WO2020110690A1 - 非水電解質二次電池用負極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020110690A1
WO2020110690A1 PCT/JP2019/044175 JP2019044175W WO2020110690A1 WO 2020110690 A1 WO2020110690 A1 WO 2020110690A1 JP 2019044175 W JP2019044175 W JP 2019044175W WO 2020110690 A1 WO2020110690 A1 WO 2020110690A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
region
current collector
Prior art date
Application number
PCT/JP2019/044175
Other languages
English (en)
French (fr)
Inventor
康平 続木
森川 有紀
宏一 和田
柳田 勝功
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980077707.3A priority Critical patent/CN113169296B/zh
Priority to US17/296,487 priority patent/US20220037640A1/en
Priority to JP2020558290A priority patent/JP7361339B2/ja
Publication of WO2020110690A1 publication Critical patent/WO2020110690A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and moves lithium ions or the like between the positive electrode and the negative electrode to perform charge/discharge Widely used.
  • the negative electrode active material layer is a negative electrode active material in a negative electrode in which a negative electrode active material layer is formed by applying a negative electrode active material layer on at least one surface of a metal foil, and drying the negative electrode active material layer.
  • a negative electrode containing a substance, carboxymethylcellulose having a molecular weight of 330,000 or less, and carboxymethylcellulose having a molecular weight of 330,000 or more is disclosed.
  • a current collector a current collector, a first mixture layer formed on the surface of the current collector, and a second mixture layer formed on the surface of the first mixture layer, And the first mixture layer and the second mixture layer contain the same binder and thickener, and the content B2 of the binder in the second mixture layer and the first mixture layer Disclosed is a negative electrode in which the ratio B2/B1 of the binder content to B1 is 0.1 to 0.5.
  • an object of the present disclosure is to provide a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery capable of achieving both good output characteristics and charge/discharge cycle characteristics.
  • the negative electrode for a non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure has a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector, and the negative electrode active material layer is The negative electrode active material, and carboxymethyl cellulose, the carboxymethyl cellulose in the region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector is from the surface on the side opposite to the negative electrode current collector. It is characterized by having a smaller molecular weight than the carboxymethyl cellulose in the region of 10% in the thickness direction.
  • a non-aqueous electrolyte secondary battery is characterized by including the above-mentioned negative electrode for non-aqueous electrolyte secondary battery.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment. It is a sectional view of a negative electrode which is an example of an embodiment.
  • the negative electrode for a non-aqueous electrolyte secondary battery is obtained by applying a negative electrode mixture slurry in which a negative electrode active material, carboxymethyl cellulose, or the like is dispersed in a solvent such as water on a negative electrode current collector, and then applying the negative electrode active material on the negative electrode current collector. It is manufactured by forming a material layer.
  • a negative electrode for a non-aqueous electrolyte secondary battery when the negative electrode current collector and the negative electrode active material layer have low adhesion, a part of the negative electrode active material layer peels off from the negative electrode current collector during charging and discharging, resulting in charging. The discharge cycle characteristics may deteriorate.
  • the negative electrode active material layer Adhesion with the negative electrode current collector can be improved.
  • the adhesion between the particles of the negative electrode active material also becomes high, and the voids between the particles become narrow, so that the permeability of the electrolytic solution decreases.
  • the negative electrode for a non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure has a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector, and the negative electrode active material layer is The negative electrode active material, and carboxymethyl cellulose, the carboxymethyl cellulose in the region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector is from the surface on the side opposite to the negative electrode current collector. It is characterized by having a smaller molecular weight than the carboxymethyl cellulose in the region of 10% in the thickness direction.
  • the molecular weight in this specification indicates a weight average molecular weight.
  • the weight average molecular weight can be measured by a known method, for example, the GPC method.
  • carboxymethyl cellulose having a small molecular weight is arranged in a region of 10% in the thickness direction from the surface of the negative electrode active material layer on the negative electrode current collector side. Adhesion between the negative electrode active material layer and the negative electrode current collector is ensured. Further, since carboxymethylcellulose having a large molecular weight is arranged in a region of 10% in the thickness direction from the surface of the negative electrode active material layer opposite to the surface opposite to the negative electrode current collector, 10% in the thickness direction from the surface of the negative electrode current collector side.
  • the gap between the particles of the negative electrode active material is wider than the region, and the permeability of the electrolytic solution from the outermost surface of the negative electrode active material layer is improved. From these, by using the negative electrode for a non-aqueous electrolyte secondary battery, which is one embodiment of the present disclosure, it is possible to achieve both good output characteristics and charge/discharge cycle characteristics of the non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary battery of the present disclosure is not limited to the embodiments described below. Further, the drawings referred to in the description of the embodiments are schematic ones.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of the embodiment.
  • the non-aqueous electrolyte secondary battery 10 shown in FIG. 1 includes a wound electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound with a separator 13 in between, a non-aqueous electrolyte (electrolyte solution), and an electrode body 14.
  • Insulating plates 18 and 19 respectively arranged above and below and a battery case 15 accommodating the above members.
  • the battery case 15 includes a bottomed cylindrical case body 16 and a sealing body 17 that closes an opening of the case body 16.
  • the spirally wound electrode body 14 another form of electrode body may be applied, such as a laminated electrode body in which positive electrodes and negative electrodes are alternately laminated with a separator interposed therebetween.
  • the battery case 15 include a metal outer can such as a cylinder, a prism, a coin, and a button, and a pouch outer body formed by laminating a resin sheet and a metal sheet.
  • the case body 16 is, for example, a bottomed cylindrical metal outer can.
  • a gasket 28 is provided between the case body 16 and the sealing body 17 to ensure the airtightness inside the battery.
  • the case body 16 has an overhanging portion 22 that supports the sealing body 17, for example, a portion of the side surface of the case body 16 is inwardly extended.
  • the overhanging portion 22 is preferably formed in an annular shape along the circumferential direction of the case body 16, and the upper surface thereof supports the sealing body 17.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in this order from the electrode body 14 side.
  • Each member forming the sealing body 17 has, for example, a disc shape or a ring shape, and the respective members except the insulating member 25 are electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their central portions, and an insulating member 25 is interposed between their peripheral portions.
  • the lower valve body 24 When the internal pressure of the non-aqueous electrolyte secondary battery 10 rises due to heat generation due to an internal short circuit or the like, for example, the lower valve body 24 is deformed and ruptured so as to push the upper valve body 26 toward the cap 27 side, and the lower valve body 24 and the upper valve body are broken. The current path between the bodies 26 is interrupted. When the internal pressure further rises, the upper valve body 26 breaks and gas is discharged from the opening of the cap 27.
  • the positive electrode lead 20 attached to the positive electrode 11 extends to the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 is insulated. It extends through the outside of the plate 19 to the bottom side of the case body 16.
  • the positive electrode lead 20 is connected to the lower surface of the filter 23 which is the bottom plate of the sealing body 17 by welding or the like, and the cap 27 which is the top plate of the sealing body 17 electrically connected to the filter 23 serves as the positive electrode terminal.
  • the negative electrode lead 21 is connected to the inner surface of the bottom of the case body 16 by welding or the like, and the case body 16 serves as a negative electrode terminal.
  • FIG. 2 is a cross-sectional view of a negative electrode which is an example of the embodiment.
  • the negative electrode 12 includes a negative electrode current collector 40 and a negative electrode active material layer 42 provided on the negative electrode current collector 40.
  • the negative electrode current collector 40 for example, a metal foil such as copper that is stable in the potential range of the negative electrode, a film in which the metal is arranged on the surface layer, or the like is used.
  • the negative electrode active material layer 42 includes a negative electrode active material and carboxymethyl cellulose. Further, the negative electrode active material layer 42 preferably contains a binder and the like.
  • carboxymethyl cellulose in a region 42a of 10% in the thickness direction from the surface on the negative electrode current collector 40 side is in a region 42b of 10% in the thickness direction from the surface opposite to the negative electrode current collector 40.
  • carboxymethylcellulose in 20% of the region 42c in the thickness direction from the surface of the negative electrode current collector 40 side is the negative electrode current collector. It is preferable that the molecular weight is lower than that of carboxymethylcellulose in the region 42d 20% in the thickness direction from the surface opposite to the current collector 40, and the carboxy in the region 42e 50% in the thickness direction from the surface on the negative electrode current collector 40 side. It is more preferable that the molecular weight of methyl cellulose be smaller than that of carboxymethyl cellulose in 50% region 42f in the thickness direction from the surface opposite to the negative electrode current collector 40.
  • the molecular weight of carboxymethyl cellulose in the region 42a is preferably 330,000 or less, and more preferably 200,000 or less.
  • the lower limit of the molecular weight is not particularly limited, but is, for example, 100,000 or more.
  • the molecular weight of carboxymethyl cellulose in the region 42a (region 42c or region 42e) is 330,000 or less, the adhesion between the negative electrode current collector 40 and the negative electrode active material layer 42 can be sufficiently ensured, and the molecular weight is within the above range. Better charge/discharge cycle characteristics can be obtained as compared with the case of not satisfying.
  • the molecular weight of carboxymethyl cellulose in the region 42b is preferably more than 330,000, more preferably more than 400,000.
  • the upper limit of the molecular weight is not particularly limited, but is, for example, 600,000 or less.
  • the molecular weight of carboxymethyl cellulose in the region 42b is more than 330,000, the voids between the particles of the negative electrode active material in the region are sufficiently secured, and therefore, compared with the case where the molecular weight does not satisfy the above range. Then, the permeability of the electrolytic solution from the outermost surface of the negative electrode active material layer 42 is improved, and better output characteristics can be obtained.
  • the content of carboxymethyl cellulose in the negative electrode active material layer 42 is preferably, for example, 0.5% by mass to 3% by mass.
  • the content of carboxymethyl cellulose in the negative electrode active material layer 42 is less than 0.5% by mass, the adhesion between the particles of the negative electrode active material, the negative electrode active material layer, as compared with the case of 0.5% by mass or more.
  • the adhesion between the negative electrode collector 40 and the negative electrode current collector 40 is low, and the charge/discharge cycle characteristics may be deteriorated.
  • the content of carboxymethyl cellulose in the negative electrode active material layer 42 is more than 3% by mass, the voids between the particles of the negative electrode active material are narrower and the permeability of the electrolytic solution is smaller than that in the case of 3% by mass or less. May decrease and the output characteristics may decrease.
  • the content of carboxymethyl cellulose in each region of the negative electrode active material is preferably, for example, 0.5% by mass to 3% by mass with respect to the total mass of the negative electrode active material layer 42.
  • Examples of the negative electrode active material contained in the negative electrode active material layer 42 include carbon materials such as graphite particles, non-graphitizable carbon particles, and graphitizable carbon particles, Si-based materials, Sn-based materials, and the like.
  • Examples of Si-based materials include Si, alloys containing Si, and silicon oxides such as SiO x . Since SiO X has a smaller volume change due to charge and discharge than Si, it is particularly preferable to use SiO X as the Si-based material. SiO X has, for example, a structure in which fine Si is dispersed in a matrix of amorphous SiO 2 .
  • the graphite particles contained in the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 preferably have a 10% proof stress of 5 MPa or more.
  • the 10% proof stress of 5 MPa or more means that the pressure applied when the size of the graphite particles is compressed by 10% is 5 MPa or more.
  • Graphite particles having a 10% proof stress of 5 MPa or more are advantageous in output characteristics because the voids in the region 42b of the negative electrode active material layer 42 are less likely to be crushed and Li easily moves than graphite particles having a 10% proof stress of less than 5 MPa. Hard particles.
  • the graphite particles contained in the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 as the graphite particles having a 10% proof stress of 5 MPa or more, good output characteristics can be obtained.
  • the graphite particles contained in the region 42a (region 42c or region 42e) of the negative electrode active material layer may have a 10% proof stress of 5 MPa or more or less.
  • the pressure at 10% proof stress can be measured using a micro compression tester (manufactured by Shimadzu Corporation, MCT-211) or the like.
  • the graphite particles contained in the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 may contain 1% by mass to 5% by mass of an amorphous component. preferable.
  • the graphite particles containing 1% by mass to 5% by mass of the amorphous component are less likely to be crushed in the voids in the region 42b of the negative electrode active material layer 42 and are more likely to move Li than graphite particles not satisfying the above range. Hard particles that are advantageous for output characteristics.
  • the graphite particles contained in the region 42b (region 42d or region 42e) of the negative electrode active material layer 42 are graphite particles containing 1% by mass to 5% by mass of an amorphous component, so that good output characteristics can be obtained. can get.
  • the graphite particles contained in the region 42a (region 42c or region 42e) of the negative electrode active material layer may or may not satisfy the above range of amorphous component.
  • the amount of amorphous component of the graphite particles can be quantified by Raman spectroscopy measurement.
  • G-band G band
  • D-band D band
  • the amount of amorphous component of the graphite particles can be determined from the peak intensity ratio of D-band/G-band.
  • the region 42b (region 42d or the region 42f) of the negative electrode active material layer 42 has a lower content of the Si-based material than the region 42a (the region 42c or the region 42e).
  • the Si-based material is a preferable negative electrode active material because it can increase the capacity of the non-aqueous electrolyte secondary battery, but since the volume change due to charge and discharge is large, the Si-based material easily falls off from the negative electrode active material layer 42. ..
  • the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 has lower adhesion between the negative electrode active materials than the region 42a (region 42c or region 42e).
  • the Si-based material when the Si-based material is included, if the content of the Si-based material in the region 42b (the region 42d or the region 42f) of the negative electrode active material layer 42 is increased, the amount of the Si-based material dropped from the negative electrode active material layer 42 is increased.
  • the battery capacity may decrease and the battery performance may decrease.
  • the content of the Si-based material in the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 is, for example, preferably 20 mass% or less, and 15 mass% with respect to the total mass of the negative electrode active material. The following is more preferable.
  • the content of the Si-based material in the region 42a (region 42c or region e) of the negative electrode active material layer 42 is, for example, in the range of 5% by mass to 25% by mass with respect to the total mass of the negative electrode active material. It is preferable that the amount is in the range of 8% by mass to 15% by mass.
  • binder contained in the negative electrode active material layer 42 examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, Examples thereof include polyolefin resin, styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), polyacrylic acid (PAA), polyvinyl alcohol (PVA) and the like. These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, Examples thereof include polyolefin resin, styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), polyacrylic acid (PAA), polyvinyl alcohol (PVA)
  • the region 42a (region 42c or region 42e) of the negative electrode active material layer 42 is the region 42b (region 42d or region 42f). Therefore, it is preferable to increase the content of polyacrylic acid. In this case, the area 42b (the area 42d or the area 42f) may not include polyacrylic acid.
  • the adhesion between the negative electrode active material layer 42 and the negative electrode current collector 40 becomes higher, which is better. Charge/discharge cycle characteristics can be obtained.
  • the negative electrode active material layer 42 may include a conductive material.
  • the conductive material may be a material having higher conductivity than the negative electrode active material, and examples thereof include carbon black (CB), acetylene black (AB), Ketjen black, and carbon nanotube.
  • the shape (form) of the conductive material is not limited to the particle form and may be, for example, a fibrous form.
  • the region 42a (region 42c or region 42e) of the negative electrode active material layer 42 preferably contains a fibrous conductive material. By including a fibrous conductive material in the region, for example, by maintaining the conductivity between particles even when the volume change due to charge and discharge occurs, the current collecting structure in the electrode is less likely to be destroyed, Better charge/discharge cycle characteristics can be obtained.
  • the region 42b (region 42d or region 42f) of the negative electrode active material layer 42 may or may not include a fibrous conductive material.
  • a first negative electrode mixture slurry containing a negative electrode active material, carboxymethyl cellulose A (for example, a molecular weight of 330,000 or less), a solvent such as water, and the like is prepared.
  • a second negative electrode mixture slurry containing a negative electrode active material, carboxymethyl cellulose B having a higher molecular weight than carboxymethyl cellulose A (for example, a molecular weight of more than 330,000), a solvent such as water, and the like is prepared.
  • the negative electrode 12 according to the present embodiment can be obtained by forming a coating film derived from the 2 negative electrode mixture slurry.
  • the thickness of each of the coating film derived from the first negative electrode mixture slurry and the coating film of the second negative electrode mixture slurry may be appropriately set. In any case, from the surface of the negative electrode active material layer 42 on the side of the negative electrode current collector 40, the carboxymethyl cellulose in the 10% region 42a (region 42c or region 42e) in the thickness direction is transferred from the surface on the side opposite to the negative electrode current collector 40.
  • the molecular weight may be smaller than that of carboxymethyl cellulose in the region 42b (region 42d or region 42f) of 10% in the thickness direction.
  • the first negative electrode mixture slurry was applied and dried, and then the second negative electrode mixture slurry was applied.
  • a method of applying slurry may be used.
  • the positive electrode 11 includes a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a positive electrode current collector such as a metal foil and a positive electrode active material layer formed on the positive electrode current collector.
  • a metal foil such as aluminum which is stable in the potential range of the positive electrode, a film in which the metal is disposed on the surface layer, and the like can be used.
  • the positive electrode active material layer contains, for example, a positive electrode active material, a binder, a conductive material, and the like.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, etc. is applied onto a positive electrode current collector and dried to form a positive electrode active material layer, and then this positive electrode active material layer is formed. It can be produced by rolling.
  • Examples of the positive electrode active material include lithium transition metal oxides containing transition metal elements such as Co, Mn and Ni.
  • Examples of the lithium transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 -y O z , and Li x Ni 1-.
  • the positive electrode active materials are Li x NiO 2 , Li x Co y Ni 1-y O 2 , and Li x Ni 1- y My O z (in terms of increasing the capacity of the non-aqueous electrolyte secondary battery).
  • M at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0 .9, 2.0 ⁇ z ⁇ 2.3) and the like.
  • the binder for example, the same material as the binder used for the negative electrode 12 can be used.
  • the positive electrode active material layer may contain carboxymethyl cellulose similarly to the negative electrode 12.
  • the conductive material may be a material having higher conductivity than the positive electrode active material, and examples thereof include carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotube, graphite and the like.
  • a porous sheet having ion permeability and insulation is used.
  • the porous sheet include a microporous thin film, woven cloth, non-woven cloth and the like.
  • Suitable materials for the separator are olefin resins such as polyethylene and polypropylene, and cellulose.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin. Further, it may be a multi-layer separator including a polyethylene layer and a polypropylene layer, and a separator having a surface coated with a material such as aramid resin or ceramic may be used.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of hydrogen in these solvents with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), methylpropyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), methylpropyl carbonate.
  • Chain ester carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, Examples thereof include chain carboxylic acid esters such as ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • cyclic ethers such as crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl
  • a fluorinated cyclic carbonic acid ester such as fluoroethylene carbonate (FEC), a fluorinated chain carbonic acid ester, or a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP). ..
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lower aliphatic lithium carboxylate, Li 2 B 4 O 7 , borate such as Li(B(C 2 O 4 )F 2 ), LiN(SO 2 CF 3 ) 2 , LiN(C 1 F 2l+1 SO 2 )(C m F 2m+
  • imide salts such as 1 SO 2 ) ⁇ l and m are integers of 0 or more ⁇ .
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoints of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per 1 L of the solvent.
  • Example 1 [Production of positive electrode]
  • Aluminum-containing lithium nickel cobalt oxide (LiNi 0.88 Co 0.09 Al 0.03 O 2 ) was used as the positive electrode active material. 100 parts by mass of the positive electrode active material, 1 part by mass of graphite as a conductive material, and 0.9 parts by mass of polyvinylidene fluoride powder as a binder were mixed, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added. A positive electrode mixture slurry was prepared.
  • NMP N-methyl-2-pyrrolidone
  • This slurry is applied to both sides of a positive electrode current collector made of aluminum foil (thickness 15 ⁇ m), the coating film is dried, and then the coating film is rolled by a rolling roller to form a positive electrode active material layer on both sides of the positive electrode current collector. A positive electrode on which was formed was produced.
  • the first negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of copper foil and dried.
  • the second negative electrode mixture slurry was applied onto the coating film derived from the first negative electrode mixture slurry and dried.
  • the coating thickness ratio of the second negative electrode mixture slurry/first negative electrode mixture slurry was set to 25/75.
  • the coating film was rolled with a rolling roller to prepare a negative electrode having negative electrode active material layers formed on both surfaces of the negative electrode current collector. That is, in the prepared negative electrode, carboxymethyl cellulose in the region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector is in the region of 10% in the thickness direction from the surface on the side opposite to the negative electrode current collector.
  • the molecular weight is smaller than that of carboxymethyl cellulose.
  • the positive electrode current collector After attaching the positive electrode lead to the positive electrode current collector and the negative electrode lead to the negative electrode current collector, the positive electrode current collector is wound between the positive electrode and the negative electrode via a separator made of a polyethylene microporous film, and a winding type.
  • the electrode body of was produced.
  • Insulating plates were respectively arranged above and below the electrode body, the negative electrode lead was welded to the case body, the positive electrode lead was welded to the sealing body, and the electrode body was housed in the case body.
  • the opening of the case body was sealed with a sealing body via a gasket. This was used as a non-aqueous electrolyte secondary battery.
  • Example 2 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that graphite particles (10% proof stress: 11.6 MPa, amorphous component: 2% by mass) were used as the negative electrode active material in the preparation of the second negative electrode mixture slurry. A secondary battery was produced.
  • Example 3 In the preparation of the first negative electrode mixture slurry, a mixture containing 92 parts by mass of graphite particles (10% proof stress: 3.0 MPa, amorphous component: 1% by mass) and 8 parts by mass of SiO was used as a negative electrode active material. Same as Example 1 except that graphite particles (10% proof stress: 11.6 MPa, amorphous component: 2% by mass) were used as the negative electrode active material in the preparation of the second negative electrode mixture slurry. A non-aqueous electrolyte secondary battery was produced.
  • Example 4 In the preparation of the first negative electrode mixture slurry, a mixture containing 92 parts by mass of graphite particles (10% proof stress: 3.0 MPa, amorphous component: 1% by mass) and 8 parts by mass of SiO was used as a negative electrode active material. Used, and added carbon nanotubes (fibrous conductive material), in the preparation of the second negative electrode mixture slurry, graphite particles (10% proof stress: 11.6 MPa, amorphous component: 2% by mass) A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that it was used as the negative electrode active material.
  • Example 5 In the preparation of the first negative electrode mixture slurry, a mixture containing 90 parts by mass of graphite particles (10% proof stress: 3.0 MPa, amorphous component: 1% by mass) and 10 parts by mass of SiO was used as a negative electrode active material. Used, and added carbon nanotubes (fibrous conductive material), in the preparation of the second negative electrode mixture slurry, graphite particles (10% proof stress: 11.6 MPa, amorphous component: 2% by mass) A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that it was used as the negative electrode active material and the coating thickness ratio of the second negative electrode mixture slurry/first negative electrode mixture slurry was 40/60. .
  • Example 6 In the preparation of the first negative electrode mixture slurry, a mixture containing 90 parts by mass of graphite particles (10% proof stress: 3 MPa, amorphous component: 1% by mass) and 10 parts by mass of SiO was used as a negative electrode active material. And adding carbon nanotubes (fibrous conductive material), in the preparation of the second negative electrode mixture slurry, graphite particles (10% proof stress: 11.6 MPa, amorphous component: 2% by mass) were used as the negative electrode active material. Example 1 except that it was used as a substance, that polyacrylic acid was not added, and that the coating thickness ratio of the second negative electrode mixture slurry/first negative electrode mixture slurry was 40/60. Similarly, a non-aqueous electrolyte secondary battery was produced.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that carboxymethyl cellulose was the same as that of the second negative electrode mixture slurry (molecular weight: 35,000). It was made. That is, in the produced negative electrode, the molecular weight of carboxymethyl cellulose in the region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector was 10% in the thickness direction from the surface on the side opposite to the negative electrode current collector. It is the same as the molecular weight of carboxymethyl cellulose in the region.
  • ⁇ Comparative example 2> Except that carboxymethyl cellulose (molecular weight: 35,000) was used in the preparation of the first negative electrode mixture slurry, and carboxymethyl cellulose (molecular weight: 220000) was used in the preparation of the second negative electrode mixture slurry.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1. That is, in the prepared negative electrode, carboxymethyl cellulose in the area of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector is in the area of 10% in the direction of thickness from the surface on the side opposite to the negative electrode current collector. It has a higher molecular weight than carboxymethyl cellulose.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that carboxymethyl cellulose was the same as the first negative electrode mixture slurry (molecular weight: 220000). It was made. That is, in the produced negative electrode, the molecular weight of the carboxy group methylcellulose in a region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector was 10% in the thickness direction from the surface on the side opposite to the negative electrode current collector. It is the same as the molecular weight of carboxymethyl cellulose in the region.
  • carboxymethyl cellulose was the same carboxymethyl cellulose as the second negative electrode mixture slurry (molecular weight: 35,000), and in preparation of the second negative electrode mixture slurry, 94 parts by mass of graphite particles (10% proof stress: A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a mixture containing 3.0 MPa, an amorphous component: 1% by mass) and 6 parts by mass of SiO was used as the negative electrode active material. .
  • Capacity retention rate (200th cycle discharge capacity/first cycle discharge capacity) ⁇ 100 Then, based on the following criteria, the charge/discharge cycle characteristics of each Example and each Comparative Example were evaluated from the calculated capacity retention rate. The results are shown in Tables 1 and 2.
  • the non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 2 and 3 are evaluated using the non-aqueous electrolyte secondary battery of Comparative Example 1 as a reference cell.
  • the non-aqueous electrolyte secondary batteries of Comparative Examples 4 are used as reference cells to evaluate the non-aqueous electrolyte secondary batteries of Examples 3 to 6.
  • the voltage was measured when the battery was charged at a constant current of 0.1 It for 10 seconds. After discharging the charge capacity for 10 seconds, the current value was changed to charge for 10 seconds, the voltage at that time was measured, and then the charge capacity for 10 seconds was discharged. The charge and discharge and the voltage measurement were repeated at a current value of 0.1 It to 2 It. The resistance value was calculated from the relationship between the measured voltage value and current value.
  • Difference in resistance value between reference cell and -0.02 m ⁇ or less (excellent output characteristics)
  • The difference between the reference cell and the resistance value was larger than ⁇ 0.02 m ⁇ and was less than 0. -0.01 m ⁇ V or less (good output characteristics)
  • Difference between standard cell and resistance value is greater than ⁇ 0.01 m ⁇ and less than +0.01 m ⁇ (standard output characteristics)
  • X Difference between reference cell and resistance value + 0.02 or more (bad output characteristics)
  • Examples 1 and 2 show better charge/discharge cycle characteristics and output characteristics than Comparative Example 1 which is the reference, and Examples 3 to 6 are Comparative Examples which are the reference.
  • Examples 3 to 6 are Comparative Examples which are the reference.
  • carboxymethylcellulose in the region of 10% in the thickness direction from the surface of the negative electrode active material layer on the side of the negative electrode current collector is more than carboxymethylcellulose in the region of 10% in the thickness direction from the surface on the side opposite to the negative electrode current collector,
  • the negative electrode having a small molecular weight good cycle characteristics and output characteristics can be achieved at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池用負極は、負極集電体と、負極集電体上に設けられた負極活物質層と、を有し、負極活物質層は、負極活物質と、カルボキシメチルセルロースとを含み、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースは、負極集電体と反対側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースより、分子量が小さいことを特徴とする。

Description

非水電解質二次電池用負極及び非水電解質二次電池
 本開示は、非水電解質二次電池用負極及び非水電解質二次電池に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 非水電解質二次電池の負極としては、例えば、以下のものが知られている。
 例えば、特許文献1には、金属箔の少なくとも一方の表面に負極合材ペーストを塗工後、乾燥することにより負極活物質層を形成してなる負極において,前記負極合材ペーストは、負極活物質、分子量が33万以下のカルボキシメチルセルロース、及び分子量が33万以上のカルボキシメチルセルロースを含む負極が開示されている。
 例えば、特許文献2には、集電体と、前記集電体の表面に形成された第1合剤層と、前記第1合剤層の表面に形成された第2合剤層と、を有し、前記第1合剤層および前記第2合剤層は、同じバインダーおよび増粘剤を含み、前記第2合剤層中の前記バインダーの含有量B2と、前記第1合剤層中の前記バインダーの含有量B1との比:B2/B1は、0.1~0.5である負極が開示されている。
特開2013-114747号公報 特開2011-192539号公報
 しかし、従来の非水電解質二次電池用負極を用いた非水電解質二次電池では、良好な出力特性及び充放電サイクル特性を両立させることが困難であった。
 そこで、本開示の目的は、良好な出力特性及び充放電サイクル特性を両立することが可能な非水電解質二次電池用負極及び非水電解質二次電池を提供することにある。
 本開示の一態様である非水電解質二次電池用負極は、負極集電体と、前記負極集電体上に設けられた負極活物質層と、を有し、前記負極活物質層は、負極活物質と、カルボキシメチルセルロースとを含み、前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースは、前記負極集電体と反対側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースより、分子量が小さいことを特徴とする。
 また、本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用負極を備えることを特徴とする。
 本開示の一態様によれば、良好な出力特性と充放電サイクル特性を両立させることが可能となる。
実施形態の一例である非水電解質二次電池の断面図である。 実施形態の一例である負極の断面図である。
 非水電解質二次電池用負極は、負極集電体上に、負極活物質やカルボキシメチルセルロース等を水等の溶媒に分散させた負極合材スラリーを塗布して、負極集電体上に負極活物質層を形成することにより製造される。このような非水電解質二次電池用負極において、負極集電体と負極活物質層の密着性が低いと、充放電時に、負極集電体から負極活物質層の一部が剥離し、充放電サイクル特性が低下する場合がある。また、負極活物質層の最表面(負極活物質層において負極集電体と反対側の表面)からの電解液の浸透性が低いと、良好な出力が得られない場合がある。ここで、カルボキシメチルセルロースは、その分子量が小さいほど、溶媒中への分散性が高く、負極活物質に付着し易いため、負極製造において、分子量の小さいカルボキシメチルセルロースを用いることで、負極活物質層と負極集電体との密着性を向上させることができる。しかし、その一方で、負極活物質の粒子同士の密着性も高くなり、粒子間の空隙が狭くなるため、電解液の浸透性が低下する。したがって、従来、良好な出力特性と充放電サイクル特性の両立を図ることは困難であったが、本発明者らが鋭意検討した結果、良好な出力特性と充放電サイクル特性の両立を図ることが可能な非水電解質二次電池用負極を見出した。具体的には、以下に示す態様である。
 本開示の一態様である非水電解質二次電池用負極は、負極集電体と、前記負極集電体上に設けられた負極活物質層と、を有し、前記負極活物質層は、負極活物質と、カルボキシメチルセルロースとを含み、前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースは、前記負極集電体と反対側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースより、分子量が小さいことを特徴とする。ここで、本明細書における分子量とは、重量平均分子量を示す。重量平均分子量は公知の方法で測定することができるが、例えば、GPC法により測定することができる。
 本開示の一態様である非水電解質二次電池用負極によれば、負極活物質層における負極集電体側の表面から厚み方向の10%の領域に、分子量の小さいカルボキシメチルセルロースが配置されるため、負極活物質層と負極集電体との密着性が確保される。また、負極活物質層における負極集電体と反対側の表面から厚み方向の10%の領域に、分子量の大きいカルボキシメチルセルロースが配置されるため、負極集電体側の表面から厚み方向の10%の領域より、負極活物質の粒子間の空隙が広くなり、負極活物質層の最表面からの電解液の浸透性が向上する。これらのことから、本開示の一態様である非水電解質二次電池用負極を用いることで、非水電解質二次電池の良好な出力特性と充放電サイクル特性の両立を図ることができる。
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。なお、本開示の非水電解質二次電池は、以下で説明する実施形態に限定されない。また、実施形態の説明で参照する図面は、模式的に記載されたものである。
 図1は、実施形態の一例である非水電解質二次電池の断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質(電解液)と、電極体14の上下にそれぞれ配置された絶縁板18,19と、上記部材を収容する電池ケース15と、を備える。電池ケース15は、有底円筒形状のケース本体16と、ケース本体16の開口部を塞ぐ封口体17とにより構成される。なお、巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、電池ケース15としては、円筒形、角形、コイン形、ボタン形等の金属製外装缶、樹脂シートと金属シートをラミネートして形成されたパウチ外装体などが例示できる。
 ケース本体16は、例えば有底円筒形状の金属製外装缶である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で非水電解質二次電池10の内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。
 以下、非水電解質二次電池10の各構成要素について詳説する。
 [負極]
 図2は、実施形態の一例である負極の断面図である。負極12は、負極集電体40と、負極集電体40上に設けられた負極活物質層42と、を有する。
 負極集電体40は、例えば、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。
 負極活物質層42は、負極活物質、カルボキシメチルセルロースを含む。また、負極活物質層42は、結着材等を含むことが好ましい。
 負極活物質層42において、負極集電体40側の表面から厚み方向の10%の領域42a中のカルボキシメチルセルロースは、負極集電体40と反対側の表面から厚み方向の10%の領域42b中のカルボキシメチルセルロースより、分子量が低い。すなわち、領域42aには、領域42bより、分子量の小さいカルボキシメチルセルロースが存在し、領域42bには、領域42aより、分子量の大きいカルボキシメチルセルロースが存在している。このような構成によって、前述したように、負極活物質層42と負極集電体40との密着性が確保されると共に、負極活物質層42の最表面からの電解液の浸透性が向上するため、非水電解質二次電池の良好な出力特性と充放電サイクル特性の両立を図ることができる。
 非水電解質二次電池の良好な出力特性と充放電サイクル特性の両立を図る点では、特に、負極集電体40側の表面から厚み方向の20%の領域42c中のカルボキシメチルセルロースは、負極集電体40と反対側の表面から厚み方向の20%の領域42d中のカルボキシメチルセルロースより、分子量が低いことが好ましく、負極集電体40側の表面から厚み方向の50%の領域42e中のカルボキシメチルセルロースは、負極集電体40と反対側の表面から厚み方向の50%の領域42f中のカルボキシメチルセルロースより、分子量が小さいことがより好ましい。
 領域42a(領域42c又は領域42e)中のカルボキシメチルセルロースの分子量は、33万以下であることが好ましく、20万以下であることがより好ましい。当該分子量の下限値は特に限定されるものではないが、例えば、10万以上である。領域42a(領域42c又は領域42e)中のカルボキシメチルセルロースの分子量が33万以下の場合、負極集電体40と負極活物質層42の密着性を十分に確保することができ、分子量が上記範囲を満たさない場合と比較して、より良好な充放電サイクル特性が得られる。
 領域42b(領域42d又は領域42f)中のカルボキシメチルセルロースの分子量は33万超であることが好ましく、40万超であることがより好ましい。当該分子量の上限値は特に限定されるものではないが、例えば、60万以下である。領域42b(領域42d又は領域42f)中のカルボキシメチルセルロースの分子量が33万超の場合、当該領域における負極活物質の粒子間の空隙が十分確保されるため、分子量が上記範囲を満たさない場合と比較して、負極活物質層42の最表面からの電解液の浸透性が向上し、より良好な出力特性が得られる。
 負極活物質層42中のカルボキシメチルセルロースの含有量は、例えば、0.5質量%~3質量%であることが好ましい。負極活物質層42中のカルボキシメチルセルロースの含有量が0.5質量%未満であると、0.5質量%以上の場合と比較して、負極活物質の粒子同士の密着性、負極活物質層42と負極集電体40との密着性が低く、充放電サイクル特性が低下する場合がある。また、負極活物質層42中のカルボキシメチルセルロースの含有量が3質量%超であると、3質量%以下の場合と比較して、負極活物質の粒子間の空隙が狭く、電解液の浸透性が低下して、出力特性が低下する場合がある。また、負極活物質の各領域におけるカルボキシメチルセルロースの含有量は、負極活物質層42の総質量に対して、例えば、0.5質量%~3質量%であることが好ましい。
 負極活物質層42に含まれる負極活物質は、例えば、黒鉛粒子、難黒鉛性炭素粒子、易黒鉛性炭素粒子等の炭素材料、Si系材料、Sn系材料等が挙げられる。Si系材料は、例えば、Si、Siを含む合金、SiO等のケイ素酸化物等が挙げられる。SiOは、充放電に伴う体積変化がSiに比べて小さいことから、Si系材料にはSiOを用いることが特に好ましい。SiOは、例えば、非晶質SiO2のマトリックス中に微細なSiが分散した構造を有する。
 負極活物質が黒鉛粒子を含む場合、負極活物質層42の領域42b(領域42d又は領域42f)中に含まれる黒鉛粒子は、10%耐力が5MPa以上であることが好ましい。10%耐力が5MPa以上とは、黒鉛粒子のサイズが10%圧縮された時に掛けた圧力が5MPa以上ということである。10%耐力が5MPa以上の黒鉛粒子は、10%耐力が5MPa未満の黒鉛粒子と比べて、負極活物質層42の領域42b中の空隙が潰れにくく、Liが移動しやすいため、出力特性に有利な硬質粒子である。そして、負極活物質層42の領域42b(領域42d又は領域42f)中に含まれる黒鉛粒子を10%耐力が5MPa以上の黒鉛粒子とすることにより、良好な出力特性が得られる。なお、負極活物質層の領域42a(領域42c又は領域42e)中に含まれる黒鉛粒子は、10%耐力が5MPa以上でも未満でもよい。10%耐力における圧力は、微小圧縮試験機(株式会社島津製作所製、MCT-211)等を用いて測定できる。
 また、負極活物質が黒鉛粒子を含む場合、負極活物質層42の領域42b(領域42d又は領域42f)中に含まれる黒鉛粒子は、非晶質成分を1質量%~5質量%含むことが好ましい。非晶質成分を1質量%~5質量%含む黒鉛粒子は、上記範囲を満たさない黒鉛粒子と比べて、負極活物質層42の領域42b中の空隙が潰れにくく、Liが移動しやすいため、出力特性に有利な硬質粒子である。そして、負極活物質層42の領域42b(領域42d又は領域42e)中に含まれる黒鉛粒子を、非晶質成分を1質量%~5質量%含む黒鉛粒子とすることにより、良好な出力特性が得られる。なお、負極活物質層の領域42a(領域42c又は領域42e)中に含まれる黒鉛粒子は、非晶質成分が上記範囲を満たしていても満たしていなくてもよい。黒鉛粒子の非晶質成分量は、ラマン分光測定により定量できる。具体的には、ラマン分光測定により、1590cm-1付近にグラファイト構造に由来するGバンド(G-band)のピーク、1350cm-1付近に欠陥に由来するDバンド(D-band)のピークを検出し、D-band/G-bandのピーク強度比により、黒鉛粒子の非晶質成分量が求めることができる。
 また、負極活物質がSi系材料を含む場合、負極活物質層42の領域42b(領域42d又は領域42f)は、領域42a(領域42c又は領域42e)より、Si系材料の含有量が少ないことが好ましい。Si系材料は、非水電解質二次電池の高容量化を図ることができる点で、好ましい負極活物質であるが、充放電に伴う体積変化が大きいため、負極活物質層42から脱落し易い。そして、負極活物質層42の領域42b(領域42d又は領域42f)は、領域42a(領域42c又は領域42e)より、負極活物質同士の密着性が低い。したがって、Si系材料を含む場合、負極活物質層42の領域42b(領域42d又は領域42f)中のSi系材料の含有量を多くすると、負極活物質層42から脱落するSi系材料の量が増えて、電池性能が低下する場合がある。
 負極活物質層42の領域42b(領域42d又は領域42f)中のSi系材料の含有量は、例えば、負極活物質の総質量に対して、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。また、負極活物質層42の領域42a(領域42c又は領域e)中のSi系材料の含有量は、例えば、負極活物質の総質量に対して、5質量%~25質量%の範囲であることが好ましく、8質量%~15質量%の範囲であることがより好ましい。
 負極活物質層42に含まれる結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、ポリアクリル酸(PAA)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 負極活物質層42に含まれる結着材として、ポリアクリル酸(PAA)が含まれる場合、負極活物質層42の領域42a(領域42c又は領域42e)は、領域42b(領域42d又は領域42f)より、ポリアクリル酸の含有量を多くすることが好ましい。この場合、領域42b(領域42d又は領域42f)には、ポリアクリル酸が含まれなくてもよい。負極活物質層42の領域42a(領域42c又は領域42e)のポリアクリル酸の含有量を多くすることで、負極活物質層42と負極集電体40との密着性がより高くなり、より良好な充放電サイクル特性が得られる。
 負極活物質層42は、導電材を含んでいてもよい。導電材は、負極活物質よりも導電性の高い材料であればよく、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ等が挙げられる。導電材の形状(形態)は、粒子形態に限られず、例えば、繊維状等でもよい。特に、負極活物質層42の領域42a(領域42c又は領域42e)には、繊維状の導電材を含むことが好ましい。当該領域に繊維状の導電材を含むことで、例えば、充放電に伴う体積変化が生じた際でも粒子間の導電性を維持されることで、電極内の集電構造が破壊されにくくなり、より良好な充放電サイクル特性が得られる。なお、負極活物質層42の領域42b(領域42d又は領域42f)には、繊維状の導電材を含んでいても含んでいなくてもよい。
 本実施形態に係る負極12の製造方法の一例を説明する。まず、負極活物質、カルボキシメチルセルロースA(例えば、分子量33万以下)、水等の溶媒等を含む第1負極合材スラリーを調製する。これとは別に、負極活物質、カルボキシメチルセルロースAより分子量の大きいカルボキシメチルセルロースB(例えば、分子量33万超)、水等の溶媒等を含む第2負極合材スラリーを調製する。そして、負極集電体40上に、第1負極合材スラリーを塗布、乾燥した後、第1負極合材スラリー由来の塗膜上に、第2負極合材スラリーを塗布、乾燥して、第2負極合材スラリー由来の塗膜を形成することにより、本実施形態に係る負極12を得ることができる。第1負極合材スラリー由来の塗膜及び第2負極合材スラリーの塗膜それぞれの厚みは適宜設定されればよい。いずれにしろ、負極活物質層42における負極集電体40側の表面から厚み方向の10%領域42a(領域42c又は領域42e)中のカルボキシメチルセルロースが、負極集電体40と反対側の表面から厚み方向の10%の領域42b(領域42d又は領域42f)中のカルボキシメチルセルロースより、分子量が小さくなればよい。なお、上記方法では、第1負極合材スラリーを塗布、乾燥させてから、第2負極合材スラリーを塗布したが、第1負極合材スラリーを塗布後、乾燥前に、第2負極合材スラリーを塗布する方法でもよい。
 [正極]
 正極11は、例えば金属箔等の正極集電体と、正極集電体上に形成された正極活物質層とで構成される。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極活物質層は、例えば、正極活物質、結着材、導電材等を含む。
 正極11は、例えば、正極活物質、結着材、導電材等を含む正極合材スラリーを正極集電体上に塗布、乾燥して正極活物質層を形成した後、この正極活物質層を圧延することにより作製できる。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LixNiO2、LixCoyNi1-y2、LixNi1-yyz(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 結着材は、例えば、負極12で用いる結着材と同様の材料を用いることができる。また、正極活物質層は、負極12と同様に、カルボキシメチルセルロースを含んでいてもよい。また、導電材は、正極活物質よりも導電性の高い材料であればよく、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ、黒鉛等が挙げられる。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂、セラミック等の材料が塗布されたものを用いてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(C12l+1SO2)(Cm2m+1SO2){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質として、アルミニウム含有ニッケルコバルト酸リチウム(LiNi0.88Co0.09Al0.03)を用いた。上記正極活物質100質量部、導電材としての黒鉛1質量部、結着材としてのポリフッ化ビニリデン粉末0.9質量部を混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。このスラリーをアルミニウム箔(厚さ15μm)からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラにより塗膜を圧延して、正極集電体の両面に正極活物質層が形成された正極を作製した。
 [負極の作製]
 負極活物質としての黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)100質量部、カルボキシメチルセルロース(分子量:35.5万)1質量部、スチレン-ブタジエン共重合体ゴム1質量部、ポリアクリル酸1質量部を混合し、さらに水を適量加えて、第2負極合材スラリーを調製した。また、黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)100質量部、カルボキシメチルセルロース(分子量:22.0万)1質量部、スチレン-ブタジエン共重合体ゴム1質量部、ポリアクリル酸1質量部を混合し、さらに水を適量加えて、第1負極合材スラリーを調製した。
 第1負極合材スラリーを銅箔からなる負極集電体の両面に塗布し、乾燥した。次いで、第1負極合材スラリー由来の塗膜上に第2負極合材スラリーを塗布、乾燥した。第2負極合材スラリー/第1負極合材スラリーの塗布厚比を25/75とした。その後、圧延ローラにより塗膜を圧延することにより、負極集電体の両面に負極活物質層が形成された負極を作製した。すなわち、作製した負極において、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースは、負極集電体と反対側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースより、分子量が小さいものとなっている。
 [非水電解質の作製]
 エチレンカーボネート(EC)と、ジメチルカーボネートとを体積比で1:3となるように混合した非水溶媒に、ビニレンカーボネート(VC)を5質量部添加し、LiPFを1.5mol/Lの濃度で溶解した。これを非水電解質とした。
 [非水電解質二次電池の作製]
(1)正極集電体に正極リードを取り付け、負極集電体に負極リードを取り付けた後、正極と負極との間に、ポリエチレン製微多孔膜からなるセパレータを介して巻回し、巻回型の電極体を作製した。
(2)電極体の上下に絶縁板をそれぞれ配置し、負極リードをケース本体に溶接し、正極リードを封口体に溶接して、電極体をケース本体内に収容した。
(3)ケース本体内に非水電解質を減圧方式により注入した後、ケース本体の開口部をガスケットを介して封口体で封止した。これを非水電解質二次電池とした。
 <実施例2>
 第2負極合材スラリーの調製において、黒鉛粒子(10%耐力:11.6MPa、非晶質成分:2質量%)を負極活物質として用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例3>
 第1負極合材スラリーの調製において、92質量部の黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)と、8質量部のSiOとを含む混合物を負極活物質として用いたこと、第2負極合材スラリーの調製において、黒鉛粒子(10%耐力:11.6MPa、非晶質成分:2質量%)を負極活物質として用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例4>
 第1負極合材スラリーの調製において、92質量部の黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)と、8質量部のSiOとを含む混合物を負極活物質として用いたこと、及びカーボンナノチューブ(繊維状の導電材)を添加したこと、第2負極合材スラリーの調製において、黒鉛粒子(10%耐力:11.6MPa、非晶質成分:2質量%)を負極活物質として用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例5>
 第1負極合材スラリーの調製において、90質量部の黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)と、10質量部のSiOとを含む混合物を負極活物質として用いたこと、及びカーボンナノチューブ(繊維状の導電材)を添加したこと、第2負極合材スラリーの調製において、黒鉛粒子(10%耐力:11.6MPa、非晶質成分:2質量%)を負極活物質として用いたこと、第2負極合材スラリー/第1負極合材スラリーの塗布厚比を40/60としたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <実施例6>
 第1負極合材スラリーの調製において、90質量部の黒鉛粒子(10%耐力:3MPa、非晶質成分:1質量%)と、10質量部のSiOとを含む混合物を負極活物質として用いたこと、及びカーボンナノチューブ(繊維状の導電材)を添加したこと、第2負極合材スラリーの調製において、黒鉛粒子(10%耐力:11.6MPa、非晶質成分:2質量%)を負極活物質として用いたこと、及びポリアクリル酸を添加しなかったこと、また、第2負極合材スラリー/第1負極合材スラリーの塗布厚比を40/60としたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 <比較例1>
 第1負極合材スラリーの調製において、カルボキシメチルセルロースを第2負極合材スラリーと同じカルボキシメチルセルロース(分子量:35.5万)としたこと以外は、実施例1と同様に非水電解質二次電池を作製した。すなわち、作製した負極において、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースの分子量は、負極集電体と反対側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースの分子量と同じである。
 <比較例2>
 第1負極合材スラリーの調製において、カルボキシメチルセルロース(分子量:35.5万)を用いたこと、第2負極合材スラリーの調製において、カルボキシメチルセルロース(分子量:22.0万)を用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。すなわち、作製した負極において、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースは、負極集電体と反対側の表面から厚み方向の10%領域中のカルボキシメチルセルロースより、分子量が大きいものとなっている。
 <比較例3>
 第2負極合材スラリーの調製において、カルボキシメチルセルロースを第1負極合材スラリーと同じカルボキシメチルセルロース(分子量:22.0万)としたこと以外は、実施例1と同様に非水電解質二次電池を作製した。すなわち、作製した負極において、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中のカルボキシ基メチルセルロースの分子量は、負極集電体と反対側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースの分子量と同じである。
 <比較例4>
 第1負極合材スラリーの調製において、94質量部の黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)と、6質量部のSiOとを含む混合物を負極活物質として用いたこと、カルボキシメチルセルロースを第2負極合材スラリーと同じカルボキシメチルセルロース(分子量:35.5万)としたこと、第2負極合材スラリーの調製において、94質量部の黒鉛粒子(10%耐力:3.0MPa、非晶質成分:1質量%)と、6質量部のSiOとを含む混合物を負極活物質として用いたこと以外は、実施例1と同様に非水電解質二次電池を作製した。
 [充放電サイクル特性の評価]
 環境温度25℃の下、各実施例及び各比較例の非水電解質二次電池を、電流値0.5Itで、4.2Vまで定電流充電した後、電流値0.5Itで、2.5Vまで定電流放電した。この充放電を1サイクルとして、200サイクル行った。そして、以下の式により、各実施例及び各比較例の非水電解質二次電池の充放電サイクルにおける容量維持率を求めた。
 容量維持率=(200サイクル目の放電容量/1サイクル目の放電容量)×100
 そして、以下の基準に基づいて、算出した容量維持率から、各実施例及び各比較例の充放電サイクル特性を評価した。その結果を表1及び表2に示す。なお、表1では、比較例1の非水電解質二次電池を基準セルとして、実施例1、2、比較例2,3の非水電解質二次電池を評価している。また、表2では、比較例4の非水電解質二次電池を基準セルとして、実施例3~6の非水電解質二次電池を評価している。
 ◎:基準セルとの容量維持率の差が+3%以上(優れたサイクル特性)
 〇:基準セルとの容量維持率の差が0%以上+3%未満(良好なサイクル特性)
 △:基準セルとの容量維持率の差が-3%以上0%未満(標準的なサイクル特性)
 ×:基準セルとの容量維持率の差が-3%未満(悪いサイクル特性)
 [出力特性の評価]
 各実施例及び各比較例の非水電解質二次電池を、25℃の温度環境下、0.5Itの定電流で初期容量の半分まで充電した後、充電を止めて15分間放置した。その後、0.1Itの定電流で10秒間充電をした時の電圧を測定した。10秒間の充電容量分を放電した後、電流値を変更して10秒間充電し、そのときの電圧を測定した後、10秒間の充電容量分を放電した。当該充放電及び電圧測定を、0.1Itから2Itまでの電流値で繰り返した。測定した電圧値と電流値の関係性から抵抗値を求めた。
 そして、以下の基準に基づいて、算出した抵抗値から、各実施例及び比較例の出力特性を評価した。その結果、表1及び2に示す。なお、表1では、比較例1の非水電解質二次電池を基準セルとして、実施例1、2、比較例2、3の非水電解質二次電池を評価している。また、表2では、比較例4の非水電解質二次電池を基準セルとして、実施例3~6の非水電解質二次電池を評価している。
 ◎:基準セルと抵抗値の差が-0.02mΩ以下(優れた出力特性)
 〇:基準セルと抵抗値の差が-0.02mΩより大きく0.-0.01mΩV以下(良好な出力特性)
 △:基準セルと抵抗値の差が-0.01mΩより大きく+0.01mΩ未満(標準的な出力特性)
 ×:基準セルと抵抗値の差+0.02以上(悪い出力特性)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2から分かるように、実施例1,2は、基準とした比較例1と比べて、良好な充放電サイクル特性及び出力特性を示し、実施例3~6は、基準とした比較例4と比べて、良好な充放電サイクル特性及び出力特性を示した。したがって、負極活物質層における負極集電体側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースが、負極集電体と反対側の表面から厚み方向の10%の領域中のカルボキシメチルセルロースより、分子量が小さい負極を用いることによって、良好なサイクル特性及び出力特性の両立を図ることができる。
 10 非水電解質二次電池
 11 正極
 12 負極
 13 セパレータ
 14 電極体
 15 電池ケース
 16 ケース本体
 17 封口体
 18,19 絶縁板
 20 正極リード
 21 負極リード
 22 張り出し部
 23 フィルタ
 24 下弁体
 25 絶縁部材
 26 上弁体
 27 キャップ
 28 ガスケット
 40 負極集電体
 42 負極活物質層

Claims (9)

  1.  負極集電体と、前記負極集電体上に設けられた負極活物質層と、を有し、
     前記負極活物質層は、負極活物質と、カルボキシメチルセルロースを含み、
     前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースは、前記負極集電体と反対側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースより、分子量が小さい、非水電解質二次電池用負極。
  2.  前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域中の前記カルボキシメチルセルロースの分子量は、33万以下である、請求項1に記載の非水電解質二次電池用負極。
  3.  前記負極活物質層中の前記カルボキシメチルセルロースの含有量は、0.5質量%~3質量%である、請求項1又は2に記載の非水電解質二次電池用負極。
  4.  前記負極活物質は黒鉛粒子を含み、
     前記負極活物質層における前記負極集電体と反対側の表面から厚み方向の10%の領域中の前記黒鉛粒子は、10%耐力が5MPa以上である、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。
  5.  前記負極活物質は黒鉛粒子を含み、
     前記負極活物質層における前記負極集電体と反対側の表面から厚み方向の10%の領域中の前記黒鉛粒子は、非晶質成分を1質量%~5質量%含む、請求項1~4のいずれか1項に記載の非水電解質二次電池用負極。
  6.  前記負極活物質はSi系材料を含み、
     前記負極活物質層における前記負極集電体と反対側の表面から厚み方向の10%の領域は、前記負極集電体側の表面から厚み方向の10%の領域より、前記Si系材料の含有量が少ない、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極。
  7.  前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域は、繊維状の導電材を含む、請求項1~6のいずれか1項に記載の非水電解質二次電池用負極。
  8.  前記負極活物質層は、ポリアクリル酸を含み、
     前記負極活物質層における前記負極集電体側の表面から厚み方向の10%の領域は、前記負極集電体と反対側の表面から厚み方向の10%の領域より、前記ポリアクリル酸の含有量が多い、請求項1~7のいずれか1項に記載の非水電解質二次電池用負極。
  9.  請求項1~8のいずれか1項に記載の非水電解質二次電池用負極を備える、非水電解質二次電池。
PCT/JP2019/044175 2018-11-30 2019-11-11 非水電解質二次電池用負極及び非水電解質二次電池 WO2020110690A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980077707.3A CN113169296B (zh) 2018-11-30 2019-11-11 非水电解质二次电池用负极和非水电解质二次电池
US17/296,487 US20220037640A1 (en) 2018-11-30 2019-11-11 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2020558290A JP7361339B2 (ja) 2018-11-30 2019-11-11 非水電解質二次電池用負極及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-225706 2018-11-30
JP2018225706 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110690A1 true WO2020110690A1 (ja) 2020-06-04

Family

ID=70854247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044175 WO2020110690A1 (ja) 2018-11-30 2019-11-11 非水電解質二次電池用負極及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20220037640A1 (ja)
JP (1) JP7361339B2 (ja)
CN (1) CN113169296B (ja)
WO (1) WO2020110690A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020995A1 (en) * 2020-07-15 2022-01-20 Sk Innovation Co., Ltd. Electrode for Secondary Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171575A (ja) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極板およびその製造方法ならびにそれを用いた非水電解液二次電池
JP2009231058A (ja) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd 非水電解質電池用負極及びその製造方法
JP2013114747A (ja) * 2011-11-24 2013-06-10 Toyota Motor Corp リチウムイオン二次電池の製造方法
KR20170111743A (ko) * 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지용 음극 및 이를 포함하는 이차전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005113A (ja) * 2003-06-11 2005-01-06 Toshiba Corp 非水電解質二次電池
CN103351448B (zh) * 2013-06-28 2015-12-23 中国科学院青岛生物能源与过程研究所 一种耐高温型锂离子二次电池粘合剂及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171575A (ja) * 2007-01-09 2008-07-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池用負極板およびその製造方法ならびにそれを用いた非水電解液二次電池
JP2009231058A (ja) * 2008-03-24 2009-10-08 Sanyo Electric Co Ltd 非水電解質電池用負極及びその製造方法
JP2013114747A (ja) * 2011-11-24 2013-06-10 Toyota Motor Corp リチウムイオン二次電池の製造方法
KR20170111743A (ko) * 2016-03-29 2017-10-12 주식회사 엘지화학 이차전지용 음극 및 이를 포함하는 이차전지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220020995A1 (en) * 2020-07-15 2022-01-20 Sk Innovation Co., Ltd. Electrode for Secondary Battery
US11855248B2 (en) * 2020-07-15 2023-12-26 Sk On Co., Ltd. Electrode for secondary battery
US11929508B2 (en) 2020-07-15 2024-03-12 Sk On Co., Ltd. Electrode for secondary battery

Also Published As

Publication number Publication date
JPWO2020110690A1 (ja) 2021-10-14
US20220037640A1 (en) 2022-02-03
CN113169296A (zh) 2021-07-23
JP7361339B2 (ja) 2023-10-16
CN113169296B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US11005096B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2019239652A1 (ja) 非水電解質二次電池
US11450852B2 (en) Positive electrode for secondary battery, and secondary battery
JPWO2020175361A1 (ja) 非水電解質二次電池
US11626593B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7361340B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7361339B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US20210193995A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11749806B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US11616228B2 (en) Non-aqueous electrolyte secondary cell
WO2020110589A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2021106727A1 (ja) 非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極の製造方法
WO2024004836A1 (ja) 非水電解質二次電池
WO2022113796A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
CN112913049B (zh) 非水电解质二次电池用正极及非水电解质二次电池
WO2023234099A1 (ja) 非水電解質二次電池
WO2021117748A1 (ja) 非水電解質二次電池
WO2021117615A1 (ja) 非水電解質二次電池
JP7432850B2 (ja) 正極及び二次電池
WO2022118737A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888800

Country of ref document: EP

Kind code of ref document: A1