WO2020110685A1 - プレート式熱交換器及びヒートポンプ式給湯システム - Google Patents

プレート式熱交換器及びヒートポンプ式給湯システム Download PDF

Info

Publication number
WO2020110685A1
WO2020110685A1 PCT/JP2019/044129 JP2019044129W WO2020110685A1 WO 2020110685 A1 WO2020110685 A1 WO 2020110685A1 JP 2019044129 W JP2019044129 W JP 2019044129W WO 2020110685 A1 WO2020110685 A1 WO 2020110685A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
fluid
heat exchanger
heat transfer
transfer plate
Prior art date
Application number
PCT/JP2019/044129
Other languages
English (en)
French (fr)
Inventor
佳峰 永島
寿守務 吉村
発明 孫
匠 白石
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020558289A priority Critical patent/JP6949250B2/ja
Publication of WO2020110685A1 publication Critical patent/WO2020110685A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a plate heat exchanger and a heat pump hot water supply system.
  • a plate heat exchanger In a plate heat exchanger, a plurality of heat transfer plates having a flow path for flowing a fluid such as a refrigerant to be heat-exchanged and water are laminated. Some plate heat exchangers allow a fluid to flow in a desired direction from the inlet of the heat transfer plate in order to allow the fluid to flow uniformly through each heat transfer plate.
  • Patent Document 1 discloses a plate heat exchanger including a heat transfer plate provided with a main flow path and a bypass flow path.
  • the fluid flows from the inlet of the heat transfer plate toward the main flow path and the bypass flow path. Then, the fluid is caused to flow to the inner fins inside the heat transfer plate.
  • Patent Document 2 a distribution pipe which is inserted into the inlet of the heat transfer plate and through which the fluid flows, and pores which are formed on the side surface of the distribution pipe and discharge the fluid from the distribution pipe to the inlet of the heat transfer plate.
  • a C-shaped ring having a distribution pipe inserted therethrough is disclosed.
  • pores are arranged in the openings of the C-shaped ring. Therefore, when the fluid is discharged from the pores, the fluid flows from the opening of the C-shaped ring in the direction in which the opening is directed.
  • the main flow path is formed from the inlet of the heat transfer plate toward the inner fin side. Therefore, when the fluid is a refrigerant in a two-phase state in which a gas phase and a liquid phase are mixed, when the direction of the main flow path is turned upward, the refrigerant in the gas phase out of the two-phase state is the main flow. Concentrate on the road. This makes it difficult for the vapor-phase refrigerant to flow into the bypass passage. As a result, the vapor-phase refrigerant is unevenly distributed, and the heat exchange efficiency of the plate heat exchanger decreases.
  • the ring is C-shaped. For this reason, when the fluid is a refrigerant in a two-phase state in which a gas phase and a liquid phase are mixed, if the opening of the ring is directed upward, like the plate heat exchanger described in Patent Document 1, the gas phase is changed. There is a risk that the refrigerant will be unevenly distributed and the heat exchange efficiency of the plate heat exchanger will be reduced.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a plate heat exchanger and a heat pump hot water supply system with high heat exchange efficiency and easy assembly.
  • the plate heat exchanger forms a plate portion having an inflow/outflow hole for letting a fluid in and out, and a flow path for flowing a fluid around the outer periphery of the plate portion.
  • the heat transfer plate includes a plurality of heat transfer plates surrounding the outer wall portion and the inflow/outflow holes, and having a surrounding portion formed with an opening that opens a part of the surrounding portion.
  • the heat transfer plates are stacked, and the surrounding portion projects from the plate parts to the plate parts of the adjacent heat transfer plates and abuts on the plate parts.
  • the opening opens a part of the surrounding portion surrounding the inflow/outflow hole, the inflow/outflow of the fluid is narrowed down to the opening, and the flow velocity thereof increases. Accordingly, when the fluid is in the two-phase state of the gas phase and the liquid phase, the gas phase and the liquid phase are mixed and the gas phase is less likely to be unevenly distributed. As a result, the heat exchange efficiency of the plate heat exchanger is improved. Further, according to the configuration of the present invention, the plate heat exchanger can be assembled simply by stacking the heat transfer plates having the enclosing portion, and therefore the plate heat exchanger can be easily assembled.
  • FIG. 1 The disassembled perspective view of the plate-type heat exchanger which concerns on Embodiment 1 of this invention.
  • 1 is a perspective view of a plate heat exchanger according to Embodiment 1 of the present invention. Sectional view taken along the line III-III shown in FIG. The front view of the 1st heat transfer plate with which the plate-type heat exchanger which concerns on Embodiment 1 of this invention is equipped.
  • Front view of a second heat transfer plate included in the plate heat exchanger according to Embodiment 1 of the present invention Enlarged perspective view of the vicinity of the first inflow hole of the first heat transfer plate included in the plate heat exchanger according to Embodiment 1 of the present invention The enlarged front view of the 1st inflow hole of the 1st heat transfer plate with which the plate-type heat exchanger which concerns on Embodiment 1 of this invention is equipped.
  • Enlarged perspective view of the vicinity of the first inflow hole of the first heat transfer plate included in the plate heat exchanger according to Embodiment 2 of the present invention Sectional drawing of the plate-type heat exchanger which concerns on Embodiment 2 of this invention
  • a perspective view of a throttle tube provided in a plate heat exchanger according to a third embodiment of the present invention The front view of the modification of the 1st heat transfer plate with which the plate-type heat exchanger which concerns on Embodiment 3 of this invention is equipped.
  • Block diagram of a heat pump hot water supply system according to Embodiment 4 of the present invention The enlarged front view of the modification of the surrounding part with which the plate-type heat exchanger which concerns on Embodiment 1 of this invention is equipped.
  • the perspective view of the 1st modification of the protrusion provided in the inner fin with which the plate-type heat exchanger which concerns on Embodiment 1 of this invention is provided.
  • the perspective view of the 2nd modification of the protrusion provided in the inner fin with which the plate-type heat exchanger which concerns on Embodiment 1 of this invention is provided.
  • the perspective view of the 3rd modification of the projection provided in the inner fin with which the plate type heat exchanger concerning Embodiment 1 of the present invention is provided.
  • the perspective view of the 4th modification of the projection provided in the inner fin with which the plate type heat exchanger concerning Embodiment 1 of the present invention is provided.
  • the plate heat exchanger includes a first heat transfer plate having a flow path for flowing a first fluid and a second heat transfer plate having a flow path for flowing a second fluid. It is a plate heat exchanger in which plates and are stacked.
  • the first fluid is a refrigerant in a two-phase state in which a gas phase and a liquid phase are mixed, in order to suppress uneven distribution of the refrigerant, the first heat transfer plate, An enclosing portion having an opening for reducing the inflow amount is formed.
  • FIG. 1 is an exploded perspective view of a plate heat exchanger 1A according to the first embodiment.
  • FIG. 2 is a perspective view of the plate heat exchanger 1A.
  • FIG. 3 is a cross-sectional view taken along the line III-III shown in FIG.
  • FIG. 4 is a front view of the first heat transfer plate 30A included in the plate heat exchanger 1A.
  • FIG. 5 is a front view of the second heat transfer plate 40 included in the plate heat exchanger 1A.
  • the inner fin 70 shown in FIG. 1 is omitted for easy understanding. Further, the internal structures of the outer wall portions 25, 35, 45, the tubular walls 37, 47, etc. are displayed larger than the actual size.
  • the plate heat exchanger 1A includes a first reinforcing plate 10 that enhances the strength of the device on the forefront side, and a first side plate 20 arranged on the back side of the first reinforcing plate 10.
  • first side plate 20 On the back surface side of the first side plate 20, first heat transfer plates 30A and second heat transfer plates 40 that are alternately stacked and back surfaces of the first heat transfer plate 30A and the second heat transfer plate 40 that are stacked.
  • the second side plate 50 provided on the side and the second reinforcing plate 60 that enhances the strength of the device on the rearmost side are provided.
  • the first reinforcing plate 10 is formed in a rectangular shape with rounded corners, as shown in FIG.
  • the thickness is greater than the thickness of both the first heat transfer plate 30A and the second heat transfer plate 40, as shown in FIG. 3, in order to increase the strength.
  • through holes 110 and 140 are formed side by side in the X direction, that is, in the left-right direction.
  • two through holes are also formed in the upper region of the first reinforcing plate 10 side by side in the left-right direction.
  • Circular tubes 11-14 are inserted and fixed in these through holes for supplying and discharging the first fluid or the second fluid.
  • the circular pipes 11 and 12 are arranged in the lower left region and the upper left region of the first reinforcing plate 10 by being inserted into the through hole 110 and the through hole (not shown).
  • the circular pipes 11 and 12 are connected to circular pipes of an external device to supply the first fluid into the plate heat exchanger 1A.
  • the circular pipes 11 and 12 discharge the first fluid from the plate heat exchanger 1A.
  • the circular tubes 13 and 14 are arranged in the upper right region and the lower right region of the first reinforcing plate 10 by being inserted into the through holes (not shown) and the above through holes 140.
  • the circular tubes 13 and 14 are connected to circular tubes of an external device to supply the second fluid into the plate heat exchanger 1A. Alternatively, the second fluid is discharged from the plate heat exchanger 1A.
  • a first side plate 20 is arranged on the back side of the circular tubes 11-14, as shown in FIG.
  • the first side plate 20 is formed to have the same shape and the same size as the first reinforcing plate 10 in a front view, that is, in the ⁇ Y direction. Then, the first side plate 20 is overlapped with the first reinforcing plate 10 with their outer edges aligned. A circular through hole 21-24 is formed in the first side plate 20 at a position overlapping the circular pipe 11-14 in the Y direction in a state of being overlapped with the first reinforcing plate 10. Accordingly, when the first fluid and the second fluid are supplied to the circular pipes 11 and 13, the first side plate 20 mixes the first fluid and the second fluid with the laminated first heat transfer plate 30A and the first heat transfer plate 30A. (2) Supply to the heat transfer plate 40 side. Further, the first side plate 20 discharges the first fluid and the second fluid discharged from the stacked first heat transfer plate 30A and second heat transfer plate 40 to the circular tubes 12 and 14 side.
  • the first side plate 20 is provided with an outer wall portion 25 that extends to the back side and surrounds the outer periphery thereof.
  • a first heat transfer plate 30A is arranged on the back side of the first side plate 20.
  • the first heat transfer plate 30A includes an outer wall portion 35 that surrounds the outer circumference, as described later.
  • the first side plate 20 is covered from the front side by the first heat transfer plate 30A, and the outer wall portion 25 thereof is in contact with the outer wall portion 35 of the first heat transfer plate 30A.
  • the first side plate 20 forms a space serving as a flow path on the front side of the first heat transfer plate 30A.
  • the first heat transfer plate 30A and the second heat transfer plate 40 have the same shape and the same size as the first reinforcing plate 10 in a front view, as with the first side plate 20. There is. Further, as shown in FIG. 3, the first heat transfer plate 30A and the second heat transfer plate 40 are provided with outer wall portions 35 and 45 which extend to the back surface side and surround the outer peripheries thereof. Then, the first heat transfer plate 30A and the second heat transfer plate 40 are alternately laminated in this order from the front surface side in the order of the first heat transfer plate 30A and the second heat transfer plate 40. The first heat transfer plate 30A and the second heat transfer plate 40 are in contact with the outer wall portions 35 and 45. As a result, a space serving as a flow path is formed between the plate portions 36 and 46.
  • inner fins 70 are provided in the flow path space to enhance heat exchange efficiency.
  • the inner fin 70 has a large number of wavy projections in order to increase the area of contact with the first fluid or the second fluid flowing in the flow path. As a result, the inner fin 70 makes it easier for heat to be transferred from the first fluid or the second fluid, and improves heat exchange efficiency.
  • first heat transfer plate 30A and the second heat transfer plate 40 are, as shown in FIGS. 1, 4 and 5, at positions where they overlap the through holes 21-24 of the first side plate 20 in the Y direction. It has four through holes formed to have the same diameter and shape as the through holes 21-24.
  • first fluid is supplied to the circular pipes 11 and 13
  • the two through-holes among the four through-holes are formed in the first flow path of the first heat transfer plate 30 ⁇ /b>A and the second heat transfer plate 40.
  • Supplying a fluid and a second fluid Supplying a fluid and a second fluid.
  • the remaining two through holes discharge the first fluid and the second fluid from the flow paths of the first heat transfer plate 30A and the second heat transfer plate 40 to the circular tubes 12 and 14.
  • an external device connected to the circular pipe 11-14 may switch the flowing directions of the first fluid and the second fluid.
  • the first fluid is supplied to the circular pipe 12 and the first fluid is discharged from the circular pipe 11.
  • the direction of the flow of the first fluid may be switched to the state in which the first fluid flows.
  • the second fluid is supplied from the circular pipe 13 and discharged from the circular pipe 14.
  • the four through holes of the first heat transfer plate 30A are referred to as a first inflow hole 31, a first outflow hole 32, a second passage hole 33, and a second passage hole 34. .. Further, the four through holes of the second heat transfer plate 40 are referred to as a first passage hole 41, a first passage hole 42, a second inflow hole 43, and a second outflow hole 44.
  • the first inflow hole and the first outflow hole are a hole on the side where the first fluid flows in and a hole on the side where the first fluid flows out, based on the inner fins 70 provided on the first heat transfer plate 30A. That is.
  • the second inflow hole and the second outflow hole refer to a hole on the side where the second fluid flows in and a hole on the side where the second fluid flows, with reference to the inner fins 70 provided on the second heat transfer plate 40. is there.
  • the first passage hole is a hole provided in the second heat transfer plate 40, which serves as a passage through which the first fluid passes, for flowing the first fluid to the first heat transfer plate 30A.
  • the second passage hole is a hole which is provided in the first heat transfer plate 30A and serves as a passage through which the second fluid passes, for flowing the first part fluid to the second heat transfer plate 40.
  • the first inflow hole 31, the first outflow hole 32, the second passage hole 33, and the second passage hole 34 of the first heat transfer plate 30A are the through holes 21 of the first side plate 20, It overlaps with 22, 23, 24 in the Y direction.
  • the second passage hole 33 and the second passage hole 34 are surrounded by the tubular wall 37 shown in FIGS. 3 and 4.
  • the remaining first inflow hole 31 and the first outflow hole 32 are not surrounded by the tubular wall 37. Therefore, when the first fluid is supplied from the circular pipe 11 and the second fluid is supplied from the circular pipe 13, the first fluid flows from the first inflow hole 31 side into the first heat transfer plate 30A. It flows into the inner fin 70.
  • the first fluid flowing into the inner fin 70 flows out from the inner fin 70 toward the first inflow hole 31 side.
  • the second fluid does not flow through the second passage hole 33 and the second passage hole 34 into the passage of the first heat transfer plate 30A.
  • the second fluid does not flow out of the flow path of the first heat transfer plate 30A. As a result, only the first fluid flows in the flow path of the first heat transfer plate 30A.
  • the first passage hole 41, the first passage hole 42, the second inflow hole 43, and the second outflow hole 44 of the second heat transfer plate 40 are the through holes of the first side plate 20, as shown in FIG. 21, 22, 23, 24 overlap in the Y direction.
  • the first passage hole 41 and the first passage hole 42 are surrounded by the tubular wall 47 shown in FIGS. 3 and 5.
  • the second inflow hole 43 and the second outflow hole 44 are not surrounded by the tubular wall 47.
  • the first fluid passes through the first passage hole 41 and the first passage hole 42, and It does not flow into the flow path of the second heat transfer plate 40, and does not flow out from the flow path of the second heat transfer plate 40.
  • the second fluid flows into the inner fins 70 in the second heat transfer plate 40 from the second inflow hole 43 side. Then, the second fluid flowing into the inner fin 70 flows out from the inner fin 70 toward the second outflow hole 44 side. As a result, only the second fluid flows in the flow path of the second heat transfer plate 40.
  • the first heat transfer plate 30A and the second heat transfer plate 40 that are stacked are alternately stacked on the backmost side of the second heat transfer plate 40.
  • the above-mentioned first passage hole 41 and first passage hole 42 are formed in the second heat transfer plate 40. Therefore, when the first fluid is supplied from the circular pipe 11 and the first fluid is discharged to the circular pipe 12, the second heat transfer plate 40 passes through the first passage hole 41 and the first passage hole 42. The first fluid may flow out to the back side.
  • a second side plate 50 having a flow path for the first fluid is arranged on the back side of the stacked first heat transfer plate 30A and second heat transfer plate 40. ing.
  • the second side plate 50 has the same configuration as the first heat transfer plate 30A, except that, as shown in FIG. 1, of the four through holes, two through holes are not formed. Specifically, the second side plate 50 has the same shape and size as the first heat transfer plate 30A. In the second side plate 50, a first inflow hole 51 having the same configuration as the first inflow hole 31 and a first outflow hole 52 having the same configuration as the first outflow hole 32 are formed. An inner fin 70 is provided in the flow path of the second side plate 50 to exchange heat with the flowing first fluid. A second reinforcing plate 60 is arranged on the back side of the second side plate 50 to close the first inflow hole 31 and the first outflow hole 32.
  • the second reinforcing plate 60 is formed in the same size and shape as the first reinforcing plate 10.
  • the through holes are not formed in the second reinforcing plate 60.
  • the second reinforcing plate 60 is in contact with the second side plate 50. As a result, the second reinforcing plate 60 prevents the first fluid from leaking from the second side plate 50.
  • the thickness of the second reinforcing plate 60 is larger than the thickness of any of the first heat transfer plate 30A, the second heat transfer plate 40, and the second side plate 50. Thereby, the second reinforcing plate 60 reinforces these plates.
  • the external device may switch the flowing directions of the first fluid and the second fluid.
  • the first fluid may change from a single-phase state of a gas phase to a two-phase state of a gas phase and a liquid phase.
  • the gas phase portion of the first fluid flows upward of the first inflow hole 31, resulting in the gas phase.
  • the first fluid may not be uniformly distributed over the entire inner fin 70.
  • the first heat transfer plate 30A is provided with an enclosing portion 81A having an opening 80A as shown in FIG. Subsequently, the configuration of the enclosing portion 81A will be described with reference to FIGS. 6 and 7.
  • FIG. 6 is an enlarged perspective view near the first inflow hole 31 of the first heat transfer plate 30A included in the plate heat exchanger 1A.
  • FIG. 7 is an enlarged front view of the vicinity of the first inflow hole 31.
  • the first heat transfer plate 30A includes an annular enclosing portion 81A concentric with the first inflow hole 31, an opening 80A that opens a part of the annular ring of the enclosing portion 81A, Is equipped with.
  • the enclosing portion 81A is formed in a so-called bead shape in which the plate surface of the plate portion 36 is bent.
  • the bead is a protrusion formed by press working.
  • the enclosing portion 81A projects toward the +Y side, that is, the front side.
  • the height of the enclosing portion 81A is the same as the height from the plate portion 36 of the first heat transfer plate 30A to the front side first side plate 20 or the second heat transfer plate 40.
  • the width W1 of the enclosing portion 81A shown in FIG. 6 is formed to have a size of 1-2 mm which enables brazing.
  • the enclosing portion 81A is joined to the first side plate 20 or the second heat transfer plate 40 on the front side by brazing. As a result, the enclosing portion 81A surrounds the first inflow hole 31 and prevents the first fluid supplied to the first inflow hole 31 from flowing into the flow path inside the first heat transfer plate 30A.
  • the opening 80A is formed in a shape that traverses the enclosing portion 81A in the radial direction from the center C of the enclosing portion 81A.
  • the radial direction is a direction extending obliquely downward to the right from the center C of the enclosing portion 81A, that is, obliquely downward to the side opposite to the second passage hole 34 side.
  • the width across which the opening 80A crosses the enclosing portion 81A, that is, the opening width L is equal to or less than the width W1 of the enclosing portion 81A.
  • the opening 80A linearly extends in the above-described direction while maintaining the opening width L thereof.
  • the opening 80A restricts the location where the first fluid supplied to the first inflow hole 31 flows out and narrows the flow rate. As a result, the opening 80A increases the flow velocity of the first fluid.
  • the opening 80A facilitates mixing of the gas phase and the liquid phase when the first fluid is in the two-phase state of the gas phase and the liquid phase. As a result, the opening 80A suppresses uneven distribution of the gas phase.
  • the radial direction in which the opening 80A extends is, as will be described later, in order to enhance heat exchange efficiency, in addition to the diagonal downward direction from the center C of the enclosing portion 81A opposite to the second passage hole 34 side, the enclosing portion is also included.
  • the angle formed by the straight line extending from the center C of the enclosing portion 81A in the vertical direction and the straight line extending from the center C in the extending direction of the opening 80A is ⁇
  • the angle ⁇ is in the vertical direction from the center C.
  • the angle ⁇ is preferably in the range of ⁇ 60° or more and +120° or less when the right side of the straight line is plus and the left side is minus.
  • the opening width L of the opening 80A is preferably 1/20 or less of the inlet circumference D when the inlet circumference of the first inlet hole 31 is D, as described later.
  • the circular tube 11 is supplied with the first fluid in a two-phase state having a liquid phase and a gas phase
  • the circular tube 13 is supplied with the second fluid in a single-phase state with only the liquid phase. Fluid is supplied.
  • the longitudinal direction of the plate heat exchanger 1A in the front view is oriented in the vertical direction
  • the lateral direction is oriented in the horizontal direction.
  • the first inflow hole 31 and the second passage hole 34 of the first heat transfer plate 30A are horizontally arranged
  • the first outflow hole 32 and the second passage hole 33 are horizontally arranged.
  • first passage hole 41 and the second outflow hole 44 of the second heat transfer plate 40 are horizontally arranged, and the first passage hole 42 and the second inflow hole 43 are horizontally arranged.
  • the circular tubes 11 and 14 are located below the circular tubes 12 and 13. Further, the first fluid is discharged from the circular pipe 12 and the second fluid is discharged from the circular pipe 14 of the plate heat exchanger 1A.
  • the first fluid supplied to the circular pipe 11 generally has a gas phase ratio of the two phases including a liquid phase and a gas phase, that is, a so-called dryness of about 0.05 to 0.3. It is a refrigerant with a typical dryness.
  • FIG. 8 is a conceptual diagram of the first fluid 200 in a two-phase state having a liquid phase and a gas phase, which is supplied to the plate heat exchanger 1A.
  • FIG. 9 shows a first type of a first fluid 200 having a two-phase state having a liquid phase and a gas phase, which is supplied to a plate heat exchanger including a first heat transfer plate 500 not provided with a surrounding portion 81A. 6 is an enlarged front view of the heat transfer plate 500.
  • FIG. FIG. 10 is an enlarged front view of the first heat transfer plate 30A when the two-phase first fluid 200 having a liquid phase and a gas phase is supplied to the plate heat exchanger 1A.
  • FIG. 11 is a conceptual diagram of the first fluid 200 that flows into the first heat transfer plate 30A when the two-phase first fluid 200 having a liquid phase and a gas phase is supplied to the plate heat exchanger 1A. ..
  • the first fluid 200 in the state shown in FIG. 8 is supplied to the circular pipe 11.
  • the first fluid 200 is supplied in a so-called plug flow state in which the gas phase 220 exists in the liquid phase 210 in the form of large bubbles.
  • the first fluid 200 When the first fluid 200 is supplied to the circular pipe 11, the first fluid 200 passes through the through hole 21 of the first side plate 20. As a result, the first fluid 200 is supplied to the first inflow hole 31 of the first heat transfer plate 30A on the most front side. Then, the first fluid 200 passes through the first passage hole 41 of the second heat transfer plate 40 and is further supplied to the first inflow hole 31 of the first heat transfer plate 30A on the back surface side. Thereby, the first fluid 200 is supplied to the first inflow holes 31 of all the first heat transfer plates 30A.
  • the first fluid 200 When the first fluid 200 is supplied to the first inflow hole 31, the first fluid 200 does not have the first inflow hole 31 surrounded by the tubular wall 37 shown in FIG. It flows into the flow path.
  • the thermal conductivity of the gas phase 220 is about 10% of that of the liquid phase 210. For this reason, if the first fluid flows while still containing large bubbles, the heat exchange efficiency in the inner fins 70 will decrease.
  • the enclosing portion 81A is formed. Therefore, the first fluid 200 flowing out from the first inflow hole 31 to the periphery of the hole is prevented from flowing upward of the first inflow hole 31 because the surrounding portion 81A prevents the first fluid 200 from diffusing into the flow path.
  • the enclosing portion 81A is formed with an opening 80A for opening a part of the enclosing portion. Therefore, the first fluid 200 flows from the opening 80A to the outside of the enclosing portion 81A.
  • the first fluid 200 flows from the center C of the first inflow hole 31 in the direction in which the opening 80A opens.
  • the first fluid 200 flows from the opening 80A toward the outer wall portion 35, as shown by the arrow A1.
  • the first fluid 200 collides with the outer wall portion 35, and as shown by the arrow A2-A4, between the first inflow hole 31 and the second passage hole 34, on the ⁇ X side of the first inflow hole 31, and on the ⁇ X side. , And splits to the +X side with respect to the second passage hole 34.
  • the first fluid 200 passes through the inner fin 70 in a state where the first fluid 200 is uniformly spread over the entire X direction of the first heat transfer plate 30A, as shown by an arrow A5.
  • the heat exchange efficiency of the plate heat exchanger 1A is improved as compared with the case of the first heat transfer plate 500 shown in FIG.
  • the first fluid 200 flows from the inside of the enclosing portion 81A to the outside thereof, the flow rate thereof is narrowed to the opening 80A. This increases the flow velocity of the first fluid 200. As a result, the gas phase and the liquid phase are easily mixed, and the first fluid 200 changes from the plug flow state to the bubble flow state including smaller bubbles shown in FIG. 11. As a result, the first fluid 200 changes from a state in which a small number of large bubbles are present to a state in which small bubbles are present. That is, the first fluid 200 changes to a state in which bubbles and liquid are in an equal ratio. As a result, the heat exchange efficiency of the plate heat exchanger 1A increases.
  • the first fluid 200 passes through the inner fins 70 and reaches the first outflow holes 32 in the upper region of the first heat transfer plate 30A.
  • the first fluid that has reached the first outflow hole 32 flows from the first outflow hole 32 to the through hole 22 of the first side plate 20.
  • the first fluid 200 is discharged from the circular pipe 12 to the outside of the plate heat exchanger 1A. Then, the process returns to the external device connected to the circular pipe 12.
  • the opening 80A uniformly spreads the first fluid 200 in the X direction of the first heat transfer plate 30A. Further, the opening 80A enhances the heat exchange efficiency of the plate heat exchanger 1A. Subsequently, detailed effects of the opening 80A will be described with reference to FIGS.
  • FIG. 12 is a graph showing a distribution of the first fluid 200 in the first heat transfer plate 30A when the two-phase first fluid 200 having a liquid phase and a gas phase is supplied to the plate heat exchanger 1A. It is a figure.
  • FIG. 13 is a graph showing the relationship between the size of the opening 80A and the heat exchange efficiency of the plate heat exchanger 1A.
  • FIG. 14 is a graph showing the relationship between the position of the opening 80A and the heat exchange efficiency of the plate heat exchanger 1A.
  • the horizontal axis of the graph in FIG. 12 shows the flow rate at each position in the X direction when the left end surface of the first heat transfer plate 30A shown in FIG. 7 is the origin O and the right end surface is the position W.
  • “with inlet throttle” shown in the graph of FIG. 12 is a plate when the first heat transfer plate 30A includes the enclosing portion 81A having the opening 80A and the flow rate of the first fluid 200 is narrowed by the opening 80A.
  • the flow rate of the type heat exchanger 1A is shown.
  • “no inlet throttling” described in the graph does not have the enclosing portion 81A, and the flow rate of the first fluid 200 is not throttled by the opening 80A of the enclosing portion 81A.
  • 5 shows the flow rate of a plate heat exchanger with 500.
  • FIG. 13 shows the heat exchange efficiency of the plate heat exchanger 1A when the drawing rate is changed.
  • the heat exchange efficiency is a relative heat exchange efficiency when the heat exchange efficiency in the state where the drawing rate is 1 is 1. That is, the heat exchange efficiency shown in FIG. 13 is a relative heat exchange efficiency when the heat exchange efficiency in the “without inlet throttle” state of FIG. 12 is 1. In FIG. 13, this relative heat exchange efficiency is displayed as “heat exchange performance”.
  • FIG. 14 shows the heat exchange efficiency of the plate heat exchanger 1A when the angle ⁇ shown in FIG. 7 is changed.
  • FIG. 14 also shows the relative heat exchange efficiency when the heat exchange efficiency in the “without inlet throttle” state of FIG. 12 is 1.
  • the relative heat exchange efficiency is indicated as "heat exchange performance”.
  • the aperture ratio in FIG. 14 is 0.02.
  • the first fluid 200 allows the first fluid 200 to flow more than the first heat transfer plate 500 including the opening 80A and the enclosing portion 81A. It can be seen that the current flows uniformly in the X direction of 30A.
  • the heat exchange efficiency of the plate heat exchanger 1A is increased when the drawing rate is 0.05, that is, when L/D is 1/20 or less. From this result, it is understood that the opening width L of the opening 80A is preferably 1/20 or less of the inlet circumferential length D of the first inflow hole 31, as described above.
  • the plate when the angle ⁇ of the opening 80A is ⁇ 60° or more and +120° or less, the plate is smaller than the case where the angle ⁇ of the opening 80A is smaller than ⁇ 60° or larger than 120°. It can be seen that the heat exchange efficiency of the heat exchanger 1A is increased. From this result, as described above, the angle formed by the straight line extending in the vertical direction from the center C of the enclosing portion 81A shown in FIG. 7 and the straight line extending in the direction in which the opening 80A extends from the center C is ⁇ . It is sometimes found that the angle ⁇ is preferably ⁇ 60° or more and +120° or less.
  • the first heat transfer plate 30A includes the opening 80A that opens a part of the enclosing portion 81A to restrict the outflow of the first fluid 200. There is. This increases the flow velocity of the first fluid 200 when passing through the opening 80A. As a result, in the plate heat exchanger 1A, when the first fluid 200 is in the two-phase state of the gas phase and the liquid phase, it is possible to mix the first fluid and reduce the bubbles in the gas phase. As a result, the heat exchange efficiency of the plate heat exchanger 1A can be increased.
  • the opening 80A is directed obliquely downward.
  • the plate portion 36 of the first heat transfer plate 30A is surrounded by the outer wall portion 35. Therefore, the first fluid 200 collides with the outer wall portion 35 after flowing out from the opening 80A. This causes the first fluid 200 to spread uniformly in the X direction of the first heat transfer plate 30A. As a result, the first fluid 200 is not unevenly distributed in the first heat transfer plate 30A, and the heat exchange efficiency of the plate heat exchanger 1A is improved.
  • An enclosing portion 81A having an opening 80A is formed on each of the first heat transfer plates 30A.
  • the surrounding portion 81A and the opening 80A are integral with the first heat transfer plate 30A. Therefore, it is not necessary to adjust the orientation of the opening 80A for each first heat transfer plate 30A.
  • the plate heat exchanger 1A can be assembled only by stacking the first heat transfer plate 30A and the second heat transfer plate 40. As a result, its assembly is easy.
  • the enclosing portion 81A has a so-called bead shape, and the opening 80A is formed in the bead.
  • the enclosing portion 81A and the opening 80A are not limited to this.
  • the surrounding portion 81A and the opening 80A may be those that control the flow of the first fluid.
  • the shapes of the enclosing portion 81A and the opening 80A are arbitrary as long as they are. In the second embodiment, the shapes of modified examples of the enclosing portion 81A and the opening 80A will be described.
  • the enclosing portion 81B has a so-called burring shape. Further, the openings 80B are pores.
  • the plate heat exchanger 1B according to the second embodiment will be described with reference to FIGS. In the second embodiment, a configuration different from that of the first embodiment will be described.
  • FIG. 15 is a front view of the first heat transfer plate 30B included in the plate heat exchanger 1B according to the second embodiment.
  • FIG. 16 is an enlarged perspective view of the vicinity of the first inflow hole 31 of the first heat transfer plate 30B included in the plate heat exchanger 1B.
  • FIG. 17 is a sectional view of the plate heat exchanger 1B. Note that FIG. 17 is a cross-sectional view when the plate heat exchanger 1B is cut along the same cutting line as the III-III cutting line shown in FIG. 2.
  • the inner fin 70 shown in FIG. 1 is omitted for easy understanding. Further, the internal structures of the outer wall portions 25, 35, 45, the tubular walls 37, 47, etc. are displayed larger than the actual size.
  • the first heat transfer plate 30B included in the plate heat exchanger 1B has an enclosure 81B formed by burring the first inflow hole 31 and a height at which the enclosure 81B rises. And an opening 80B in the form of a small pore.
  • the burring process is a process of raising the outer edge portion of the first inflow hole 31.
  • the enclosing portion 81B is formed in a tubular shape, as shown in FIGS. 16 and 17.
  • the tube axis extends in the Y direction and is perpendicular to the plate portion 36.
  • a flange portion having a shape in which the pipe wall is bent to the outside of the circular pipe is provided.
  • the surrounding portion 81B is formed at the same height in the Y direction as the distance from the plate portion 36 shown in FIG. 16 to the adjacent first side plate 20 or second heat transfer plate 40 (not shown).
  • the tip of the flange portion of the enclosing portion 81B is joined to the first side plate 20 or the second heat transfer plate 40 shown in FIG. 17 by brazing.
  • the opening 80B penetrates the side wall of the enclosing portion 81B while maintaining a constant circular shape.
  • the penetrating direction is the same as the direction of the opening 80A described in the first embodiment with respect to the center C of the first inflow hole 31 when viewed in the Y direction.
  • the penetrating direction of the opening 80B is parallel to the plate portion 36.
  • the diameter of the opening 80B is the same as the width of the opening 80A described in the first embodiment.
  • the penetrating direction of the opening 80B is preferably the same as the direction of the desired angle ⁇ described in the first embodiment.
  • the diameter of the opening 80B may be the same as the desired width L described in the first embodiment.
  • the operation of the opening 80B is the same as that of the opening 80A of the first embodiment. Therefore, in the second embodiment, description of the operation of the opening 80B is omitted.
  • the plate heat exchanger 1B according to the second embodiment includes the openings 80B in the shape of pores formed in the tubular enclosure 81B. Therefore, the flow rate of the first fluid 200 flowing out of the first inflow hole 31 through the opening 80B can be narrowed. As a result, in the plate heat exchanger 1B, it is possible to increase the flow velocity of the first fluid 200 and reduce the bubbles in the gas phase when the first fluid 200 is in the two-phase state of the gas phase and the liquid phase. it can. As a result, the heat exchange efficiency of the plate heat exchanger 1B is increased, as in the first embodiment.
  • the opening 80B can be formed only by forming a hole in the tubular enclosing portion 81B, so that the plate heat exchanger 1B can be easily manufactured. Further, the flow rate of the first fluid 200 can be easily adjusted by the opening 80B.
  • the plate heat exchanger 1A according to the first embodiment may have a configuration other than the enclosing portion 81A and the opening 80A.
  • the plate heat exchanger 1C according to the third embodiment includes, in addition to the enclosing portion 81A and the opening 80A of the first embodiment, a throttle pipe 90 that is inserted into the first inflow hole 31 and narrows down the flow rate of the first fluid. ..
  • the plate heat exchanger 1C according to Embodiment 3 will be described with reference to FIGS. 18 to 20.
  • a configuration different from the first and second embodiments will be described.
  • FIG. 18 is a perspective view of a plate heat exchanger 1C according to the third embodiment.
  • FIG. 19 is a perspective view of the throttle tube 90 included in the plate heat exchanger 1C.
  • FIG. 20 is a front view of a modified example of the first heat transfer plate 30C included in the plate heat exchanger 1C.
  • the plate heat exchanger 1C includes a throttle tube 90 inserted in the circular tube 11.
  • the throttle pipe 90 is an example of a fluid pipe through which a fluid flows, as referred to in this specification.
  • the outer diameter of the throttle pipe 90 is smaller than the inner diameter of the circular pipe 11. Although not shown, it is smaller than the inner diameter of the first inflow hole 31 of the first heat transfer plate 30C.
  • the throttle tube 90 is coaxial with the circular tube 11 and the tube axes of the first inflow holes 31. Although not shown, the throttle tube 90 extends from the front side of the circular tube 11 to the second reinforcing plate 60. Further, the throttle tube 90 is inserted through the first inflow hole 31 of the first heat transfer plate 30C and the first passage hole 41 of the second heat transfer plate 40 in the plate heat exchanger 1C.
  • a plurality of circular pores 91 having the same diameter as the opening 80B described in the second embodiment are formed.
  • the pitch of the pores 91 is the same as the plate interval between the first heat transfer plate 30C and the second heat transfer plate 40 that are stacked. Then, the pores 91 penetrate the tube surface portion of the throttle tube 90, and the penetrating direction is directed in the same direction as the opening 80B described in the first embodiment.
  • the throttle tube 90 is smaller than the inner diameter of the first inflow hole 31 of the first heat transfer plate 30C. Therefore, when the first fluid 200 is supplied to the throttle pipe 90, the flow velocity of the first fluid 200 in the throttle pipe 90 is smaller than that of the first fluid 200 in the first inflow hole 31 described in the first embodiment. Is also big. As a result, the bubbles in the first fluid 200 are small when the first fluid 200 is in the two-phase state of the gas phase and the liquid phase.
  • the plate heat exchanger 1C according to the third embodiment includes the throttle tube 90 smaller than the inner diameter of the first inflow hole 31 of the first heat transfer plate 30C, the throttle tube 90 is in the vapor phase.
  • the flow velocity of the first fluid 200 becomes higher than that when the throttle pipe 90 is not provided.
  • the plate heat exchanger 1C it is possible to reduce the bubbles in the first fluid 200 and improve the heat exchange efficiency of the plate heat exchanger 1C.
  • the plate heat exchanger 1C when the plate heat exchanger 1C includes the throttle tube 90, the first inflow hole 31 and the first outflow hole 32 of the first heat transfer plate 30C have the second passage hole 33 and the first outflow hole 32. It is preferable that it has the same diameter as the two passage hole 34. In this case, the first passage hole 41 and the first passage hole 42 of the second heat transfer plate 40 may have the same diameter as the second inflow hole 43 and the second outflow hole 44. With such a shape, the first heat transfer plate 30C and the second heat transfer plate 40 have the same configuration except the orientation. As a result, the plate heat exchanger 1C can share the first heat transfer plate 30C and the second heat transfer plate 40. Further, as shown in FIG. 20, since the plate heat exchanger 1C includes the throttle tube 90, the enclosing portion 81A and the opening 80A may be omitted. Even in this case, the flow velocity of the first fluid 200 can be increased by the throttle tube 90.
  • the fourth embodiment is a heat pump hot water supply system 300 using the plate heat exchanger 1A according to the first embodiment.
  • a heat pump hot water supply system 300 according to Embodiment 4 will be described with reference to FIG.
  • FIG. 21 is a block diagram of heat pump hot water supply system 300 according to the fourth embodiment. As shown in FIG. 21, heat pump hot water supply system 300 includes a refrigerant circuit 310 and a water circuit 320 that exchanges heat with refrigerant circuit 310.
  • the refrigerant circuit 310 includes a compressor 311 for compressing the refrigerant, a plate heat exchanger 1A for exchanging heat between the refrigerant and the water in the water circuit 320, an expansion valve 312, and a refrigerant expanded by the expansion valve 312 as heat to the outside air. And a heat exchanger 313 for exchanging.
  • the compressor 311, the plate heat exchanger 1A, the expansion valve 312, and the heat exchanger 313 are connected in this order.
  • the compressor 311 is connected to the circular pipe 12 of the plate heat exchanger 1A, and the expansion valve 312 is connected to the circular pipe 11.
  • the refrigerant circuit 310 supplies the refrigerant as the first fluid to the plate heat exchanger 1A.
  • the refrigerant circuit 310 also includes a four-way valve (not shown).
  • the water circuit 320 includes a heating/hot water supply device 322, a pump 321, and a plate heat exchanger 1A.
  • the plate heat exchanger 1A is the same device as the refrigerant circuit 310.
  • the heating/hot water supply device 322, the pump 321, and the plate heat exchanger 1A are connected in this order to form a closed circuit.
  • the pump 321 is connected to the circular pipe 13 of the plate heat exchanger 1A, and the heating/hot water supply water utilization device 322 is connected to the circular pipe 14.
  • the water circuit 320 supplies water to the plate heat exchanger 1A as the second fluid.
  • the first fluid 200 is a refrigerant such as R410A, R32, R290 and CO2, and the second fluid is water.
  • the first fluid 200 is supplied from the compressor 311 to the circular pipe 12 of the plate heat exchanger 1A shown in FIG. At this time, the first fluid 200 is in a single-phase state having a high temperature and high pressure gas phase. Then, the first fluid 200 flows into the first heat transfer plate 30A of the plate heat exchanger 1A. Since the first fluid 200 flows into the first heat transfer plate 30A in a gas-phase single-phase state, the uneven distribution of the first fluid described in the first embodiment is unlikely to occur. The first fluid 200 condenses and radiates heat in the first heat transfer plate 30A to be in a two-phase state in which a gas phase and a liquid phase are mixed.
  • the first fluid 200 is completely liquefied. After that, the first fluid 200 is discharged from the circular pipe 11 of the plate heat exchanger 1A in a single-phase state of high pressure liquid. Then, the first fluid 200 returns to the compressor 311 again. As a result, the first fluid 200 circulates in the refrigerant circuit 310.
  • the second fluid is supplied to the circular pipe 13 of the plate heat exchanger 1A shown in FIG.
  • the second fluid flows into the second heat transfer plate 40 of the plate heat exchanger 1A, absorbs heat in the second heat transfer plate 40, and becomes hot water.
  • the second fluid is discharged from the circular pipe 14 to the outside of the plate heat exchanger 1A.
  • the second fluid heats the interior of the room with the heating/hot water supply device 322.
  • the heat pump hot water supply system 300 is used for cooling.
  • a four-way valve (not shown) reverses the flow of the first fluid 200 in the refrigerant circuit 310.
  • the first fluid 200 is supplied from the expansion valve 312 to the circular pipe 11 of the plate heat exchanger 1A shown in FIG. At this time, the first fluid 200 is in a low-pressure two-phase state. Then, the first fluid 200 flows into the first heat transfer plate 30A of the plate heat exchanger 1A.
  • the first fluid 200 is not unevenly distributed in the first heat transfer plate 30A because the first heat transfer plate 30A is provided with the enclosing portion 81A having the opening 80A. Further, the flow velocity of the first fluid 200 increases at the openings 80A, and the bubbles in the first fluid 200 become smaller. As a result, the first fluid 200 is heat-exchanged with high efficiency.
  • the first fluid 200 evaporates and absorbs heat in the first heat transfer plate 30 ⁇ /b>A to be in a two-phase state having a large gas phase. Furthermore, the first fluid 200 is completely vaporized. Then, the first fluid 200 is discharged from the circular pipe 12 to the outside of the plate heat exchanger 1A.
  • the second fluid is supplied to the circular pipe 14 of the plate heat exchanger 1A shown in FIG.
  • the second fluid flows into the second heat transfer plate 40 of the plate heat exchanger 1A and radiates heat in the second heat transfer plate 40 to become cold water.
  • the second fluid is discharged from the circular pipe 13 to the outside of the plate heat exchanger 1A, and the room is cooled by the heating/hot water supply water utilization device 322.
  • the heat pump hot water supply system 300 includes the plate heat exchanger 1A, the heat exchange efficiency is high.
  • the plate heat exchangers 1A-1C and the heat pump hot water supply system 300 have been described above. It is not limited.
  • the enclosing portions 81A and 81B and the openings 80A and 80B are formed in the first heat transfer plates 30A and 30B.
  • the enclosing portions 81A and 81B and the openings 80A and 80B are not limited to this.
  • the surrounding portions 81A, 81B and the openings 80A, 80B may be provided in the first heat transfer plate 30A, 30B or the second heat transfer plate 40. This is because the first fluid 200 or the second fluid may flow in a two-phase state.
  • the first heat transfer plate 30A, 30B or the second heat transfer plate 40 is an example of the heat transfer plate referred to in this specification.
  • the enclosing portions 81A and 81B surround the first inflow hole 31, but the enclosing portions 81A and 81B are not limited to this. Since the first fluid 200 may flow in from the first outflow hole 32 and the first fluid 200 may flow out to the first inflow hole 31 due to the connection of the external device, the enclosing portions 81A and 81B are the first outflow holes. You may enclose 32. In this case, the first fluid 200 in the two-phase state may be allowed to flow into the first outflow hole 32. Further, the enclosing portions 81A and 81B may surround the second inflow hole 43 or the second outflow hole 44.
  • the second fluid in the two-phase state flow into the second inflow hole 43 or the second outflow hole 44.
  • the first outflow hole 32, the second inflow hole 43, and the second outflow hole 44 into which the first fluid 200 or the second fluid in the two-phase state is introduced are located below the inner fin 70. Even if it does, the heat exchange efficiency is less likely to decrease.
  • the first inflow hole 31, the first outflow hole 32, the second inflow hole 43, and the second outflow hole 44 are examples of the outflow/inflow holes referred to in this specification.
  • the plate type heat exchangers 1A-1C are oriented such that the longitudinal direction is vertical when viewed from the front, and the circular pipes 11 and 14 are located below the circular pipes 12 and 13. It is arranged.
  • the position of the circular tubes 11-14 is not limited to this.
  • the circular pipe 11-14 to which the first fluid 200 or the second fluid in the two-phase state is supplied is below the other circular pipes 11-14. It should be arranged.
  • the width W1 of the enclosing portion 81A is formed to have a size allowing brazing, but the size of the width W1 of the enclosing portion 81A is also arbitrary.
  • FIG. 22 is an enlarged front view of a modified example of the enclosing portion 81A included in the plate heat exchanger 1A according to the first embodiment.
  • the width W2 of the enclosing portion 81C is larger than the width W1 of the enclosing portion 81A described in the first embodiment.
  • the width W2 of the enclosing portion 81C is large, when the first fluid 200 passes through the opening 80C, a flow layer having a low flow velocity, that is, a boundary layer develops near the surface of the plate portion 36. The flow velocity of the first fluid 200 changes greatly until the boundary layer develops. Therefore, it is desirable that the width W2 of the enclosing portion 81C be large enough to allow the boundary layer to develop.
  • the numbers of the enclosing portions 81A-81C and the openings 80A-80C are arbitrary.
  • FIG. 23 is an enlarged front view of another modified example of the enclosing portion 81A included in the plate heat exchanger 1A according to the first embodiment.
  • FIG. 24 is an enlarged front view of still another modified example of the enclosing portion 81A.
  • the first inflow hole 31 may be surrounded by a plurality of concentric and circular enclosing portions 81D and 81E.
  • the openings 80D and 80E may be formed in the enclosing portions 81D and 81E, respectively.
  • the openings 80D and 80E may be located in different directions with respect to the center C of the first inflow hole 31.
  • the distance W3 shown in FIG. 23 until the first fluid 200 passes through the surrounding portions 81D and 81E may be larger than the width W2. Thereby, the flow velocity of the first fluid 200 can be increased until the above-mentioned boundary layer develops.
  • a plurality of openings 80F and 80G may be formed in the enclosing portion 81F.
  • the plurality of openings 80F and 80G may be formed within the desired angle range of the angle ⁇ described in the first embodiment.
  • the openings 80F and 80G may narrow toward the outside of the enclosing portion 81F, and may have a constant width, like the openings 80D and 80E in FIG.
  • the shape of the enclosing portions 81A-81E is an annular shape or an annular shape.
  • the enclosing portions 81A-81E are not limited to this.
  • the enclosing portions 81A-81E may surround the fluid inflow/outflow holes such as the first inflow hole 31 and the first outflow hole 32. Accordingly, it is preferable that the enclosing portions 81A-81E prevent the fluid from flowing in and out. Then, the openings 80A-80E may open a part of the enclosing portions 81A-81E. As a result, the openings 80A-80E may restrict the flow of fluid.
  • the shape of the enclosing portions 81A-81E is arbitrary.
  • the enclosing portions 81A-81E may have a ring shape such as an ellipse or an ellipse.
  • the enclosing portions 81A-81E may be in the shape of a rectangular tube.
  • the outer wall portions 35 and 45 of the first heat transfer plate 30A, 30B or the second heat transfer plate 40 extend in the ⁇ Y direction. Then, by stacking these plates in the Y direction, the outer wall portions 35 and 45 come into contact with the plate portions 36 and 46 to form the flow paths of the first heat transfer plates 30A and 30B or the second heat transfer plate 40. Is formed on the +Y side.
  • the outer wall portions 35 and 45 are not limited to this. In the plate heat exchanger 1A-1C, the outer wall portions 35 and 45 form a flow path, and the first heat transfer plates 30A and 30B and the second heat transfer plate 40 in which the flow path is formed are stacked.
  • the enclosing portions 81A-81E protrude to the plate portions 36, 46 of the first heat transfer plates 30A, 30B and the second heat transfer plate 40 which are adjacent to each other, and the enclosing portions 81A-81E abut the plate portions 36, 46. Just do it. Therefore, as long as this is the case, the direction and shape of the outer wall portions 35, 45 are arbitrary. For example, the outer wall portions 35 and 45 may extend from the plate portions 36 and 46 in the +Y direction.
  • the inner fin 70 having a large number of wavy protrusions is arranged in the space of the flow path of the first heat transfer plate 30A, 30B or the second heat transfer plate 40.
  • the inner fin 70 is not limited to this.
  • the specific shape of the inner fin 70 is arbitrary.
  • 25A to 25F are perspective views of first to sixth modifications of the protrusion 71 provided on the inner fin 70 included in the plate heat exchanger 1A according to the first embodiment.
  • the inner fin 70 may be an offset type fin in which a plurality of elongated rectangular parallelepiped projections 71 are arranged in parallel with each other, and protruding portions are alternately projected on the side walls of the plurality of projections 71. .. Further, as shown in FIG. 25B, a flat plate fin having a plurality of flat plate-shaped protrusions 71 may be used. Further, as shown in FIG. 25C, the inner fin 70 may be a corrugated fin having a plurality of corrugated protrusions 71 in plan view.
  • the inner fin 70 is a louver type fin having a protrusion 71 having a louver shape in cross section shown in FIG. 25D, a corrugated fin having a protrusion 71 having a corrugated shape in cross section shown in FIG. 25E, or a pin shown in FIG. 25E. It may be a pin-type fin having a protrusion 71 in the shape of a pin.
  • the plate heat exchanger 1A is used in the heat pump hot water supply system 300.
  • the use of the plate heat exchangers 1A-1C is not limited to this.
  • the plate heat exchangers 1A-1C can also be applied to a cooling chiller.
  • the plate heat exchangers 1A-1C can be used for industrial and household appliances such as power generators, food heat sterilization processing equipment and the like. The heat exchange efficiency can be improved by using the plate heat exchangers 1A-1C for such a device.
  • 1A-1C plate type heat exchanger 10 first reinforcing plate, 11-14 circular pipe, 20 first side plate, 21-24 through hole, 25 outer wall part, 30A, 30B, 30C first heat transfer plate, 31st 1 inflow hole, 32 1st outflow hole, 33 2nd passage hole, 34 2nd passage hole, 35 outer wall part, 36 plate part, 37 tubular wall, 40 second heat transfer plate, 41 1st passage hole, 42 1st Passage hole, 43 second inflow hole, 44 second outflow hole, 45 outer wall part, 46 plate part, 47 tubular wall, 50 second side plate, 51 first inflow hole, 52 first outflow hole, 60 second reinforcement plate , 70 inner fins, 71 protrusions, 80A-80G openings, 81A-81F enclosures, 90 throttle tubes, 91 pores, 110,140 through holes, 200 first fluid, 210 liquid phase, 220 gas phase, 300 heat pump hot water supply System, 310 refrigerant circuit, 311 compressor, 312 expansion valve, 313 heat exchanger, 320 water circuit

Abstract

プレート式熱交換器(1A)は、流体を流出入させる流出入孔が形成されたプレート部(36,46)、プレート部(36,46)の外周を囲んで流体を流すための流路を形成する外壁部(35,45)及び、流出入孔を囲むと共に、その囲みの一部を開放する開口(80A)が形成された囲み部(81A)を有する複数の第一伝熱プレート(30A)、第二伝熱プレート(40)を備えている。第一伝熱プレート(30A)は、積層され、囲み部(81A)は、プレート部(36)から隣り合う第二伝熱プレート(40)が有するプレート部(46)まで突出してプレート部(46)に当接する。

Description

プレート式熱交換器及びヒートポンプ式給湯システム
 本発明はプレート式熱交換器及びヒートポンプ式給湯システムに関する。
 プレート式熱交換器では、熱交換対象の冷媒、水等の流体を流すための流路を有する伝熱プレートが複数積層されている。このプレート式熱交換器には、流体を伝熱プレートそれぞれに均一に流すため、伝熱プレートの流入口から流体を所望の方向に流すものがある。
 特許文献1には、メイン流路及びバイパス流路が設けられた伝熱プレートを備えるプレート式熱交換器が開示されている。特許文献1に記載のプレート式熱交換器では、流体が伝熱プレートの流入口からメイン流路とバイパス流路の方向へ流される。その後、流体は、伝熱プレート内部のインナーフィンへ流される。
 特許文献2には、伝熱プレートの流入口に挿通され、流体が流される分配管と、分配管の側面部に形成され、分配管から伝熱プレートの流入口へ流体を排出する細孔と、分配管が挿通されたC型リングと、を備えるプレート式熱交換器が開示されている。特許文献2に記載のプレート式熱交換器では、C型リングが有する開口に細孔が配置されている。このため、流体が細孔から排出されると、その流体は、C型リングの開口から、その開口が向けられた方向に流れる。
国際公開第2017/138322号 特表平8-504027号公報
 特許文献1に記載のプレート式熱交換器では、メイン流路が伝熱プレートの流入口からインナーフィン側に向かって形成されている。このため、流体が気相と液相が混合した二相状態の冷媒である場合に、メイン流路の向きが上向きにされると、二相状態の冷媒のうち、気相の冷媒がメイン流路に集中してしまう。これにより、気相の冷媒がバイパス流路に流れにくい。その結果、気相の冷媒が偏在してプレート式熱交換器の熱交換効率が低下してしまう。
 特許文献2に記載のプレート式熱交換器では、リングがC型である。このため、流体が気相と液相が混合した二相状態の冷媒である場合に、リングの開口が上向きにされると、特許文献1に記載のプレート式熱交換器と同様に、気相の冷媒が偏在してプレート式熱交換器の熱交換効率が低下するおそれがある。
 また、特許文献2に記載のプレート式熱交換器では、C型リングは、積層された伝熱プレートと伝熱プレートの間に挟み込まれている。このため、伝熱プレートそれぞれでリングの開口の向きを調整し、その向きをそろえるのが難しい。その結果、特許文献2に記載のプレート式熱交換器は、組立が難しい。
 本発明は上記の課題を解決するためになされたもので、熱交換効率が高く、組立が容易なプレート式熱交換器及びヒートポンプ式給湯システムを提供することを目的とする。
 上記の目的を達成するため、本発明に係るプレート式熱交換器は、流体を流出入させる流出入孔が形成されたプレート部、プレート部の外周を囲んで流体を流すための流路を形成する外壁部及び、流出入孔を囲むと共に、その囲みの一部を開放する開口が形成された囲み部を有する複数の伝熱プレートを備えている。伝熱プレートは、積層され、囲み部は、プレート部から隣り合う伝熱プレートが有するプレート部まで突出してそのプレート部に当接する。
 本発明の構成によれば、開口が流出入孔を囲む囲み部の一部を開放するので、流体の流出入が開口に絞り込まれ、その流速が大きくなる。これにより、流体が気相と液相の二相状態である場合に、その気相と液相が混合されて気相が偏在しにくい。その結果、プレート式熱交換器の熱交換効率が高められる。また、本発明の構成によれば、囲み部を備える伝熱プレートを積層するだけで、プレート式熱交換器を組み立てることができるので、プレート式熱交換器の組み立てが容易である。
本発明の実施の形態1に係るプレート式熱交換器の分解斜視図 本発明の実施の形態1に係るプレート式熱交換器の斜視図 図2に示すIII-III切断線の断面図 本発明の実施の形態1に係るプレート式熱交換器が備える第一伝熱プレートの正面図 本発明の実施の形態1に係るプレート式熱交換器が備える第二伝熱プレートの正面図 本発明の実施の形態1に係るプレート式熱交換器が備える第一伝熱プレートの第一流入孔近傍の拡大斜視図 本発明の実施の形態1に係るプレート式熱交換器が備える第一伝熱プレートの第一流入孔の拡大正面図 本発明の実施の形態1に係るプレート式熱交換器に供給される液相と気相を有する二相状態の第一流体の概念図 囲み部が設けられていない第一伝熱プレートを備えるプレート式熱交換器に、液相と気相を有する二相状態の第一流体を供給したときの、第一伝熱プレートの拡大正面図 本発明の実施の形態1に係るプレート式熱交換器に液相と気相を有する二相状態の第一流体を供給したときの、第一伝熱プレートの拡大正面図 本発明の実施の形態1に係るプレート式熱交換器に液相と気相を有する二相状態の第一流体を供給したときの、第一伝熱プレートに流入する第一流体の概念図 本発明の実施の形態1に係るプレート式熱交換器に液相と気相を有する二相状態の第一流体を供給したときの、第一伝熱プレート内の第一流体の分布を示すグラフの図 本発明の実施の形態1に係るプレート式熱交換器に液相と気相を有する二相状態の第一流体を供給したときの、開口の大きさとプレート式熱交換器の熱交換効率の関係を示すグラフの図 本発明の実施の形態1に係るプレート式熱交換器に液相と気相を有する二相状態の第一流体を供給したときの、開口の位置とプレート式熱交換器の熱交換効率の関係を示すグラフの図 本発明の実施の形態2に係るプレート式熱交換器が備える第一伝熱プレートの正面図 本発明の実施の形態2に係るプレート式熱交換器が備える第一伝熱プレートの第一流入孔近傍の拡大斜視図 本発明の実施の形態2に係るプレート式熱交換器の断面図 本発明の実施の形態3に係るプレート式熱交換器の斜視図 本発明の実施の形態3に係るプレート式熱交換器が備える絞り管の斜視図 本発明の実施の形態3に係るプレート式熱交換器が備える第一伝熱プレートの変形例の正面図 本発明の実施の形態4に係るヒートポンプ式給湯システムのブロック図 本発明の実施の形態1に係るプレート式熱交換器が備える囲み部の変形例の拡大正面図 本発明の実施の形態1に係るプレート式熱交換器が備える囲み部の他の変形例の拡大正面図 本発明の実施の形態1に係るプレート式熱交換器が備える囲み部のさらに他の変形例の拡大正面図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第1変形例の斜視図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第2変形例の斜視図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第3変形例の斜視図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第4変形例の斜視図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第5変形例の斜視図 本発明の実施の形態1に係るプレート式熱交換器が備えるインナーフィンに設けられた突起の第6変形例の斜視図
 以下、本発明の実施の形態に係るプレート式熱交換器及びヒートポンプ式給湯システムについて図面を参照して詳細に説明する。なお、図中、同一又は同等の部分には同一の符号を付す。図に示す直交座標系XYZにおいて、プレート式熱交換器が備える第一補強プレートが正面に向けられ、かつ第二補強プレートが背面に向けられたときの左右方向がX軸、上下方向がZ軸、X軸とZ軸とに直交する方向がY軸である。以下、適宜、この座標系を引用して説明する。
(実施の形態1)
 実施の形態1に係るプレート式熱交換器は、第一流体を流すための流路が形成された第一伝熱プレートと、第二流体を流すための流路が形成された第二伝熱プレートと、が積層されたプレート式熱交換器である。このプレート式熱交換器では、第一流体が気相と液相が混合した二相状態の冷媒である場合に、その冷媒の偏在を抑制するため、第一伝熱プレートに、第一流体の流入量を絞るための開口を有する囲み部が形成されている。
 まず、図1-図5を参照して、プレート式熱交換器の構成を説明する。続いて、図6及び図7を参照して、第一伝熱プレートが備える囲み部について説明する。次に、図8-図14を参照して、囲み部とその開口の作用を説明する。
 図1は、実施の形態1に係るプレート式熱交換器1Aの分解斜視図である。図2は、プレート式熱交換器1Aの斜視図である。図3は、図2に示すIII-III切断線の断面図である。図4は、プレート式熱交換器1Aが備える第一伝熱プレート30Aの正面図である。図5は、プレート式熱交換器1Aが備える第二伝熱プレート40の正面図である。なお、図3では、理解を容易にするため、図1に示すインナーフィン70を省略している。また、外壁部25、35、45、管状壁37、47等の内部構造を実際の大きさよりも大きく表示している。
 図1に示すように、プレート式熱交換器1Aは、最正面側で装置の強度を高める第一補強プレート10と、第一補強プレート10の背面側に配置された第一サイドプレート20と、その第一サイドプレート20の背面側で、交互に積層された第一伝熱プレート30A及び第二伝熱プレート40と、それら積層された第一伝熱プレート30A及び第二伝熱プレート40の背面側に設けられた第二サイドプレート50と、最背面側で装置の強度を高める第二補強プレート60と、を備えている。
 第一補強プレート10は、図2に示すように、角が丸められた矩形状に形成されている。その厚みは、強度を高めるため、図3に示すように、第一伝熱プレート30A及び第二伝熱プレート40のいずれの厚みよりも大きい。そして、第一補強プレート10の下部領域には、X方向、すなわち左右方向に並んで貫通孔110、140が形成されている。図示しないが、第一補強プレート10の上部領域にも、左右方向に並んで貫通孔が2つ形成されている。これらの貫通孔には、第一流体又は第二流体を供給、排出するため、円管11-14が挿入され固定されている。
 図2に戻って、円管11と12は、上記の貫通孔110と図示しない貫通孔に挿入されることにより、第一補強プレート10の左下領域と左上領域に配置されている。円管11、12は、外部機器の円管が接続されることにより、プレート式熱交換器1A内に第一流体を供給する。または、円管11、12は、プレート式熱交換器1Aから第一流体を排出する。
 これに対して、円管13と14は、図示しない貫通孔と上記の貫通孔140に挿入されることにより、第一補強プレート10の右上領域と右下領域に配置されている。円管13、14は、外部機器の円管が接続されてプレート式熱交換器1A内に第二流体を供給する。または、プレート式熱交換器1Aから第二流体を排出する。円管11-14の背面側には、図1に示すように、第一サイドプレート20が配置される。
 第一サイドプレート20は、第一補強プレート10と正面視、すなわち、-Y方向視で同じ形状、同じ大きさに形成されている。そして、第一サイドプレート20は、第一補強プレート10と外縁をそろえて重ね合わされる。第一サイドプレート20には、第一補強プレート10と重ね合わされた状態で、円管11-14とY方向に重なる位置に円形状の貫通孔21-24が形成されている。これにより、第一サイドプレート20は、第一流体と第二流体が円管11と13に供給されると、それら第一流体と第二流体を、積層された第一伝熱プレート30A及び第二伝熱プレート40の側へ供給する。また、第一サイドプレート20は、積層された第一伝熱プレート30A及び第二伝熱プレート40から排出される第一流体と第二流体を円管12と14側へ排出する。
 また、第一サイドプレート20には、図3に示すように、背面側に延在すると共に、その外周を取り囲む外壁部25が設けられている。第一サイドプレート20の背面側には、第一伝熱プレート30Aが配置されている。その第一伝熱プレート30Aは、後述するように、外周を取り囲む外壁部35を備えている。第一サイドプレート20は、第一伝熱プレート30Aに正面側から覆い被され、その外壁部25が第一伝熱プレート30Aの外壁部35に当接している。これにより、第一サイドプレート20は、第一伝熱プレート30Aの正面側に流路となる空間を形成している。
 第一伝熱プレート30Aと第二伝熱プレート40は、図1に示すように、第一サイドプレート20と同様に、正面視で第一補強プレート10と同じ形状、同じ大きさに形成されている。また、第一伝熱プレート30Aと第二伝熱プレート40は、図3に示すように、背面側に延在すると共に、その外周を取り囲む外壁部35、45を備えている。そして、第一伝熱プレート30Aと第二伝熱プレート40は、正面側から、第一伝熱プレート30A、第二伝熱プレート40、の順序で交互に積層されている。また、第一伝熱プレート30Aと第二伝熱プレート40は、外壁部35、45に互いに当接している。これにより、プレート部36と46の間には、流路となる空間が形成されている。
 その流路となる空間には、図1に示すように、熱交換効率を高めるため、インナーフィン70が設けられている。インナーフィン70は、流路に流される第一流体又は第二流体との接触する面積を増加させるため、波状の突起を多数有する。これにより、インナーフィン70は、第一流体又は第二流体から熱が伝わりやすくして、熱交換効率を高めている。
 また、第一伝熱プレート30Aと第二伝熱プレート40それぞれは、図1、図4及び図5に示すように、第一サイドプレート20の貫通孔21-24とY方向に重なる位置に、貫通孔21-24と同径、同形状に形成された4つの貫通孔を有する。4つの貫通孔のうち、2つの貫通孔は、円管11と13に第一流体が供給されると、第一伝熱プレート30Aと第二伝熱プレート40の上記流路に、その第一流体と第二流体を供給する。残りの2つの貫通孔は、第一流体と第二流体を第一伝熱プレート30Aと第二伝熱プレート40の流路から円管12と14へ排出する。
 ここで、プレート式熱交換器1Aでは、円管11-14に接続される外部機器が第一流体と第二流体の流れる方向を切り換えることがある。例えば、第一流体が円管11に供給され、かつ第一流体が円管12から排出される状態から、第一流体が円管12に供給され、かつ第一流体が円管11から排出される状態へ、その第一流体の流れの向きが切り換えられることがある。このことは、第二流体でも同様である。以下の説明では、理解を容易にするため、第一流体は、円管11に供給され、円管12から排出されるものとする。また、第二流体は、円管13から供給され、円管14から排出されるものとする。この前提のもと、本明細書では、第一伝熱プレート30Aの上記4つの貫通孔を、第一流入孔31、第一流出孔32、第二通路孔33、第二通路孔34と称する。さらに、第二伝熱プレート40の上記4つの貫通孔を、第一通路孔41、第一通路孔42、第二流入孔43、第二流出孔44と称する。
 なお、第一流入孔及び第一流出孔とは、第一伝熱プレート30Aに設けられたインナーフィン70を基準に、第一流体が流入する側にある孔及び、流出する側にある孔のことである。第二流入孔及び第二流出孔とは、第二伝熱プレート40に設けられたインナーフィン70を基準に、第二流体が流入する側にある孔及び、流出する側にある孔のことである。また、第一通路孔とは、第一流体を第一伝熱プレート30Aへ流すため、第二伝熱プレート40に設けられた、第一流体が通る通路となる孔のことである。第二通路孔とは、第部流体を第二伝熱プレート40へ流すため、第一伝熱プレート30Aに設けられた、第二流体が通る通路となる孔のことである。
 第一伝熱プレート30Aの、第一流入孔31、第一流出孔32、第二通路孔33、第二通路孔34は、図1に示すように、第一サイドプレート20の貫通孔21、22、23、24とY方向に重なっている。これらの孔のうち、第二通路孔33、第二通路孔34は、図3及び図4に示す管状壁37に囲まれている。残りの第一流入孔31、第一流出孔32は、管状壁37に囲まれていない。このため、第一流体が円管11から供給され、かつ、第二流体が円管13から供給されると、第一流体は、第一流入孔31の側から第一伝熱プレート30A内のインナーフィン70へ流入する。そして、インナーフィン70へ流入した第一流体がインナーフィン70から第一流入孔31の側へ流出する。一方、第二流体は、第二通路孔33、第二通路孔34を通過して第一伝熱プレート30Aの流路に流入しない。また、第二流体は、第一伝熱プレート30Aの流路からも流出しない。その結果、第一伝熱プレート30Aの流路には、第一流体だけが流れる。
 また、第二伝熱プレート40の、第一通路孔41、第一通路孔42、第二流入孔43、第二流出孔44は、図1に示すように、第一サイドプレート20の貫通孔21、22、23、24とY方向に重なっている。これらの孔のうち、第一通路孔41、第一通路孔42は、図3及び図5に示す管状壁47に囲まれている。これに対して、第二流入孔43、第二流出孔44は、管状壁47に囲まれていない。このため、第一流体が円管11から供給され、かつ、第二流体が円管13から供給されると、第一流体は、第一通路孔41、第一通路孔42を通過して第二伝熱プレート40の流路に流入せず、また、その第二伝熱プレート40の流路からも流出しない。一方、第二流体は、第二流入孔43の側から第二伝熱プレート40内のインナーフィン70へ流入する。そして、インナーフィン70へ流入した第二流体は、インナーフィン70から第二流出孔44の側へ流出する。その結果、第二伝熱プレート40の流路には、第二流体だけが流れる。
 一方、図3に示すように、積層された第一伝熱プレート30Aと第二伝熱プレート40の最も背面側には、これらプレートが交互に積層された結果、第二伝熱プレート40が位置する。第二伝熱プレート40には、上述した第一通路孔41、第一通路孔42が形成されている。このため、第一流体が円管11から供給され、かつ第一流体が円管12へ排出されると、第一通路孔41、第一通路孔42を介して、第二伝熱プレート40の背面側へ第一流体が流れ出てしまうおそれがある。
 そこで、第一流体の流出を防ぐため、積層された第一伝熱プレート30Aと第二伝熱プレート40の背面側には、第一流体を流す流路を有する第二サイドプレート50が配置されている。
 第二サイドプレート50は、図1に示すように、4つの貫通孔のうち、2つの貫通孔が形成されていないことを除いて、第一伝熱プレート30Aと同じ構成である。詳細には、第二サイドプレート50は、第一伝熱プレート30Aと同じ形状、大きさに形成されている。第二サイドプレート50には、第一流入孔31と同じ構成を備える第一流入孔51と、第一流出孔32と同じ構成を備える第一流出孔52と、が形成されている。また、第二サイドプレート50の流路には、流れ込んだ第一流体で熱交換するため、インナーフィン70が設けられている。そして、第二サイドプレート50の背面側には、第一流入孔31及び第一流出孔32を塞ぐため、第二補強プレート60が配置されている。
 第二補強プレート60は、第一補強プレート10と同じ大きさ、同じ形状に形成されている。そして、第二補強プレート60には、貫通孔が形成されていない。図3に示すように、第二補強プレート60は、第二サイドプレート50に当接している。これにより、第二補強プレート60は、第二サイドプレート50から第一流体が漏れることを防いでいる。
 また、第二補強プレート60の厚みは、第一伝熱プレート30A、第二伝熱プレート40及び第二サイドプレート50のいずれの厚みよりも大きい。これにより、第二補強プレート60は、これらのプレートを補強している。
 プレート式熱交換器1Aでは、上述したように、外部機器が第一流体と第二流体の流れる方向を切り換えることがある。その場合、第一流体が気相の単相状態から気相と液相の二相状態に変化することがある。この場合、上述した第一流入孔31が第一流出孔32よりも下側に位置すると、第一流体の気相の部分が第一流入孔31の上方に向かって流れ、その結果、気相の部分が第一流入孔31の左右方向に流れにくくなってしまうことがある。これにより、インナーフィン70全体に第一流体を均一に分配できないことがある。
 そこで、第一流体を均一に分配するため、第一伝熱プレート30Aには、図4に示すように、開口80Aを有する囲み部81Aが形成されている。続いて、図6及び図7を参照して、囲み部81Aの構成について説明する。
 図6は、プレート式熱交換器1Aが備える第一伝熱プレート30Aの第一流入孔31近傍の拡大斜視図である。図7は、第一流入孔31近傍の拡大正面図である。
 図6及び図7に示すように、第一伝熱プレート30Aは、第一流入孔31と同心の円環状の囲み部81Aと、囲み部81Aの円環の一部を開放する開口80Aと、を備えている。
 囲み部81Aは、プレート部36のプレート面が屈曲した、いわゆるビードの形状に形成されている。ここで、ビードとは、プレス加工により成形された突起のことである。
 詳細には、囲み部81Aは、+Y側、すなわち、正面側に突出している。囲み部81Aの高さは、図3に示すように、第一伝熱プレート30Aのプレート部36から正面側の第一サイドプレート20又は第二伝熱プレート40までの高さと同じである。また、図6に示す囲み部81Aの幅W1は、ロウ付けが可能な1-2mmの大きさに形成されている。
 また、囲み部81Aは、ロウ付けによって、正面側の第一サイドプレート20又は第二伝熱プレート40に接合される。これにより、囲み部81Aは、第一流入孔31を囲んで、第一流入孔31に供給された第一流体が第一伝熱プレート30A内の流路に流入することを阻止している。
 これに対して、開口80Aは、図6及び図7に示すように、囲み部81Aの中心Cから径方向に囲み部81Aを横断する形状に形成されている。その径方向は、囲み部81Aの中心Cから右側斜め下方、すなわち、第二通路孔34側と反対側の斜め下方に延在する方向である。開口80Aが囲み部81Aを横断する幅、すなわち、開口幅Lは、囲み部81Aの幅W1と同等又はそれ以下である。そして、開口80Aは、その開口幅Lを保ったまま、上述した方向に直線的に延在している。これにより、開口80Aは、第一流入孔31に供給された第一流体が流れ出す箇所を限定してその流量を絞り込んでいる。これにより、開口80Aは、第一流体の流速を大きくする。そして、開口80Aは、第一流体が気相と液相の二相状態であるときに、その気相と液相を混合しやすくしている。その結果、開口80Aは、気相の偏在を抑制している。
 なお、開口80Aが延在する上記径方向は、後述するように、熱交換効率を高めるため、囲み部81Aの中心Cから第二通路孔34側と反対側の斜め下方向のほか、囲み部81Aの中心Cから囲み部81Aの下方向、囲み部81Aの中心Cから第二通路孔34側の斜め下方向又は、囲み部81Aの中心Cから第二通路孔34側の斜め上方向であることが望ましい。換言すると、囲み部81Aの中心Cから鉛直方向に向かう直線と、中心Cから開口80Aの延在方向へ延びる直線と、が形成する角度をθとし、その角度θが上記中心Cから鉛直方向に向かう直線の右側に形成される場合をプラス、左側に形成される場合をマイナスとする場合に、その角度θは、-60°以上+120°以下の角度範囲にあることが望ましい。
 また、開口80Aの開口幅Lは、後述するように、第一流入孔31の流入口周長をDとする場合に、流入口周長Dの1/20以下であることが望ましい。
 次に、図8-図11を参照して、開口80Aを有する囲み部81Aの作用について説明する。以下の説明では、外部機器の円管が、プレート式熱交換器1Aの円管11-14に接続されている形態を説明する。
 この形態では、円管11-14のうち、円管11に、液相と気相を有する二相状態の第一流体が供給され、円管13に、液相だけの単相状態の第二流体が供給される。また、図2に示すように、プレート式熱交換器1Aの正面視での長手方向が鉛直方向に向けられ、短手方向が水平方向に向けられる。これにより、第一伝熱プレート30Aの第一流入孔31と第二通路孔34が水平方向に並べられ、第一流出孔32と第二通路孔33が水平方向に並べられる。また、第二伝熱プレート40の第一通路孔41と第二流出孔44が水平方向に並べられ、第一通路孔42と第二流入孔43が水平方向に並べられる。また、円管11、14が円管12、13よりも下に位置する。さらに、プレート式熱交換器1Aの円管12から第一流体が排出され、円管14から第二流体が排出される。
 なお、円管11に供給される第一流体は、液相と気相をあわせた二相のうちの、気相の比率、すなわち、いわゆる乾き度が0.05-0.3程度である一般的な乾き度の冷媒である。
 図8は、プレート式熱交換器1Aに供給される液相と気相を有する二相状態の第一流体200の概念図である。図9は、囲み部81Aが設けられていない第一伝熱プレート500を備えるプレート式熱交換器に、液相と気相を有する二相状態の第一流体200を供給したときの、第一伝熱プレート500の拡大正面図である。図10は、プレート式熱交換器1Aに液相と気相を有する二相状態の第一流体200を供給したときの、第一伝熱プレート30Aの拡大正面図である。図11は、プレート式熱交換器1Aに液相と気相を有する二相状態の第一流体200を供給したときの、第一伝熱プレート30Aに流入する第一流体200の概念図である。
 まず、円管11には、図8に示す状態の第一流体200が供給される。第一流体200は、液相210内に、気相220が大型の気泡の状態で存在している、いわゆるプラグ流の状態で供給される。
 円管11に第一流体200が供給されると、その第一流体200は、第一サイドプレート20の貫通孔21を通過する。これにより、第一流体200は、最も正面側にある第一伝熱プレート30Aの第一流入孔31まで供給される。続いて、第一流体200は、第二伝熱プレート40の第一通路孔41を通過して、さらに、背面側にある第一伝熱プレート30Aの第一流入孔31まで供給される。これにより、第一流体200が全ての第一伝熱プレート30Aの第一流入孔31まで供給される。
 第一流体200が第一流入孔31まで供給されると、第一流体200は、第一流入孔31が図4に示す管状壁37に囲まれていないことから、第一伝熱プレート30Aの流路内に流入する。
 このとき、図9に示すように、囲み部81Aが形成されていない第一伝熱プレート500である場合、第一流体200がプラグ流の状態で大型の気泡を含むため、その気相220が第一流入孔31の上方に向かって流れる。その結果、第一流体200は、第一伝熱プレート500の左右方向、すなわち、X方向に均一に広がらない。その結果、第一流体200は、第一流入孔31の上方かつ第一伝熱プレート500の左側領域に偏在してしまう。
 一般に気相220の熱伝導率は、液相210の概ね10%である。このため、大型の気泡を含む状態のままで第一流体が流れると、インナーフィン70での熱交換効率が低下してしまう。
 これに対して、第一伝熱プレート30Aでは、図10に示すように、囲み部81Aが形成されている。このため、第一流入孔31から孔周辺に流出した第一流体200は、囲み部81Aによって流路への拡散が阻止されて、第一流入孔31の上方に向かって流れることができない。
 一方、囲み部81Aには、その囲みの一部を開放する開口80Aが形成されている。このため、第一流体200は、開口80Aから囲み部81Aの外へ流れる。
 このとき、第一流体200は、第一流入孔31の中心Cから開口80Aが開口する方向に流れる。第一流体200は、矢印A1に示すように、開口80Aから外壁部35に向かって流れる。その後、第一流体200は、外壁部35にぶつかって、矢印A2-A4に示すように、第一流入孔31と第二通路孔34との間、第一流入孔31よりも-X側及び、第二通路孔34よりも+X側に分流する。その結果、第一流体200は、矢印A5に示すように、第一伝熱プレート30AのX方向全体に均一に広がった状態で、インナーフィン70を通過する。これにより、プレート式熱交換器1Aの熱交換効率が図9に示す第一伝熱プレート500の場合よりも高められる。
 また、第一流体200は、囲み部81Aの内側からその外側へ流れるときに、開口80Aにその流量が絞り込まれる。これにより、第一流体200の流速が大きくなる。その結果、気相と液相が混合されやすくなり、第一流体200は、プラグ流の状態から、図11に示す、より小型の気泡を含む気泡流の状態に変化する。これにより、第一流体200は、少数の大型の気泡が存在する状態から、小型の気泡が存在する状態へ変化する。すなわち、第一流体200は、気泡と液が均等な割合の状態へ変化する。その結果、プレート式熱交換器1Aの熱交換効率が高くなる。
 図示しないが、第一流体200は、インナーフィン70を通過し、第一伝熱プレート30Aの上部領域にある第一流出孔32まで達する。第一流出孔32まで達した第一流体は、第一流出孔32から第一サイドプレート20の貫通孔22へ流れる。その後、第一流体200は、円管12から、プレート式熱交換器1Aの外部へ排出される。そして、円管12に接続された外部機器に戻る。
 上述したように、開口80Aは、第一流体200を第一伝熱プレート30AのX方向に均一に広げる。また、開口80Aは、プレート式熱交換器1Aの熱交換効率を高める。続いて、図12-図14を参照して、開口80Aの詳細な効果について説明する。
 図12は、プレート式熱交換器1Aに液相と気相を有する二相状態の第一流体200を供給したときの、第一伝熱プレート30A内の第一流体200の分布を示すグラフの図である。図13は、開口80Aの大きさとプレート式熱交換器1Aの熱交換効率の関係を示すグラフの図である。図14は、開口80Aの位置とプレート式熱交換器1Aの熱交換効率の関係を示すグラフの図である。
 なお、図12のグラフの横軸は、図7に示す第一伝熱プレート30Aの左端面を原点O、右端面を位置Wとしたときの、X方向の各位置の流量を示している。また、図12のグラフに記載の「流入口絞り有」は、第一伝熱プレート30Aが開口80Aを有する囲み部81Aを備え、開口80Aによって第一流体200の流量が絞られたときのプレート式熱交換器1Aの流量を示している。また同グラフに記載の「流入口絞り無」は、囲み部81Aを有さず、囲み部81Aの開口80Aによって第一流体200の流量が絞られていない、図9に示す第一伝熱プレート500を備えるプレート式熱交換器の流量を示している。
 また、図13では、図7に示す、開口80Aの開口幅をL、第一流入孔31の流入口周長をDとしたときの、L/Dを絞り率としている。図13は、その絞り率を変化させたときのプレート式熱交換器1Aの熱交換効率を示している。その熱交換効率は、絞り率=1の状態の熱交換効率を1としたときの、相対的な熱交換効率である。すなわち、図13に示す熱交換効率は、図12の「流入口絞り無」の状態の熱交換効率を1としたときの、相対的な熱交換効率である。図13では、この相対的な熱交換効率を「熱交換性能」と表示している。
 図14は、図7に示す角度θを変化させたときの、プレート式熱交換器1Aの熱交換効率を示している。図14でも、図12の「流入口絞り無」の状態であるときの熱交換効率を1としたときの、相対的な熱交換効率を示している。その相対的な熱交換効率を「熱交換性能」と表示している。なお、図14での絞り率は、0.02である。
 図12を参照すると、開口80A及び囲み部81Aを備える第一伝熱プレート30Aでは、開口80A及び囲み部81Aを備えない第一伝熱プレート500よりも、第一流体200が第一伝熱プレート30AのX方向全体に均一に流れていることがわかる。
 また、図13を参照すると、絞り率が0.05、すなわちL/Dが1/20以下である場合に、プレート式熱交換器1Aの熱交換効率が高まることがわかる。この結果から、上述したように、開口80Aの開口幅Lは、第一流入孔31の流入口周長Dに対して1/20以下であることが望ましいことがわかる。
 図14を参照すると、開口80Aの角度θは、-60°以上+120°以下であると、開口80Aの角度θが-60°よりも小さく、又は120°よりも大きい場合と比較して、プレート式熱交換器1Aの熱交換効率が高まることがわかる。この結果から、上述したように、図7に示す囲み部81Aの中心Cから鉛直方向に延びる直線と、中心Cから開口80Aが延在する方向に延びる直線と、が形成する角度をθとするときに、その角度θが、-60°以上+120°以下であることが望ましいことがわかる。
 以上のように、実施の形態1に係るプレート式熱交換器1Aでは、第一伝熱プレート30Aが、囲み部81Aの一部を開放して第一流体200の流出を絞る開口80Aを備えている。これにより、開口80Aを通過するときの第一流体200の流速が大きくなる。その結果、プレート式熱交換器1Aでは、第一流体200が気相と液相の二相状態である場合に、第一流体を混合して、その気相の気泡を小さくすることができる。これにより、プレート式熱交換器1Aの熱交換効率を高めることができる。
 第一伝熱プレート30Aでは、開口80Aが斜め下方に向けられている。そして、第一伝熱プレート30Aのプレート部36は、外壁部35によって囲まれている。このため、第一流体200は、開口80Aから流出した後、外壁部35にぶつかる。これにより、第一流体200は、第一伝熱プレート30AのX方向に均一に広がる。その結果、第一伝熱プレート30A内で第一流体200が偏在せず、プレート式熱交換器1Aの熱交換効率が高まる。
 第一伝熱プレート30Aそれぞれに、開口80Aを有する囲み部81Aが形成されている。また、その囲み部81A及び開口80Aは、第一伝熱プレート30Aと一体である。このため、第一伝熱プレート30A毎に、開口80Aの向きを調整する必要がない。第一伝熱プレート30Aと第二伝熱プレート40を積層するだけで、プレート式熱交換器1Aを組み立てることができる。その結果、その組立が容易である。
(実施の形態2)
 実施の形態1に係るプレート式熱交換器1Aでは、囲み部81Aがいわゆるビードの形状であり、そのビードに開口80Aが形成されている。しかし、囲み部81Aと開口80Aはこれに限定されない。囲み部81Aと開口80Aは、第一流体の流れを制御するものであればよい。囲み部81Aと開口80Aの形状はその限りにおいて任意である。実施の形態2では、囲み部81Aと開口80Aの変形例の形状について説明する。
 実施の形態2に係るプレート式熱交換器1Aでは、囲み部81Bが、いわゆるバーリングの形状である。また、開口80Bが細孔である。以下、図15-図17を参照して、実施の形態2に係るプレート式熱交換器1Bを説明する。実施の形態2では、実施の形態1と異なる構成について説明する。
 図15は、実施の形態2に係るプレート式熱交換器1Bが備える第一伝熱プレート30Bの正面図である。図16は、プレート式熱交換器1Bが備える第一伝熱プレート30Bの第一流入孔31近傍の拡大斜視図である。図17は、プレート式熱交換器1Bの断面図である。なお、図17は、図2に示すIII-III切断線と同じ箇所の切断線でプレート式熱交換器1Bを切断したときの断面図である。図17では、理解を容易にするため、図1に示すインナーフィン70を省略している。また、外壁部25、35、45、管状壁37、47等の内部構造を実際の大きさよりも大きく表示している。
 図16に示すように、プレート式熱交換器1Bが備える第一伝熱プレート30Bは、第一流入孔31がバーリング加工することにより形成された囲み部81Bと、囲み部81Bが立ち上がった高さよりも小さい細孔の形状の開口80Bと、を備える。ここで、バーリング加工とは、第一流入孔31の外縁部を立ち上げる加工のことである。
 囲み部81Bは、図16及び図17に示すように、円管状に形成されている。その管軸は、Y方向に延在し、プレート部36に垂直である。また、囲み部81Bの+Y側、すなわち、正面側には、管壁が円管外側へ折れ曲がった形状のフランジ部が設けられている。
 囲み部81Bは、図16に示すプレート部36から、図示しない隣り合う第一サイドプレート20又は第二伝熱プレート40までの距離と同じY方向高さに形成されている。そして、囲み部81Bが有するフランジ部の先端部は、図17に示す第一サイドプレート20又は第二伝熱プレート40にロウ付けにより接合される。
 これに対して、開口80Bは、一定の円形状のまま、囲み部81Bの側壁を貫通している。その貫通方向は、Y方向視での、実施の形態1で説明した開口80Aの、第一流入孔31の中心Cに対する方向と同じ方向である。また、その開口80Bの貫通方向は、プレート部36に平行である。さらに、開口80Bの径は、実施の形態1で説明した開口80Aの幅と同じである。なお、開口80Bの貫通方向は、実施の形態1で説明した望ましい角度θの方向と同方向であるとよい。また、開口80Bの径は、実施の形態1で説明した望ましい幅Lと同じ大きさであるとよい。
 開口80Bの作用は、実施の形態1の開口80Aと同じである。このため、実施の形態2では、開口80Bの作用の説明を省略する。
 以上のように、実施の形態2に係るプレート式熱交換器1Bでは、管状の囲み部81Bに形成された細孔の形状の開口80Bを備える。このため、開口80Bが第一流入孔31からその外へ流出する第一流体200の流量を絞り込みことができる。その結果、プレート式熱交換器1Bでは、第一流体200の流速を大きくして、第一流体200が気相と液相の二相状態である場合に、気相の気泡を小さくすることができる。これにより、実施の形態1と同様に、プレート式熱交換器1Bの熱交換効率が高められる。
 また、プレート式熱交換器1Bでは、管状の囲み部81Bに孔を形成するだけで、開口80Bを形成できるので、プレート式熱交換器1Bの製造が容易である。また、開口80Bによる第一流体200の流量調整も容易である。
(実施の形態3)
 実施の形態1に係るプレート式熱交換器1Aは、囲み部81A及び開口80A以外の構成を備えてもよい。実施の形態3に係るプレート式熱交換器1Cは、実施の形態1の囲み部81A、開口80Aに加えて、第一流入孔31に挿入され、第一流体の流量を絞り込む絞り管90を備える。以下、図18-図20を参照して、実施の形態3に係るプレート式熱交換器1Cを説明する。実施の形態3では、実施の形態1、2と異なる構成について説明する。
 図18は、実施の形態3に係るプレート式熱交換器1Cの斜視図である。図19は、プレート式熱交換器1Cが備える絞り管90の斜視図である。図20は、プレート式熱交換器1Cが備える第一伝熱プレート30Cの変形例の正面図である。
 図18に示すように、プレート式熱交換器1Cは、円管11に挿入された絞り管90を備える。なお、絞り管90は、本明細書でいうところの、流体が流れる流体管の一例である。
 絞り管90の外径は、円管11の内径よりも小さい。また、図示しないが、第一伝熱プレート30Cの第一流入孔31の内径よりも小さい。そして、絞り管90は、円管11と第一流入孔31の管軸と同軸である。絞り管90は、図示しないが、円管11の正面側から第二補強プレート60まで延在している。また、絞り管90は、プレート式熱交換器1C内で、第一伝熱プレート30Cの第一流入孔31と、第二伝熱プレート40の第一通路孔41と、を挿通している。
 また、絞り管90には、図19に示すように、実施の形態2で説明した開口80Bと同径の円形状の細孔91が複数個、形成されている。細孔91のピッチは、積層された第一伝熱プレート30Cと第二伝熱プレート40のプレート間隔と同じである。そして、細孔91は、絞り管90の管面部を貫通し、その貫通方向を実施の形態1で説明した開口80Bと同じ方向に向けている。
 上述したように、絞り管90は、第一伝熱プレート30Cの第一流入孔31の内径よりも小さい。このため、絞り管90に第一流体200が供給された場合に、絞り管90内の第一流体200の流速は、実施の形態1で説明した第一流入孔31内の第一流体200よりも大きい。その結果、第一流体200が気相と液相の二相状態であるときの、第一流体200内の気泡が小さい。
 以上のように、実施の形態3に係るプレート式熱交換器1Cは、第一伝熱プレート30Cの第一流入孔31の内径よりも小さい絞り管90を備えるので、絞り管90に気相と液相の二相状態である第一流体200が供給された場合に、絞り管90を備えないときよりも第一流体200の流速が大きくなる。これにより、プレート式熱交換器1Cでは、第一流体200内の気泡を小さくして、プレート式熱交換器1Cの熱交換効率を高めることができる。
 なお、図20に示すように、プレート式熱交換器1Cが絞り管90を備える場合、第一伝熱プレート30Cの第一流入孔31と第一流出孔32は、第二通路孔33と第二通路孔34と同径であるとよい。この場合、第二伝熱プレート40の第一通路孔41と第一通路孔42は、第二流入孔43と第二流出孔44と同径であるとよい。このような形状であれば、第一伝熱プレート30Cと第二伝熱プレート40が向きを除いて同じ構成となる。これにより、プレート式熱交換器1Cで、第一伝熱プレート30Cと第二伝熱プレート40を共用化することができる。また、図20に示すように、プレート式熱交換器1Cが絞り管90を備えるため、囲み部81Aと開口80Aは省略されてもよい。この場合においても、絞り管90によって第一流体200の流速を大きくすることができる。
(実施の形態4)
 実施の形態4は、実施の形態1に係るプレート式熱交換器1Aが用いられたヒートポンプ式給湯システム300である。以下、図21を参照して、実施の形態4に係るヒートポンプ式給湯システム300について説明する。
 図21は、実施の形態4に係るヒートポンプ式給湯システム300のブロック図である。
 図21に示すように、ヒートポンプ式給湯システム300は、冷媒回路310と、冷媒回路310と熱交換をする水回路320と、を備えている。
 冷媒回路310は、冷媒を圧縮する圧縮機311と、冷媒を水回路320の水と熱交換させるプレート式熱交換器1Aと、膨張弁312と、膨張弁312で膨張された冷媒を外気と熱交換させる熱交換器313と、を備えている。圧縮機311、プレート式熱交換器1A、膨張弁312及び、熱交換器313は、この順序で接続されている。そして、圧縮機311は、プレート式熱交換器1Aの円管12に接続され、膨張弁312は、円管11に接続されている。これにより、冷媒回路310は、プレート式熱交換器1Aに冷媒を第一流体として供給している。また、冷媒回路310は、図示しない四方弁を備える。
 一方、水回路320は、暖房給湯用水利用装置322、ポンプ321及び、プレート式熱交換器1Aを備えている。ここで、プレート式熱交換器1Aは、冷媒回路310と同じ装置である。水回路320では、暖房給湯用水利用装置322、ポンプ321及び、プレート式熱交換器1Aは、この順序で接続され、閉回路を形成している。そして、ポンプ321がプレート式熱交換器1Aの円管13に接続され、暖房給湯用水利用装置322が円管14に接続されている。これにより、水回路320は、プレート式熱交換器1Aに水を第二流体として供給している。
 次に、ヒートポンプ式給湯システム300の動作について説明する。以下の説明では、第一流体200がR410A、R32、R290、CO2などの冷媒、第二流体が水であるものとする。
 まず、ヒートポンプ式給湯システム300で暖房をする場合について説明する。第一流体200が、圧縮機311から図1に示すプレート式熱交換器1Aの円管12に供給される。このとき、第一流体200は、高温高圧の気相を有する単相状態である。続いて、第一流体200は、プレート式熱交換器1Aの第一伝熱プレート30A内に流入する。第一流体200は、第一伝熱プレート30A内に気相の単相の状態で流入するため、実施の形態1で説明した第一流体の偏在は発生しにくい。第一流体200は、第一伝熱プレート30A内で凝縮、放熱して気相と液相が混在する二相状態となる。さらに、第一流体200は、完全に液化される。その後、第一流体200は、高圧液体の単相状態でプレート式熱交換器1Aの円管11から排出される。そして、第一流体200は、再度圧縮機311に戻る。これにより、第一流体200は冷媒回路310を循環する。
 これに対して、第二流体は、図1に示すプレート式熱交換器1Aの円管13に供給される。第二流体は、プレート式熱交換器1Aの第二伝熱プレート40内に流入して、第二伝熱プレート40で吸熱して温水となる。そして、第二流体は、円管14からプレート式熱交換器1Aの外部に排出される。第二流体は、暖房給湯用水利用装置322で室内を暖房する。
 次に、ヒートポンプ式給湯システム300で冷房をする場合について説明する。ヒートポンプ式給湯システム300の暖房動作が冷房動作に切り替わると、図示しない四方弁が冷媒回路310の第一流体200の流れを逆転させる。第一流体200は、膨張弁312から図1に示すプレート式熱交換器1Aの円管11に供給される。このとき、第一流体200は、低圧の二相状態である。続いて、第一流体200は、プレート式熱交換器1Aの第一伝熱プレート30A内に流入する。このとき、第一流体200は、第一伝熱プレート30Aに開口80Aを有する囲み部81Aが設けられているので、第一伝熱プレート30A内で偏在しにくい。また、開口80Aで第一流体200の流速が大きくなり第一流体200内の気泡が小さくなる。その結果、第一流体200は、高い効率で熱交換される。第一流体200は、第一伝熱プレート30A内で蒸発、吸熱して気相が多い二相状態となる。さらに第一流体200は完全に気化される。その後、第一流体200は、円管12からプレート式熱交換器1Aの外部に排出される。
 これに対して、第二流体は、図1に示すプレート式熱交換器1Aの円管14に供給される。第二流体は、プレート式熱交換器1Aの第二伝熱プレート40内に流入して、第二伝熱プレート40で放熱して冷水となる。そして、第二流体は、円管13からプレート式熱交換器1Aの外部に排出され、暖房給湯用水利用装置322で室内を冷房する。
 以上のように、実施の形態4に係るヒートポンプ式給湯システム300は、プレート式熱交換器1Aを備えているので、熱交換効率が高い。
 以上、本発明の実施の形態に係るプレート式熱交換器1A-1C及びヒートポンプ式給湯システム300について説明したが、プレート式熱交換器1A-1C及びヒートポンプ式給湯システム300は上記の実施の形態に限定されるものではない。例えば、実施の形態1-4では、囲み部81A、81B及び開口80A、80Bが第一伝熱プレート30A、30Bに形成されている。しかし、囲み部81A、81B及び開口80A、80Bはこれに限定されない。囲み部81A、81B及び開口80A、80Bは、第一伝熱プレート30A、30B又は第二伝熱プレート40に備えられていればよい。これは、第一流体200又は第二流体が二相状態で流されることがあるからである。
 なお、第一伝熱プレート30A、30B又は第二伝熱プレート40は、本明細書でいうところの伝熱プレートの一例である。
 また、実施の形態1-4では、囲み部81A、81Bが第一流入孔31を囲んでいるが、囲み部81A、81Bはこれに限定されない。外部機器の接続によって、第一流出孔32から第一流体200が流入し、第一流入孔31へ第一流体200が流出することがあることから、囲み部81A、81Bは、第一流出孔32を囲んでもよい。この場合、第一流出孔32に、二相状態の第一流体200を流入させるとよい。また、囲み部81A、81Bは、第二流入孔43又は第二流出孔44を囲んでもよい。この場合、第二流入孔43又は第二流出孔44に二相状態の第二流体を流入させるとよい。このような形態であれば、二相状態の第一流体200又は第二流体を流入させる第一流出孔32、第二流入孔43、第二流出孔44がインナーフィン70よりも下側に位置する場合でも、熱交換効率が低下しにくい。
 なお、第一流入孔31、第一流出孔32、第二流入孔43、第二流出孔44は、本明細書でいうところの流出入孔の一例である。
 実施の形態1-4では、プレート式熱交換器1A-1Cの向きが、正面視で長手方向を鉛直方向に向け、さらに、円管11と14を円管12、13に対して下側に配置している。しかし、円管11-14の位置はこれに限定されない。二相状態の第一流体200又は第二流体を流す場合、その二相状態の第一流体200又は第二流体が供給される円管11-14が他の円管11-14よりも下に配置されていればよい。
 また、実施の形態1では、囲み部81Aの幅W1がロウ付け可能な大きさに形成されているが、囲み部81Aの幅W1の大きさも任意である。
 図22は、実施の形態1に係るプレート式熱交換器1Aが備える囲み部81Aの変形例の拡大正面図である。
 図22に示すように、囲み部81Cの幅W2は、実施の形態1で説明した囲み部81Aの幅W1よりも大きい。囲み部81Cの幅W2が大きい場合、第一流体200が開口80Cを通過するとき、プレート部36の表面付近に流速の小さい流れの層、すなわち境界層が発達する。第一流体200はその境界層が発達するまで流速が大きく変化する。このため、囲み部81Cの幅W2は、境界層が発達する程度の大きさであることが望ましい。
 また、囲み部81A-81Cと開口80A-80Cの数も任意である。
 図23は、実施の形態1に係るプレート式熱交換器1Aが備える囲み部81Aの他の変形例の拡大正面図である。図24は、囲み部81Aのさらに他の変形例の拡大正面図である。
 図23に示すように、第一流入孔31は、同心かつ円形の複数の囲み部81D、81Eで囲まれてもよい。この場合、囲み部81D、81Eそれぞれに開口80D、80Eが形成されるとよい。そして、開口80D、80Eは、第一流入孔31の中心Cに対して異なる方向に位置してもよい。さらに、図23に示す、第一流体200が囲み部81D、81Eを通過するまでの距離W3が、上記幅W2よりも大きくなるとよい。これにより、上述した境界層が発達するまで、第一流体200の流速を大きくすることができる。
 また、図24に示すように、囲み部81Fには、複数の開口80F、80Gが形成されてもよい。この場合、複数の開口80F、80Gは、実施の形態1で説明した角度θの望ましい角度範囲内に形成されるとよい。また、複数の開口80F、80Gの開口幅L2、L3を合計したときの総合計幅が、実施の形態1で説明した望ましい絞り率を満たすとよい。なお、開口80F、80Gは、囲み部81Fの外側に向かって狭まってもよく、図23の開口80D、80Eと同様に、幅が一定であってもよい。
 実施の形態1-4では、囲み部81A-81Eの形状が円環状又は円管状である。しかし、囲み部81A-81Eはこれに限定されない。プレート式熱交換器1A-1Cでは、囲み部81A-81Eは、第一流入孔31、第一流出孔32等の流体の流出入孔を囲んでいればよい。これにより、囲み部81A-81Eが流体の流出入を阻止しているとよい。そして、開口80A-80Eが囲み部81A-81Eの一部を開放すればよい。これにより、開口80A-80Eが流体の流出入を絞っているとよい。従って、この限りにおいて、囲み部81A-81Eの形状は任意である。例えば、囲み部81A-81Eは、楕円、長円等の環の形状であってもよい。また、囲み部81A-81Eは角管の形状であってもよい。
 実施の形態1-4では、第一伝熱プレート30A、30B又は第二伝熱プレート40の外壁部35、45が-Y方向に延在している。そして、これらのプレートがY方向に積層されることにより、外壁部35、45がプレート部36、46に当接して、第一伝熱プレート30A、30B又は第二伝熱プレート40の流路となる空間が+Y側に形成されている。しかし、外壁部35、45はこれに限定されない。プレート式熱交換器1A-1Cでは、外壁部35、45が流路を形成し、その流路が形成された第一伝熱プレート30A、30B、第二伝熱プレート40が積層された状態で、囲み部81A-81Eが隣り合う第一伝熱プレート30A、30B、第二伝熱プレート40のプレート部36、46まで突出し、かつその囲み部81A-81Eがプレート部36、46に当接していればよい。従って、この限りにおいて、外壁部35、45の向き、形状は、任意である。例えば、外壁部35、45は、プレート部36、46から+Y方向に延在してもよい。
 実施の形態1-4では、第一伝熱プレート30A、30B又は第二伝熱プレート40が有する流路の空間に波状の突起を多数有するインナーフィン70が配置されている。しかし、インナーフィン70はこれに限定されない。インナーフィン70の具体的な形状は任意である。
 図25A-図25Fは、実施の形態1に係るプレート式熱交換器1Aが備えるインナーフィン70に設けられた突起71の第1-第6変形例の斜視図である。
 図25Aに示すように、インナーフィン70は、細長い直方体の形状の突起71が複数個、互いに平行に並び、それら複数の突起71の側壁に出っ張り部が交互に出っ張るオフセット型フィンであってもよい。また、図25Bに示すように、平板状の突起71を複数個有する平板型フィンであってもよい。さらに、インナーフィン70は、図25Cに示すように、平面視で波状の突起71を複数個有する波型フィンであってもよい。
 また、インナーフィン70は、図25Dに示す、断面視ルーバー状の突起71を有するルーバー型フィン、図25Eに示す、断面視コルゲート状の突起71を有するコルゲート型フィン、又は図25Eに示す、ピン状の突起71を有するピン型フィンであってもよい。
 実施の形態4では、プレート式熱交換器1Aがヒートポンプ式給湯システム300に使用されている。しかし、プレート式熱交換器1A-1Cの用途はこれに限定されない。プレート式熱交換器1A-1Cは、冷房用チラーにも適用可能である。また、プレート式熱交換器1A-1Cは、発電装置、食品用加熱殺菌処理機器等の産業用及び家庭用機器に利用可能である。このような機器にプレート式熱交換器1A-1Cを用いることで、熱交換効率を高めることができる。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、平成30年11月26日に出願された日本国特許出願特願2018-220602号に基づく。本明細書中に日本国特許出願特願2018-220602号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 1A-1C プレート式熱交換器、10 第一補強プレート、11-14 円管、20 第一サイドプレート、21-24 貫通孔、25 外壁部、30A,30B,30C 第一伝熱プレート、31 第一流入孔、32 第一流出孔、33 第二通路孔、34 第二通路孔、35 外壁部、36 プレート部、37 管状壁、40 第二伝熱プレート、41 第一通路孔、42 第一通路孔、43 第二流入孔、44 第二流出孔、45 外壁部、46 プレート部、47 管状壁、50 第二サイドプレート、51 第一流入孔、52 第一流出孔、60 第二補強プレート、70 インナーフィン、71 突起、80A-80G 開口、81A-81F 囲み部、90 絞り管、91 細孔、110,140 貫通孔、200 第一流体、210 液相、220 気相、300 ヒートポンプ式給湯システム、310 冷媒回路、311 圧縮機、312 膨張弁、313 熱交換器、320 水回路、321 ポンプ、322 暖房給湯用水利用装置、500 第一伝熱プレート、A1-A5 矢印、C 中心、D 流入口周長、L,L2,L3 開口幅、O 原点、W 位置、W1,W2 幅、W3 距離、θ 角度。

Claims (8)

  1.  流体を流出入させる流出入孔が形成されたプレート部、該プレート部の外周を囲んで前記流体を流すための流路を形成する外壁部及び、前記流出入孔を囲むと共に、その囲みの一部を開放する開口が形成された囲み部を有する複数の伝熱プレートを備え、
     前記伝熱プレートは、積層され、
     前記囲み部は、前記プレート部から隣り合う前記伝熱プレートが有する前記プレート部まで突出して該プレート部に当接する、
     プレート式熱交換器。
  2.  前記伝熱プレートは、
     前記流路内に配置されたインナーフィンを備え、
     前記プレート部は、
     前記流出入孔と並び、隣り合う前記伝熱プレートに前記流体を流す管状壁に囲まれた通路孔を有し、かつ
     プレート面が鉛直方向に延在する向きに向けられると共に、前記インナーフィンよりも下側の領域で、前記流出入孔と前記通路孔とが水平方向に並べられた状態に配置され、
     前記囲み部は、
     前記流出入孔の中心に対して、前記通路孔側と反対側の斜め下方、下方、前記通路孔側の斜め下方又は前記通路孔側の斜め上方の位置に前記開口を有する、
     請求項1に記載のプレート式熱交換器。
  3.  前記開口は、前記流出入孔の中心から鉛直方向を0°とし、さらに該鉛直方向に対して前記通路孔が位置する側をプラスの側とする場合に、前記流出入孔の中心に対して、-60°以上+120°以下の角度範囲内に配置されている、
     請求項2に記載のプレート式熱交換器。
  4.  前記開口は、前記流出入孔の周長の1/20以下の幅を有する、
     請求項1から3のいずれか1項に記載のプレート式熱交換器。
  5.  前記囲み部は、前記プレート部のプレート面が屈曲したビードの形状を有する、
     請求項1から4のいずれか1項に記載のプレート式熱交換器。
  6.  前記囲み部は、前記プレート部が有する、前記流出入孔の縁部が、前記伝熱プレートそれ自体が有する前記流路の側へ又は、隣り合う前記伝熱プレートが有する前記流路の側へ立ち上がったバーリングの形状を有する、
     請求項1から4のいずれか1項に記載のプレート式熱交換器。
  7.  前記流出入孔に挿通され、流体が流される流体管をさらに備え、
     前記流体管は、前記開口の方向に向けられた細孔を有する、
     請求項1から6のいずれか1項に記載のプレート式熱交換器。
  8.  請求項1から7のいずれか1項に記載のプレート式熱交換器を備え、該プレート式熱交換器が冷媒と水の熱交換をする、
     ヒートポンプ式給湯システム。
PCT/JP2019/044129 2018-11-26 2019-11-11 プレート式熱交換器及びヒートポンプ式給湯システム WO2020110685A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558289A JP6949250B2 (ja) 2018-11-26 2019-11-11 プレート式熱交換器及びヒートポンプ式給湯システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220602 2018-11-26
JP2018-220602 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110685A1 true WO2020110685A1 (ja) 2020-06-04

Family

ID=70853397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044129 WO2020110685A1 (ja) 2018-11-26 2019-11-11 プレート式熱交換器及びヒートポンプ式給湯システム

Country Status (2)

Country Link
JP (1) JP6949250B2 (ja)
WO (1) WO2020110685A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504027A (ja) * 1992-12-07 1996-04-30 マルチスタック インターナショナル リミテッド 改良型板形熱交換器
JPH10288479A (ja) * 1997-04-15 1998-10-27 Daikin Ind Ltd 熱交換器
WO2006043864A1 (en) * 2004-10-21 2006-04-27 Alfa Laval Corporate Ab A plate heat exchanger and a plate module
JP2008502874A (ja) * 2004-06-14 2008-01-31 インスティトゥット・フォア・エネルギテクニック 板型熱交換器のインレット構造
WO2014147804A1 (ja) * 2013-03-22 2014-09-25 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
US20160320141A1 (en) * 2015-05-01 2016-11-03 Modine Manufacturing Company Liquid to Refrigerant Heat Exchanger, and Method of Operating the Same
EP3392592A1 (en) * 2015-12-15 2018-10-24 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Inlet flow regulating structure and plate heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073987A (ja) * 2011-09-27 2013-04-22 Yazaki Corp シールド構造及びワイヤハーネス
WO2013190617A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 熱交換器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504027A (ja) * 1992-12-07 1996-04-30 マルチスタック インターナショナル リミテッド 改良型板形熱交換器
JPH10288479A (ja) * 1997-04-15 1998-10-27 Daikin Ind Ltd 熱交換器
JP2008502874A (ja) * 2004-06-14 2008-01-31 インスティトゥット・フォア・エネルギテクニック 板型熱交換器のインレット構造
WO2006043864A1 (en) * 2004-10-21 2006-04-27 Alfa Laval Corporate Ab A plate heat exchanger and a plate module
WO2014147804A1 (ja) * 2013-03-22 2014-09-25 三菱電機株式会社 プレート式熱交換器及びそれを備えた冷凍サイクル装置
US20160320141A1 (en) * 2015-05-01 2016-11-03 Modine Manufacturing Company Liquid to Refrigerant Heat Exchanger, and Method of Operating the Same
EP3392592A1 (en) * 2015-12-15 2018-10-24 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Inlet flow regulating structure and plate heat exchanger

Also Published As

Publication number Publication date
JP6949250B2 (ja) 2021-10-13
JPWO2020110685A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
CN110651164B (zh) 板式热交换器及热泵式供热水系统
JP6641544B1 (ja) プレート式熱交換器及びそれを備えたヒートポンプ装置
JP6038302B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
EP3882556B1 (en) Plate-type heat exchanger, heat pump device, and heat-pump-type cooling/heating hot-water supply system
JP5665983B2 (ja) プレート式熱交換器及び冷凍サイクル装置
WO2017138322A1 (ja) プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
WO2020161761A1 (ja) 熱交換器およびこれを備えた空気調和装置
JPWO2014184917A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2014184918A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JPWO2012063355A1 (ja) プレート式熱交換器及びヒートポンプ装置
JPWO2015049727A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2020110685A1 (ja) プレート式熱交換器及びヒートポンプ式給湯システム
WO2017154336A1 (ja) 熱交換器及びこれを用いたヒートポンプ装置
JP6493575B1 (ja) 冷凍装置
JP6631664B2 (ja) ヒートポンプ装置
JP6940027B1 (ja) 熱交換器、及び熱交換器を備えた空気調和装置
JP4874320B2 (ja) 熱交換器及びこの熱交換器を備えた空気調和機
JP2018179420A (ja) コルゲートフィン式熱交換器における冷媒制御板
JP2014126237A (ja) 熱交換器
JP2016070648A (ja) 冷媒分配器及びこの冷媒分配器を備えた冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891327

Country of ref document: EP

Kind code of ref document: A1