되어 배터리 모듈이나 배터리 팩을 구성한다. 특히, 이러한 중대형 장치에는 적층이 용이하고 무게가 가볍다는 등의 장점으로 인해 파우치형 배터리 셀이 많이 이용된다. 파우치형 배터리 셀은 전극 리드가 접속된 전극 조립체가 파우치 케이스에 전해액과 함께 수납되어 밀봉된 구조를 가진다. 전극 리드의 일부는 파우치 케이스 외부로 노출되며, 노출된 전극 리드는 파우치형 배터리 셀이 장착되는 장치에 전기적으로 접속되거나, 파우치형 배터리 셀 상호간을 전기적으로 접속하는 데 사용된다.
한편, 리튬 이차전지는 과열이 될 경우 폭발 위험성이 있다. 특히 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차에 적용이 되면서 다수의 고용량 배터리 셀을 연결하여 사용하는 배터리 모듈이나 배터리 팩에서는, 폭발시 매우 큰 사고가 발생할 수 있어 안전성을 확보하는 것이 주요 과제 중 하나이다. 기존에 이차전지 내부의 온도가 상승하면 전류를 차단하여 폭발을 방지할 수 있는 수단으로서 PTC(Positive Temperature Coefficient) 소자, 퓨즈 등이 제안된 바 있다. 그런데, 이들은 배터리 모듈이나 배터리 팩 내에서 별도의 장착 공간이 필요하다는 문제가 있다.
현재 파우치형 배터리 셀을 집적한 중대형 배터리 모듈에서는 CID(current Interrupt Device)와 안전성 향상 기구를 장착하지 않고 있다. 기존 소형 원통형 이차전지 등에서 장착하고 있는 CID의 경우 셀 내압이 상승하게 되면 특정 부위가 단선되어 더 이상 셀에 전류를 통하는 통로를 차단하는 원리에 의해 셀의 안전성을 확보하고 있다. 하지만 중대형 배터리 모듈 내의 파우치형 배터리 셀에 적용하기에는 저항이 크다는 문제점을 가지고 있다. 중대형 각형 배터리셀에 적용되어 있는 CID의 경우 셀 내압이 상승하게 되면 강제로 외부 단락(external short)을 발생시켜 셀 내부에 있는 리드를 녹임으로써 전류가 흐르는 통로를 차단하여 셀의 안전성을 확보하고 있다. 그러나 이러한 원리의 CID는 셀이 EOL(End Of Life) 구간에 들어가 셀 내압이 상승할 경우에도 작동해 버린다는 문제점을 가지고 있다. 또한 중대형 배터리 모듈의 파우치형 배터리 셀에 적용하려면 파우치 변형으로 적용하기 힘든 문제점이 있다.
배터리 모듈 혹은 배터리 팩의 폭발은 그것이 채용된 전자기기 혹은 자동차 등의 파손을 가져올 뿐만 아니라 사용자의 안전 위협 및 화재로 연결될 수 있다는 점에서 안전성 확보는 매우 중요하다. 이차전지가 과열되면 폭발 및/또는 발화의 위험이 커지게 되고, 과열로 인한 급격한 연소나 폭발은 인명 및 재산상의 피해를 줄 수 있다. 그러므로, 이차전지 사용상의 안전성을 충분히 확보하기 위한 수단 도입에 대한 요구가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명에서는 파우치형 배터리 셀을 집적한 중대형 배터리 모듈에서 CID나 PTC 소자와 같은 안전성 향상 기구를 적용하기보다는, 열 방출을 개선함으로써 열 축적에 따른 안전성 문제를 해소할 것을 제안한다.
본 발명이 해결하고자 하는 과제는, 특정 전압 이상에서 전자 냉각이 일어나도록 하여 열 방출을 개선한 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차를 제공하는 것이다.
상기와 같은 과제를 해결하기 위한 본 발명에 따른 배터리 모듈은 복수 개의 배터리 셀들을 포함하고 상기 배터리 셀들 각각의 리드가 서로 접합된 리드 접합부가 형성되어 있는 배터리 모듈에 있어서, 상기 리드 접합부에 장착된 열전 소자; 및 상기 배터리 모듈 과전압 발생시 상기 배터리 모듈의 전류를 상기 열전 소자 측으로 우회시키는 정전압 소자;를 더 포함하여, 상기 배터리 모듈 과전압 발생시 상기 열전 소자를 구동함으로써 상기 배터리 모듈의 리드 접합부를 전자 냉각하는 것이다.
상기 정전압 소자는 상기 리드 접합부에 장착될 수 있다.
상기 정전압 소자는 상기 리드 접합부 중에서도 어느 하나의 배터리 셀의 양극 리드와 다른 하나의 배터리 셀의 음극 리드 사이에 병렬로 연결되어 있을 수 있다.
상기 정전압 소자는 제너다이오드(Zener diode) 또는 바리스터(varistor)일 수 있다.
상기 정전압 소자의 파괴(breakdown) 전압이 상기 배터리 모듈의 만충전 전압보다 크게 하는 것이 바람직하다.
상기 정전압 소자는 상기 배터리 모듈의 전압 상태를 감지하는 센싱 회로 내에 구비되고 상기 정전압 소자의 파괴 전압 도달시 상기 배터리 모듈의 전류를 상기 열전 소자측으로 흐르게 할 수 있는 회로가 상기 정전압 소자와 열전 소자 사이에 구비될 수 있다.
상기 리드 접합부는 일측의 배터리 셀 리드가 90도 절곡되어 마련된 절곡부와 상기 일측의 배터리 셀에 인접한 다른 배터리 셀 리드가 그와 반대 방향으로 90도 절곡되어 마련된 절곡부가 겹쳐져 용접된 평탄부를 포함하며, 상기 열전 소자는 상기 평탄부에 장착될 수 있다.
상기 열전 소자는 상기 리드 접합부마다 장착되어 있을 수 있다.
상기 배터리 셀들은 파우치형 배터리 셀들일 수 있다.
그리고, 본 발명은, 배터리 팩으로서, 본 발명에 따른 적어도 하나의 배터리 모듈; 및 상기 적어도 하나의 배터리 모듈을 패키징하는 팩 케이스를 포함하는 것을 특징으로 하는 배터리 팩을 제공한다.
아울러, 본 발명은, 자동차로서, 본 발명에 따른 적어도 하나의 배터리 팩을 포함하는 것을 특징으로 하는 자동차를 제공한다.
본 발명에 따른 배터리 모듈은 정전압 소자와 열전 소자를 추가로 구비한 것이다. 특정 전압 이상에서 원하는 방향으로 전류를 흘려줄 수 있는 정전압 소자를 이용하여, 배터리 모듈 과전압 발생시 정전압 소자를 통해 전류의 흐름을 열전 소자측으로 우회시킨다. 우회시킨 전류를 이용하여 열전 소자를 구동해 배터리 모듈을 전자 냉각함으로써 과전압 발생으로 배터리 모듈의 온도가 급격히 증가하는 현상을 방지할 수 있다.
본 발명에서는 특히 열전 소자를 배터리 셀들간 리드 접합부에 장착한다. 이와 같이 함으로써, 가장 발열이 심한 부위의 즉각적인 냉각이 가능하여 열 방출 효과가 탁월해진다. 또한, 정전압 소자와 열전 소자를 근거리로 배치할 수 있어 배터리 모듈 구조가 간단해지는 효과도 있다.
본 발명에 의하면, 과전압 발생시 전류를 열전 소자로 보내 흡열 반응을 하게 해 전극 리드를 냉각시킴으로써 배터리 모듈 내 열 축적을 방지할 수 있다. 따라서, 배터리 모듈의 과열을 방지할 수 있고, 배터리 모듈의 안전성이 우수하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈을 도시한 블록도이다.
도 2는 본 발명의 다른 실시예에 따른 배터리 모듈을 개략적으로 도시한 사시도이다.
도 3은 도 2의 배터리 모듈에 포함되는 단위 배터리 셀로서 파우치형 배터리 셀의 상면도이다.
도 4는 도 2의 배터리 모듈에서 인접해 있는 두 배터리 셀 사이의 리드 접합부 부분을 개략적으로 도시한 것이다.
도 5는 본 발명에 따른 배터리 모듈에 포함되는 열전 소자를 설명하기 위한 부분 절개 사시도이다.
도 6은 도 5에 나타낸 열전 소자의 정면도이다.
도 7은 본 발명의 또 다른 실시예에 따른 배터리 팩을 설명하기 위한 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 자동차를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈을 도시한 블록도이다. 도 1을 참조하면, 본 발명에 따른 배터리 모듈은 복수 개의 배터리 셀(10), 열전 소자(60) 및 정전압 소자(80)를 포함한다. 도시의 편의를 위하여 배터리 셀(10)은 최소한의 개수로 도시하였다.
보통의 배터리 모듈은 복수 개의 배터리 셀(10)만 포함한다. 본 발명에 따른 배터리 모듈은 열전 소자(60)와 정전압 소자(80)를 추가로 구비한 것이다.
다음에 더 자세히 설명하는 바와 같이, 배터리 셀(10)들은 각각의 리드가 서로 접합되어 리드 접합부(40)를 형성하고, 열전 소자(60)는 이 리드 접합부(40)에 장착이 된다.
정전압 소자(80)는 배터리 모듈 과전압 발생시, 배터리 모듈의 전류를 열전 소자(60)측으로 우회시킨다. 정전압 소자(80)는 특정 전압 이상에서 원하는 방향으로 전류를 흘려줄 수 있는 소자이다. 정전압 소자(80)는 양 단자 사이에 특정 전압(breakdown voltage; 파괴 전압) 이상의 전압이 인가될 때 전류가 급격하게 흐르게 해주는 특성을 지닌다. 즉, 본 발명에서 구비하는 정전압 소자(80)는 특정 전압 이상에서 전류를 우회, 즉 바이패스해 줄 수 있는 소자로서, 특정 전압보다 낮은 전압에서는 전류의 흐름이 차단되고 상기 특정 전압보다 높은 전압에서는 급격하게 전류를 흐르게 해 주는 소자를 의미한다. 따라서, 본 발명에서는 정전압 소자(80)의 파괴 전압 이상에서 전류의 흐름이 열전 소자(60)측으로 될 수 있도록 정전압 소자(80)를 이용해 필요한 회로를 구성할 수 있다. 상기 파괴 전압의 구체적인 값은 필요에 따라 당업자가 적절하게 조정할 수 있다. 본 발명에 있어서, 상기 파괴 전압이 필요 이상으로 높은 정전압 소자(80)를 사용할 필요는 없다. 상기 파괴 전압의 최대값은 각각의 배터리 모듈에 따라 달라진다.
이러한 정전압 소자(80)는 본 발명에 의한 배터리 모듈에 적용되어 과전압시 전류를 열전 소자(60)측으로 우회시켜 열전 소자(60)를 구동하게 할 수 있다. 과열 또는 열 축적으로부터 배터리 모듈을 보호하여 줌으로써 배터리 모듈의 안전성을 향상시킬 수 있다.
열전 소자(60)는 우회시킨 전류에 의해 구동이 된다. 열전 소자(60)는 전류 공급에 의해 흡열과 발열을 할 수 있는 펠티에 소자로 구성한다. 펠티에 소자의 흡열부가 리드 접합부(40) 쪽이 되게 하고, 펠티에 소자의 발열부가 공기 쪽이 되게 하면, 전류 공급에 의한 전자 냉각을 실시할 수 있다.
잘 알려진 바와 같이, 펠티에 소자는 흡열부와 발열부로 이루어지고, 본 발명에서 그 흡열부는 리드 접합부(40)에 접촉되게 하고 그 발열부는 공기 중에 노출되게 구성한다. 펠티에 효과란, 어떤 종류의 금속을 짝지어 전류를 흐르게 하면 한쪽 접점은 발열하고, 다른 쪽 접점은 흡열(냉각)하는 현상을 말한다. 본 발명의 열전 소자(60)는 이러한 펠티에 효과를 구현한 소자로, 현재는 V-VI족의 합금 및 그 고용체로 만든 n형과 p형의 반도체를 냉각접점으로 하여 구리판을 통해 연결하는 형태가 일반적이다. 전류가 흐르는 방향을 바꾸면 흡열과 발열이 되는 부분을 서로 바꿀 수 있고 전류량에 따라 흡열·발열량 조절이 가능하다.
본 발명에서 열전 소자(60)의 흡열부는 리드 접합부(40)에 접촉되고 발열부는 공기 중에 노출되도록 열전 소자(60)에 인가되는 전류 흐름 방향을 고려한다. 열전 소자(60)를 배터리 셀(10) 내부 또는 배터리 모듈 내 다른 위치가 아닌 리드 접합부(40)측에 장착함으로써, 배터리 모듈의 부피에 영향을 미치지 않으면서 배터리 모듈의 과전압 발생시 야기되는 배터리 모듈의 온도 상승을 효과적으로 억제하고 배터리 모듈 내의 열 축적으로 인한 비정상적인 위험 상황을 방지할 수 있게 된다. 특히나 리드 접합부(40)는 전류가 직접적으로 흐르고 있는 경로를 형성하기 때문에 발열이 심한 부분이다. 본 발명에서는 리드 접합부(40)를 우선적으로 냉각하기 때문에 배터리 모듈 열 방출 측면에서 효율적이다.
이와 같이, 본 발명에서는 과전압 발생시 배터리 모듈의 전류를 이용해 열전 소자(60)를 구동함으로써 배터리 모듈을 전자 냉각한다. 이로써 과전압 발생으로 배터리 모듈의 온도가 급격히 증가하는 현상을 방지할 수 있다.
본 발명에서는 특히 열전 소자(60)를 배터리 셀(10)들간 리드 접합부(40)에 장착한다. 이와 같이 함으로써, 가장 발열이 심한 부위의 즉각적인 냉각이 가능하여 열 방출 효과가 탁월해진다. 또한, 정전압 소자(80)와 열전 소자(60)를 근거리로 배치할 수 있어 배터리 모듈 구조가 간단해지는 효과도 있다.
도 2는 본 발명의 다른 실시예에 따른 배터리 모듈을 개략적으로 도시한 사시도이다. 도 3은 도 2의 배터리 모듈에 포함되는 단위 배터리 셀로서 파우치형 배터리 셀의 상면도이다.
도 2의 배터리 모듈(100)은 복수의 배터리 셀(110a, 110b, 110c, …)을 전기적 직렬로 연결한 예를 도시한다. 복수의 배터리 셀(110a, 110b, 110c, …) 각각은 도 3에 도시한 바와 같은 파우치형 배터리 셀(110)이고, 서로 동일한 구조를 가질 수 있다.
도 3을 참조하면, 파우치형 배터리 셀(110)은 파우치(115) 안에 전극 조립체(120)와 전해액이 함께 수납되어 밀봉되어 있다. 파우치(115)는, 내부에 수납된 전극 조립체(120)와 전해액을 밀봉하고, 외부로부터 이들을 보호하기 위해, 금속층, 외부 수지층 및 내부 수지층을 포함하도록 구성될 수 있다.
판형으로 이루어진 양극 리드(125)와 음극 리드(130)의 일단부는 각각 전극 조립체(120)의 양단에 접속되어 있으며 각 타단부는 파우치(115) 외부로 노출되어 있다. 양극 리드(125)의 일단부는 전극 조립체(120)의 양극판에, 음극 리드(130)의 일단부는 전극 조립체(120)의 음극판에 전기적으로 접속되어 있다. 파우치(115) 바깥으로 노출된 전극 리드(125, 130)의 타단부는 도 2에서와 같이 여러 개의 파우치형 배터리 셀 상호 간을 전기적으로 접속하는 데 사용된다.
파우치(115)와 전극 리드(125, 130) 사이에는 리드필름(135)이 개재된다. 리드필름(135)은 파우치(115)와 전극 리드(125, 130) 사이의 접착성을 더욱 개선하기 위해 구비되는 것이다. 리드필름(135)은 전극 리드(125, 130)와 파우치(115)의 금속층 사이에서 단락이 발생되는 것을 방지할 뿐만 아니라, 파우치(115)의 밀봉성을 향상시킬 수 있다. 금속 재질의 전극 리드(125, 130)와 폴리머 재질의 파우치(115)에 열융착 시 접촉 저항이 다소 커 표면 밀착력이 저하될 수 있다. 하지만, 상기 실시예와 같이, 리드필름(135)이 구비되면, 이러한 밀착력 저하 현상이 방지될 수 있다. 또한, 리드필름(135)은 절연성 재질로 전극 리드(125, 130)에서 파우치(115)로 전류가 인가되는 것을 차단할 수 있는 것이 바람직하다. 리드필름(135)은 절연성 및 열 융착성을 갖는 필름으로 이루어진다. 리드필름(135)은 예를 들어 폴리이미드(Polyimide, PI), 폴리프로필렌, 폴리에틸렌 및 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate, PET) 등으로부터 선택된 어느 하나 이상의 물질 층(단일 막 또는 다중 막)으로 이루어질 수 있다.
전극 조립체(120)는 양극판과 음극판이 분리막을 사이에 두고 배치된 구조를 가진 단위 셀을 집합시킨 것이다. 단위 셀은 단순히 적층(stack)되거나, 스택 앤드 폴딩(stack and folding)되거나, 젤리롤(jelly roll) 형태의 전극 조립체로 제조될 수 있다. 여러 가지 타입으로 전극 조립체를 제조하는 방법은 널리 알려져 있으므로 자세한 설명은 생략하기로 한다. 예를 들어, 전극 조립체(120)는 음극판, 분리막 및 양극판이 적층되어 이루어진 것일 수 있다. 전극 조립체(120)는 음극판/분리막/양극판으로 이루어진 모노셀 혹은 음극판/분리막/양극판/분리막/음극판이나 양극판/분리막/음극판/분리막/양극판으로 이루어진 바이셀 형태일 수 있다. 본 실시예에서 양극 리드(125)와 음극 리드(130)가 파우치(115)로부터 서로 반대 방향으로 인출된 형태인 양방향 전지를 예로 들고 있으나, 양극 리드(125)와 음극 리드(130) 모두가 파우치(115)로부터 일 방향으로 인출되는 단방향 전지 양태를 배제하는 것은 아니다.
도 2와 도 3을 함께 참조하면, 배터리 셀(110a, 110b)은 그 양단으로 전극 리드가 돌출되어 있고 이들 전극 리드는 서로 반대 극성이 되도록, 예컨대 배터리 셀(110a)의 양극 리드(125a)가 배터리 셀(110b)의 음극 리드(130b)와 나란히 놓이도록, 적층되어 있다. 즉, 여러 개의 배터리 셀은 나란히 놓이는 전극 리드가 서로 반대 극성으로 되도록 교번되게 적층된다. 배터리 셀(110a, 110b, 110c, …)이 직렬로 연결되는 방식에는 여러 가지가 있을 수 있는데, 도 2에서는 전극 리드(125a, 130b)의 타단부를 좌측 또는 우측으로 꺾어진 형태로 절곡시켜 평평한 접촉면을 제공하도록 한 후 이를 서로 겹치게 하여 용접으로 연결하는 구성을 도시하고 있다.
도 2에서 전체적으로 11개의 배터리 셀이 포함되어 있다. 각 배터리 셀의 전극 리드는 수직 절곡되어서, 이웃하는 다른 배터리 셀의 전극 리드와 수직 절곡된 부분이 서로 중첩되어 리드 접합부(140)를 형성한다. 보다 구체적으로, 적층된 배터리 셀(110a, 110b, 110c, …)의 일측에서 최외각에 위치하는 전극 리드들을 제외한 안쪽의 전극 리드들은 절곡하여 서로 겹치게 한 후 절곡된 전극 리드 부분들을 전기적으로 연결한다. 적층된 배터리 셀(110a, 110b, 110c, …)의 타측에서는 전극 리드들을 모두 절곡하여 서로 겹치게 한 후 용접해 절곡된 전극 리드 부분들을 전기적으로 연결한다.
도 2에서 배터리 셀(110a, 110b, 110c, …)은 세로 방향으로 세워져 적층되어 있다. 전극 리드 절곡시, 배터리 셀에서 어느 한쪽의 전극 리드는 우측(또는 배터리 모듈 외측) 방향으로 수직 절곡하고 다른 한쪽의 전극 리드는 좌측(또는 배터리 모듈 내측) 방향으로 수직 절곡한다. 이에 따라, 결합되어야 할 리드 접합부(140)는 'ㄷ'자 모양으로 서로 다른 극성의 전극 리드가 절곡되어 중첩되게 된다. 그리고, 리드 접합부(140)는 가로 방향을 따라 나란하게 배열되게 된다. 이러한 과정은 반대 과정으로 수행될 수 있는 바, 예를 들어, 전극 리드들을 먼저 절곡하여 절곡한 상태로 배터리 셀들을 적층한 후에 해당 부위를 용접할 수도 있다.
한편, 도 2에는 전극 리드들을 겹치게 하여 직접 연결하는 방식을 도시하였으나, 버스바(busbar)를 이용한 간접 연결 방식도 물론 가능하다. 예를 들어, 전극 리드에 버스바를 함께 용접하여 배터리 모듈을 구성하는 경우나 전극 리드와 외부 회로를 용접해 배터리 모듈을 구성하는 경우에도 본 발명이 적용될 수 있음은 당연하다.
도 4는 도 2의 배터리 모듈에서 인접해 있는 두 배터리 셀 사이의 리드 접합부 부분을 개략적으로 도시한 것이다.
도 2와 도 4를 함께 참조하여 설명하면, 배터리 모듈(100)에서 인접해 있는 2개의 배터리 셀 각각을 제1 배터리 셀(110a) 및 제2 배터리 셀(110b)이라고 할 때, 제1 배터리 셀(110a)의 양극 리드(125a)와 제2 배터리 셀(110b)의 음극 리드(130b)가 연결되어 있다. 이와 같이 제1 및 제2 배터리 셀(110a, 110b)이 전기적으로 전기적 직렬 접속되어 있다. 상기 연결은 당업계에서 통상적으로 이루어지는 방법에 의해 이루어질 수 있으며, 예컨대, 초음파 용접에 의해 결합 및 연결될 수 있으나, 이에 한정되는 것은 아니다.
본 실시예에서는 제1 배터리 셀(110a)의 양극 리드(125a)의 타단부와 제2 배터리 셀(110b)의 음극 리드(130b)의 타단부가 제1 및 제2 배터리 셀(110a, 110b)의 적층 방향을 따라 서로를 향해 절곡되어 있으며, 각 전극 리드(125a, 130b)에서 절곡되어 마련된 절곡부끼리가 겹쳐져 용접된 평탄부를 포함하도록 리드 접합부(140)가 형성되어 있다. 이 평탄부에 열전 소자(160)가 장착된다. 그리고, 바람직하기로, 정전압 소자(180)도 이 리드 접합부(140)에 장착이 된다. 정전압 소자(180)는 열전 소자(160)와 마찬가지로 리드 접합부(140)의 평탄부에 장착이 될 수도 있고, 평탄부 이외의 다른 부분에 장착이 될 수도 있다. 정전압 소자(180)를 리드 접합부(140)가 아닌 다른 위치에 구비하여도 상관은 없지만, 정전압 소자(180)와 열전 소자(160)를 근거리로 배치해 배터리 모듈(100) 구조를 간단하게 만드는 측면에서, 정전압 소자(180)를 리드 접합부(140)에 장착함이 바람직하다.
한편, 도 4에서는 리드 접합부(140)에서도 배터리 모듈(100) 바깥쪽을 향하는 평탄부(즉, 도면에서 평탄부 상측)에 열전 소자(160)가 장착되는 예를 도시하였으나, 그 반대편, 즉 배터리 모듈(100) 안쪽을 향하는 평탄부(즉, 도면에서 평탄부 하측)에 열전 소자(160)를 장착해도 된다. 열전 소자(160)의 장착 위치는 장착 작업의 편의성, 배터리 모듈 전체로서의 공간의 활용성 등을 고려하여 결정할 수 있다.
도 5는 본 발명에 따른 배터리 모듈에 포함되는 열전 소자를 설명하기 위한 부분 절개 사시도이다. 도 6은 도 5에 나타낸 열전 소자의 정면도이다. 도 5와 도 6은 열전 소자의 한 예로서 열전 모듈을 도시하고 있다. 열전 모듈은 판형으로 제작할 수 있어 리드 접합부(140)의 평탄부에 장착하기가 용이하다.
도 5 및 도 6을 참조하면, 열전 소자(160)는 상부 기판(161) 및 하부 기판(162), 그리고 상부 기판(161) 및 하부 기판(162)의 일면에 구비되는 금속 전극(163)과, 금속 전극(163) 사이에 이격된 다수의 p형 열전 반도체(164) 및 n형 열전 반도체(165)를 포함할 수 있다. 금속 전극(163)은 열전 소자(160)에 전원이 인가되면 p형 열전 반도체(164) 및 n형 열전 반도체(165)에 전류가 흐를 수 있도록 하는 것으로, 보다 구체적으로 살펴 보면 상부 기판(161)의 하면에 구비되는 상부 금속 전극과, 하부 기판(162)의 상면에 구비되는 하부 금속 전극으로 구성될 수 있다. 금속 전극(163)은 열전 소자(160)에 공급되는 전류의 손실을 최소화하기 위하여 전기전도성이 높은 재질로 형성될 수 있고, 보다 상세하게는, 은이나 구리 등 전도성이 우수한 소재로 형성하는 것이 바람직하다.
상부 금속 전극과 하부 금속 전극의 일면에는 p형 열전 반도체(164) 및 n형 열전 반도체(165)가 각각 한 개씩 이격되도록 구비될 수 있다. 보다 상세하게는, 상부 전극의 하면 좌측에는 p형 열전 반도체(164)가 구비될 수 있고, p형 열전 반도체(164)로부터 우측으로 이격된 곳에는 n형 열전 반도체(165)가 구비될 수 있다. 그리고, 하부 전극의 상면 좌측에는 n형 열전 반도체(165)가 구비될 수 있고, n형 열전 반도체(165)로부터 우측으로 이격된 곳에는 p형 열전 반도체(164)가 구비될 수 있다.
열전 소자(160)에 전류가 인가되면 p형 열전 반도체(164) 및 n형 열전 반도체(165)가 전기적으로 직렬 연결되어 전류가 흐르게 되고, 펠티에 효과에 의해 p형 열전 반도체(164) 내의 정공은 (-)쪽으로 열을 갖고 이동하고, n형 열전 반도체(165)의 내의 전자는 (+)쪽으로 열을 갖고 이동하여 상부 기판(161)은 가열되고, 하부 기판(162)은 냉각된다.
따라서, 본 발명에서 사용되는 열전 소자(160)의 하부 기판(162)은 본 발명에 따른 배터리 모듈(100)에서 리드 접합부(140)의 흡열부로 작동할 수 있고, 상부 기판(161)은 발열부로 작동할 수 있으며, 이에 따라, 하부 기판(162) 쪽이 리드 접합부(140)의 평탄부에 열적 접촉할 수 있도록 구성함이 바람직하다.
하나의 배터리 모듈(100)에는 복수 개의 리드 접합부(140)가 형성될 수 있다. 열전 소자(160)는 리드 접합부(140)마다 장착될 수도 있고, 여러 개의 리드 접합부(140) 중 어느 하나에만 장착이 될 수도 있다. 배터리 모듈(100) 전체적인 냉각 관점에서는 리드 접합부(140)마다 장착되는 것이 바람직하다.
이와 같이, 배터리 모듈(100)에서는 복수 개의 배터리 셀(110a, 110b, …)들에 대응하여 리드 접합부(140)에 열전 소자(160)가 열적 접촉해 구비되므로 배터리 모듈(100)의 전체 크기가 커지지 않고 부품 추가가 더 이상 없으며 제조 공정이 복잡해지지 않는다. 또한, 리드 접합부(140)에 대한 일괄적인 냉각이 이루어지므로 온도 편차가 유발되지 않는다. 열전 소자(160)의 구조가 간단하고 추가적인 부대 장치가 없기 때문에 매우 콤팩트한 배터리 모듈(100) 제작이 가능해진다. 따라서, 배터리 모듈(100) 및 이를 포함하는 배터리 팩 등, 전체적인 시스템의 가용 공간이 확보된다.
정전압 소자(180)는 배터리 모듈(100) 과전압 발생시, 배터리 모듈(100)의 전류를 열전 소자(160)측으로 우회시킴으로써 열전 소자(160)를 구동해 상술한 바와 같은 리드 접합부(140)의 냉각, 이른바 전자 냉각을 가능하게 하는 요소이다. 정전압 소자(180)는 특정 전압 이상에서 원하는 방향으로 전류를 흘려줄 수 있는 소자이고, 바람직하게는 제너다이오드(Zener diode) 또는 바리스터(varistor)로 구성한다.
제너 다이오드는 제너 효과를 이용한 소자이다. 제너 효과란 반도체 등에 고전압을 걸어 주었을 때, 가전자대(價電子帶) 상단의 에너지가 매우 가까운 부분의 전도대 하단의 에너지와 같게 되어, 터널 효과에 의하여 가전자대로부터 전도대로 전자가 이동하는 확률이 커져서 전류가 흐르게 되는 현상이다. 즉, 반도체 내에서 생긴 어떤 강한 전계의 영향으로 가전자가 터널 효과에 의하여 전도대로 이동하는 확률이 높아져 나타나는 전류의 증대 현상을 말한다. 이러한 특성을 이용하는 제너 다이오드는 반도체 p-n 접합체로 제조될 수 있는데, 비교적 큰 역방향의 전압을 가했을 때, 어떤 전압에서 급격하게 큰 전류가 흐르기 시작하고, 그 전압이 일정하게 유지되는 특성을 갖는 소자라고 잘 알려져 있다.
바리스터는, 바리스터의 양 단에 가해지는 전압에 따라 저항값이 변하는 비선형(非線形) 반도체 저항소자로서, 가변 저항(variable resistor)의 약칭이다. 바리스터의 종류에는 가해지는 전압의 극성에 관계없이 전압의 크기만에 의하여 저항이 정해지는 대칭형 바리스터와, 가해지는 전압의 극성에 의하여 저항이 달라지는 비대칭형 바리스터가 있다.
정전압 소자(180)의 파괴 전압 이상에서 전류의 흐름이 열전 소자(160)측으로 될 수 있도록 정전압 소자(180)를 이용해 필요한 회로를 구성하는 것은 당업자가 할 수 있다. 이와 같이 회로를 구성하게 되면, 배터리 모듈(100)의 과전압 상황에서 열전 소자(160)를 구동해 배터리 모듈(100)내 열 축적을 방지할 수 있다.
정전압 소자(180)의 파괴 전압은 배터리 모듈(100)의 만충전 전압보다 큰 것으로 한다. 예를 들어, 만충전 전압이 4.3V인 경우, 파괴 전압은 그보다 10% 큰 4.73V 또는 15% 큰 4.945V 또는 20% 큰 5.16V 등으로 설정하여 그에 맞는 정전압 소자(180)를 선택해 회로 구성을 할 수 있다. 이러한 정전압 소자(180)는 상업적으로 시판되는 것을 입수해 사용할 수 있다. 다양한 파괴 전압을 갖는 정전압 소자들이 시판되고 있기 때문에 당업자라면 필요에 따라 적절한 정전압 소자를 구입하여 사용할 수 있다.
바람직하게, 정전압 소자(180)는 배터리 모듈(100)의 전압 상태를 감지하는 센싱 회로 내에 구비될 수 있다. 보통의 배터리 모듈(100)은 전압 상태를 감지하는 센싱 회로와, 감지된 전압 상태를 이용하여 배터리 모듈(100)의 충방전을 제어하는 제어 회로를 가지고 있다. 본 발명에서는 그 중 센싱 회로에 정전압 소자(180)를 더 포함시키는 방식으로 구현이 될 수도 있다는 것이다.
그리고, 정전압 소자(180)의 파괴 전압 도달시 배터리 모듈(100)의 전류를 열전 소자(160)측으로 흐르게 할 수 있도록, 정전압 소자(180)와 열전 소자(160) 사이에 회로가 구비되어야 한다. 전류 흐름 경로를 마련하는 각종 회로의 구성은 당업자라면 쉽게 구현할 수 있는 것이므로 자세한 설명은 생략하기로 한다.
바람직하게, 정전압 소자(180)는 리드 접합부(140) 중에서도 어느 하나의 배터리 셀, 예컨대 제1 배터리 셀(110a)의 양극 리드(125a)와 다른 하나의 배터리 셀, 예컨대 제2 배터리 셀(110b)의 음극 리드(130b) 사이에 병렬로 연결한다.
이와 같이, 본 발명에서는 과전압 발생시 배터리 모듈(100)의 전류를 이용해 열전 소자(160)를 구동함으로써 배터리 모듈(100)을 전자 냉각한다. 이로써 과전압 발생으로 배터리 모듈(100)의 온도가 급격히 증가하는 현상을 방지할 수 있다.
본 발명에서는 특히 열전 소자(160)를 배터리 셀(110)들간 리드 접합부(140)에 장착한다. 이와 같이 함으로써, 가장 발열이 심한 부위의 즉각적인 냉각이 가능하여 열 방출 효과가 탁월해진다. 또한, 정전압 소자(180)와 열전 소자(160)를 근거리로 배치할 수 있어 배터리 모듈 구조가 간단해지는 효과도 있다.
본 발명에 따른 배터리 모듈은 열 축적이 없어 우수한 안전성을 가질 수 있으므로 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 중대형 장치의 전원으로 사용되기에도 적합하다. 상기 중대형 장치의 바람직한 예로는 전기적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); EV, HEV, PHEV 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 및 ESS 등을 들 수 있으나, 이에 한정되는 것은 아니다.
보통의 배터리 모듈은 과충전을 방지하기 위한 보호 회로를 구비한다. 보호 회로는 충전 가능 전압 이상의 전압(즉, 과충전 상황) 또는 방전 가능 전압 이하의 전압이 검출되었을 때(즉, 과방전 상황) 충전/방전 회로를 차단하여 충전 전류나 방전 전류를 저지하는 것이다. 통상, 이차전지에 있어서는 이러한 전지 보호 회로를 구비하여 과충전 또는 과방전에 의한 이차전지의 손상을 방지하고 있지만, 대부분 보호 회로 IC를 구비하거나 별도의 복잡한 과충전 방지 회로를 구성하고 있어서, 비용 및 효율 측면에서 바람직하지 못한 문제점이 있다. 그리고 전지 보호 회로가 정상으로 동작하지 않을 때, 특히 과충전 방지의 제어가 정상으로 기능하지 않을 때, 배터리 모듈의 안전성을 확보하기 어려운 경우가 발생한다. 또한 보호 회로 고장으로 제대로 작동하지 않는 경우에는 안전성이 매우 취약하다. 본 발명의 배터리 모듈은 이러한 보호 회로 구비 여부와 상관 없이, 배터리 모듈의 과전압시 열 방출 특성을 개선할 수 있으므로 안전성 확보에 큰 도움이 된다. 또한, 본 발명의 정전압 소자는 기존 배터리 모듈의 센싱 회로에 추가로 삽입하여 새로운 회로를 구성하는 것이 크게 어렵지 않아 활용하기가 편리하다. 최근에는 이차전지를 구성하는 전해질과 분리막 또는 전극 구조의 특성이 개선되어, 전해질과 전극 조립체 자체에 과충전을 방지하기 위한 소정의 수단이 구비되어 있기 때문에, 제조단가 차원에서 보호 회로 없이 베어셀(bare cell)만으로 이차전지를 구성하고자 하는 시도가 많아지고 있다. 본 발명은 이처럼 보호 회로가 없는 베어셀을 기본으로 하는 배터리 모듈에서도 열전 소자와 정전압 소자라는 최소한의 부품으로 과전압시 열 축적과 같은 문제 발생을 차단할 수 있도록 하기 때문에 기본적이면서도 최소한의 안전 장치로 충분히 활용할 수 있다.
도 7은 본 발명의 일 실시예에 따른 배터리 팩을 설명하기 위한 도면이다. 도 8은 본 발명의 일 실시예에 따른 자동차를 설명하기 위한 도면이다.
도 7 및 도 8을 참조하면, 배터리 팩(200)은, 앞선 실시예에 따른 적어도 하나의 배터리 모듈, 예컨대 두번째 실시예의 배터리 모듈(100) 및 그것을 패키징하는 팩 케이스(210)를 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩(200)은, 이러한 배터리 모듈(100)과 팩 케이스(210) 이외에 배터리 모듈(100)의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS(Battery Management System), 전류 센서, 퓨즈 등이 더 포함될 수 있다.
이러한 배터리 팩(200)은 자동차(300)의 연료원으로써, 자동차(300)에 구비될 수 있다. 예로써, 배터리 팩(200)은 전기 자동차, 하이브리드 자동차 및 기타 배터리 팩(200)을 연료원으로써 이용할 수 있는 기타 다른 방식으로 자동차(300)에 구비될 수 있다.
바람직하게, 자동차(300)는 전기자동차일 수 있다. 배터리 팩(200)은 전기자동차의 모터(310)에 구동력을 제공하여 자동차(300)를 구동시키는 전기 에너지원으로 사용될 수 있다. 이 경우, 배터리 팩(200)은 100V 이상의 높은 공칭 전압을 가진다. 하이브리드 자동차용이면 270V에 맞춰져 있다.
배터리 팩(200)은 모터(310) 및/또는 내연 기관의 구동에 따라 인버터(320)에 의해 충전되거나 방전될 수 있다. 배터리 팩(200)은 브레이크(break)와 결합된 회생충전 장치에 의해 충전될 수 있다. 배터리 팩(200)은 인버터(320)를 통해 자동차(300)의 모터(310)에 전기적으로 연결될 수 있다.
앞에서 설명한 바와 같이 배터리 팩(200)에는 BMS도 포함되어 있다. BMS는 배터리 팩(200) 내의 배터리 셀들의 상태를 추정하고, 추정한 상태 정보를 이용하여 배터리 팩(200)을 관리한다. 예컨대, 배터리 팩(200)의 SOC(State Of Charge), SOH(State Of Health), 최대 입출력 전력 허용량, 출력 전압 등 배터리 팩(200) 상태 정보를 추정하고 관리한다. 그리고, 이러한 상태 정보를 이용하여 배터리 팩(200)의 충전 또는 방전을 제어하며, 나아가 배터리 팩(200)의 교체 시기 추정도 가능하다.
ECU(330)는 자동차(300)의 상태를 제어하는 전자적 제어 장치이다. 예컨대, 가속기(accelerator), 브레이크, 속도 등의 정보에 기초하여 토크 정보를 결정하고, 모터(310)의 출력이 토크 정보에 맞도록 제어한다. 또한, ECU(330)는 BMS에 의해 전달받은 배터리 팩(200)의 SOC, SOH 등의 상태 정보에 기초하여 배터리 팩(200)이 충전 또는 방전될 수 있도록 인버터(320)에 제어 신호를 보낸다. 인버터(320)는 ECU(330)의 제어 신호에 기초하여 배터리 팩(200)이 충전 또는 방전되도록 한다. 모터(310)는 배터리 팩(200)의 전기 에너지를 이용하여 ECU(330)로부터 전달되는 제어 정보(예컨대, 토크 정보)에 기초하여 자동차(300)를 구동한다.
이러한 자동차(300)는 본 발명에 따른 배터리 팩(200)을 포함하는데, 배터리 팩(200)은 앞서 설명한 바와 같이 안전성이 향상된 배터리 모듈(100)을 포함한다. 따라서, 배터리 팩(200)의 안정성이 향상되며, 이러한 배터리 팩(200)은 안정성이 뛰어나고 장시간 사용할 수 있으므로, 이를 포함하는 자동차(300)는 안전하고 운용이 쉽다.
또한, 배터리 팩(200)은 자동차(300) 이외에도 이차전지를 이용하는 ESS 등 기타 다른 장치나 기구 및 설비 등에도 구비되는 것도 가능할 수 있음은 물론이다.
이처럼, 본 실시예에 따른 배터리 팩(200)과 자동차(300)와 같은, 배터리 팩(200)을 구비하는 장치나 기구 및 설비는 전술한 배터리 모듈(100)을 포함하는 바, 전술한 배터리 모듈(100)로 인한 장점을 모두 갖는 배터리 팩(200) 및 이러한 배터리 팩(200)을 구비하는 자동차(300) 등의 장치나 기구 및 설비 등을 구현할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (11)

  1. 복수 개의 배터리 셀들을 포함하고 상기 배터리 셀들 각각의 리드가 서로 접합된 리드 접합부가 형성되어 있는 배터리 모듈에 있어서,
    상기 리드 접합부에 장착된 열전 소자; 및
    상기 배터리 모듈 과전압 발생시 상기 배터리 모듈의 전류를 상기 열전 소자 측으로 우회시키는 정전압 소자;를 더 포함하여,
    상기 배터리 모듈 과전압 발생시 상기 열전 소자를 구동함으로써 상기 배터리 모듈의 리드 접합부를 전자 냉각하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서, 상기 정전압 소자는 상기 리드 접합부에 장착된 것을 특징으로 하는 배터리 모듈.
  3. 제2항에 있어서, 상기 정전압 소자는 상기 리드 접합부 중에서도 어느 하나의 배터리 셀의 양극 리드와 다른 하나의 배터리 셀의 음극 리드 사이에 병렬로 연결되어 있는 것을 특징으로 하는 배터리 모듈.
  4. 제1항에 있어서, 상기 정전압 소자는 제너다이오드(Zener diode) 또는 바리스터(varistor)인 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서, 상기 정전압 소자의 파괴(breakdown) 전압이 상기 배터리 모듈의 만충전 전압보다 큰 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서, 상기 정전압 소자는 상기 배터리 모듈의 전압 상태를 감지하는 센싱 회로 내에 구비되고 상기 정전압 소자의 파괴 전압 도달시 상기 배터리 모듈의 전류를 상기 열전 소자측으로 흐르게 할 수 있는 회로가 상기 정전압 소자와 열전 소자 사이에 구비되어 있는 것을 특징으로 하는 배터리 모듈.
  7. 제1항에 있어서, 상기 리드 접합부는 일측의 배터리 셀 리드가 90도 절곡되어 마련된 절곡부와 상기 일측의 배터리 셀에 인접한 다른 배터리 셀 리드가 그와 반대 방향으로 90도 절곡되어 마련된 절곡부가 겹쳐져 용접된 평탄부를 포함하며, 상기 열전 소자는 상기 평탄부에 장착되는 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서, 상기 열전 소자는 상기 리드 접합부마다 장착되어 있는 것을 특징으로 하는 배터리 모듈.
  9. 제1항에 있어서, 상기 배터리 셀들은 파우치형 배터리 셀들인 것을 특징으로 하는 배터리 모듈.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 적어도 하나의 배터리 모듈; 및
    상기 적어도 하나의 배터리 모듈을 패키징하는 팩 케이스를 포함하는 것을 특징으로 하는 배터리 팩.
  11. 제10항에 따른 적어도 하나의 배터리 팩을 포함하는 것을 특징으로 하는 자동차.
PCT/KR2019/014841 2018-11-29 2019-11-04 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 WO2020111550A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980028882.3A CN112042047B (zh) 2018-11-29 2019-11-04 具有提高的散热性的电池模块、包括电池模块的电池组和包括电池组的车辆
EP19889489.1A EP3809513B1 (en) 2018-11-29 2019-11-04 Battery module having improved heat dissipation, battery pack comprising said battery module, and vehicle comprising said battery pack
ES19889489T ES2978267T3 (es) 2018-11-29 2019-11-04 Módulo de batería que tiene una disipación de calor mejorada, paquete de batería que comprende dicho módulo de batería y vehículo que comprende dicho paquete de batería
US17/048,450 US11342612B2 (en) 2018-11-29 2019-11-04 Battery module with improved heat dissipation, battery pack including the battery module and vehicle including the battery pack
JP2021514276A JP7189331B2 (ja) 2018-11-29 2019-11-04 熱放出が改善されたバッテリーモジュール、該バッテリーモジュールを含むバッテリーパック、及び該バッテリーパックを含む自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0151275 2018-11-29
KR1020180151275A KR102394741B1 (ko) 2018-11-29 2018-11-29 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Publications (1)

Publication Number Publication Date
WO2020111550A1 true WO2020111550A1 (ko) 2020-06-04

Family

ID=70852335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014841 WO2020111550A1 (ko) 2018-11-29 2019-11-04 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Country Status (8)

Country Link
US (1) US11342612B2 (ko)
EP (1) EP3809513B1 (ko)
JP (1) JP7189331B2 (ko)
KR (1) KR102394741B1 (ko)
CN (1) CN112042047B (ko)
ES (1) ES2978267T3 (ko)
HU (1) HUE066613T2 (ko)
WO (1) WO2020111550A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040584A1 (en) * 2021-02-08 2022-08-10 Prime Planet Energy & Solutions, Inc. Battery pack

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220003729A (ko) * 2020-07-02 2022-01-11 주식회사 엘지에너지솔루션 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
KR20220055609A (ko) * 2020-10-27 2022-05-04 에스케이온 주식회사 이차 전지
KR102636036B1 (ko) * 2021-06-07 2024-02-13 비나텍주식회사 방열구조를 가지는 전기 에너지 저장 장치
CN113363673B (zh) * 2021-06-28 2024-03-12 东莞新能安科技有限公司 电池模组及应用其的电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050510A (ko) * 2004-08-20 2006-05-19 주식회사 엘지화학 정전압 소자를 갖는 이차 전지
KR101382663B1 (ko) * 2011-11-30 2014-04-14 서울과학기술대학교 산학협력단 방전 프로파일에 따라 배터리의 방전을 유도하는 방전 시스템에서 사용되는 냉각 장치 및 그 장치의 제조 방법
KR101419556B1 (ko) * 2009-03-02 2014-07-16 주식회사 엘지화학 열전현상을 이용한 자가 온도조절 전기자동차용 배터리팩
KR20180022250A (ko) * 2016-08-24 2018-03-06 이승규 솔더링 장치, 이를 이용한 솔더링 연결 방법
KR20180116707A (ko) * 2017-04-17 2018-10-25 주식회사 엘지화학 과충전 방지 장치 및 방법

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697724B2 (ja) * 1994-09-14 2005-09-21 日産自動車株式会社 組電池の異常検出装置
US7592776B2 (en) * 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
JP4374977B2 (ja) 2003-10-10 2009-12-02 日産自動車株式会社 組電池
KR100745354B1 (ko) * 2004-08-24 2007-08-02 주식회사 엘지화학 이차전지의 과충전 방지를 위한 안전 소자 및 그 안전소자가 결합된 이차전지
US20060110657A1 (en) * 2004-11-15 2006-05-25 William Stanton Battery assembly for use in an uninterruptible power supply system and method
JP2008010295A (ja) * 2006-06-29 2008-01-17 Hokuriku Electric Power Co Inc:The 二次電池の保温方法及び保温装置
US7956581B2 (en) * 2008-01-10 2011-06-07 Research In Motion Limited Rechargeable battery pack
WO2010114311A2 (ko) 2009-04-01 2010-10-07 주식회사 엘지화학 안전성이 향상된 전지모듈
KR20110015070A (ko) 2009-08-07 2011-02-15 주식회사 엘지화학 외부단락 안전성 확보용 배터리
US20110048485A1 (en) * 2009-09-02 2011-03-03 Lonnie Calvin Goff Integrated battery management system for vehicles
KR101108191B1 (ko) * 2010-05-24 2012-02-06 에스비리모티브 주식회사 배터리 팩
DE102010033791A1 (de) 2010-08-09 2012-02-09 Ads-Tec Gmbh Akkupack mit Temperierelementen
DE102012215056B4 (de) * 2012-08-24 2021-09-02 Robert Bosch Gmbh Batteriesystem und Kraftfahrzeug
JP6513577B2 (ja) 2013-01-14 2019-05-15 ジェンサーム インコーポレイテッドGentherm Incorporated 電気装置の熱電ベースの熱管理
DE102013018474A1 (de) 2013-11-02 2015-05-07 Daimler Ag Batterie
KR101738104B1 (ko) 2014-07-08 2017-05-19 주식회사 엘지화학 과전류 방지 기능을 갖는 전지 모듈
JP6202210B2 (ja) 2014-08-06 2017-10-04 日産自動車株式会社 組電池およびタブ接合方法
KR101715697B1 (ko) 2014-10-07 2017-03-13 주식회사 엘지화학 냉각부재로서 열전소자부를 갖는 전지모듈
JP6300034B2 (ja) * 2015-03-19 2018-03-28 株式会社オートネットワーク技術研究所 蓄電モジュール
KR102100932B1 (ko) 2015-05-08 2020-04-14 주식회사 엘지화학 전기적 연결 구조를 다변화할 수 있는 전지셀 및 이를 포함하는 전지셀 어셈블리
JP6678989B2 (ja) * 2015-11-12 2020-04-15 株式会社e−Gle 非水電解液二次電池セル及びこれを用いた組電池
US10326442B2 (en) * 2015-12-29 2019-06-18 Lear Corporation Assembly having internally configurable solid-state switch arrangement for use as one or more disconnection switches in electrical systems and having external package common to the electrical systems
US10886583B2 (en) * 2016-03-02 2021-01-05 Gentherm Incorporated Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
DE112016006638T5 (de) * 2016-03-23 2018-12-06 Mitsubishi Electric Corporation Speicherbatteriemodul
KR102394742B1 (ko) * 2018-11-29 2022-05-06 주식회사 엘지에너지솔루션 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060050510A (ko) * 2004-08-20 2006-05-19 주식회사 엘지화학 정전압 소자를 갖는 이차 전지
KR101419556B1 (ko) * 2009-03-02 2014-07-16 주식회사 엘지화학 열전현상을 이용한 자가 온도조절 전기자동차용 배터리팩
KR101382663B1 (ko) * 2011-11-30 2014-04-14 서울과학기술대학교 산학협력단 방전 프로파일에 따라 배터리의 방전을 유도하는 방전 시스템에서 사용되는 냉각 장치 및 그 장치의 제조 방법
KR20180022250A (ko) * 2016-08-24 2018-03-06 이승규 솔더링 장치, 이를 이용한 솔더링 연결 방법
KR20180116707A (ko) * 2017-04-17 2018-10-25 주식회사 엘지화학 과충전 방지 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809513A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040584A1 (en) * 2021-02-08 2022-08-10 Prime Planet Energy & Solutions, Inc. Battery pack

Also Published As

Publication number Publication date
CN112042047B (zh) 2024-04-09
CN112042047A (zh) 2020-12-04
US11342612B2 (en) 2022-05-24
KR20200065193A (ko) 2020-06-09
KR102394741B1 (ko) 2022-05-06
JP2021523551A (ja) 2021-09-02
ES2978267T3 (es) 2024-09-09
US20210167446A1 (en) 2021-06-03
JP7189331B2 (ja) 2022-12-13
HUE066613T2 (hu) 2024-08-28
EP3809513A4 (en) 2021-09-01
EP3809513B1 (en) 2024-03-27
EP3809513A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
WO2020111564A1 (ko) 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020111550A1 (ko) 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020009484A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2017138709A1 (ko) 배터리 모듈
WO2017104878A1 (ko) 배터리 팩
WO2017160029A1 (ko) 배터리 모듈
WO2013157722A1 (ko) 이차전지, 이에 적용되는 이차전지용 부품 및 이차전지의 제조 방법
CN112106228B (zh) 具有提高的安全性的电池模块、包括电池模块的电池组和包括电池组的车辆
WO2020251128A1 (ko) 안전성 개선용 터미널 버스바, 이를 포함하는 배터리 모듈 및 배터리 팩
WO2019009625A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2020111549A1 (ko) 안전성이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
JP7475461B2 (ja) バッテリー装置
KR20240087407A (ko) 배터리 모듈
WO2023038338A1 (ko) 전극 리드와 리드필름 사이에 안전 소자를 구비한 파우치형 전지 셀
KR20200050296A (ko) 안전성이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20240049051A (ko) 전지팩 및 그를 포함하는 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514276

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019889489

Country of ref document: EP

Effective date: 20210112

NENP Non-entry into the national phase

Ref country code: DE