WO2017138709A1 - 배터리 모듈 - Google Patents

배터리 모듈 Download PDF

Info

Publication number
WO2017138709A1
WO2017138709A1 PCT/KR2017/000977 KR2017000977W WO2017138709A1 WO 2017138709 A1 WO2017138709 A1 WO 2017138709A1 KR 2017000977 W KR2017000977 W KR 2017000977W WO 2017138709 A1 WO2017138709 A1 WO 2017138709A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
battery module
electrode lead
inclined portion
cartridge
Prior art date
Application number
PCT/KR2017/000977
Other languages
English (en)
French (fr)
Inventor
최용준
강태영
김도현
김화중
문덕희
성준엽
유성천
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17750401T priority Critical patent/PL3340338T3/pl
Priority to JP2018525477A priority patent/JP6680881B2/ja
Priority to EP17750401.6A priority patent/EP3340338B1/en
Priority to CN201780003411.8A priority patent/CN108140778B/zh
Priority to US15/759,043 priority patent/US10644276B2/en
Publication of WO2017138709A1 publication Critical patent/WO2017138709A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0472Vertically superposed cells with vertically disposed plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery module, and more particularly, to a battery module, a battery pack and a vehicle including the same, the structure of which is simple and easy to assemble and the contact state of the electrode lead can be stably maintained.
  • водородн ⁇ е ⁇ е ⁇ ество Commercially available secondary batteries include nickel cadmium batteries, nickel hydride batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. The self-discharge rate is very low and the energy density is high.
  • Such lithium secondary batteries mainly use lithium-based oxides and carbon materials as positive electrode active materials and negative electrode active materials, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate coated with the positive electrode active material and the negative electrode active material are disposed with a separator interposed therebetween, and a packaging material that seals the electrode assembly together with the electrolyte solution, that is, a battery case.
  • a lithium secondary battery may be classified into a can type secondary battery in which an electrode assembly is embedded in a metal can and a pouch type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet, depending on the shape of the exterior material.
  • Most battery packs especially medium and large battery packs such as hybrid cars, electric vehicles, and energy storage systems (ESSs), contain a large number of secondary cells, which are connected in series and / or in parallel with each other, Allow the output to improve.
  • the pouch type secondary battery is widely used in the medium and large battery packs due to the advantages of easy stacking, light weight, and the like.
  • the electrical connection between the secondary batteries is often configured in such a way that the electrode leads are in direct contact with each other.
  • the electrode leads of the same polarity are connected to each other to connect the secondary batteries in parallel, and the electrode leads of the different polarities are connected to each other to be connected in series.
  • the contact state of the electrode leads needs to be kept stable as originally intended, and unintended contact or separation between the electrode leads should not occur.
  • battery modules used in automobiles and the like may be frequently exposed to vibrations or shocks, there is a continuous demand for development of battery modules that can stably maintain the connection state of electrode leads even during vibrations or shocks.
  • a sensing bus bar may be provided to sense the voltage of the secondary battery, and the sensing bus bar needs to be in contact with the electrode lead.
  • the electrode leads should be in contact with the sensing busbars while being in contact with the other electrode leads. Therefore, when assembling the battery module, it is necessary to provide a structure that is excellent in assemblability with respect to the connection portion between the electrode lead and the busbar such that the connection between the electrode leads and the connection between the electrode lead and the busbar can be made well.
  • a plurality of electrode leads and bus bars may be coupled to each other in order to maintain a stable connection, such as welding. In this case, it is preferable that a module structure having excellent weldability is provided.
  • the present invention has been made to solve the above problems, to provide a battery module and a battery pack and a vehicle including the same and improved assembly and processability while maintaining a stable connection state of the electrode lead The purpose.
  • a battery module for achieving the above object, a plurality of secondary battery having an electrode lead and arranged in the vertical direction, and a plurality of cartridges stacked in the vertical direction to accommodate the secondary battery in the internal space
  • a cell assembly having a; And a sensing assembly mounted on the front of the cell assembly and having an insulating housing made of an electrically insulating material and a sensing bus bar made of an electrically conductive material, the sensing assembly being coupled to the electrode lead to sense the voltage of the secondary battery.
  • the insulating housing has a plurality of through-holes disposed to be spaced apart from each other in the vertical direction to penetrate the electrode lead, and has a plurality of housing inclined portions formed to be inclined at an angle from a horizontal direction in the through-holes.
  • the housing inclined portion may be formed to be lower in height toward the inner direction.
  • the insulating housing may further include an outer horizontal part formed to extend in a horizontally outward direction from a lower end of the housing inclined part.
  • the outer horizontal part may be formed to protrude outward from the sensing bus bar.
  • the sensing bus bar may be configured to form an empty space between the housing inclined portion and the housing inclined portion.
  • the through holes, the housing inclined portion, and the sensing bus bars may be arranged in a plurality of rows in a vertical direction and a plurality of rows in a horizontal direction, respectively.
  • the insulating housing may further include an inner horizontal part formed at an inner end of the housing inclined part to extend in a horizontal inward direction.
  • the cartridge may include a cartridge inclined portion formed to be inclined to be inclined at a predetermined angle from the horizontal direction at the outer end.
  • the battery pack according to the present invention for achieving the above object includes a battery module according to the present invention.
  • the vehicle according to the present invention for achieving the above object includes a battery module according to the present invention.
  • the electrode lead connection state of the secondary battery may be stably maintained in the battery module.
  • the present invention it is possible to prevent the inadvertent contact between the electrode leads that should not be connected to each other. Therefore, according to this aspect of the present invention, it is possible to prevent the occurrence of internal short circuit, etc. due to improper contact of the electrode lead, to prevent fire or explosion of the battery pack and to improve safety.
  • connection state of the electrode lead can be stably maintained through the sensing assembly and / or the cartridge without using a separate component.
  • the assembly between the cell assembly and the sensing assembly can be improved.
  • the electrode leads of the cell assembly can be guided to be easily inserted into the holes of the sensing assembly, and the electrode leads can be easily contacted with each other.
  • the structure of the battery module is not complicated, the assembly and processability are not deteriorated, and manufacturing cost or manufacturing time can be prevented from increasing.
  • FIG. 1 is a combined perspective view showing the configuration of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the configuration of FIG. 1.
  • FIG. 3 is a top view of the configuration of FIG. 1.
  • FIG. 4 is an exploded perspective view of the sensing assembly shown in FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line A1-A1 'of FIG. 3.
  • FIG. 6 is an enlarged view of a portion C1 of FIG. 5.
  • FIG. 7 is a cross-sectional view schematically showing some components of a sensing assembly according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view taken along line A2-A2 'of FIG.
  • FIG. 9 is an enlarged view of a portion C2 of FIG. 8.
  • FIG. 10 is a perspective view of the insulating housing according to one embodiment of the present invention as viewed from the inside outward.
  • FIG. 11 is a diagram showing another embodiment of the portion C2 of FIG. 8.
  • FIG. 12 is a diagram illustrating still another embodiment of the portion C1 of FIG. 5.
  • Fig. 13 is a sectional view schematically showing the configuration of a cartridge and an insulating housing according to still another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of a cartridge and an insulating housing according to another embodiment of the present invention.
  • FIG. 1 is a combined perspective view showing the configuration of a battery module according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of the configuration of FIG. 3 is a top view of the structure of FIG.
  • a battery module according to the present invention includes a cell assembly 100 and a sensing assembly 200.
  • the cell assembly 100 may include a plurality of secondary batteries 110.
  • the cell assembly 100 may include a plurality of pouch type secondary batteries as the secondary batteries 110.
  • a pouch type secondary battery may include an electrode assembly, an electrolyte, and a pouch packaging material.
  • the electrode assembly may be configured such that at least one positive electrode plate and at least one negative electrode plate are disposed with the separator interposed therebetween. More specifically, the electrode assembly may be classified into a winding type in which one positive electrode plate and one negative electrode plate are wound together with a separator, and a stack type in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked with a separator interposed therebetween. .
  • the pouch packaging material may be configured to include an outer insulating layer, a metal layer, and an inner adhesive layer.
  • the pouch sheath may be formed of a metal thin film such as an aluminum thin film to protect internal components such as the electrode assembly and the electrolyte, and to improve the electrochemical properties and the heat dissipation of the electrode assembly and the electrolyte. have.
  • such an aluminum thin film may be interposed between an insulating layer formed of an insulating material in order to ensure electrical insulation with components inside the secondary battery such as an electrode assembly and an electrolyte or with other components outside the secondary battery.
  • the pouch sheath may be composed of two pouches, and at least one of the pouch sheaths may have a concave inner space.
  • the electrode assembly may be accommodated in the inner space of the pouch.
  • the outer circumferential surfaces of the two pouches are provided with sealing parts such that the sealing parts are fused to each other so that the inner space in which the electrode assembly is accommodated can be sealed.
  • Each pouch type secondary battery may include an electrode lead 111, and the electrode lead 111 may include a positive electrode lead and a negative electrode lead.
  • each electrode lead 111 as shown in the figure, is configured in the form of a plate, protrudes out of the pouch packaging material in the form of lying down in the horizontal direction, it can function as an electrode terminal of the secondary battery.
  • the plurality of pouch type secondary batteries 110 may be stacked in one direction, for example, in a vertical direction as shown in the drawing.
  • each pouch-type secondary battery 110 may be arranged in parallel, in a form laid down parallel to the ground, that is, a wide surface facing up and down.
  • the cell assembly 100 may include a cartridge 120.
  • the cartridge 120 accommodates the pouch type secondary battery 110 in an internal space, protects the outside of the pouch type secondary battery 110, guides the mutual arrangement of the pouch type secondary battery 110, and stacks them. It is possible to prevent the flow of the assembled assembly.
  • the cartridge 120 may be formed in a substantially rectangular ring shape as shown in FIG. 3, having four unit frames interconnected at both ends and made of an insulating material such as plastic.
  • the cartridge 120 since the pouch type secondary battery 110 is formed in a substantially rectangular shape, the cartridge 120 may be formed in a rectangular ring shape to surround the outer circumferential portion of the pouch type secondary battery 110 from the outside.
  • the cartridge 120 may be provided in a form in which each unit frame is separately manufactured and then assembled together, or may be formed in an integrated form from the beginning. In such a configuration, an accommodating portion of the cartridge 120 may be located in an internal empty space defined by each unit frame. In addition, at least a portion of the sealing portion of the cartridge 120 may be located in each unit frame.
  • the cartridge 120 may be configured in a mutually stackable form.
  • the cartridges 120 may be stacked in the same direction as the stacking direction of the secondary battery 110, that is, in the vertical direction.
  • the pouch type secondary battery 110 may be accommodated in an inner space formed by stacking two or more cartridges 120.
  • the cartridge 120 may have a concave-convex structure in a form that corresponds to a surface stacked on each other, that is, the left side and the right side.
  • the concave-convex structure formed on the cartridge 120 due to the concave-convex structure formed on the cartridge 120, the fastening property and fixing force between the cartridge 120 can be improved, the concave-convex structure serves as a guide can be more easily assembled.
  • the sensing assembly 200 may be mounted in front of the cell assembly 100.
  • the front of the cell assembly 100 may be referred to as a side direction in which the electrode lead 111 protrudes from the cell assembly 100.
  • the front of the cell assembly 100 may be referred to as the right side direction of the cell assembly 100 in FIG. 2.
  • terms indicating such a direction that is, terms such as before, after, left, right, up, and down may vary according to the position of the observer or the shape of the object.
  • the front and rear, left, right, up, down, and the like directions of the electrode lead 111 protrude from the front side, and the like.
  • the sensing assembly 200 may be configured to be detachable from the cell assembly 100.
  • the sensing assembly 200 has a hook protrusion
  • the cell assembly 100 has a hook groove in a position and shape corresponding thereto
  • the sensing assembly 200 is hooked to the cell assembly 100. Can be.
  • the sensing assembly 200 may be coupled to the electrode lead 111 of the sensing assembly 200 to sense the voltage of the secondary battery 110.
  • the sensing assembly 200 may be configured to sense voltages at both ends of all of the secondary batteries 110 provided in the cell assembly 100.
  • each electrode lead 111 is illustrated as not being in contact with the sensing bus bar 220.
  • the sensing assembly 200 may include a sensing bus bar 220 and an insulating housing 210.
  • the insulating housing 210 may be made of an electrically insulating material.
  • the insulating housing 210 may be made of a plastic material.
  • the sensing bus bar 220 is in contact with the electrode lead 111 to sense a voltage of the electrode lead 111 and forms an electrical path for transferring the sensed voltage to another component such as a battery management system (BMS). can do.
  • the sensing bus bar 220 may be made of an electrically conductive material, such as the electrode lead 111.
  • the sensing bus bar 220 may be made of a metal material such as copper or aluminum.
  • the sensing bus bar 220 may be coupled to the insulating housing 210 in various ways.
  • the sensing bus bar 220 may be fastened to the insulating housing 210 by fastening members such as bolts or rivets.
  • the sensing bus bar 220 has a fastening hole formed therein
  • the insulating housing 210 has a fastening protrusion formed therein, such that the fastening protrusion is inserted into the fastening hole so that the sensing bus bar 220 is insulated from the housing 210.
  • the fastening protrusion may be thickened by being pressed or heated to the outer end after being inserted into the fastening hole, so that the fastening state may be fixed.
  • the sensing assembly 200 may further include a cover 230 to cover at least a portion of the sensing bus bar 220.
  • the cover 230 like the insulating housing 210, may be formed of an electrically insulating material, such as a plastic material, and positioned outside the sensing bus bar 220. Therefore, the cover 230 may prevent the outside exposure to at least a portion of the sensing bus bar 220 and may ensure electrical insulation.
  • the cover 230 may be fixedly coupled to the insulating housing 210 or the sensing bus bar 220.
  • the insulating housing 210 may have a through hole, as indicated by H1, such that the electrode lead 111 of the cell assembly 100 penetrates from the inside to the outside.
  • the inward direction may mean a direction toward the center of the battery module
  • the outward direction may mean a direction toward the outside of the battery module.
  • the inner direction means the left direction and the outer direction indicates the right direction.
  • the inside and the outside are to be similarly distinguished unless otherwise specified.
  • the insulating housing 210 may have a plurality of through holes H1 formed therein, and the plurality of through holes H1 may be disposed to be spaced apart from each other in the vertical direction as illustrated in the drawing.
  • the electrode leads 111 of each secondary battery 110 may have a vertical direction. It may be arranged in plurality.
  • the plurality of electrode leads 111 form a pair in a state in which two are in contact with each other for electrical connection between the secondary batteries 110, and each pair may be disposed in an up and down direction. Therefore, each pair of electrode leads 111 disposed in the vertical direction may penetrate through the through hole H1 of the insulating housing 210, respectively.
  • the insulating housing 210 may include a housing inclined portion. This will be described in more detail with reference to FIG. 6.
  • FIG. 6 is an enlarged view of a portion C1 of FIG. 5.
  • the housing inclined portion 211 may be formed inside the through hole, and may be inclined to be inclined at a predetermined angle from the horizontal direction.
  • the housing inclined portion 211 may be formed in a form in which the inclined surface forms an angle of about 60 ° to 70 °. Can be.
  • the inclination angle may be configured in various forms according to the shape of the sensing assembly 200 or the cell assembly 100, the shape of the electrode lead 111, the number of inclusions of the secondary battery 110, and the like.
  • the electrode leads 111 of the cell assembly 100 are inclined to the housing inclination of the sensing assembly 200. It can be easily guided to the through hole of the sensing assembly 200 along the (211). Therefore, the assembly and processability of the sensing assembly 200 and the cell assembly 100 may be improved.
  • the electrode lead 111 is easily introduced into the through hole, it is not necessary to make the through hole large. Therefore, it is possible to more easily block the inflow of foreign matter by the through-holes. In addition, the two electrode leads 111 may be more easily contacted. In addition, since the flow of the electrode lead 111 is more effectively limited inside the through hole, breakage due to the flow of the electrode lead 111 or contact separation between the two electrode leads 111 may be prevented.
  • the housing inclined portion 211 may be formed to have a lower height toward the inner direction. That is, the housing inclined portion 211, in the configuration shown in FIG. 6, may be formed to increase in height toward the right direction.
  • At least one electrode lead 111 may be more easily seated along the inclined surface of the housing inclined portion 211. That is, the electrode lead 111 may be continuously applied in the downward direction by gravity.
  • the electrode lead 111 When the electrode lead 111 is placed on the upper surface of the housing inclined portion 211 as in the embodiment, the electrode lead 111 The contact may be more stably in close contact with the housing inclined portion 211 by gravity. Accordingly, the electrode leads 111 are more stably maintained in the insulating housing 210, so that even if vibration or impact is applied, it is more effective that the two electrode leads 111 are prevented from being damaged and separated from each other. Can be prevented.
  • the electrode lead for at least part of the secondary battery may be provided with a bending portion concave in the downward direction.
  • the electrode lead 111 of some of the secondary batteries 110 may be configured to extend in a horizontal direction and bent in a 'U' shape at a predetermined portion. have.
  • the impact in the lateral direction can be absorbed through the bending portion formed concave in the downward direction. That is, when shock or vibration is applied from the outer side (right side of FIG. 6) to the inner side (left side of FIG. 6) of the battery module, the shock or vibration is transmitted to the main body side of the secondary battery along the electrode lead by the bending part. Can be mitigated. Therefore, it is possible to prevent the electrode lead portion of the secondary battery from being damaged due to external shock or vibration.
  • the bending portion G of the electrode lead may be formed on at least one electrode lead of two electrode leads contacted with each other with the cartridge 120 interposed therebetween, as shown in FIGS. 5 and 6. have.
  • one of the two electrode leads contacted with one cartridge therebetween may be formed such that the bending portion is formed with respect to the electrode lead located above.
  • the lower electrode lead may be configured to be inclined along the housing inclined portion 211.
  • the bending portion of the electrode lead positioned at the upper portion may be seated on the inclined portion of the electrode lead positioned at the lower portion thereof.
  • the upper electrode lead may also have an effect mounted on the inclined portion of the housing like the lower electrode lead, thereby improving adhesion and fixability of the upper electrode lead to the insulating housing. have.
  • the adhesion and contact between the upper electrode lead and the lower electrode lead may be improved.
  • the bending portion of the electrode lead may be formed in the form of skipping one by one, such as formed in an even layer or an odd layer.
  • the position at which the bending part is formed may vary depending on the arrangement of the through hole or the secondary battery.
  • the housing inclined portion 211 the upper end may be configured to be flat. That is, as shown in Figure 6, the housing inclined portion 211 may be configured in such a way that the height increases toward the right direction, at this time, the upper right portion of the housing inclined portion 211 is bent to form a flat surface It may be configured in the form.
  • the electrode lead 111 configured to be inclined upwardly along the housing inclined portion 211 is configured to be flat on the top flat surface of the housing inclined portion 211, the electrode lead 111 is in contact with the sensing bus bar 220. The lead 111 can be prevented from being excessively folded.
  • the insulating housing 210 may further include an outer horizontal portion 212.
  • the outer horizontal portion 212 may be formed to extend flat in the horizontal outward direction from the lower end of the housing inclined portion 211.
  • the outer horizontal portion 212 may be configured to be integrated with the housing inclined portion 211.
  • the outer horizontal portion 212 may be formed to extend to the upper end of the through-hole.
  • the through hole of the insulating housing 210, the upper and lower ends may be defined by the outer horizontal portion 212 and the housing inclined portion 211. That is, the outer horizontal portion 212 of the insulating housing 210 may constitute the upper end of the through hole, and the upper end of the inclined portion of the insulating housing 210 may constitute the lower end of the through hole.
  • the cell assembly 100 and the sensing assembly 200 can be more easily coupled, and the flow of the electrode leads 111 can be more effectively restricted. That is, the outer horizontal portion 212 allows the electrode lead 111 to move horizontally in the outward direction while the sensing assembly 200 is coupled to the cell assembly 100, so that the electrode lead 111 passes through the through hole. It can be easily penetrated.
  • the electrode lead 111 is restricted from moving upwards, so that the electrode lead 111 is severely moved when vibration or shock is applied. It can prevent damage or release of contact. In this case, therefore, it is possible to prevent the power supply insensitivity from occurring due to vibration or shock, or to decrease the output or capacity of the battery module.
  • the movement of the electrode lead 111 is limited by the outer horizontal part 212, thereby preventing the electrode leads 111, which should not be contacted, from contacting each other. Therefore, in this case, an internal short circuit or the like can be prevented from occurring due to inappropriate contact between the electrode leads 111.
  • FIG. 7 is a cross-sectional view schematically showing some components of a sensing assembly 200 according to another embodiment of the present invention.
  • FIG. 7 is a cross sectional view taken along line A1-A1 'of FIG. 3, and may be different from FIG. 6.
  • FIG. 7 parts that are different from the above embodiments will be mainly described, and detailed descriptions of parts to which the above descriptions may be similarly applied will be omitted.
  • the outer horizontal portion 212 may be formed to protrude outward from the sensing bus bar 220.
  • the outer horizontal portion 212 may be formed to protrude further to the right direction than the sensing bus bar 220, as indicated by a portion P.
  • the outer horizontal portion 212 may be positioned at upper and lower portions of the electrode lead 111 contacting the outer surface of the sensing bus bar 220. Therefore, the lower end of the pair of electrode leads 111 bent in the lower direction is more likely to contact the pair of electrode leads 111 of the lower layer due to the protruding portion P of the outer horizontal portion 212 located below. It can be reliably cut off.
  • the pair of electrode leads 111 or the busbar of the upper layer is formed. Contact can be more reliably prevented.
  • the upward movement of the electrode lead 111 can be more reliably prevented due to the protruding portion P of the outer horizontal portion 212.
  • the sensing bus bar 220 may be seated on the protruding portion P of the outer horizontal portion 212. Therefore, coupling of the sensing bus bar 220 and the insulating housing 210 may be easier, and the coupling state may be more stably maintained.
  • the sensing bus bar 220 may be configured to form an empty space between the housing inclined portion 211 and the housing inclined portion 211. That is, the sensing assembly 200 may be configured such that an empty space is formed between the sensing bus bar 220 and the insulating housing 210.
  • the sensing bus bar 220 may be positioned outside the housing inclined portion 211 and may be configured to substantially stand perpendicular to the ground.
  • an upper end of the sensing bus bar 220 may be in contact with and supported by an upper end of the housing inclined part 211, and a lower end of the sensing bus bar 220 may be in contact with and supported by an outer end of the outer horizontal part 212.
  • an empty space may be formed between the sensing bus bar 220 and the housing inclined portion 211 as indicated by a V in the drawing.
  • the sensing bus bar 220 while the sensing bus bar 220 is seated horizontally on the insulating housing 210 and can be stably supported, there is an empty space between the sensing bus bar 220 and the insulating housing 210. Can be formed.
  • such an empty space allows heat or gas to be easily discharged during welding between the sensing bus bar 220 and the electrode lead 111 and between the electrode lead 111, and the insulating housing 210 by heat. This can be prevented from being deformed.
  • the bus bar 220 and the electrode lead 111, and between the two electrode leads 111 may be welded by laser welding or the like to be fixed in contact with each other.
  • a large amount of heat may be generated in the welding process, but the empty space as described above may reduce the transfer of the heat to the insulating housing 210, thereby reducing deformation and gas generation of the insulating housing 210.
  • the bus bar 220 may be stably fixed to the insulating housing 210 while preventing or damaging the insulating housing 210.
  • this configuration can ensure that the connection state between the electrode leads and between the electrode leads and the busbars is stably maintained.
  • gas may be generated. If such gas is not properly discharged, welding is performed between the bus bar 220 and the electrode lead 111 and between the electrode leads. Defects may occur in the part.
  • the gas generated during welding can be easily discharged to the outside, it is possible to prevent the welding failure due to the gas.
  • the empty space between the sensing busbar and the insulating housing has an advantage that can contribute to the weight reduction of the battery module by reducing the weight of the insulating housing.
  • the sensing bus bar 220 may have an upper end lower than an upper end of the housing inclined portion 211.
  • the sensing bus bar 220 may have a height lower than an upper end of the housing inclined portion 211, as indicated by D in FIG. 6.
  • the electrode lead 111 it is possible to more effectively prevent the electrode lead 111 from being damaged due to bending. That is, in order for the electrode lead 111 penetrating the through-hole of the insulating housing 210 in the horizontal direction to contact the sensing bus bar 220 in the vertical direction from the ground, it needs to be bent about 90 °. .
  • the electrode lead 111 should be bent approximately 90 degrees in the downward direction after passing through the through hole.
  • the electrode lead 111 is bent more gently, so that the electrode lead at the bent portion of the electrode lead 111. Damage to 111 can be prevented more effectively.
  • the contact between the electrode lead 111 and the sensing bus bar 220 may be improved.
  • the secondary battery 110 is a pouch type secondary battery 110, it may be configured in the form of a unidirectional secondary battery.
  • the unidirectional secondary battery may mean a secondary battery having a form in which the positive electrode lead and the negative electrode lead protrude in one direction.
  • the secondary battery may be configured to protrude forward (rightward in the drawing) in both the positive lead and the negative lead.
  • a plurality of electrode leads 111 may be provided in the vertical direction by the number of stacked secondary batteries, and the positive and negative leads may be present in each battery.
  • the plurality of electrode leads 111 may be arranged in two rows in the horizontal direction.
  • the through hole, the housing inclined portion 211 and the sensing bus bar 220 correspond to the arrangement form of the electrode lead 111, respectively, in a plurality of rows in the vertical direction and in two rows in the horizontal direction. Can be arranged.
  • the insulating housing 210 may further include an inner horizontal portion 213.
  • the inner horizontal portion 213 may be configured to extend flat in the horizontal inward direction at the lower end of the housing inclined portion 211.
  • the inner horizontal portion 213 may be configured to be integrated with the housing inclined portion 211.
  • the inner horizontal portion 213 may be configured to extend until the inner end is interposed between two adjacent cartridges 120, as indicated by E in FIG. 6.
  • the inner horizontal part 213 may be interposed between two secondary batteries adjacent to each other but not directly connected to the electrode lead.
  • the inner horizontal portion may be drawn up to the sealing portion of each secondary battery, that is, between the pouch exterior materials of the two secondary batteries.
  • the electrode leads 111 which should not be in contact with each other can be separated more stably.
  • two secondary batteries B1 and B2 are accommodated between two cartridges 120 stacked in the vertical direction, and the two secondary batteries B1 and B2 have different electrodes.
  • the pair of leads 111 may be configured so as not to contact each other.
  • the inner horizontal portion 213 of the insulating housing 210 extends between the two cartridges 120, in particular, of the two secondary batteries B1 and B2 housed between the two cartridges 120. It can extend up to the sealing portion and be inserted between them. Therefore, the separated state is more stably maintained between the two electrode leads 111, and even if vibration or shock is applied to the battery module, the contact between these electrode leads 111 can be effectively prevented.
  • the positive electrode lead and the negative electrode lead of each secondary battery are connected to the electrode lead 111 of the secondary battery located in different layers.
  • the positive electrode lead may contact the negative electrode lead of the secondary battery stacked on the upper side
  • the negative electrode lead may contact the positive electrode lead of the secondary battery stacked on the lower side. Therefore, the cartridge 120 and / or the insulating housing 210 may be configured to have a different portion where the positive electrode lead and the negative electrode lead are located. This will be described in more detail with reference to FIGS. 8 to 10.
  • FIG. 8 is a cross-sectional view taken along line A2-A2 'of FIG. 3, and FIG. 9 is an enlarged view of a portion C2 of FIG. 8.
  • 10 is a perspective view of the insulating housing 210 according to an embodiment of the present invention viewed from the inside outward.
  • FIGS. 8 and 9 it can be seen that some components of the cartridge 120 and some components of the insulating housing 210 are different from those shown in FIG. 6.
  • the portion where the positive lead is located and the portion where the negative lead is located may be configured differently.
  • the insulating housing 210 may be configured to be different from the portion where the positive lead is located and the portion where the negative lead is located.
  • a plurality of through-holes, the housing inclined portion 211, and the sensing bus bar 220 of the insulating housing 210 may be arranged in two rows in a vertical direction. May be formed in different forms.
  • the cartridge 120 may include a cartridge inclined portion 121.
  • the cartridge inclined portion 121 may be inclined so as to be inclined by a predetermined angle from the horizontal direction at the outer end of the cartridge. That is, the cartridge 120 may be configured in a flat shape in a substantially horizontal direction, and may be configured in a form in which an outer end thereof is inclined at an angle from the ground.
  • the electrode lead can be more easily drawn out through the through hole.
  • the electrode leads of the two secondary batteries located between the two cartridges are drawn out together through one through-hole to be in direct contact with each other, the electrode leads of the secondary battery located below the housing inclined portion ( 211) below.
  • the electrode lead of the secondary battery located at the lower side is guided to extend or bend upward along the cartridge inclined portion 121, and guided to the through hole by the housing inclined portion 211 located at the upper portion of the cartridge inclined portion. Can be. Therefore, the electrode leads can be smoothly guided to the through-holes of the insulating housing with respect to both of the two secondary batteries located inside the cartridge and connected to each other.
  • the inclination angle of the cartridge inclination part 121 may be configured to correspond to or be similar to the inclination angle of the housing inclination part 211.
  • the cartridge inclined portion may be configured to have an inclined surface angle of approximately 60 ° to 70 ° from the ground.
  • the inclined surface (inner inclined surface) of the cartridge inclined portion 121 may be configured to be formed on the same plane as the inclined surface (inner inclined surface) of the housing inclined portion 211.
  • the cartridge inclined portion 121 and the housing inclined portion 211 can be configured in an integrated form without interfering with each other.
  • the electrode lead 111 may not be easily caught by the interface between the cartridge inclined portion 121 and the housing inclined portion 211. Therefore, in this case, the assembly of the sensing assembly 200 and the cell assembly 100 may be improved by allowing the electrode lead 111 to be easily introduced into the through hole due to the cartridge inclined portion 121 and the housing inclined portion 211. Can be.
  • the cartridge may be configured such that the cartridge inclined portion extends to the lower end of the insulating housing 210. That is, the cartridge inclined portion 121 may be formed to contact or extend below the insulating housing 210, as indicated by the portion F in FIG. 9.
  • the outer (right) end of the cartridge such as the portion indicated by F, may be configured to be located outside (right) than the inner (left) end of the insulating housing.
  • the outer end of the cartridge inclined portion may be configured to be located outside the inner end of the housing inclined portion. In this case, the gap between the cartridge and the insulating housing 210 can be minimized. Therefore, the inappropriate contact of the electrode lead 111 can be blocked, and the assembly of the electrode lead 111 can be guided more reliably.
  • a cartridge can be provided with a horizontal bending part in the outer side of a cartridge inclination part.
  • a horizontal bent portion formed flat in the horizontal direction may be provided on the right side, that is, the outer end of the cartridge inclined portion.
  • the horizontal bent part is interposed between the adjacent outer horizontal part 212 and the housing inclined part 211 to guide the direction of the electrode lead toward the through hole.
  • the horizontal bent portion of the cartridge it is possible to be induced to be bent in the outer horizontal direction with respect to the electrode lead guided inclined in the outer upper direction along the outer portion of the cartridge inclined portion and the inner portion of the housing inclined portion. Therefore, in this case, the electrode lead can be easily drawn out to the through hole side of the insulating housing.
  • the inner housing 213 may not be provided in the insulating housing 210. That is, according to the battery module configuration shown in Figure 9, the cartridge inclined portion 121 is provided at the outer end of the cartridge is configured to extend to the bottom of the housing inclined portion 211 of the insulating housing 210, the insulating housing The inner horizontal portion 213 illustrated in FIG. 6 or 7 may not be separately provided at 210. This is because, in the configuration shown in FIG. 9, the electrode leads 111 are directly connected to each other between two secondary batteries 110 accommodated between two cartridges. That is, in the configuration of FIGS.
  • Inner horizontal portion 213 for physically separating between the () is preferably provided. However, in the configuration of FIG. 9, since the two secondary batteries 110 accommodated between two cartridges stacked up and down are directly connected to each other, the electrode leads 111 of the two secondary batteries 110 are physically interposed. An inner horizontal portion 213 may be unnecessary for separation.
  • the cartridge ( 120 may be configured to be generally flat and may not include a cartridge inclined portion, and the insulating housing 210 may include an inner horizontal portion 213.
  • the cartridge has a cartridge inclined portion.
  • the insulating housing 210 may not include the inner horizontal part 213.
  • FIG. 11 is a diagram showing another embodiment of the portion C2 of FIG. 8. However, in FIG. 11, for convenience of description, the secondary battery is not shown.
  • the cartridge inclined portion 121 may be configured such that an inner inclined surface is located inside the battery module than the housing inclined portion 211. That is, as shown in FIG. 11, when the line segment extending along the inner inclined surface of the housing inclined portion 211 is I2, the inner inclined surface of the cartridge inclined portion 121 is left of I2, that is, the inside of the battery module. It can be configured to be located in.
  • the electrode lead guided to extend upward in the first direction along the cartridge inclined portion 121 located on the inner side is not caught by the boundary between the cartridge inclined portion 121 and the housing inclined portion 211, It can be guided more smoothly to the housing inclined portion 211. That is, the electrode lead bent in the upper right direction along the cartridge inclined portion in FIG. 11 is smoothly guided to the housing inclined portion located outside without being caught in the gap between the cartridge inclined portion and the housing inclined portion at the upper right end of the cartridge inclined portion. Can be.
  • the electrode leads can be guided more smoothly to the through holes, whereby the assemblability between the cell assembly and the sensing assembly is further improved, and the electrode leads and the like can be prevented from being damaged during the assembling process.
  • the cartridge inclined portion may be configured to have a smaller inclination angle than the housing inclined portion.
  • K1 may be configured smaller than K2.
  • K1 may be configured to 35 degrees and K2 to 45 degrees larger than this.
  • the electrode leads it is possible to more smoothly guide the electrode lead to the through hole, and to prevent damage to the electrode lead.
  • the electrode leads may not be bent in a desired shape, and the electrode leads may be damaged.
  • the cartridge may be bent at a small angle by the inclined portion 121 and then may be bent at a second larger angle by the housing inclined portion 122. Therefore, the electrode lead can be led to and drawn out more smoothly through the cartridge inclined portion and the housing inclined portion through the through hole, and can prevent excessive bending of the electrode lead to prevent damage to the electrode lead.
  • FIG. 12 is a diagram illustrating still another embodiment of the portion C1 of FIG. 5.
  • FIG. 12 can be said to be another modification of FIG. 6 or FIG.
  • the housing inclined portion 211 may include two or more inclined portions having different inclination angles.
  • the housing inclined portion 211 has a first inclined portion N1 located relatively inside (left side of the drawing) and a second located relatively outside (right side of the drawing).
  • the inclined portion N2 may be provided.
  • the first inclined portion N1 may be configured to have a smaller inclination angle than the second inclined portion N2.
  • the angle between the first inclined portion N1 and the ground may be 40 degrees
  • the angle between the second inclined portion N2 and the ground may be 70 degrees.
  • the induction of the electrode lead can be made more smooth, and damage to the electrode lead can be prevented.
  • the electrode leads may not be bent in a desired shape, and the electrode leads may be damaged.
  • the first inclined portion N1 may be bent at a small angle, and then the second inclined portion N2 may be bent at a larger angle. Accordingly, the electrode lead can be smoothly bent in the through hole side, that is, the upper right direction, while preventing excessive bending of the electrode lead, thereby preventing damage to the electrode lead.
  • the configuration to have two or more inclined portions having different inclination angles may be applied to the cartridge inclined portion 121, as well as the housing inclined portion 211.
  • FIG. 13 is a sectional view schematically showing the configuration of a cartridge and an insulating housing according to still another embodiment of the present invention.
  • FIG. 13 may be another embodiment of the C2 part of FIG. 8.
  • the insulating housing 210 and the cartridge 120 may be in contact with each other.
  • at least a portion of the lower surface of the outer horizontal portion 212 and the upper surface (the upper surface of the horizontal bent portion) of the cartridge inclined portion 211 may be configured to be in contact with each other.
  • the insulating housing can restrict the cartridge from moving upwards, and the cartridge can restrict the insulating housing from moving downward. Therefore, the fastening stability between the cartridge and the insulating housing is improved, and the force applied from the outside can be evenly distributed, thereby improving the safety against shock or vibration.
  • the cartridge may also be interlocked with the insulating housing.
  • the cartridge 120 and the insulating housing 210 may be provided with protrusions in a hookable form. That is, the insulating housing 210 may be provided with a hook protrusion M2 protruding downward in the lower portion of the outer horizontal portion 212.
  • the cartridge 120 may be provided with a hook protrusion M1 protruding upward in an upper portion of a flat portion (horizontal bent portion) at an outer end of the cartridge inclined portion. Therefore, when the cell assembly and the sensing assembly are assembled, the hook protrusion M1 of the cartridge and the hook protrusion M2 of the insulating housing may be fastened to each other.
  • the hook protrusion M1 of the cartridge is located outside the hook protrusion M2 of the insulated housing, so that the insulated housing can be prevented from escaping outward. Therefore, according to this embodiment, the bond between the insulating housing and the cartridge can be improved.
  • the hook protrusion M1 of the cartridge may be provided in all the cartridges, and the hook protrusion M2 of the insulating housing may also be provided in all the outer horizontal parts 212 to correspond thereto. At this time, since the fixing property of all the cartridges to the insulating housing can be secured, the fixing property between the cell assembly and the sensing assembly can be greatly improved.
  • the hook protrusion M1 of the cartridge may be configured to be inclined in such a manner that the outer portion becomes lower toward the outer side (the right side of the drawing) and may be configured in a form in which the inner portion is perpendicular to the ground.
  • the hook protrusion M2 of the insulating housing may be configured to be inclined in the form of the inner portion is lowered toward the outside and may be configured in a form in which the outer portion is perpendicular to the ground. In this case, the fastening between the hook protrusions can be made smoothly, and after the fastening is made, it can be prevented from being easily separated from each other.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of a cartridge and an insulating housing according to another embodiment of the present invention.
  • FIG. 14 may be another embodiment of the C2 part of FIG. 8.
  • the horizontal bent portion formed at the outer end of the cartridge inclined portion 121 may be configured to protrude outward through the through-hole H1 of the insulating housing 210. . That is, the cartridge 120 extends in the outer upper direction along the cartridge inclined portion 121, extends in the outer horizontal direction at a predetermined point, and may be configured such that an end thereof is located outside the housing inclined portion 211. have.
  • the horizontal bent portion Q of the cartridge is positioned below the bus bar 220 and the electrode lead 111, and may be configured to protrude outward (right side of the drawing) from the bus bar and the electrode lead.
  • the electrode lead can be more smoothly guided to the through hole H1 along the horizontal bending portion Q of the cartridge. Also, in this case, the horizontal bends can more completely block the possibility of contact between electrode leads and / or busbars located in different layers.
  • the battery module according to the present invention may further include an inlet duct 131 and an outlet duct 132, as shown in FIGS. 1 to 3.
  • the inflow duct 131 may be provided in the open portion of the cooling flow path formed in the cartridge 120 to function as a space and a passage through which the fluid flows into the cooling flow path.
  • the outlet duct 132 may be provided at another open portion of the cooling passage formed in the cartridge 120 to function as a space and a passage through which the fluid flowing into the cooling passage flows out of the battery module.
  • the cartridge 120 of the cell assembly 100 may be formed with openings constituting the end of the flow path on the left side and the right side, the inlet duct 131 and the outlet duct 132 ) May be provided on each side of the opening is formed.
  • the inlet duct 131 and / or the outlet duct 132 may be provided with a fan to smoothly flow in and out of the cooling fluid.
  • the battery pack according to the present invention may include one or more battery modules according to the present invention.
  • the battery pack according to the present invention in addition to such a battery module, a pack case for accommodating such a battery module, various devices for controlling the charge and discharge of the battery module, such as BMS (Battery Management System), current sensor, fuse, etc. This may be further included.
  • BMS Battery Management System
  • current sensor current sensor
  • fuse fuse
  • the battery module according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include a battery module according to the present invention.
  • the contact state of the electrode lead 111 can be stably maintained even when the shock or vibration. Therefore, in the case of an automobile to which such a battery module is applied, safety can be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 구조가 간단하고 조립이 용이하면서도 전극 리드의 접촉 상태가 안정적으로 유지될 수 있는 배터리 모듈을 개시한다. 본 발명에 따른 배터리 모듈은, 전극 리드를 구비하고 상하 방향으로 배치된 다수의 이차 전지, 및 상하 방향으로 상호 적층되어 내부 공간에 상기 이차 전지를 수용하는 다수의 카트리지를 구비하는 셀 어셈블리; 및 상기 셀 어셈블리의 전방에 장착되고, 전기 절연성 재질로 구성된 절연 하우징 및 전기 전도성 재질로 구성된 센싱 버스바를 구비하며, 상기 전극 리드와 결합되어 상기 이차 전지의 전압을 센싱하는 센싱 어셈블리를 포함하되, 상기 절연 하우징은, 상기 전극 리드가 관통되도록 상하 방향으로 상호 이격되게 배치된 다수의 관통홀이 형성되고, 상기 관통홀의 내부에 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성된 다수의 하우징 경사부를 구비한다.

Description

배터리 모듈
본 출원은 2016년 2월 11일자로 출원된 한국 특허출원 번호 제10-2016-0015760호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 모듈에 관한 것으로서, 보다 상세하게는 구조가 간단하고 조립이 용이하면서도 전극 리드의 접촉 상태가 안정적으로 유지될 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
근래에 들어서, 노트북, 스마트폰, 스마트 워치 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 더욱 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 특히, 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 미국, 유럽, 일본, 한국을 비롯하여 전 세계적으로 하이브리드 자동차와 전기 자동차에 세간의 이목이 집중되고 있다. 이러한 하이브리드 자동차나 전기 자동차에 있어서 가장 핵심적 부품은 차량 모터로 구동력을 부여하는 배터리 팩이다. 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전을 통해 차량의 구동력을 얻을 수 있기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 사용자들이 점차 크게 늘어나고 있는 실정이다.
대부분의 배터리 팩, 특히 하이브리드 자동차나 전기 자동차, ESS(Energy Storage System)와 같은 중대형 배터리 팩에는 다수의 이차 전지가 포함되며, 이러한 다수의 이차 전지들은 서로 직렬 및/또는 병렬로 연결되어, 용량 및 출력이 향상되도록 한다. 더욱이, 중대형 배터리 팩에는 적층이 용이하고 무게가 가벼우며 많은 개수를 포함시킬 수 있다는 등의 장점으로 인해 파우치형 이차 전지가 많이 이용된다.
이와 같은 파우치형 이차 전지에 있어서, 이차 전지 사이의 전기적 연결은 전극 리드를 서로 직접 접촉시키는 방식으로 구성되는 경우가 많다. 이때, 이차 전지를 병렬로 연결시키기 위해서는 동일 극성의 전극 리드를 서로 연결시키고 직렬로 연결시키기 위해서는 다른 극성의 전극 리드를 서로 연결시킨다.
이러한 상황에서, 서로 연결되지 않아야 할 전극 리드가 서로 접촉하게 된다면, 내부 단락이 발생하여 배터리 팩이 손상되는 것은 물론, 심한 경우 발화나 폭발이 일어날 수 있다. 반면, 서로 연결되어야 할 전극 리드가 서로 분리된다면, 배터리 모듈로부터 전원이 제대로 공급되지 못하게 되므로, 전원 무감 현상이 발생하거나 배터리 모듈의 용량이나 출력을 떨어뜨릴 수 있다. 이처럼, 전원 무감 현상 등이 발생하는 경우, 배터리 모듈이 장착된 장치, 이를테면 자동차 등의 작동이 멈추게 될 수 있으며, 이는 큰 사고로 이어질 수 있다.
따라서, 전극 리드의 접촉 상태는, 원래 의도된 대로 안정적으로 유지될 필요가 있으며, 의도되지 않은 전극 리드 간 접촉이나 분리가 일어나서는 안 된다. 더욱이, 자동차 등에 이용되는 배터리 모듈의 경우, 진동이나 충격 등에 자주 노출될 수 있기 때문에, 진동이나 충격에도 전극 리드의 연결 상태가 안정적으로 유지될 수 있는 배터리 모듈의 개발이 지속적으로 요구되고 있다.
또한, 배터리 모듈에 있어서는, 이러한 전극 리드 사이의 연결에 대한 안정성과 더불어 조립성이 확보될 필요가 있다. 예를 들어, 전극 리드 사이의 연결이 안정적이더라도 그 조립이 매우 어렵게 수행되어야 한다면, 배터리 모듈의 생산성이 떨어질 수 있고, 불량이 발생할 가능성이 증가할 수 있다.
특히, 배터리 모듈에 있어서, 이차 전지의 전압을 센싱하기 위해 센싱용 버스바가 구비될 수 있는데, 이러한 센싱용 버스바는 전극 리드와 접촉될 필요가 있다. 이 경우, 전극 리드는, 다른 전극 리드와 접촉되면서, 그와 함께 센싱용 버스바와도 접촉되어야 한다. 따라서, 배터리 모듈 조립 시, 이러한 전극 리드 사이의 연결 및 전극 리드와 버스바 사이의 연결이 잘 이루어질 수 있도록, 전극 리드와 버스바 사이의 연결 부분에 대하여 조립성이 우수한 구조가 마련될 필요가 있다. 더욱이, 복수의 전극 리드와 버스바는 연결 상태가 안정적으로 유지되기 위해 용접 등의 결합 공정이 수행될 수 있는데, 이 경우, 용접성이 우수한 모듈 구조가 마련되는 것이 바람직하다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 전극 리드의 연결 상태가 안정적으로 유지될 수 있으면서도 조립성 및 공정성이 개선된 배터리 모듈 및 이를 포함하는 배터리 팩과 자동차를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 모듈은, 전극 리드를 구비하고 상하 방향으로 배치된 다수의 이차 전지, 및 상하 방향으로 상호 적층되어 내부 공간에 상기 이차 전지를 수용하는 다수의 카트리지를 구비하는 셀 어셈블리; 및 상기 셀 어셈블리의 전방에 장착되고, 전기 절연성 재질로 구성된 절연 하우징 및 전기 전도성 재질로 구성된 센싱 버스바를 구비하며, 상기 전극 리드와 결합되어 상기 이차 전지의 전압을 센싱하는 센싱 어셈블리를 포함하되, 상기 절연 하우징은, 상기 전극 리드가 관통되도록 상하 방향으로 상호 이격되게 배치된 다수의 관통홀이 형성되고, 상기 관통홀의 내부에 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성된 다수의 하우징 경사부를 구비한다.
여기서, 상기 하우징 경사부는 내측 방향으로 갈수록 높이가 낮아지게 형성될 수 있다.
또한, 상기 절연 하우징은, 상기 하우징 경사부의 하단에서 수평 외측 방향으로 연장되게 형성된 외측 수평부를 더 구비할 수 있다.
또한, 상기 외측 수평부는, 상기 센싱 버스바보다 외측으로 돌출되게 형성될 수 있다.
또한, 상기 센싱 버스바는, 상기 하우징 경사부의 외측에서 상기 하우징 경사부와의 사이에 빈 공간이 형성되도록 구성될 수 있다.
또한, 상기 관통홀, 상기 하우징 경사부 및 상기 센싱 버스바는 각각, 상하 방향으로 다수, 수평 방향으로 2열로 배치될 수 있다.
또한, 상기 절연 하우징은, 상기 하우징 경사부의 하단에서 내측 단부가 수평 내측 방향으로 연장되게 형성된 내측 수평부를 더 구비할 수 있다.
또한, 상기 카트리지는, 외측 단부에 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성된 카트리지 경사부를 구비할 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함한다.
본 발명의 일 효과로서, 배터리 모듈 내에서 이차 전지의 전극 리드 연결 상태가 안정적으로 유지될 수 있다.
특히, 본 발명의 일 측면에 의하면, 서로 연결되지 않아야 할 전극 리드 사이가 비의도적으로 접촉되는 것을 방지할 수 있다. 따라서, 본 발명의 이러한 측면에 의하면, 전극 리드의 부적절한 접촉으로 인한 내부 단락 등이 발생하는 것을 방지하여, 배터리 팩의 화재나 폭발 등을 방지하고 안전성을 향상시킬 수 있다.
또한, 본 발명의 다른 측면에 의하면, 서로 연결되어야 할 전극 리드 사이가 비의도적으로 분리되는 것을 방지할 수 있다. 따라서, 본 발명의 이러한 측면에 의하면, 전극 리드의 부적절한 분리로 인한 전원 무감 현상이나 출력 내지 용량 감소의 문제를 예방할 수 있다.
또한, 본 발명의 다른 효과로서, 상기와 같이 이차 전지의 전극 리드 간 연결 상태를 안정적으로 유지할 수 있으면서도, 배터리 모듈의 구조가 복잡해지거나 공정성 내지 조립성이 저하되는 것을 방지할 수 있다.
특히, 본 발명의 일 측면에 의하면, 별도의 부품을 이용하지 않고, 센싱 어셈블리 및/또는 카트리지를 통해 전극 리드의 연결 상태가 안정적으로 유지되도록 할 수 있다.
또한, 본 발명의 다른 측면에 의하면, 셀 어셈블리와 센싱 어셈블리 사이의 조립성이 향상될 수 있다. 더욱이, 센싱 어셈블리를 셀 어셈블리와 조립할 때, 셀 어셈블리의 전극 리드가 센싱 어셈블리의 홀에 쉽게 삽입될 수 있도록 가이드되고, 전극 리드가 서로 용이하게 접촉되도록 할 수 있다.
따라서, 본 발명의 이러한 측면들에 의하면, 배터리 모듈의 구조가 복잡해지지 않고 조립성 및 공정성이 저하되지 않으며, 제조 비용 내지 제조 시간이 늘어나는 것을 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 나타내는 결합 사시도이다.
도 2는, 도 1의 구성에 대한 분리 사시도이다.
도 3은, 도 1의 구성에 대한 상면도이다.
도 4는, 도 1에 도시된 센싱 어셈블리의 분리 사시도이다.
도 5는, 도 3의 A1-A1'선에 대한 단면도이다.
도 6은, 도 5의 C1 부분에 대한 확대도이다.
도 7은, 본 발명의 다른 실시예에 따른 센싱 어셈블리의 일부 구성을 개략적으로 나타내는 단면도이다.
도 8은, 도 3의 A2-A2'선에 대한 단면도이다.
도 9는, 도 8의 C2 부분의 확대도이다.
도 10은, 본 발명의 일 실시예에 따른 절연 하우징을 내측에서 외측 방향으로 바라본 형태의 사시도이다.
도 11은, 도 8의 C2 부분에 대한 다른 실시예를 나타내는 도면이다.
도 12는, 도 5의 C1 부분에 대한 또 다른 실시예를 나타내는 도면이다.
도 13은, 본 발명의 또 다른 실시예에 따른 카트리지와 절연 하우징의 구성을 개략적으로 나타내는 단면도이다.
도 14는, 본 발명의 또 다른 실시예에 따른 카트리지와 절연 하우징의 구성을 개략적으로 나타내는 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 구성을 나타내는 결합 사시도이고, 도 2는 도 1의 구성에 대한 분리 사시도이다. 또한, 도 3은, 도 1의 구성에 대한 상면도이다.
도 1 내지 도 3을 참조하면, 본 발명에 따른 배터리 모듈은, 셀 어셈블리(100) 및 센싱 어셈블리(200)를 포함한다.
상기 셀 어셈블리(100)는, 다수의 이차 전지(110)를 구비할 수 있다. 특히, 셀 어셈블리(100)에는 이차 전지(110)로서 파우치형 이차 전지가 복수 개 포함될 수 있다. 이러한 파우치형 이차 전지는, 전극 조립체, 전해질 및 파우치 외장재를 구비할 수 있다.
여기서, 전극 조립체는, 하나 이상의 양극판 및 하나 이상의 음극판이 세퍼레이터를 사이에 두고 배치된 형태로 구성될 수 있다. 보다 구체적으로, 전극 조립체는, 하나의 양극판과 하나의 음극판이 세퍼레이터와 함께 권취된 권취형, 및 다수의 양극판과 다수의 음극판이 세퍼레이터를 사이에 두고 교대로 적층된 스택형 등으로 구분될 수 있다.
또한, 파우치 외장재는, 외부 절연층, 금속층 및 내부 접착층을 구비하는 형태로 구성될 수 있다. 이러한 파우치 외장재는, 전극 조립체와 전해액 등 내부 구성요소를 보호하고, 전극 조립체와 전해액에 의한 전기 화학적 성질에 대한 보완 및 방열성 등을 제고하기 위하여 금속 박막, 이를테면 알루미늄 박막이 포함된 형태로 구성될 수 있다. 그리고, 이러한 알루미늄 박막은, 전극 조립체 및 전해액과 같은 이차 전지 내부의 구성요소나 이차 전지 외부의 다른 구성 요소와의 전기적 절연성을 확보하기 위해, 절연물질로 형성된 절연층 사이에 개재될 수 있다.
특히, 파우치 외장재는, 2개의 파우치로 구성될 수 있으며, 그 중 적어도 하나에는 오목한 형태의 내부 공간이 형성될 수 있다. 그리고, 이러한 파우치의 내부 공간에는 전극 조립체가 수납될 수 있다. 그리고, 2개의 파우치의 외주면에는 실링부가 구비되어 이러한 실링부가 서로 융착됨으로써, 전극 조립체가 수용된 내부 공간이 밀폐되도록 할 수 있다.
각각의 파우치형 이차 전지는, 전극 리드(111)를 구비할 수 있으며, 이러한 전극 리드(111)에는 양극 리드 및 음극 리드가 포함될 수 있다. 여기서, 각각의 전극 리드(111)는, 도면에 도시된 바와 같이, 플레이트 형태로 구성되어, 수평 방향으로 눕혀진 형태로 파우치 외장재 외부로 돌출되어, 이차 전지의 전극 단자로서 기능할 수 있다.
본 발명의 일 측면에 따른 배터리 모듈에는, 본원발명의 출원 시점에 공지된 다양한 형태의 파우치형 이차 전지가 채용될 수 있다.
다수의 파우치형 이차 전지(110)는, 일 방향, 이를테면 도면에 도시된 바와 같이 상하 방향으로 적층될 수 있다. 이때, 각각의 파우치형 이차 전지(110)는, 지면에 평행하게 눕혀진 형태, 즉 넓은 면이 상하를 향하도록 하여, 다수 평행하게 배열될 수 있다.
또한, 상기 셀 어셈블리(100)는, 카트리지(120)를 구비할 수 있다.
상기 카트리지(120)는, 파우치형 이차 전지(110)를 내부 공간에 수용하여, 파우치형 이차 전지(110)의 외측을 보호하고, 파우치형 이차 전지(110)의 상호 배열을 가이드하는 한편, 적층된 조립체의 유동을 방지할 수 있다. 예를 들어, 상기 카트리지(120)는, 양 단부가 상호 연결되며 플라스틱과 같은 절연성 재질로 구성된 4개의 단위 프레임을 구비하여, 도 3에 도시된 바와 같이, 대략 사각 링 형태로 형성될 수 있다. 일반적으로, 파우치형 이차 전지(110)는 대략 사각형 형태로 구성되기 때문에, 카트리지(120)는 이러한 파우치형 이차 전지(110)의 외주부를 외측에서 감싸도록 사각 링 형태로 형성될 수 있다. 이때, 카트리지(120)는, 각 단위 프레임이 각각 별도로 제조된 후 상호 조립되는 형태로 마련될 수도 있고, 처음부터 서로 일체화된 형태로 형성될 수 있다. 이러한 구성에 있어서, 각 단위 프레임에 의해 한정되는 내부의 빈 공간에는, 상기 카트리지(120)의 수납부가 위치할 수 있다. 그리고, 각 단위 프레임에는 카트리지(120)의 실링부의 적어도 일부분이 위치할 수 있다.
또한, 상기 카트리지(120)는, 상호 적층 가능한 형태로 구성될 수 있다. 예를 들어, 상기 카트리지(120)는, 도면에 도시된 바와 같이, 이차 전지(110)의 적층 방향과 동일한 방향, 즉 상하 방향으로 상호 적층될 수 있다. 그리고, 둘 이상의 카트리지(120)가 적층되어 형성된 내부 공간에 파우치형 이차 전지(110)가 수용될 수 있다.
이때, 상기 카트리지(120)는, 상호 적층되는 표면, 즉 좌측면과 우측면에 상호 대응되는 형태로 요철 구조가 형성될 수 있다. 본 발명의 이러한 실시예에 의하면, 카트리지(120)에 형성된 요철 구조로 인해, 카트리지(120) 간 체결성 및 고정력이 향상될 수 있고, 요철 구조가 가이드 역할을 하여 조립이 보다 용이해질 수 있다.
상기 센싱 어셈블리(200)는, 셀 어셈블리(100)의 전방에 장착될 수 있다. 여기서, 셀 어셈블리(100)의 전방이란, 셀 어셈블리(100)에서 전극 리드(111)가 돌출된 측면 방향을 의미한다고 할 수 있다. 예를 들어, 셀 어셈블리(100)의 전방은, 도 2에서 셀 어셈블리(100)의 우측면 방향을 의미한다고 할 수 있다. 그리고, 이러한 방향을 나타내는 용어, 즉 전, 후, 좌, 우, 상, 하와 같은 용어는 관측자의 위치나 대상의 놓여진 형태에 따라 달라질 수 있다. 다만, 본 명세서에서는 설명의 편의를 위해, 전극 리드(111)가 돌출된 측면을 전방으로 하여, 전, 후, 좌, 우, 상, 하 등의 방향을 구분하여 나타내도록 한다.
상기 센싱 어셈블리(200)는, 셀 어셈블리(100)와 탈부착 가능하게 구성될 수 있다. 예를 들어, 상기 센싱 어셈블리(200)는 후크돌기를 구비하고, 셀 어셈블리(100)는 이와 대응되는 위치 및 형태로 후크홈을 구비하여, 센싱 어셈블리(200)는 셀 어셈블리(100)에 후크 결합될 수 있다.
특히, 상기 센싱 어셈블리(200)는, 센싱 어셈블리(200)의 전극 리드(111)와 결합하여 이차 전지(110)의 전압을 센싱할 수 있다. 특히, 상기 센싱 어셈블리(200)는, 셀 어셈블리(100)에 구비된 모든 이차 전지(110)의 각 양단 전압을 센싱하도록 구성될 수 있다.
도 4는, 도 1에 도시된 센싱 어셈블리(200)의 분리 사시도이다. 또한, 도 5는, 도 3의 A1-A1'선에 대한 단면도이다. 다만, 도 5에서는, 설명의 편의를 위해, 각 전극 리드(111)는 센싱 버스바(220)에 접촉되지 않은 상태로 도시되도록 하였다.
도 4 및 도 5에 도시된 바와 같이, 상기 센싱 어셈블리(200)는, 센싱 버스바(220) 및 절연 하우징(210)을 구비할 수 있다.
상기 절연 하우징(210)은, 전기 절연성 재질로 구성될 수 있다. 예를 들어, 상기 절연 하우징(210)은 플라스틱 재질로 구성될 수 있다.
상기 센싱 버스바(220)는, 전극 리드(111)와 접촉되어 전극 리드(111)의 전압을 센싱하며, 센싱된 전압을 BMS(Battery Management System)와 같은 다른 구성요소로 전달하는 전기적 경로를 형성할 수 있다. 이를 위해, 상기 센싱 버스바(220)는, 전극 리드(111)와 같이 전기 전도성 재질로 구성될 수 있다. 예를 들어, 상기 센싱 버스바(220)는, 구리나 알루미늄과 같은 금속 재질로 구성될 수 있다. 상기 센싱 버스바(220)는, 절연 하우징(210)에 다양한 방식으로 결합될 수 있다. 예를 들어, 상기 센싱 버스바(220)는, 볼트나 리벳 등의 체결 부재에 의해 절연 하우징(210)에 체결될 수 있다. 또는, 상기 센싱 버스바(220)에는 체결홀이 형성되고, 절연 하우징(210)에는 체결돌기가 형성되어, 체결돌기가 체결홀에 삽입되는 방식으로 센싱 버스바(220)가 절연 하우징(210)에 결합될 수 있다. 이때, 체결돌기는 체결홀에 삽입된 후 외측 단부가 가압되거나 가열됨으로써 두께가 두꺼워져, 결합 상태가 고정되도록 할 수 있다.
그리고, 상기 센싱 어셈블리(200)는, 도 4에 도시된 바와 같이, 센싱 버스바(220)의 적어도 일부를 커버하도록 덮개(230)를 더 구비할 수 있다. 상기 덮개(230)는, 절연 하우징(210)과 마찬가지로 전기 절연성 재질, 이를테면 플라스틱 재질로 형성되어, 센싱 버스바(220)의 외측에 위치될 수 있다. 따라서, 상기 덮개(230)는, 센싱 버스바(220)의 적어도 일부에 대한 외측 노출을 방지하고, 전기적 절연을 확보할 수 있다. 그리고, 이러한 덮개(230)는, 절연 하우징(210) 또는 센싱 버스바(220)에 결합 고정될 수 있다.
상기 절연 하우징(210)은, 셀 어셈블리(100)의 전극 리드(111)가 내측에서 외측 방향으로 관통되도록, H1으로 표시된 바와 같이, 관통홀이 형성될 수 있다. 여기서, 내측 방향이란 배터리 모듈의 중심 측 방향을 의미하고, 외측 방향이란 배터리 모듈의 외부를 향하는 방향을 의미한다고 할 수 있다. 예를 들어, 도 5의 구성에서, 내측 방향은 좌측 방향을 의미하고, 외측 방향은 우측 방향을 나타낸다고 할 수 있다. 본 명세서에서, 내측과 외측은, 그에 대하여 특별한 설명이 없는 한, 이와 유사하게 구분하도록 한다.
상기 절연 하우징(210)은, 이러한 관통홀(H1)이 다수 개 형성될 수 있는데, 다수의 관통홀(H1)은, 도면에 도시된 바와 같이, 상하 방향으로 상호 이격되게 배치될 수 있다. 본 발명에 따른 배터리 모듈의 셀 어셈블리(100)에서, 파우치형 이차 전지(110)는 눕혀진 형태로 상하 방향으로 적층될 수 있으므로, 각 이차 전지(110)의 전극 리드(111)는, 상하 방향으로 복수 개 배열될 수 있다. 더욱이, 복수의 전극 리드(111)는, 이차 전지(110) 간 전기적 연결을 위해 2개가 서로 접촉된 상태로 한 쌍을 이루며, 각 쌍이 상하 방향으로 배치될 수 있다. 따라서, 상하 방향으로 배치된 전극 리드(111)의 각 쌍은, 절연 하우징(210)의 관통홀(H1)에 각각 관통될 수 있다.
특히, 본 발명에 따른 배터리 모듈의 센싱 어셈블리(200)에 있어서, 상기 절연 하우징(210)은, 하우징 경사부를 구비할 수 있다. 이에 대해서는, 도 6을 참조하여 보다 구체적으로 설명하도록 한다.
도 6은, 도 5의 C1 부분에 대한 확대도이다.
도 6을 참조하면, 상기 하우징 경사부(211)는, 관통홀의 내부에 형성되며, 그 형태가 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성될 수 있다. 예를 들어, 도 6에서 좌우 수평 방향을 지면에 평행한 방향이라 할 때, 상기 하우징 경사부(211)는, 경사면이 지면과 이루는 각도가 대략 60° 내지 70°의 각도를 이루는 형태로 형성될 수 있다. 다만, 이러한 경사 각도는, 센싱 어셈블리(200)나 셀 어셈블리(100)의 형태, 전극 리드(111)의 형태, 이차 전지(110)의 포함 개수 등에 따라 다양한 형태로 구성될 수 있다.
이처럼, 하우징 경사부(211)가 형성된 구성에 의하면, 센싱 어셈블리(200)를 셀 어셈블리(100)에 조립할 때, 셀 어셈블리(100)의 전극 리드(111)가 센싱 어셈블리(200)의 하우징 경사부(211)를 따라 센싱 어셈블리(200)의 관통홀로 용이하게 유도될 수 있다. 따라서, 센싱 어셈블리(200)와 셀 어셈블리(100)의 조립성 및 공정성이 향상될 수 있다.
더욱이, 이러한 구성에 의하면, 전극 리드(111)가 관통홀로 손쉽게 인입되므로, 관통홀을 크게 구성할 필요가 없다. 따라서, 관통홀에 의한 외부 이물질의 유입을 보다 용이하게 차단할 수 있다. 또한, 2개의 전극 리드(111)가 보다 용이하게 접촉되도록 할 수 있다. 뿐만 아니라, 관통홀 내부에서 전극 리드(111)의 유동이 보다 효과적으로 제한되므로, 전극 리드(111)의 유동으로 인한 파손이나 2개의 전극 리드(111) 간 접촉 분리가 방지될 수 있다.
특히, 상기 하우징 경사부(211)는, 내측 방향으로 갈수록 높이가 낮아지게 형성될 수 있다. 즉, 상기 하우징 경사부(211)는, 도 6에 도시된 구성에서, 우측 방향으로 갈수록 높이가 높아지게 형성될 수 있다.
본 발명의 이러한 구성에 의하면, 적어도 하나의 전극 리드(111)가 하우징 경사부(211)의 경사면을 따라 보다 용이하게 안착될 수 있다. 즉, 전극 리드(111)는 중력에 의해 하부 방향으로 지속적으로 힘이 가해질 수 있는데, 상기 실시예와 같이 하우징 경사부(211)의 상면에 전극 리드(111)가 놓이는 경우, 전극 리드(111)는 중력에 의해 하우징 경사부(211)에 보다 안정적으로 밀착하여 접촉될 수 있다. 따라서, 전극 리드(111)는 절연 하우징(210) 내부에서 보다 안정적으로 유지되어, 진동이나 충격이 가해지더라도, 손상이 방지되고 상호 접촉하여 연결된 2개의 전극 리드(111)가 서로 분리되는 것이 보다 효과적으로 방지될 수 있다.
한편, 적어도 일부의 이차 전지에 대한 전극 리드는, 하부 방향으로 오목한 형태의 벤딩부를 구비할 수 있다.
예를 들어, 도 6의 구성에서 G로 표시된 부분과 같이, 일부 이차 전지(110)의 전극 리드(111)는, 수평 방향으로 연장되다가 소정 부분에서 'U'자 형태로 구부러진 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 하부 방향으로 오목하게 형성된 벤딩부를 통해 측면 방향의 충격 등을 흡수할 수 있다. 즉, 배터리 모듈의 외측(도 6의 우측)에서 내측(도 6의 좌측) 방향으로 충격이나 진동이 가해질 때, 상기 벤딩부에 의해 충격이나 진동이 전극 리드를 따라 이차 전지의 본체 측으로 전달되는 것을 완화시킬 수 있다. 그러므로, 외부 충격이나 진동으로 인해 이차 전지의 전극 리드 부분이 손상되는 것을 방지할 수 있다.
특히, 이러한 전극 리드의 벤딩부(G)는, 도 5 및 도 6에 도시된 바와 같이, 카트리지(120)를 사이에 두고 상호 접촉된 2개의 전극 리드 중 적어도 어느 하나의 전극 리드에 형성될 수 있다. 예를 들어, 1개의 카트리지를 사이에 두고 접촉된 2개의 전극 리드 중, 상부에 위치한 전극 리드에 대하여 이러한 벤딩부가 형성되도록 할 수 있다. 이때, 하부에 위치한 전극 리드는 하우징 경사부(211)를 따라 경사진 형태로 구성될 수 있다. 그리고, 상부에 위치한 전극 리드의 벤딩부는 이러한 하부에 위치한 전극 리드의 경사 부분에 안착될 수 있다.
그러므로, 이 경우, 상부에 위치한 전극 리드 역시 하부에 위치한 전극 리드와 마찬가지로 하우징 경사부에 안착된 효과를 가질 수 있으며, 이로 인해 상부에 위치한 전극 리드의 절연 하우징에 대한 밀착성과 고정성이 향상될 수 있다. 또한, 상부에 위치한 전극 리드와 하부에 위치한 전극 리드의 밀착성 및 접촉성도 향상될 수 있다.
한편, 도 5에 도시된 바와 같이, 4개 이상의 이차 전지가 상하 방향으로 적층된 경우, 전극 리드의 벤딩부는 짝수층에 형성되거나 홀수층에 형성되는 것과 같이, 하나씩 건너뛰는 형태로 형성될 수 있다. 다만, 이러한 벤딩부의 형성 위치는, 관통홀이나 이차 전지의 배치 형태 등에 따라 달라질 수 있다.
또한, 상기 하우징 경사부(211)는, 상단부가 평평하게 구성될 수 있다. 즉, 도 6에 도시된 바와 같이, 하우징 경사부(211)는 우측 방향으로 갈수록 높이가 높아지는 형태로 구성될 수 있는데, 이때, 하우징 경사부(211)의 우측 상단부는 평평한 면이 형성되도록 절곡된 형태로 구성될 수 있다. 이 경우, 하우징 경사부(211)를 따라 상부 방향으로 경사지게 구성된 전극 리드(111)는, 하우징 경사부(211)의 상단 평평한 면에서 평평하게 구성되므로, 센싱 버스바(220)와 접촉하기 위해 전극 리드(111)가 과도하게 접히는 것을 방지할 수 있다.
또한, 본 발명에 따른 배터리 모듈의 센싱 어셈블리(200)에 있어서, 상기 절연 하우징(210)은, 외측 수평부(212)를 더 구비할 수 있다.
상기 외측 수평부(212)는, 상기 하우징 경사부(211)의 하단에서 수평 외측 방향으로 평평하게 연장되는 형태로 형성될 수 있다. 이때, 상기 외측 수평부(212)는, 하우징 경사부(211)와 일체화된 형태로 구성될 수 있다. 특히, 상기 외측 수평부(212)는, 관통홀의 상단까지 연장되게 형성될 수 있다. 이 경우, 절연 하우징(210)의 관통홀은, 외측 수평부(212)와 하우징 경사부(211)에 의해 상단과 하단이 한정될 수 있다. 즉, 절연 하우징(210)의 외측 수평부(212)는 관통홀의 상단을 구성하고, 절연 하우징(210)의 경사부 상단은 관통홀의 하단을 구성할 수 있다.
본 발명의 이러한 구성에 의하면, 셀 어셈블리(100)와 센싱 어셈블리(200)의 결합을 보다 용이하게 하고, 전극 리드(111)의 유동을 보다 효과적으로 제한할 수 있다. 즉, 외측 수평부(212)는 센싱 어셈블리(200)가 셀 어셈블리(100)에 결합되는 과정에서, 전극 리드(111)가 외측 방향으로 수평으로 이동할 수 있게 함으로써, 전극 리드(111)가 관통홀에 용이하게 관통되도록 할 수 있다. 또한, 센싱 어셈블리(200)가 셀 어셈블리(100)에 결합되어 있는 상태에서, 전극 리드(111)가 상부 방향으로 이동하는 것을 제한함으로써, 진동이나 충격이 가해질 때 전극 리드(111)가 심하게 이동하여 손상되거나 접촉 상태가 해제되는 것을 방지할 수 있다. 그러므로, 이 경우, 진동이나 충격 등에 의해 전원 무감 현상이 발생하거나 배터리 모듈의 출력이나 용량이 저하되는 것을 방지할 수 있다. 뿐만 아니라, 외측 수평부(212)에 의해 전극 리드(111)의 이동이 제한되어, 접촉되지 않아야 할 전극 리드(111)가 서로 접촉하는 것을 방지할 수 있다. 그러므로, 이 경우, 전극 리드(111) 간 부적절한 접촉으로 인해 내부 단락 등이 발생하는 것을 방지할 수 있다.
또한, 본 발명의 이러한 구성에 의하면, 전극 리드(111)의 상부 방향 이동을 제한하기 위한 리드 커버 등을 배터리 모듈에 별도로 구비할 필요가 없으므로, 배터리 모듈의 조립성이 향상되고, 제조 비용 및 시간이 절감될 수 있다.
도 7은, 본 발명의 다른 실시예에 따른 센싱 어셈블리(200)의 일부 구성을 개략적으로 나타내는 단면도이다. 도 7은, 도 3의 A1-A1'선에 대한 단면의 일 실시예로서, 도 6과는 다른 형태라 할 수 있다. 이러한 도 7에 대해서는, 앞선 실시예와 차이점이 있는 부분을 위주로 설명하며, 앞선 설명들이 유사하게 적용될 수 있는 부분에 대해서는 상세한 설명을 생략한다.
도 7을 참조하면, 상기 외측 수평부(212)는, 센싱 버스바(220)보다 외측으로 돌출되게 형성될 수 있다. 예를 들어, 도 7의 구성에서, 외측 수평부(212)는, P로 표시된 부분과 같이, 센싱 버스바(220)보다 우측 방향으로 더 돌출되게 연장 형성될 수 있다.
본 발명의 이러한 구성에 의하면, 외측 수평부(212)에 의해 전극 리드(111) 간 부적절한 접촉이 보다 확실하게 방지될 수 있다. 예를 들어, 도 7의 구성에서, 센싱 버스바(220)의 외측면에 접촉된 전극 리드(111)의 상부와 하부에는 각각 외측 수평부(212)가 위치할 수 있다. 따라서, 하부 방향으로 절곡된 전극 리드(111) 쌍의 하측 단부가, 하부에 위치한 외측 수평부(212)의 돌출 부분(P)으로 인해, 그 하부층의 전극 리드(111) 쌍에 접촉하는 것이 보다 확실하게 차단될 수 있다. 또한, 일부 전극 리드(111)의 용접 상태가 해제되어 상부 방향으로 들뜬다 하더라도, 상부에 위치한 외측 수평부(212)의 돌출 부분(P)으로 인해, 그 상부층의 전극 리드(111) 쌍이나 버스바에 접촉하는 것이 보다 확실하게 방지될 수 있다.
또한, 본 발명의 이러한 구성에 의하면, 외측 수평부(212)의 돌출 부분(P)으로 인해 전극 리드(111)의 상부 방향 이동이 보다 확실하게 방지될 수 있다. 그리고, 이러한 구성에 있어서, 외측 수평부(212)의 돌출 부분(P)에 센싱 버스바(220)가 안착될 수 있다. 따라서, 센싱 버스바(220)와 절연 하우징(210)의 결합이 보다 용이해지고, 그 결합 상태가 보다 안정적으로 유지될 수 있다.
또한 바람직하게는, 상기 센싱 버스바(220)는, 하우징 경사부(211)의 외측에서 상기 하우징 경사부(211)와의 사이에 빈 공간이 형성되도록 구성될 수 있다. 즉, 상기 센싱 어셈블리(200)는, 센싱 버스바(220)와 절연 하우징(210) 사이에 빈 공간이 형성되도록 구성될 수 있다.
예를 들어, 센싱 버스바(220)는, 도 6에 도시된 바와 같이, 하우징 경사부(211)의 외측에 위치할 수 있으며, 대략 지면에 수직하게 세워지는 형태로 구성될 수 있다. 이때, 센싱 버스바(220)의 상단은 하우징 경사부(211)의 상단에 접촉되어 지지되고, 센싱 버스바(220)의 하단은 외측 수평부(212)의 외측단에 접촉되어 지지될 수 있다. 그리고, 센싱 버스바(220)와 하우징 경사부(211) 사이에는, 도면에서 V로 표시된 부분과 같이, 빈 공간이 형성될 수 있다.
본 발명의 이러한 구성에 의하면, 센싱 버스바(220)가 절연 하우징(210)에 수평 방향으로 안착되어 안정적으로 지지될 수 있으면서도, 센싱 버스바(220)와 절연 하우징(210) 사이에 빈 공간이 형성될 수 있다. 그리고, 이러한 빈 공간은 센싱 버스바(220)와 전극 리드(111) 사이, 및 전극 리드(111) 사이의 용접 시, 열이나 가스가 용이하게 배출될 수 있도록 하고, 열에 의해 절연 하우징(210)이 변형되는 것을 방지할 수 있다.
즉, 버스바(220)와 전극 리드(111) 사이, 그리고 2개의 전극 리드(111) 사이는, 상호 접촉된 상태로 고정되기 위해 레이저 용접 등의 방식으로 용접될 수 있다. 이때, 이러한 용접 과정에서 많은 열이 발생할 수 있지만, 상기와 같은 빈 공간은, 이러한 열이 절연 하우징(210)에 전달되는 것을 감소시킴으로써, 절연 하우징(210)의 변형 및 가스 발생을 줄일 수 있다. 따라서, 절연 하우징(210)의 손상 내지 약화를 방지하는 한편, 버스바(220)가 절연 하우징(210)에 안정적으로 고정되도록 할 수 있다.
또한, 이러한 구성은, 전극 리드 상호 간 및 전극 리드와 버스바 상호 간 연결 상태가 안정적으로 유지되도록 할 수 있다. 더욱이, 버스바(220)와 전극 리드(111)의 용접 시, 가스가 발생할 수 있는데, 이러한 가스가 제대로 배출되지 못하면, 버스바(220)와 전극 리드(111) 사이, 그리고 전극 리드 사이의 용접 부분에 불량이 발생할 수 있다. 하지만, 상기와 같은 빈 공간으로 인해, 용접 시 발생하는 가스가 외부로 용이하게 배출될 수 있으므로, 가스로 인한 용접 불량을 방지할 수 있다.
뿐만 아니라, 센싱 버스바와 절연 하우징 사이의 빈 공간은, 절연 하우징의 무게를 감소시킴으로써, 배터리 모듈의 경량화에 기여할 수 있는 이점도 있다.
또한 바람직하게는, 상기 센싱 버스바(220)는, 상단이 상기 하우징 경사부(211)의 상단보다 낮게 구성될 수 있다. 예를 들어, 상기 센싱 버스바(220)는, 도 6에서 D로 표시된 바와 같이, 하우징 경사부(211)의 상단보다 높이가 낮게 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 절곡으로 인해 전극 리드(111)가 손상되는 것을 보다 효과적으로 방지할 수 있다. 즉, 절연 하우징(210)의 관통홀을 수평 방향으로 관통한 전극 리드(111)가 지면에서 수직 방향으로 세워진 형태의 센싱 버스바(220)에 접촉하기 위해서는, 대략 90° 정도 절곡될 필요가 있다. 예를 들어, 도 6의 구성에서, 전극 리드(111)는, 관통홀을 관통한 후, 하부 방향으로 대략 90도 절곡되어야 한다. 이때, 센싱 버스바(220)의 상단 높이를 하우징 경사부(211)의 상단 높이보다 낮게 구성하면, 전극 리드(111)가 보다 완만하게 절곡되도록 함으로써, 전극 리드(111)의 절곡 부분에서 전극 리드(111)가 손상되는 것을 보다 효과적으로 방지할 수 있다. 또한, 전극 리드(111)와 센싱 버스바(220)의 접촉성이 개선될 수 있다.
본 발명에 따른 배터리 모듈에 있어서, 상기 이차 전지(110)는 파우치형 이차 전지(110)로서, 단방향 이차 전지 형태로 구성될 수 있다. 여기서, 단방향 이차 전지란, 양극 리드와 음극 리드가 한 방향으로 돌출되게 구성된 형태의 이차 전지를 의미한다고 할 수 있다. 예를 들어, 도 1 내지 도 3에 도시된 바와 같이, 이차 전지는, 양극 리드와 음극 리드 모두, 전방(도면에서 우측 방향)으로 돌출되는 형태로 구성될 수 있다. 이러한 단방향 이차 전지를 눕혀진 형태로 상하 방향으로 적층되게 배치하는 경우, 전극 리드(111)는 이차 전지의 적층 개수만큼 상하 방향으로 복수 개 존재하되, 각 전지마다 양극 리드와 음극 리드가 존재하므로, 다수의 전극 리드(111)는 수평 방향으로도 2열로 배치될 수 있다.
이러한 구성의 경우, 상기 관통홀, 상기 하우징 경사부(211) 및 상기 센싱 버스바(220)는, 이러한 전극 리드(111)의 배치 형태에 대응하여, 각각 상하 방향으로 다수, 수평 방향으로 2열로 배치될 수 있다.
바람직하게는, 상기 절연 하우징(210)은, 내측 수평부(213)를 더 구비할 수 있다.
상기 내측 수평부(213)는, 도 6 및 도 7에 도시된 바와 같이, 하우징 경사부(211)의 하단에서 수평 내측 방향으로 평평하게 연장되는 형태로 구성될 수 있다. 이때, 상기 내측 수평부(213)는, 하우징 경사부(211)와 일체화된 형태로 구성될 수 있다. 특히, 상기 내측 수평부(213)는, 도 6의 E로 표시된 부분과 같이, 내측 단부가 인접하는 2개의 카트리지(120) 사이에 개재될 때까지 연장되는 형태로 구성될 수 있다. 더욱이, 상기 내측 수평부(213)는, 인접하지만 전극 리드가 직접 연결되지 않는 2개의 이차 전지 사이에 개재될 수 있다. 이때, 상기 내측 수평부는, 각 이차 전지의 실링부, 즉 2개의 이차 전지의 파우치 외장재 사이까지 인입될 수 있다.
본 발명의 이러한 구성에 의하면, 서로 접촉되지 않아야 할 전극 리드(111) 사이가 보다 안정적으로 분리될 수 있다. 예를 들어, 도 6의 구성에서, 상하 방향으로 적층된 2개의 카트리지(120) 사이에 2개의 이차 전지(B1, B2)가 수납되는데, 이러한 2개의 이차 전지(B1, B2)는 서로 다른 전극 리드(111) 쌍을 구성하여, 서로 접촉되지 않도록 구성될 수 있다. 이 경우, 절연 하우징(210)의 내측 수평부(213)는, 2개의 카트리지(120) 사이까지 연장되며, 특히, 2개의 카트리지(120) 사이에 수납된 2개의 이차 전지(B1, B2)의 실링부까지 연장되어 이들 사이에 삽입될 수 있다. 그러므로, 2개의 전극 리드(111) 사이는 보다 안정적으로 분리 상태가 유지되며, 배터리 모듈에 진동이나 충격이 가해지더라도, 이들 전극 리드(111)가 서로 접촉되는 것이 효과적으로 방지될 수 있다.
한편, 상하 방향으로 적층된 다수의 단방향 이차 전지가 전기적으로 직렬로 연결될 때, 각 이차 전지의 양극 리드와 음극 리드는, 서로 다른 층에 위치하는 이차 전지의 전극 리드(111)와 연결된다. 예를 들어, 하나의 이차 전지에서, 양극 리드는 상부에 적층된 이차 전지의 음극 리드와 접촉될 수 있고, 음극 리드는 하부에 적층된 이차 전지의 양극 리드와 접촉될 수 있다. 따라서, 카트리지(120) 및/또는 절연 하우징(210)은, 양극 리드가 위치하는 부분과 음극 리드가 위치하는 부분이 서로 다르게 구성될 수 있다. 이에 대해서는 도 8 내지 도 10을 참조하여 보다 구체적으로 살펴보도록 한다.
도 8은 도 3의 A2-A2'선에 대한 단면도이고, 도 9는 도 8의 C2 부분의 확대도이다. 또한, 도 10은, 본 발명의 일 실시예에 따른 절연 하우징(210)을 내측에서 외측 방향으로 바라본 형태의 사시도이다.
먼저, 도 8 및 도 9를 참조하면, 카트리지(120)의 일부 구성 및 절연 하우징(210)의 일부 구성이 도 6에 도시된 구성과 차이가 있음을 알 수 있다. 예를 들어, 동일한 하나의 카트리지(120)라 하더라도, 양극 리드가 위치하는 부분과 음극 리드가 위치하는 부분은 서로 다르게 구성될 수 있다. 또한, 절연 하우징(210)도 양극 리드가 위치하는 부분과 음극 리드가 위치하는 부분이 서로 다르게 구성될 수 있다.
더욱이, 도 10을 보면 알 수 있듯이, 절연 하우징(210)의 관통홀과 하우징 경사부(211), 그리고 센싱 버스바(220)는, 2열 수직 방향으로 다수 배치될 수 있는데, 좌측 열과 우측 열은 서로 다른 형태로 형성될 수 있다.
특히, 도 9에 도시된 바를 참조하면, 상기 카트리지(120)는, 카트리지 경사부(121)를 구비할 수 있다. 상기 카트리지 경사부(121)는, 카트리지의 외측 단부에서 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성될 수 있다. 즉, 상기 카트리지(120)는, 대략 수평 방향으로 평평한 형태로 구성되다가, 외측 단부가 지면에서 소정 각도 기울어지는 형태로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 전극 리드가 관통홀로 보다 용이하게 인출될 수 있다.
예를 들어, 도 9의 구성에서, 2개의 카트리지 사이에 위치한 2개의 이차 전지의 전극 리드는 함께 하나의 관통홀로 인출되어 서로 직접 접촉하게 되는데, 하부에 위치한 이차 전지의 전극 리드는 하우징 경사부(211)보다 아래 쪽에 위치한다. 이때, 하부에 위치한 이차 전지의 전극 리드는 카트리지 경사부(121)를 따라 상부 방향으로 연장 내지 절곡되도록 유도되고, 그러한 카트리지 경사부의 상부에 위치한 하우징 경사부(211)에 의해 관통홀까지 이르도록 유도될 수 있다. 따라서, 카트리지 내부에 위치하여 서로 연결되는 2개의 이차 전지 모두에 대하여 전극 리드가 절연 하우징의 관통홀까지 원활하게 유도되도록 할 수 있다.
이때, 상기 카트리지 경사부(121)의 경사 각도는, 하우징 경사부(211)의 경사 각도와 동일하거나 유사하도록 그에 대응되게 구성될 수 있다. 예를 들어, 상기 카트리지 경사부는, 지면에서 대략 60° 내지 70°의 경사면 각도를 갖도록 구성될 수 있다. 특히, 상기 카트리지 경사부(121)의 경사면(내측 경사면)은, 하우징 경사부(211)의 경사면(내측 경사면)과 동일한 평면 상에 형성되도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 센싱 어셈블리(200)와 셀 어셈블리(100)가 결합될 때, 카트리지 경사부(121)와 하우징 경사부(211)가 서로 간섭되지 않고 일체화된 형태로 구성될 수 있으므로, 전극 리드(111)가 카트리지 경사부(121)와 하우징 경사부(211)의 경계면에 쉽게 걸리지 않도록 할 수 있다. 따라서, 이 경우, 카트리지 경사부(121) 및 하우징 경사부(211)로 인해 전극 리드(111)가 관통홀로 쉽게 인입되도록 함으로써, 센싱 어셈블리(200)와 셀 어셈블리(100)의 조립성이 개선될 수 있다.
이러한 구성에 있어서, 상기 카트리지는, 카트리지 경사부가 절연 하우징(210)의 하단까지 연장되는 형태로 구성될 수 있다. 즉, 카트리지 경사부(121)는, 도 9에서 F로 표시된 부분과 같이, 절연 하우징(210)의 하부에 접촉하거나 그 아래에까지 연장되게 형성될 수 있다. 이를테면, F로 표시된 부분과 같은 카트리지의 외측(우측) 단부가, 절연 하우징의 내측(좌측) 단부보다 외측(우측)에 위치하도록 구성될 수 있다. 특히, 카트리지 경사부의 외측 단부는, 하우징 경사부의 내측 단부보다 외측에 위치하도록 구성될 수 있다. 이 경우, 카트리지와 절연 하우징(210) 사이의 틈이 최소화될 수 있다. 따라서, 전극 리드(111)의 부적절한 접촉을 차단하며, 전극 리드(111)의 조립을 보다 확실하게 가이드할 수 있다.
그리고, 카트리지는, 카트리지 경사부의 외측에 수평 절곡부를 구비할 수 있다.
예를 들어, 도 9에서 F로 표시된 부분과 같이, 카트리지 경사부의 우측, 즉 외측 단부에 수평 방향으로 평평하게 형성된 수평 절곡부를 구비할 수 있다. 이러한 수평 절곡부는, 인접하는 외측 수평부(212)와 하우징 경사부(211) 사이에 개재되어, 전극 리드의 방향을 관통홀 측으로 유도할 수 있다. 특히, 카트리지의 수평 절곡부에 의하면, 카트리지 경사부의 외측 부분 및 하우징 경사부의 내측 부분을 따라 외측 상부 방향으로 경사지게 유도된 전극 리드에 대하여, 외측 수평 방향으로 절곡 유도되도록 할 수 있다. 따라서, 이 경우, 전극 리드가 절연 하우징의 관통홀 측으로 용이하게 인출될 수 있다.
또한, 도 9에 도시된 바를 참조하면, 절연 하우징(210)에는 내측 수평부(213)가 구비되지 않을 수 있다. 즉, 도 9에 도시된 배터리 모듈 구성에 의하면, 카트리지의 외측 단부에 카트리지 경사부(121)가 구비되어 절연 하우징(210)의 하우징 경사부(211) 하단까지 연장되는 형태로 구성되며, 절연 하우징(210)에는 도 6이나 도 7에 도시된 내측 수평부(213)가 별도로 구비되지 않을 수 있다. 이는, 도 9에 도시된 구성의 경우, 2개의 카트리지 사이에 수납된 2개의 이차 전지(110) 사이에서 전극 리드(111)가 서로 직접 연결되기 때문이다. 즉, 도 6 및 도 7의 구성에서는, 상하 인접하여 적층된 2개의 카트리지 사이에 수납된 2개의 이차 전지(110)가 서로 직접 연결되지 않기 때문에 이러한 2개의 이차 전지(110)의 전극 리드(111) 사이를 물리적으로 분리시키기 위한 내측 수평부(213)가 구비되는 것이 좋다. 하지만, 도 9의 구성에서는, 상하 인접하여 적층된 2개의 카트리지 사이에 수납된 2개의 이차 전지(110)가 서로 직접 연결되기 때문에 이러한 2개의 이차 전지(110)의 전극 리드(111) 사이를 물리적으로 분리시키기 위한 내측 수평부(213)는 필요 없을 수 있다.
따라서, 2개의 카트리지(120) 사이에 수납된 2개의 이차 전지(110)의 전극 리드(111)가 서로 직접 접촉하여 연결되지 않는 부분, 이를테면 도 3의 A1-A1'선의 단면 부분에서는, 카트리지(120)는 전체적으로 평평하게 구성되고 카트리지 경사부를 구비하지 않으며, 절연 하우징(210)은 내측 수평부(213)를 구비할 수 있다. 반면, 2개의 카트리지 사이에 수납된 2개의 이차 전지(110)의 전극 리드(111)가 서로 직접 접촉하여 연결되는 부분, 이를테면 도 3의 A2-A2'선의 단면 부분에서는, 카트리지는 카트리지 경사부를 구비하고, 절연 하우징(210)은 내측 수평부(213)를 구비하지 않을 수 있다.
도 11은, 도 8의 C2 부분에 대한 다른 실시예를 나타내는 도면이다. 다만, 도 11에서는, 설명의 편의를 위해, 이차 전지는 도시되지 않도록 한다.
도 11을 참조하면, 카트리지 경사부(121)는, 하우징 경사부(211)보다 내측 경사면이 배터리 모듈의 내측에 위치하도록 구성될 수 있다. 즉, 도 11에 도시된 바와 같이, 하우징 경사부(211)의 내측 경사면을 따라 연장된 선분을 I2라 할 때, 카트리지 경사부(121)의 내측 경사면은, I2보다 좌측, 즉 배터리 모듈의 내측에 위치하도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 내측에 위치한 카트리지 경사부(121)를 따라 먼저 상부 방향으로 연장되게 유도된 전극 리드가 카트리지 경사부(121)와 하우징 경사부(211)의 경계 부분에 걸리지 않고, 하우징 경사부(211)로 보다 원활하게 유도될 수 있다. 즉, 도 11에서 카트리지 경사부를 따라 우측 상부 방향으로 연장 절곡된 전극 리드는, 카트리지 경사부의 상부 우측단에서 카트리지 경사부와 하우징 경사부 사이의 틈에 걸리지 않고, 외측에 위치한 하우징 경사부로 원활하게 유도될 수 있다.
그러므로, 이 경우, 전극 리드가 관통홀로 보다 원활하게 유도될 수 있어, 셀 어셈블리와 센싱 어셈블리 사이의 조립성이 보다 향상되고, 조립 과정에서 전극 리드 등이 파손되는 것을 방지할 수 있다.
또한, 카트리지 경사부는, 하우징 경사부보다 경사 각도가 작게 구성될 수 있다.
예를 들어, 도 11을 참조하면, 카트리지 경사부(121)의 내측 경사면을 따라 연장된 선분을 I1, 하우징 경사부(211)의 내측 경사면을 따라 연장된 선분을 I2라 하고, I1이 지면과 이루는 각도를 K1, I2가 지면과 이루는 각도를 K2라 한다. 이때, K1은 K2보다 작게 구성될 수 있다. 예를 들어, 도 11의 구성에서, K1은 35도, K2는 이보다 크게 45도로 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 관통홀로 전극 리드의 유도를 보다 원활하게 하는 한편, 전극 리드의 손상을 방지할 수 있다. 특히, 전극 리드가 한 번에 많은 각도로 절곡되는 경우, 전극 리드가 원하는 형태로 절곡되지 않을 수도 있고, 전극 리드가 손상될 수도 있다. 하지만, 상기 실시예에 의할 경우, 카트리지 경사부(121)에 의해 1차적으로 작은 각도로 절곡된 후, 하우징 경사부(122)에 의해 2차적으로 보다 큰 각도로 절곡될 수 있다. 따라서, 전극 리드가 카트리지 경사부 및 하우징 경사부를 거쳐 관통홀로 보다 원활하게 유도되어 인출될 수 있고, 전극 리드의 과도한 꺾임을 방지하여 전극 리드의 손상을 예방할 수 있다.
도 12는, 도 5의 C1 부분에 대한 또 다른 실시예를 나타내는 도면이다. 예를 들어, 도 12는, 도 6이나 도 7의 다른 변형예라 할 수 있다.
도 12를 참조하면, 하우징 경사부(211)는, 경사각이 서로 다른 둘 이상의 경사부를 구비할 수 있다. 예를 들어, 도 12에 도시된 바와 같이, 하우징 경사부(211)는, 상대적으로 내측(도면의 좌측)에 위치한 제1 경사부(N1)와 상대적으로 외측(도면의 우측)에 위치한 제2 경사부(N2)를 구비할 수 있다. 이때, 제1 경사부(N1)는 제2 경사부(N2)보다 경사각이 작게 형성되도록 구성될 수 있다. 이를테면, 제1 경사부(N1)가 지면과 이루는 각도가 40도이고, 제2 경사부(N2)가 지면과 이루는 각도가 70도가 되도록 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 전극 리드의 유도를 보다 원활하게 하는 한편, 전극 리드의 손상을 방지할 수 있다. 특히, 전극 리드가 한 번에 많은 각도로 절곡되는 경우, 전극 리드가 원하는 형태로 절곡되지 않을 수도 있고, 전극 리드가 손상될 수도 있다. 하지만, 상기 실시예에 의할 경우, 제1 경사부(N1)에 의해 먼저 작은 각도로 절곡된 후, 제2 경사부(N2)에 의해 보다 큰 각도로 절곡될 수 있다. 따라서, 전극 리드가 관통홀 측, 즉 우측 상부 방향으로 원활하게 절곡되도록 하는 한편, 전극 리드의 과도한 꺾임을 방지하여 전극 리드의 손상을 예방할 수 있다.
한편, 이처럼 경사 각도가 서로 다른 둘 이상의 경사부를 구비하도록 하는 구성은, 하우징 경사부(211)뿐 아니라, 카트리지 경사부(121)에도 적용될 수 있다.
도 13은, 본 발명의 또 다른 실시예에 따른 카트리지와 절연 하우징의 구성을 개략적으로 나타내는 단면도이다. 예를 들어, 도 13은, 도 8의 C2 부분에 대한 또 다른 실시예라 할 수 있다.
도 13을 참조하면, 절연 하우징(210)과 카트리지(120)는 상호 접촉될 수 있다. 예를 들어, 도 13에 도시된 바와 같이, 외측 수평부(212)의 하부면과 카트리지 경사부(211)의 상부면(수평 절곡부의 상부면)의 적어도 일부는 서로 접촉되게 구성될 수 있다.
이 경우, 절연 하우징(210)과 카트리지(120) 사이의 틈을 막거나 줄임으로써 전극 리드가 이러한 틈에 끼이는 것을 방지할 수 있다. 또한, 이 경우, 절연 하우징은 카트리지가 상부 방향으로 움직이는 것을 제한하고, 카트리지는 절연 하우징이 하부 방향으로 움직이는 것을 제한할 수 있다. 따라서, 카트리지와 절연 하우징 사이의 체결 안정성이 향상되고, 외부에서 가해진 힘이 고르게 분산될 수 있어 충격이나 진동에 대한 안전성이 향상될 수 있다.
또한, 상기 카트리지는 절연 하우징과 상호 체결될 수 있다. 예를 들어, 도 13에서 J로 표시된 부분과 같이, 카트리지(120)와 절연 하우징(210)은 상호 후크 결합 가능한 형태로 돌기가 구비될 수 있다. 즉, 절연 하우징(210)은, 외측 수평부(212)의 하부에 하부 방향으로 돌출된 형태의 후크 돌기(M2)가 구비될 수 있다. 그리고, 카트리지(120)는, 카트리지 경사부의 외측 단부 평평한 부분(수평 절곡부)의 상부에 상부 방향으로 돌출된 형태의 후크 돌기(M1)가 구비될 수 있다. 따라서, 셀 어셈블리와 센싱 어셈블리가 조립될 때, 카트리지의 후크 돌기(M1)와 절연 하우징의 후크 돌기(M2)는 상호 체결될 수 있다.
이 경우, 카트리지의 후크 돌기(M1)는, 절연 하우징의 후크 돌기(M2)보다 외측에 위치함으로써, 절연 하우징이 외측 방향으로 이탈하는 것을 방지할 수 있다. 따라서, 이러한 실시예에 의하면, 절연 하우징과 카트리지 사이의 결합성이 향상될 수 있다. 특히, 카트리지의 후크 돌기(M1)는 모든 카트리지에 구비될 수 있으며, 이에 대응되도록 절연 하우징의 후크 돌기(M2) 역시 모든 외측 수평부(212)에 구비될 수 있다. 이때, 절연 하우징에 대한 모든 카트리지에 대한 고정성이 확보될 수 있으므로, 셀 어셈블리와 센싱 어셈블리 사이의 고정성이 크게 향상될 수 있다. 특히, 배터리 모듈에 포함된 카트리지 중 중앙에 위치한 일부 카트리지에만 외측에서 내측 방향으로 충격이 가해지더라도, 각 카트리지마다 절연 하우징과의 고정성이 유지되어 있으므로, 모든 카트리지에 대한 충격 안정성이 확보될 수 있다.
이와 같은 구성에 있어서, 카트리지의 후크 돌기(M1)는 외측부가 외측(도면의 우측)으로 갈수록 낮아지는 형태로 경사지게 구성되고 내측부가 지면에 수직이 되는 형태로 구성될 수 있다. 반면, 절연 하우징의 후크 돌기(M2)는 내측부가 외측으로 갈수록 낮아지는 형태로 경사지게 구성되고 외측부가 지면에 수직이 되는 형태로 구성될 수 있다. 이 경우, 후크 돌기 간 체결이 원활하게 이루어지도록 하는 한편, 체결이 이루어진 후에는, 상호 쉽게 이탈되지 않도록 할 수 있다.
도 14는, 본 발명의 또 다른 실시예에 따른 카트리지와 절연 하우징의 구성을 개략적으로 나타내는 단면도이다. 예를 들어, 도 14는, 도 8의 C2 부분에 대한 또 다른 실시예라 할 수 있다.
도 14를 참조하면, Q로 표시된 부분과 같이, 카트리지 경사부(121)의 외측 단부에 형성된 수평 절곡부가 절연 하우징(210)의 관통홀(H1)을 관통하여 외측 방향으로 돌출되도록 구성될 수 있다. 즉, 카트리지(120)는, 카트리지 경사부(121)를 따라 외측 상부 방향으로 연장되다가, 소정 지점에서 외측 수평 방향으로 연장되며, 그 단부가 하우징 경사부(211)보다 외측에 위치하도록 구성될 수 있다. 특히, 카트리지의 수평 절곡부(Q)는, 버스바(220) 및 전극 리드(111)의 하부에 위치하며, 이러한 버스바 및 전극 리드보다 외측(도면의 우측)으로 돌출되게 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 카트리지의 수평 절곡부(Q)를 따라 전극 리드가 관통홀(H1)로 보다 원활하게 유도될 수 있다. 또한, 이 경우, 수평 절곡부에 의해 다른 층에 위치한 전극 리드 및/또는 버스바 사이의 접촉 가능성을 보다 완벽하게 차단할 수 있다.
본 발명에 따른 배터리 모듈은, 도 1 내지 도 3에 도시된 바와 같이, 유입 덕트(131) 및 유출 덕트(132)를 더 포함할 수 있다.
여기서, 유입 덕트(131)는, 카트리지(120)에 형성된 냉각 유로의 개방 부분에 구비되어 냉각 유로로 유체가 유입되도록 하는 공간 및 통로로서 기능할 수 있다. 그리고, 유출 덕트(132)는, 카트리지(120)에 형성된 냉각 유로의 다른 개방 부분에 구비되어, 냉각 유로로 흐르던 유체가 배터리 모듈 외부로 유출되도록 하는 공간 및 통로로서 기능할 수 있다. 특히, 본 발명의 일 실시예에 따른 셀 어셈블리(100)의 카트리지(120)는, 좌측면과 우측면에 유로의 단부를 구성하는 개구부가 형성될 수 있는데, 유입 덕트(131) 및 유출 덕트(132)는 이러한 개구부가 형성된 측에 각각 구비될 수 있다. 한편, 유입 덕트(131) 및/또는 유출 덕트(132)는, 냉각 유체의 유출입을 원활하게 하기 위해 팬을 구비할 수 있다.
본 발명에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩은, 이러한 배터리 모듈 이외에, 이러한 배터리 모듈을 수납하기 위한 팩 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS(Battery Management System), 전류 센서, 퓨즈 등이 더 포함될 수 있다.
본 발명에 따른 배터리 모듈은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 즉, 본 발명에 따른 자동차는, 본 발명에 따른 배터리 모듈을 포함할 수 있다. 특히, 본 발명에 따른 배터리 모듈의 경우, 충격이나 진동에도 전극 리드(111)의 접촉 상태가 안정적으로 유지될 수 있다. 따라서, 이러한 배터리 모듈이 적용된 자동차의 경우, 안전성이 크게 향상될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (10)

  1. 전극 리드를 구비하고 상하 방향으로 배치된 다수의 이차 전지, 및 상하 방향으로 상호 적층되어 내부 공간에 상기 이차 전지를 수용하는 다수의 카트리지를 구비하는 셀 어셈블리; 및
    상기 셀 어셈블리의 전방에 장착되고, 전기 절연성 재질로 구성된 절연 하우징 및 전기 전도성 재질로 구성된 센싱 버스바를 구비하며, 상기 전극 리드와 결합되어 상기 이차 전지의 전압을 센싱하는 센싱 어셈블리
    를 포함하되,
    상기 절연 하우징은, 상기 전극 리드가 관통되도록 상하 방향으로 상호 이격되게 배치된 다수의 관통홀이 형성되고, 상기 관통홀의 내부에 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성된 다수의 하우징 경사부를 구비하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 하우징 경사부는 내측 방향으로 갈수록 높이가 낮아지게 형성된 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 절연 하우징은, 상기 하우징 경사부의 하단에서 수평 외측 방향으로 연장되게 형성된 외측 수평부를 더 구비하는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 외측 수평부는, 상기 센싱 버스바보다 외측으로 돌출되게 형성된 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 센싱 버스바는, 상기 하우징 경사부의 외측에서 상기 하우징 경사부와의 사이에 빈 공간이 형성되도록 구성된 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 관통홀, 상기 하우징 경사부 및 상기 센싱 버스바는 각각, 상하 방향으로 다수, 수평 방향으로 2열로 배치된 것을 특징으로 하는 배터리 모듈.
  7. 제1항에 있어서,
    상기 절연 하우징은, 상기 하우징 경사부의 하단에서 내측 단부가 수평 내측 방향으로 연장되게 형성된 내측 수평부를 더 구비하는 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서,
    상기 카트리지는, 외측 단부에 수평 방향으로부터 소정 각도 기울어지도록 경사지게 형성된 카트리지 경사부를 구비하는 것을 특징으로 하는 배터리 모듈.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 모듈을 포함하는 배터리 팩.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 모듈을 포함하는 자동차.
PCT/KR2017/000977 2016-02-11 2017-01-26 배터리 모듈 WO2017138709A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17750401T PL3340338T3 (pl) 2016-02-11 2017-01-26 Moduł akumulatorowy
JP2018525477A JP6680881B2 (ja) 2016-02-11 2017-01-26 バッテリーモジュール
EP17750401.6A EP3340338B1 (en) 2016-02-11 2017-01-26 Battery module
CN201780003411.8A CN108140778B (zh) 2016-02-11 2017-01-26 电池模块
US15/759,043 US10644276B2 (en) 2016-02-11 2017-01-26 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0015760 2016-02-11
KR20160015760 2016-02-11

Publications (1)

Publication Number Publication Date
WO2017138709A1 true WO2017138709A1 (ko) 2017-08-17

Family

ID=59563356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000977 WO2017138709A1 (ko) 2016-02-11 2017-01-26 배터리 모듈

Country Status (7)

Country Link
US (1) US10644276B2 (ko)
EP (1) EP3340338B1 (ko)
JP (1) JP6680881B2 (ko)
KR (1) KR102017237B1 (ko)
CN (1) CN108140778B (ko)
PL (1) PL3340338T3 (ko)
WO (1) WO2017138709A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098588A1 (ko) * 2017-11-16 2019-05-23 주식회사 엘지화학 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
JP2021514529A (ja) * 2018-10-26 2021-06-10 エルジー・ケム・リミテッド バッテリーセルの損傷を防止できる構造を有するバッテリーモジュール、これを含むバッテリーパック及び自動車

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692957A (zh) * 2017-03-07 2023-02-03 远景Aesc日本有限公司 连结辅助部件、电池组以及电池组的制造方法
KR102097087B1 (ko) 2017-04-07 2020-04-03 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩 및 자동차
JP6472857B1 (ja) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 組電池
JP6472858B1 (ja) * 2017-10-03 2019-02-20 カルソニックカンセイ株式会社 組電池
KR102354401B1 (ko) * 2018-04-25 2022-01-20 주식회사 엘지에너지솔루션 배터리 모듈 및 이를 포함하는 배터리 팩
KR102468028B1 (ko) * 2018-05-29 2022-11-17 주식회사 엘지에너지솔루션 배터리 모듈
KR102523098B1 (ko) * 2018-06-22 2023-04-17 주식회사 엘지에너지솔루션 이차 전지 및 이를 포함한 배터리 모듈
US11721874B2 (en) 2018-07-26 2023-08-08 Lg Energy Solution, Ltd. Bus bar assembly
DE102018123893A1 (de) * 2018-09-27 2020-04-02 Francesco Maltoni Batteriemodul und Verfahren zum Herstellen desselben
KR102366138B1 (ko) * 2018-12-06 2022-02-22 주식회사 엘지에너지솔루션 전지 모듈
KR102351248B1 (ko) * 2018-12-10 2022-01-17 주식회사 엘지에너지솔루션 이차전지용 케이스, 이차전지 및 전지 모듈
KR102541537B1 (ko) * 2019-06-25 2023-06-08 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지팩
KR102506245B1 (ko) * 2019-11-14 2023-03-03 주식회사 엘지에너지솔루션 전지 모듈, 전지 모듈 제조 방법 및 전지 모듈을 포함하는 전지 팩
CN112034363B (zh) * 2020-09-04 2023-04-14 超威电源集团有限公司 密封铅酸蓄电池单格落后检测方法
KR20220040895A (ko) * 2020-09-24 2022-03-31 현대모비스 주식회사 배터리 모듈 조립체
CN114184967B (zh) * 2021-12-07 2023-06-02 中煤科工集团沈阳研究院有限公司 电池抗短路性能测试用隔爆泄压灭火装置及其使用方法
KR20230134375A (ko) * 2022-03-14 2023-09-21 에스케이온 주식회사 배터리 셀 어셈블리 및 이를 포함하는 배터리 모듈
KR20240019925A (ko) * 2022-08-05 2024-02-14 주식회사 엘지에너지솔루션 배터리 팩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070057344A (ko) * 2005-12-02 2007-06-07 주식회사 엘지화학 높은 냉각 효율성의 전지모듈
KR101403930B1 (ko) * 2010-08-16 2014-07-01 주식회사 엘지화학 콤팩트한 구조의 전지팩
JP2015056342A (ja) * 2013-09-13 2015-03-23 株式会社オートネットワーク技術研究所 蓄電モジュール
KR20150050314A (ko) * 2013-10-31 2015-05-08 타이코에이엠피(유) 센싱 블록 및 이를 포함하는 배터리 패키지
KR20150062743A (ko) * 2013-11-29 2015-06-08 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057931B2 (en) 2006-04-18 2011-11-15 Securaplane Technologies, Inc. Battery busing scheme
US8035986B2 (en) * 2008-06-30 2011-10-11 Lg Chem, Ltd. Battery cell interconnect and voltage sensing assembly and method for coupling battery cell assemblies thereto
JP5709215B2 (ja) 2011-03-31 2015-04-30 Necエナジーデバイス株式会社 電池パック
US9356278B2 (en) 2011-03-31 2016-05-31 Nec Energy Devices, Ltd. Battery pack
US8846240B2 (en) * 2012-02-16 2014-09-30 Lg Chem, Ltd. Battery cell interconnect and voltage sensing assembly and method of manufacturing the assembly
KR101572447B1 (ko) * 2013-03-19 2015-11-27 주식회사 엘지화학 전압 검출부재 및 이를 포함하는 전지모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070057344A (ko) * 2005-12-02 2007-06-07 주식회사 엘지화학 높은 냉각 효율성의 전지모듈
KR101403930B1 (ko) * 2010-08-16 2014-07-01 주식회사 엘지화학 콤팩트한 구조의 전지팩
JP2015056342A (ja) * 2013-09-13 2015-03-23 株式会社オートネットワーク技術研究所 蓄電モジュール
KR20150050314A (ko) * 2013-10-31 2015-05-08 타이코에이엠피(유) 센싱 블록 및 이를 포함하는 배터리 패키지
KR20150062743A (ko) * 2013-11-29 2015-06-08 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340338A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098588A1 (ko) * 2017-11-16 2019-05-23 주식회사 엘지화학 센싱 어셈블리 및 버스바 어셈블리를 포함하는 배터리 모듈
CN110832692A (zh) * 2017-11-16 2020-02-21 株式会社Lg化学 包括传感组件和汇流条组件的电池模块
EP3671937A4 (en) * 2017-11-16 2020-11-04 LG Chem, Ltd. BATTERY MODULE CONSISTING OF A DETECTION ASSEMBLY AND AN OMNIBUS BAR ASSEMBLY
CN110832692B (zh) * 2017-11-16 2023-04-04 株式会社Lg新能源 包括传感组件和汇流条组件的电池模块
US11830974B2 (en) 2017-11-16 2023-11-28 Lg Energy Solution, Ltd. Battery module including sensing assembly and bus bar assembly
JP2021514529A (ja) * 2018-10-26 2021-06-10 エルジー・ケム・リミテッド バッテリーセルの損傷を防止できる構造を有するバッテリーモジュール、これを含むバッテリーパック及び自動車
JP7170735B2 (ja) 2018-10-26 2022-11-14 エルジー エナジー ソリューション リミテッド バッテリーセルの損傷を防止できる構造を有するバッテリーモジュール、これを含むバッテリーパック及び自動車

Also Published As

Publication number Publication date
EP3340338A1 (en) 2018-06-27
KR20170094759A (ko) 2017-08-21
JP2018533830A (ja) 2018-11-15
US10644276B2 (en) 2020-05-05
EP3340338B1 (en) 2019-10-02
JP6680881B2 (ja) 2020-04-15
KR102017237B1 (ko) 2019-09-02
CN108140778A (zh) 2018-06-08
PL3340338T3 (pl) 2020-06-15
CN108140778B (zh) 2020-11-27
US20190189979A1 (en) 2019-06-20
EP3340338A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2017138709A1 (ko) 배터리 모듈
WO2016159549A2 (ko) 배터리 모듈
WO2016017983A1 (ko) 배터리 모듈
WO2018034382A1 (ko) 배터리 모듈
WO2020009484A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2016175591A1 (ko) 배터리 팩 및 그 제조 방법
WO2015080466A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017160029A1 (ko) 배터리 모듈
WO2018034383A1 (ko) 배터리 모듈
WO2015186911A1 (ko) 배터리 팩
WO2015057022A1 (ko) 배터리 팩
WO2017104878A1 (ko) 배터리 팩
WO2015080465A1 (ko) 배터리 팩
WO2021221370A1 (ko) 개선된 고정 구조 및 가스 배출 구조를 갖는 배터리 팩, 그리고 이를 포함하는 전자 디바이스 및 자동차
WO2018225920A1 (ko) 배터리 모듈
WO2019009625A1 (ko) 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2015152527A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021118028A1 (ko) 인근 모듈로의 가스 이동을 방지할 수 있는 전지 모듈
WO2015122656A1 (ko) 배터리 팩
WO2015190721A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021107429A1 (ko) 배터리 모듈 및 배터리 팩
WO2020111564A1 (ko) 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020138849A1 (ko) 내측 커버를 포함하는 배터리 모듈
WO2021112655A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750401

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017750401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018525477

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE