EP3392592A1 - Inlet flow regulating structure and plate heat exchanger - Google Patents

Inlet flow regulating structure and plate heat exchanger Download PDF

Info

Publication number
EP3392592A1
EP3392592A1 EP16874532.1A EP16874532A EP3392592A1 EP 3392592 A1 EP3392592 A1 EP 3392592A1 EP 16874532 A EP16874532 A EP 16874532A EP 3392592 A1 EP3392592 A1 EP 3392592A1
Authority
EP
European Patent Office
Prior art keywords
flow regulating
regulating structure
inlet flow
heat exchange
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16874532.1A
Other languages
German (de)
French (fr)
Other versions
EP3392592A4 (en
Inventor
Hua Li
Pelletier Pierre OLIVIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danfoss Micro Channel Heat Exchanger Jiaxing Co Ltd
Original Assignee
Danfoss Micro Channel Heat Exchanger Jiaxing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Micro Channel Heat Exchanger Jiaxing Co Ltd filed Critical Danfoss Micro Channel Heat Exchanger Jiaxing Co Ltd
Publication of EP3392592A1 publication Critical patent/EP3392592A1/en
Publication of EP3392592A4 publication Critical patent/EP3392592A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0241Evaporators with refrigerant in a vessel in which is situated a heat exchanger having plate-like elements

Definitions

  • the present invention relates to the fields of heating, ventilation, and air conditioning (HVAC), automobiles, refrigeration, and transportation, and in particular, to a plate heat exchanger and an inlet flow regulating structure for a plate heat exchanger.
  • HVAC heating, ventilation, and air conditioning
  • Distributors are disposed in inlet positions of various refrigerant channels in the evaporator in the existing solution.
  • a major design concept is to use small sectional areas of inlets of channels and a certain pressure difference between inlets and outlets to control the mass flow rate of a gas-liquid two-phase flow that enters the various refrigerant channels, so as to eventually obtain good effects of distribution and heat exchange.
  • a design reference point of an evaporator gradually develops from the initial working condition of a single application to application requirements of a plurality of points. Both full load operation and part load operation need to be considered in the design of distributors.
  • Flow types and flow states of a two-phase flow in fixed evaporator inlet structures and distributors are vastly different. The design difficulty is significantly increased.
  • the same distributor structure is usually used for products that have different capability requirements or are in different capability ranges.
  • a novel refrigerant is gradually developed and applied, which also poses a challenge in designing the evaporator. Due to different physical properties of working media, the characteristics of flow and heat exchange of the refrigerant are significantly different in the same evaporator. Many evaporators can only be designed specifically for one kind or one type of refrigerant, resulting in a big family of related products and therefore high management and maintenance costs.
  • the object of the present invention is to solve at least one aspect of the above-mentioned problems and defects that exist in the prior art.
  • An evaporator inlet state is important content among related influence factors in refrigerant distribution technology. Different load capabilities and refrigerant types have significant influences in this aspect.
  • a flow regulating structure is disposed in an evaporator inlet area, and a gas-liquid two-phase flow is re-excited, so that an uncontrolled fluid inlet state is converted into a stable homogeneous state, so as to provide a stable inlet flow condition for a subsequent distribution process, obtain a stable distribution effect, and eventually improve the heat exchange performance and unit energy efficiency of an evaporator.
  • an inlet flow regulating structure for a plate heat exchanger comprising a refrigerant inlet connector and a side plate assembled with the refrigerant inlet connector, wherein at least one inlet flow regulating structure is arranged on a path from the refrigerant inlet connector to a main body of the plate heat exchanger, and at least one flow regulating element is disposed on each inlet flow regulating structure, the flow regulating element being provided corresponding to a refrigerant inlet passage of the plate heat exchanger.
  • each inlet flow regulating structure comprises one layer or at least two layers spaced apart from each other, wherein the flow regulating element is disposed on each layer.
  • At least two inlet flow regulating structures are spaced apart from each other and disposed side by side in a direction from the refrigerant inlet connector to a distribution chamber of the plate heat exchanger.
  • the flow regulating element is a flow regulating hole, a flow regulating slot or any combination thereof.
  • the inlet flow regulating structure is in the form of an arc, a flat plate or a flow regulating gasket.
  • a plurality of circular rings are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating holes are spaced apart on each of the circular rings; or a plurality of annular strips are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating slots, spaced apart and extending straightly or obliquely, are disposed on each of the annular strips.
  • each of the flow regulating slots is rectangular or sickle-shaped.
  • one flow regulating hole is provided at the center of the layer of the inlet flow regulating structure.
  • a flaring chamber is disposed in the inlet flow regulating structure.
  • the side plate or the refrigerant inlet connector has a flaring chamber at least partially accommodating the flaring chamber of the inlet flow regulating structure.
  • a top surface of the flaring chamber of the inlet flow regulating structure and a top surface of the flaring chamber of the side plate or the refrigerant inlet connector are at least partially in contact with each other and are generally located at the same level of height.
  • the size of the bottom of the flaring chamber matches the size of a distributor chamber of the plate heat exchanger, such that a two-phase refrigerant flow from a refrigerant inlet flows through the flaring chamber and then smoothly enters the distribution chamber and is distributed into corresponding refrigerant channels.
  • the inlet flow regulating structure is disposed at any position from the refrigerant inlet connector to a distributor chamber along a central axis of the distributor chamber.
  • the inlet flow regulating structure is disposed between the side plate and a jet hole of a first distributor.
  • the inlet flow regulating structure is disposed or integrated on a first heat exchange plate sheet I or a first heat exchange plate sheet II starting from the refrigerant inlet or between a first heat exchange sheet II and a first distributor.
  • a seal is provided between a first heat exchange plate sheet II and a second heat exchange plate sheet I, and the inlet flow regulating structure is disposed or integrated on a first heat exchange sheet I, a first heat exchange sheet II, the second heat exchange plate sheet I or a second heat exchange plate sheet II; or for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I, heat exchange plate sheets II, heat exchange plate sheets III, and heat exchange plate sheets IV, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a first heat exchange plate sheet III, and the inlet flow regulating structure is disposed or integrated on a first heat exchange sheet I, a first heat exchange sheet II, the first heat exchange plate sheet III, or a first heat exchange plate sheet IV.
  • a plate heat exchanger which comprises the above-mentioned inlet flow regulating structure.
  • FIG. 1a shows the plate heat exchanger through which two different fluids can flow.
  • the two different fluids may be water and a refrigerant.
  • the plate heat exchanger in such a form is known in the prior art, and is therefore no longer described in detail herein.
  • Only one inlet connector 4 used for the refrigerant to flow in is shown. Certainly, the position of the inlet connector 4 may be specifically chosen as claimed in the requirements, but is not limited to the case shown in the figure.
  • Fig. 1b shows specific structures of the inlet and the distribution chamber of the plate heat exchanger in detail.
  • a side plate 1, and heat exchange plate sheets I 2 and heat exchange plate sheets II 3 that are alternately disposed, are sequentially arranged from left to right.
  • a heat exchange plate sheet I 2 and a heat exchange plate sheet II 3 that are adjacent have structures matching each other, so that water channels 10 and refrigerant channels 9 having heat exchange spaces and support strength can be formed to implement heat exchange between cold and hot fluids.
  • the water channels 10 and the refrigerant channels 9 are alternately arranged.
  • An inlet connector 4 on a refrigerant side (an evaporator) is used for connection to a pipeline of a unit system and an expansion valve at a front end.
  • Fig. 1a and Fig. 1b show the structures of the inlet and the distribution chamber of the plate heat exchanger used as an evaporator.
  • a sealing structure 5 for example a seal ring, is provided between the side plate 1 and a first heat exchange plate sheet (a heat exchange plate sheet I 2 in this example).
  • the seal ring 5 is usually made of metal, and is assembled between the side plate 1 and the first heat exchange plate sheet 2 by using a brazing process.
  • a distributor 6 of each of the refrigerant channels 9 is usually disposed in an inlet position of each of the refrigerant channels 9, and is usually designed into the form of one or more small holes, and the refrigerant is evenly distributed in a manner of limiting flowing sectional areas and increasing pressure drop.
  • the distributor of the present invention may be disposed on a heat exchange plate sheet or integrated with the heat exchange plate sheet.
  • Plate holes 8 are provided in positions corresponding to the inlet connector 4 on the heat exchange plate sheets I 2 and the heat exchange plate sheets II 3.
  • a plurality of distributor chambers 7 are formed together by the plate holes 8 on the heat exchange plate sheets I 2 and the heat exchange plate sheets II 3 and the distributors 6.
  • a sealing surface around the plate hole 8 is used to implement a sealing effect in the refrigerant distribution chamber 7, and a brazing process is usually used for assembly.
  • the distributor 6 is affected by the factors such as the shown inlet connector 4, and an upstream pipeline, a flow rate and a flow type change of the inlet connector, resulting in mal-distribution of the refrigerant in the inlet connector.
  • the present invention provides an inlet flow regulating structure for a plate heat exchanger and a plate heat exchanger using the inlet flow regulating structure.
  • a major inventive concept of the present invention provides an inlet flow regulating structure for a plate heat exchanger.
  • the plate heat exchanger comprises a refrigerant inlet connector and a side plate assembled with the refrigerant inlet connector, wherein at least one inlet flow regulating structure is disposed between the side plate and a main body of the plate heat exchanger, and at least one flow regulating element is disposed on each inlet flow regulating structure.
  • the flow regulating element is provided corresponding to a refrigerant inlet passage of the plate heat exchanger.
  • the plate heat exchanger of the present invention comprises a refrigerant inlet connector 4 and a side plate 1 assembled with the refrigerant inlet connector 4.
  • Fig. 2 shows that one inlet flow regulating structure 11 is disposed between the side plate 1 and the main body of the plate heat exchanger.
  • At least one flow regulating element 12, 13, 14 and 15 (described below in detail) is provided in the inlet flow regulating structure 11.
  • the flow regulating element 12, 13, 14 and 15 is disposed corresponding to a refrigerant inlet passage 21 of the plate heat exchanger.
  • a main improvement of the present invention is a refrigerant inlet area in the plate heat exchanger, and therefore the same reference numerals are used for the same components in Fig. 1a and Fig. 1b , and details are no longer described.
  • the refrigerant inlet passage 21 is a passage in the inlet connector 4.
  • the inlet flow regulating structure 11 may comprise one layer or at least two layers spaced apart from each other, wherein the flow regulating element is disposed on each layer. Where at least two inlet flow regulating structures 11 are provided, the at least two inlet flow regulating structures 11 may be spaced apart from each other and disposed side by side in a direction from the refrigerant inlet connector 4 to a distribution chamber of the plate heat exchanger.
  • the inlet flow regulating structure 11 having a flaring chamber 23 is disposed between a seal ring 5 and a first heat exchange plate sheet I 2.
  • a flaring chamber 22 having a fitting effect is also disposed at the side plate 1.
  • the inlet flow regulating structure 11 in this example is set in the form of an arc.
  • the flaring chamber 22 of the side plate 1 completely accommodates the flaring chamber 23 of the inlet flow regulating structure 11. It may be understood that the present invention is not limited thereto. It may also be set such that the flaring chamber 22 only partially accommodates the flaring chamber 23 of the inlet flow regulating structure 11.
  • the inlet flow regulating structure 11 and the flaring chamber 22 may also be disposed in or inside the refrigerant inlet connector 4.
  • a pipe leg of the refrigerant inlet connector 4 is assembled with the side plate 1.
  • the flaring chamber 22 may not be disposed on the side plate 1.
  • the object of arranging a flaring chamber is that the flaring chamber matches the flaring chamber 23 of the inlet flow regulating structure 11, and provides necessary strength support.
  • an edge of the inlet flow regulating structure of the present invention is fixed on a heat exchange plate or a side plate, and a flaring chamber is disposed in the inlet flow regulating structure.
  • a flaring chamber accommodating the flaring chamber of the inlet flow regulating structure may be disposed on the refrigerant inlet connector.
  • a top surface of the flaring chamber 23 of the inlet flow regulating structure 11 and a top surface of the flaring chamber 22 of the side plate 1 are in contact with each other all around and are generally located at the same level of height.
  • Figs. 3a-3d respectively show the flow regulating element 12, 13, 14, and 15 in different forms. It may be understood that the flow regulating element may be a flow regulating hole, a flow regulating slot or any combination thereof, but is not merely limited to the cases shown in the figures.
  • a plurality of circular rings are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating holes are spaced apart on each of the circular rings 12.
  • a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 13, spaced apart and extending straightly, are disposed on each of the annular strips.
  • Each of the flow regulating slots 13 is rectangular or strip-shaped.
  • a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 14, spaced apart and extending obliquely, are disposed on each of the annular strips.
  • Each of the flow regulating slots 14 is rectangular or strip-shaped.
  • a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 15, spaced apart and extending obliquely, are disposed on each of the annular strips.
  • Each of the flow regulating slots 15 is sickle-shaped.
  • the inlet flow regulating structure 11 may be made of metal, ceramics, or the like, and certainly may be replaced with a similar mesh system or porous medium, to achieve an equivalent flow regulating effect.
  • a refrigerant in a two-phase state is throttled by an expansion valve and then enters a refrigerant inlet connector 4 of a heat exchanger along a connecting pipeline.
  • a flow state of the refrigerant is indefinite.
  • the flow state may be a layered flow for a working condition of part load.
  • the flow state may be an annular flow for a working condition of full load.
  • the two-phase refrigerant is adjusted into a flow state of a homogeneous flow.
  • the present invention further provides a technical solution shown in Fig. 4a .
  • the size of the flaring chamber 23 of the inlet flow regulating structure 11 in Fig. 4a is set to be close to or the same as (i.e. matching) the inner diameter of the distribution chamber 7, so that under the effect of a "flaring opening" chamber, the two-phase flow refrigerant smoothly enters the distributor chamber 7, so as to be further distributed into corresponding refrigerant channels 9.
  • the inlet flow regulating structure 11 in Fig. 4a may be disposed in any suitable position between the side plate 1 and a first distributor 6. Specifically, in Fig. 4a , the inlet flow regulating structure 11 is disposed between the seal ring 5 and a first heat exchange plate sheet I 2.
  • the inlet flow regulating structure 11 being formed on the first heat exchange plate sheet I 2 and a first heat exchange plate sheet II 3.
  • the inlet flow regulating structure 11 may be integrally formed on the first heat exchange plate sheet I 2 or the first heat exchange plate sheet II 3.
  • the inlet flow regulating structure may be formed on the first heat exchange plate sheet I 2 or the first heat exchange plate sheet II 3 in a welding manner or the like.
  • FIG. 4d shown is a case in which the inlet flow regulating structure 11 is disposed between the first heat exchange plate sheet II 3 and the first distributor 6. It may be understood that a solution known in the art may be used that the inlet flow regulating structure 11 is disposed between the first heat exchange plate sheet II 3 and the first distributor 6.
  • At least one inlet flow regulating structure 11 may be disposed in any height position from the side plate 1 to distributors 6 of the plate heat exchanger, and the present invention is not specifically limited thereto.
  • a heat exchange plate sheet and a seal ring 15 of another circuit may further exist between the first distributor 6 and the first heat exchange plate sheet II 3.
  • Numeral 15 indicates a seal circle of a first refrigerant circuit
  • numeral 16 indicates a distributor of a second refrigerant circuit
  • numeral 17 indicates a channel of the second refrigerant circuit
  • numeral 18 indicates a water channel
  • numeral 19 indicates a channel of the first refrigerant circuit
  • 20 indicates an adjacent water channel.
  • a seal circle or ring 15 of the first refrigerant circuit is provided between a first heat exchange plate sheet II 3 and a second heat exchange plate sheet I 2, and is used to seal a corresponding position of the first refrigerant circuit.
  • the inlet flow regulating structure 11 is integrated on the second heat exchange plate sheet I 2, and used to match a subsequent distribution chamber 26. It should be noted that in such a dual-circuit plate heat exchanger, for the flow regulating element in the inlet flow regulating structure 11, any specific form shown in Figs. 3a-3d mentioned above may also be used, that is, an individual flow regulating element may be used or the flow regulating element may be integrated on a second heat exchange plate sheet II.
  • the individual flow regulating element or one flow regulating element may be used for the inlet flow regulating structure 11.
  • the flow regulating element may further be integrated on a second heat exchange plate sheet II 3.
  • a seal is provided between a first heat exchange plate sheet II and a second heat exchange plate sheet I, and the inlet flow regulating structure is disposed or integrated on the second heat exchange plate sheet I or a second heat exchange plate sheet II.
  • a seal is provided between a first heat exchange plate sheet II and a first heat exchange plate sheet III, and the inlet flow regulating structure is disposed or integrated on the first heat exchange plate sheet III or a first heat exchange plate sheet IV.
  • the above-mentioned implementation manner provided on a dual-circuit plate heat exchanger in the present invention is a choice for a specific dual-circuit structure.
  • dual-circuit plate heat exchanger single-circuit implementation manners shown in Fig. 2 and Figs. 4a-4d may also be used in the present invention. That is, the inlet flow regulating structure 11 is disposed near the side plate 1 and the first heat exchange plate sheet I 2 but does not cross the space of the seal circle 15 of the first circuit in Fig. 4e . This manner is especially applicable to a case in which the inner diameter of the seal circle 15 in Fig. 4e is the same as or close to the inner diameter of the distributor 6.
  • the inlet flow regulating structure of the present invention may further be changed as follows.
  • the inlet flow regulating structure 11 is disposed at any position from the refrigerant inlet connector 4 to the distributor chamber 7 along a central axis of a distributor chamber 7.
  • the arc surface structure of the above-mentioned inlet flow regulating structure 11 may be set in a planar form, or may be replaced with a planar unit. However, the design of a flaring cavity is kept. As shown in the figure, a top surface of an inlet flow regulating structure 11' is approximately planar.
  • a conventional heat exchanger side plate 1 and a simple inlet flow regulating structure 11" are used.
  • the inlet flow regulating structure 11" is a sheet metal stamping part.
  • a sealing step 51 and a porous flow regulating area 12 are shown.
  • the form of a flow regulating gasket 21 having a uniform thickness may further be used.
  • the flow regulating gasket 21 is used to replace the above-mentioned inlet flow regulating structure, and is disposed in a position the same as that of the above-mentioned inlet flow regulating structure.
  • the flow regulating gasket is sealed with a side plate and a heat exchange plate sheet adjacent thereto by means of the periphery of the flow regulating gasket.
  • a plurality of flow regulating elements such as flow regulating holes are disposed on the flow regulating gasket 21.
  • the flow regulating gasket 21 may further use the above-mentioned flow regulating slots as the flow regulating elements as claimed in the requirements.
  • each inlet flow regulating structure comprises a plurality of stacked layers or layers arranged in a stacking manner, the above-mentioned flow regulating elements such as the flow regulating holes or the flow regulating slots or any combination thereof are disposed on each layer, and flow regulating elements between adjacent layers overlap each other or are the same as each other.
  • two or more inlet flow regulating structures connected in series may further be disposed between the side plate and the first distributor, and a certain gap is provided between two adjacent inlet flow regulating structures, so that a two-phase flow is regulated twice or for a plurality of times to obtain a homogeneous flow type, thereby improving an eventual distribution effect.
  • another embodiment of the present invention further provides a plate heat exchanger using the above-mentioned inlet flow regulating structure.
  • the inlet flow regulating structure has been described above in detail, and the plate heat exchanger using the inlet flow regulating structure is not changed in other aspects. Therefore, details are no longer described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Disclosed is a plate heat exchanger with an inlet flow regulating structure (11), comprising a refrigerant inlet coupling (4), a side plate (1) assembled with the refrigerant inlet coupling (4), and at least one inlet flow regulating structure (11). The in - let flow regulating structure (11) is arranged on a path from the refrigerant inlet coupling (4) to a main body of the plate heat exchanger, and is provided with at least one flow regulating element (12, 13, 14, 15) which is provided corresponding to a refrigerant inlet passage of the plate heat exchanger.

Description

  • The present application claims the priority of Chinese Patent Application No. 201510933718.0, filed on 15 December 2015 and entitled "Inlet flow regulating structure and plate heat exchanger", which is incorporated herein by reference in its entirety.
  • Technical Field
  • The present invention relates to the fields of heating, ventilation, and air conditioning (HVAC), automobiles, refrigeration, and transportation, and in particular, to a plate heat exchanger and an inlet flow regulating structure for a plate heat exchanger.
  • Background Art
  • Mal-distribution of a refrigerant is a worldwide technical problem for a heat exchanger (evaporator) with parallel channels, especially a plate heat exchanger and a microchannel heat exchanger. The refrigerant that enters a heat exchanger usually exists in the form of two phases. It is quite difficult to achieve uniform distribution of the refrigerant because of the complexity of application conditions and two-phase flow. In many cases, an excessive amount of a liquid refrigerant flows into some channels, and an excessive gaseous refrigerant flows into some other channels. As a result, the overall performance of an evaporator is severely affected.
  • Distributors are disposed in inlet positions of various refrigerant channels in the evaporator in the existing solution. A major design concept is to use small sectional areas of inlets of channels and a certain pressure difference between inlets and outlets to control the mass flow rate of a gas-liquid two-phase flow that enters the various refrigerant channels, so as to eventually obtain good effects of distribution and heat exchange.
  • However, the design of evaporators faces greater challenges with gradually increased demands of unit energy efficiency and increasingly strict requirements of environmental friendliness of the refrigerant.
  • In an aspect, with the development of variable frequency technology for compressors, a design reference point of an evaporator gradually develops from the initial working condition of a single application to application requirements of a plurality of points. Both full load operation and part load operation need to be considered in the design of distributors. Flow types and flow states of a two-phase flow in fixed evaporator inlet structures and distributors are vastly different. The design difficulty is significantly increased. In addition, for evaporator products such as a plate heat exchanger and a microchannel heat exchanger, the same distributor structure is usually used for products that have different capability requirements or are in different capability ranges. For distribution technology, especially the flow and flow type features of an evaporator inlet, a certain optimal working range exists, and when beyond the range, the distribution effect is affected.
  • In another aspect, a novel refrigerant is gradually developed and applied, which also poses a challenge in designing the evaporator. Due to different physical properties of working media, the characteristics of flow and heat exchange of the refrigerant are significantly different in the same evaporator. Many evaporators can only be designed specifically for one kind or one type of refrigerant, resulting in a big family of related products and therefore high management and maintenance costs.
  • Summary of the Invention
  • The object of the present invention is to solve at least one aspect of the above-mentioned problems and defects that exist in the prior art.
  • An evaporator inlet state is important content among related influence factors in refrigerant distribution technology. Different load capabilities and refrigerant types have significant influences in this aspect.
  • In a design concept of the present invention, a flow regulating structure is disposed in an evaporator inlet area, and a gas-liquid two-phase flow is re-excited, so that an uncontrolled fluid inlet state is converted into a stable homogeneous state, so as to provide a stable inlet flow condition for a subsequent distribution process, obtain a stable distribution effect, and eventually improve the heat exchange performance and unit energy efficiency of an evaporator.
  • As claimed in an aspect of the present invention, an inlet flow regulating structure for a plate heat exchanger is provided, the plate heat exchanger comprising a refrigerant inlet connector and a side plate assembled with the refrigerant inlet connector, wherein
    at least one inlet flow regulating structure is arranged on a path from the refrigerant inlet connector to a main body of the plate heat exchanger, and at least one flow regulating element is disposed on each inlet flow regulating structure, the flow regulating element being provided corresponding to a refrigerant inlet passage of the plate heat exchanger.
  • In an example, each inlet flow regulating structure comprises one layer or at least two layers spaced apart from each other, wherein the flow regulating element is disposed on each layer.
  • In an example, at least two inlet flow regulating structures are spaced apart from each other and disposed side by side in a direction from the refrigerant inlet connector to a distribution chamber of the plate heat exchanger.
  • In an example, the flow regulating element is a flow regulating hole, a flow regulating slot or any combination thereof.
  • In an example, the inlet flow regulating structure is in the form of an arc, a flat plate or a flow regulating gasket.
  • In an example, a plurality of circular rings are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating holes are spaced apart on each of the circular rings; or
    a plurality of annular strips are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating slots, spaced apart and extending straightly or obliquely, are disposed on each of the annular strips.
  • In an example, each of the flow regulating slots is rectangular or sickle-shaped.
  • In an example, one flow regulating hole is provided at the center of the layer of the inlet flow regulating structure.
  • In an example, a flaring chamber is disposed in the inlet flow regulating structure.
  • In an example, the side plate or the refrigerant inlet connector has a flaring chamber at least partially accommodating the flaring chamber of the inlet flow regulating structure.
  • In an example, a top surface of the flaring chamber of the inlet flow regulating structure and a top surface of the flaring chamber of the side plate or the refrigerant inlet connector are at least partially in contact with each other and are generally located at the same level of height.
  • In an example, the size of the bottom of the flaring chamber matches the size of a distributor chamber of the plate heat exchanger, such that a two-phase refrigerant flow from a refrigerant inlet flows through the flaring chamber and then smoothly enters the distribution chamber and is distributed into corresponding refrigerant channels.
  • In an example, the inlet flow regulating structure is disposed at any position from the refrigerant inlet connector to a distributor chamber along a central axis of the distributor chamber.
  • In an example, the inlet flow regulating structure is disposed between the side plate and a jet hole of a first distributor.
  • In an example, the inlet flow regulating structure is disposed or integrated on a first heat exchange plate sheet I or a first heat exchange plate sheet II starting from the refrigerant inlet or between a first heat exchange sheet II and a first distributor.
  • In an example, for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I and heat exchange plate sheets II, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a second heat exchange plate sheet I, and the inlet flow regulating structure is disposed or integrated on a first heat exchange sheet I, a first heat exchange sheet II, the second heat exchange plate sheet I or a second heat exchange plate sheet II; or
    for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I, heat exchange plate sheets II, heat exchange plate sheets III, and heat exchange plate sheets IV, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a first heat exchange plate sheet III, and the inlet flow regulating structure is disposed or integrated on a first heat exchange sheet I, a first heat exchange sheet II, the first heat exchange plate sheet III, or a first heat exchange plate sheet IV.
  • As claimed in another aspect of the present invention, a plate heat exchanger is provided which comprises the above-mentioned inlet flow regulating structure.
  • Brief Description of the Drawings
  • These and/or other aspects and advantages of the present invention will become apparent and should be readily understood from the following description of the preferred embodiments in conjunction with the accompanying drawings, in which:
    • Fig. 1a is an overall view of a plate heat exchanger in the prior art;
    • Fig. 1b is a schematic structural diagram of an inlet and a distribution chamber of the plate heat exchanger shown in Fig. 1a;
    • Fig. 2 is a schematic structural diagram of an inlet and a distribution chamber of a plate heat exchanger as claimed in an embodiment of the present invention;
    • Figs. 3a-3d are respectively top views of different variant examples of a flow regulating element as claimed in the present invention;
    • Figs. 4a-4e are respectively schematic structural diagrams of an inlet flow regulating structure being disposed in different arrangement positions of a plate heat exchanger as claimed in another embodiment of the present invention;
    • Fig. 5 is a schematic structural diagram of an inlet and a distribution chamber of a plate heat exchanger as claimed in another embodiment of the present invention, wherein an inlet flow regulating structure uses the form of a planar unit;
    • Fig. 6 is a schematic structural diagram of an inlet and a distribution chamber of a plate heat exchanger as claimed in another embodiment of the present invention, wherein an inlet flow regulating structure uses the form of a simple flow regulating unit; and
    • Fig. 7 is a top view of another variant example of an inlet flow regulating structure as claimed in the present invention.
    Detailed Description of Embodiments
  • By means of the following embodiments and in conjunction with the accompanying drawings, the technical solutions of the present invention are further specifically described. Identical or similar reference signs in the description denote identical or similar components. The following description of the embodiments of the present invention referring to the accompanying drawings is intended to explain the general inventive concept of the present invention, and should not be construed as limiting the present invention.
  • Referring to Fig. 1a and Fig. 1b, respectively, shown are an overall view of a plate heat exchanger in the prior art and a schematic structural diagram of an inlet and a distribution chamber of the plate heat exchanger. Fig. 1a shows the plate heat exchanger through which two different fluids can flow. For example, the two different fluids may be water and a refrigerant. The plate heat exchanger in such a form is known in the prior art, and is therefore no longer described in detail herein. Only one inlet connector 4 used for the refrigerant to flow in is shown. Certainly, the position of the inlet connector 4 may be specifically chosen as claimed in the requirements, but is not limited to the case shown in the figure.
  • Fig. 1b shows specific structures of the inlet and the distribution chamber of the plate heat exchanger in detail. A side plate 1, and heat exchange plate sheets I 2 and heat exchange plate sheets II 3 that are alternately disposed, are sequentially arranged from left to right. A heat exchange plate sheet I 2 and a heat exchange plate sheet II 3 that are adjacent have structures matching each other, so that water channels 10 and refrigerant channels 9 having heat exchange spaces and support strength can be formed to implement heat exchange between cold and hot fluids. As shown in the figure, the water channels 10 and the refrigerant channels 9 are alternately arranged. An inlet connector 4 on a refrigerant side (an evaporator) is used for connection to a pipeline of a unit system and an expansion valve at a front end. It should be noted herein that Fig. 1a and Fig. 1b show the structures of the inlet and the distribution chamber of the plate heat exchanger used as an evaporator.
  • In addition, a sealing structure 5, for example a seal ring, is provided between the side plate 1 and a first heat exchange plate sheet (a heat exchange plate sheet I 2 in this example). The seal ring 5 is usually made of metal, and is assembled between the side plate 1 and the first heat exchange plate sheet 2 by using a brazing process. A distributor 6 of each of the refrigerant channels 9 is usually disposed in an inlet position of each of the refrigerant channels 9, and is usually designed into the form of one or more small holes, and the refrigerant is evenly distributed in a manner of limiting flowing sectional areas and increasing pressure drop. The distributor of the present invention may be disposed on a heat exchange plate sheet or integrated with the heat exchange plate sheet. Plate holes 8 are provided in positions corresponding to the inlet connector 4 on the heat exchange plate sheets I 2 and the heat exchange plate sheets II 3. A plurality of distributor chambers 7 are formed together by the plate holes 8 on the heat exchange plate sheets I 2 and the heat exchange plate sheets II 3 and the distributors 6. In a position where a plate hole 8 is located, a sealing surface around the plate hole 8 is used to implement a sealing effect in the refrigerant distribution chamber 7, and a brazing process is usually used for assembly. As discussed above, in the solution in the prior art shown in Fig. 1a and Fig. 1b, the distributor 6 is affected by the factors such as the shown inlet connector 4, and an upstream pipeline, a flow rate and a flow type change of the inlet connector, resulting in mal-distribution of the refrigerant in the inlet connector.
  • To improve a flow state and a flow type of a two-phase flow in an inlet area of an evaporator and further improve a refrigerant distribution effect in the evaporator, so as to improve the heat exchange efficiency of a heat exchanger and the overall performance and efficiency of a unit, the present invention provides an inlet flow regulating structure for a plate heat exchanger and a plate heat exchanger using the inlet flow regulating structure.
  • A major inventive concept of the present invention provides an inlet flow regulating structure for a plate heat exchanger. The plate heat exchanger comprises a refrigerant inlet connector and a side plate assembled with the refrigerant inlet connector, wherein at least one inlet flow regulating structure is disposed between the side plate and a main body of the plate heat exchanger, and at least one flow regulating element is disposed on each inlet flow regulating structure. The flow regulating element is provided corresponding to a refrigerant inlet passage of the plate heat exchanger.
  • Specifically, the plate heat exchanger of the present invention comprises a refrigerant inlet connector 4 and a side plate 1 assembled with the refrigerant inlet connector 4. Fig. 2 shows that one inlet flow regulating structure 11 is disposed between the side plate 1 and the main body of the plate heat exchanger. At least one flow regulating element 12, 13, 14 and 15 (described below in detail) is provided in the inlet flow regulating structure 11. The flow regulating element 12, 13, 14 and 15 is disposed corresponding to a refrigerant inlet passage 21 of the plate heat exchanger. A main improvement of the present invention is a refrigerant inlet area in the plate heat exchanger, and therefore the same reference numerals are used for the same components in Fig. 1a and Fig. 1b, and details are no longer described.
  • Here, the refrigerant inlet passage 21 is a passage in the inlet connector 4.
  • It may be understood that the inlet flow regulating structure 11 may comprise one layer or at least two layers spaced apart from each other, wherein the flow regulating element is disposed on each layer. Where at least two inlet flow regulating structures 11 are provided, the at least two inlet flow regulating structures 11 may be spaced apart from each other and disposed side by side in a direction from the refrigerant inlet connector 4 to a distribution chamber of the plate heat exchanger.
  • As shown in Fig. 2, compared with Fig. 1b, in an embodiment of the present invention, the inlet flow regulating structure 11 having a flaring chamber 23 is disposed between a seal ring 5 and a first heat exchange plate sheet I 2. A flaring chamber 22 having a fitting effect is also disposed at the side plate 1. In the sectional view shown in Fig. 2, the inlet flow regulating structure 11 in this example is set in the form of an arc. As shown in the figure, the flaring chamber 22 of the side plate 1 completely accommodates the flaring chamber 23 of the inlet flow regulating structure 11. It may be understood that the present invention is not limited thereto. It may also be set such that the flaring chamber 22 only partially accommodates the flaring chamber 23 of the inlet flow regulating structure 11.
  • It may be understood that the inlet flow regulating structure 11 and the flaring chamber 22 may also be disposed in or inside the refrigerant inlet connector 4. In such a case, a pipe leg of the refrigerant inlet connector 4 is assembled with the side plate 1. In this case, the flaring chamber 22 may not be disposed on the side plate 1. It may be understood that the object of arranging a flaring chamber is that the flaring chamber matches the flaring chamber 23 of the inlet flow regulating structure 11, and provides necessary strength support. In an example, an edge of the inlet flow regulating structure of the present invention is fixed on a heat exchange plate or a side plate, and a flaring chamber is disposed in the inlet flow regulating structure. Correspondingly, a flaring chamber accommodating the flaring chamber of the inlet flow regulating structure may be disposed on the refrigerant inlet connector.
  • As shown in Fig. 2, a top surface of the flaring chamber 23 of the inlet flow regulating structure 11 and a top surface of the flaring chamber 22 of the side plate 1 are in contact with each other all around and are generally located at the same level of height.
  • Figs. 3a-3d respectively show the flow regulating element 12, 13, 14, and 15 in different forms. It may be understood that the flow regulating element may be a flow regulating hole, a flow regulating slot or any combination thereof, but is not merely limited to the cases shown in the figures.
  • In Fig. 3a, a plurality of circular rings are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating holes are spaced apart on each of the circular rings 12.
  • In Fig. 3b, a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 13, spaced apart and extending straightly, are disposed on each of the annular strips. Each of the flow regulating slots 13 is rectangular or strip-shaped.
  • In Fig. 3c, a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 14, spaced apart and extending obliquely, are disposed on each of the annular strips. Each of the flow regulating slots 14 is rectangular or strip-shaped.
  • In Fig. 3d, a plurality of annular strips are disposed on the layer of the inlet flow regulating structure 11, and a plurality of flow regulating slots 15, spaced apart and extending obliquely, are disposed on each of the annular strips. Each of the flow regulating slots 15 is sickle-shaped.
  • The inlet flow regulating structure 11 may be made of metal, ceramics, or the like, and certainly may be replaced with a similar mesh system or porous medium, to achieve an equivalent flow regulating effect.
  • In a specific working manner, a refrigerant in a two-phase state is throttled by an expansion valve and then enters a refrigerant inlet connector 4 of a heat exchanger along a connecting pipeline. A flow state of the refrigerant is indefinite. The flow state may be a layered flow for a working condition of part load. The flow state may be an annular flow for a working condition of full load. However, under the effects of the special flow regulating element 12, 13, 14, and 15, the two-phase refrigerant is adjusted into a flow state of a homogeneous flow. Meanwhile, by means of the combined action of an arc surface of the inlet flow regulating structure 11 and the flaring chamber 23, the stability of a flow type and a turbulence degree are further enhanced, and eventually the refrigerant enters a distributor chamber 7 in a flow state that facilitates distribution.
  • To implement effective cooperation between the flow regulating element 3 and a subsequent distributor chamber 7 in Fig. 2, the present invention further provides a technical solution shown in Fig. 4a. Compared with the case in Fig. 2, the size of the flaring chamber 23 of the inlet flow regulating structure 11 in Fig. 4a is set to be close to or the same as (i.e. matching) the inner diameter of the distribution chamber 7, so that under the effect of a "flaring opening" chamber, the two-phase flow refrigerant smoothly enters the distributor chamber 7, so as to be further distributed into corresponding refrigerant channels 9.
  • As claimed in the manner of adjusting the flow type and flow state of refrigerant provided in the present invention, the inlet flow regulating structure 11 in Fig. 4a may be disposed in any suitable position between the side plate 1 and a first distributor 6. Specifically, in Fig. 4a, the inlet flow regulating structure 11 is disposed between the seal ring 5 and a first heat exchange plate sheet I 2.
  • Referring to Fig. 4b and Fig. 4c, respectively, shown are cases of the inlet flow regulating structure 11 being formed on the first heat exchange plate sheet I 2 and a first heat exchange plate sheet II 3. Specifically, the inlet flow regulating structure 11 may be integrally formed on the first heat exchange plate sheet I 2 or the first heat exchange plate sheet II 3. Certainly, the inlet flow regulating structure may be formed on the first heat exchange plate sheet I 2 or the first heat exchange plate sheet II 3 in a welding manner or the like.
  • Referring to Fig. 4d, shown is a case in which the inlet flow regulating structure 11 is disposed between the first heat exchange plate sheet II 3 and the first distributor 6. It may be understood that a solution known in the art may be used that the inlet flow regulating structure 11 is disposed between the first heat exchange plate sheet II 3 and the first distributor 6.
  • In addition to the cases in the above-mentioned figures, a person skilled in the art may understand that at least one inlet flow regulating structure 11 may be disposed in any height position from the side plate 1 to distributors 6 of the plate heat exchanger, and the present invention is not specifically limited thereto.
  • For a dual-circuit plate heat exchanger, a heat exchange plate sheet and a seal ring 15 of another circuit may further exist between the first distributor 6 and the first heat exchange plate sheet II 3.
  • As shown in Fig. 4e, a case having two refrigerant circuits is shown. Numeral 15 indicates a seal circle of a first refrigerant circuit, numeral 16 indicates a distributor of a second refrigerant circuit, numeral 17 indicates a channel of the second refrigerant circuit, numeral 18 indicates a water channel, numeral 19 indicates a channel of the first refrigerant circuit, and 20 indicates an adjacent water channel.
  • In a distributor chamber 26 of the second refrigerant circuit, a seal circle or ring 15 of the first refrigerant circuit is provided between a first heat exchange plate sheet II 3 and a second heat exchange plate sheet I 2, and is used to seal a corresponding position of the first refrigerant circuit. The inlet flow regulating structure 11 is integrated on the second heat exchange plate sheet I 2, and used to match a subsequent distribution chamber 26. It should be noted that in such a dual-circuit plate heat exchanger, for the flow regulating element in the inlet flow regulating structure 11, any specific form shown in Figs. 3a-3d mentioned above may also be used, that is, an individual flow regulating element may be used or the flow regulating element may be integrated on a second heat exchange plate sheet II. It may be understood that the individual flow regulating element or one flow regulating element may be used for the inlet flow regulating structure 11. Alternatively, in addition to being integrated on the second heat exchange plate sheet I 2, the flow regulating element may further be integrated on a second heat exchange plate sheet II 3.
  • That is, for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I and heat exchange plate sheets II, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a second heat exchange plate sheet I, and the inlet flow regulating structure is disposed or integrated on the second heat exchange plate sheet I or a second heat exchange plate sheet II.
  • For a dual-circuit plate heat exchanger formed by heat exchange plate sheets I, heat exchange plate sheets II, heat exchange plate sheets III, and heat exchange plate sheets IV, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a first heat exchange plate sheet III, and the inlet flow regulating structure is disposed or integrated on the first heat exchange plate sheet III or a first heat exchange plate sheet IV.
  • It should be noted that, the above-mentioned implementation manner provided on a dual-circuit plate heat exchanger in the present invention is a choice for a specific dual-circuit structure. For the dual-circuit plate heat exchanger, single-circuit implementation manners shown in Fig. 2 and Figs. 4a-4d may also be used in the present invention. That is, the inlet flow regulating structure 11 is disposed near the side plate 1 and the first heat exchange plate sheet I 2 but does not cross the space of the seal circle 15 of the first circuit in Fig. 4e. This manner is especially applicable to a case in which the inner diameter of the seal circle 15 in Fig. 4e is the same as or close to the inner diameter of the distributor 6.
  • In addition, in consideration of the processing difficulty and the assembly simplicity, the inlet flow regulating structure of the present invention may further be changed as follows.
  • It should be noted that, the inlet flow regulating structure 11 is disposed at any position from the refrigerant inlet connector 4 to the distributor chamber 7 along a central axis of a distributor chamber 7.
  • Referring to Fig. 5, the arc surface structure of the above-mentioned inlet flow regulating structure 11 may be set in a planar form, or may be replaced with a planar unit. However, the design of a flaring cavity is kept. As shown in the figure, a top surface of an inlet flow regulating structure 11' is approximately planar.
  • Referring to Fig. 6, the design manner of the above-mentioned arc surface structure and flaring cavity is omitted, but instead, a conventional heat exchanger side plate 1 and a simple inlet flow regulating structure 11" are used. The inlet flow regulating structure 11" is a sheet metal stamping part. As shown in the figure, a sealing step 51 and a porous flow regulating area 12 are shown.
  • Referring to Fig. 7, the form of a flow regulating gasket 21 having a uniform thickness may further be used. The flow regulating gasket 21 is used to replace the above-mentioned inlet flow regulating structure, and is disposed in a position the same as that of the above-mentioned inlet flow regulating structure. The flow regulating gasket is sealed with a side plate and a heat exchange plate sheet adjacent thereto by means of the periphery of the flow regulating gasket. A plurality of flow regulating elements such as flow regulating holes are disposed on the flow regulating gasket 21. Certainly, the flow regulating gasket 21 may further use the above-mentioned flow regulating slots as the flow regulating elements as claimed in the requirements.
  • It may be understood that the present invention is not only limited to the above-mentioned structures, and may further comprise a combination or deduced manner of the above-mentioned structures. For example, each inlet flow regulating structure comprises a plurality of stacked layers or layers arranged in a stacking manner, the above-mentioned flow regulating elements such as the flow regulating holes or the flow regulating slots or any combination thereof are disposed on each layer, and flow regulating elements between adjacent layers overlap each other or are the same as each other. In addition, two or more inlet flow regulating structures connected in series may further be disposed between the side plate and the first distributor, and a certain gap is provided between two adjacent inlet flow regulating structures, so that a two-phase flow is regulated twice or for a plurality of times to obtain a homogeneous flow type, thereby improving an eventual distribution effect.
  • In addition, another embodiment of the present invention further provides a plate heat exchanger using the above-mentioned inlet flow regulating structure. The inlet flow regulating structure has been described above in detail, and the plate heat exchanger using the inlet flow regulating structure is not changed in other aspects. Therefore, details are no longer described herein.
  • As discussed above, the above-mentioned technical solutions of the present invention at least can implement at least one aspect of the following advantages:
    • firstly, a flow regulating hole or slot, an arc jet end surface, and a flaring jet development cavity will effectively enhance the flow and flow type state of a refrigerant in an evaporator inlet area, so as to provide a stable and reliable inlet condition for a subsequent distribution process, thereby eliminating the influence of physical properties of the refrigerant, operations of a unit in a plurality of working conditions, capability differences of products, and the like on the refrigerant distribution in an evaporator; and
    • secondly, the proposed flow regulating unit or inlet flow regulating structure is mainly in the form of a sheet metal part or a low-cost flow regulating gasket, thus a great advantage are achieved in costs, and there are almost no additional costs for evaporators.
  • Above are merely some of the embodiments of the present invention, and it will be understood by those of ordinary skill in the art that changes may be made to these embodiments without departing from the principles and spirit of the general inventive concept, and the scope of the present invention is defined by the claims and their equivalents.

Claims (17)

  1. An inlet flow regulating structure for a plate heat exchanger, the plate heat exchanger comprising a refrigerant inlet connector and a side plate assembled with the refrigerant inlet connector,
    characterized in that
    at least one inlet flow regulating structure is arranged on a path from the refrigerant inlet connector to a main body of the plate heat exchanger, and at least one flow regulating element is disposed on each inlet flow regulating structure, the flow regulating element being provided corresponding to a refrigerant inlet passage of the plate heat exchanger.
  2. The inlet flow regulating structure as claimed in claim 1, characterized in that each inlet flow regulating structure comprises one layer or at least two layers spaced apart from each other, wherein the flow regulating element is disposed on each layer.
  3. The inlet flow regulating structure as claimed in claim 1 or 2, characterized in that at least two inlet flow regulating structures are spaced apart from each other and disposed side by side in a direction from the refrigerant inlet connector to a distribution chamber of the plate heat exchanger.
  4. The inlet flow regulating structure as claimed in any one of claims 1-3, characterized in that the flow regulating element is a flow regulating hole, a flow regulating slot or any combination thereof.
  5. The inlet flow regulating structure as claimed in any one of claims 1-4, characterized in that the inlet flow regulating structure is in the form of an arc, a flat plate or a flow regulating gasket.
  6. The inlet flow regulating structure as claimed in claim 5, characterized in that a plurality of circular rings are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating holes are spaced apart on each of the circular rings; or
    a plurality of annular strips are disposed on the layer of the inlet flow regulating structure, and a plurality of flow regulating slots, spaced apart and extending straightly or obliquely, are disposed on each of the annular strips.
  7. The inlet flow regulating structure as claimed in claim 6, characterized in that each of the flow regulating slots is rectangular or sickle-shaped.
  8. The inlet flow regulating structure as claimed in either of claims 6 or 7, characterized in that one flow regulating hole is provided at the center of the layer of the inlet flow regulating structure.
  9. The inlet flow regulating structure as claimed in any one of claims 1-8, characterized in that a flaring chamber is provided in the inlet flow regulating structure.
  10. The inlet flow regulating structure as claimed in claim 9, characterized in that the side plate or the refrigerant inlet connector has a flaring chamber at least partially accommodating the flaring chamber of the inlet flow regulating structure.
  11. The inlet flow regulating structure as claimed in claim 10, characterized in that a top surface of the flaring chamber of the inlet flow regulating structure and a top surface of the flaring chamber of the side plate or the refrigerant inlet connector are at least partially in contact with each other and are generally located at the same level of height.
  12. The inlet flow regulating structure as claimed in claim 11, characterized in that the size of the bottom of the flaring chamber matches the size of a distributor chamber of the plate heat exchanger, such that a two-phase refrigerant flow from a refrigerant inlet flows through the flaring chamber and then smoothly enters the distribution chamber and is distributed into corresponding refrigerant channels.
  13. The inlet flow regulating structure as claimed in claim 1, characterized in that the inlet flow regulating structure is disposed at any position from the refrigerant inlet connector to a distributor chamber along a central axis of the distributor chamber.
  14. The inlet flow regulating structure as claimed in claim 13, characterized in that the inlet flow regulating structure is disposed between the side plate and a jet hole of a first distributor.
  15. The inlet flow regulating structure as claimed in claim 13, characterized in that the inlet flow regulating structure is disposed or integrated on a first heat exchange plate sheet I or a first heat exchange plate sheet II starting from the refrigerant inlet or between a first heat exchange sheet II and a first distributor.
  16. The inlet flow regulating structure as claimed in claim 14, characterized in that, for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I and heat exchange plate sheets II, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a second heat exchange plate sheet I, and the inlet flow regulating structure is disposed or integrated on a first heat exchange sheet I, a first heat exchange sheet II, a second heat exchange plate sheet I or a second heat exchange plate sheet II; or
    for a dual-circuit plate heat exchanger formed by heat exchange plate sheets I, heat exchange plate sheets II, heat exchange plate sheets III, and heat exchange plate sheets IV, in a distributor chamber of a second circuit, a seal is provided between a first heat exchange plate sheet II and a first heat exchange plate sheet III, and the inlet flow regulating structure is disposed or integrated on a first heat exchange plate sheet I, the first heat exchange plate sheet II, the first heat exchange plate sheet III or a first heat exchange plate sheet IV.
  17. A plate heat exchanger, comprising an inlet flow regulating structure as claimed in any one of claims 1-16.
EP16874532.1A 2015-12-15 2016-08-15 Inlet flow regulating structure and plate heat exchanger Withdrawn EP3392592A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510933718.0A CN106885396B (en) 2015-12-15 2015-12-15 Entrance rectifier structure and plate heat exchanger
PCT/CN2016/095280 WO2017101472A1 (en) 2015-12-15 2016-08-15 Inlet flow regulating structure and plate heat exchanger

Publications (2)

Publication Number Publication Date
EP3392592A1 true EP3392592A1 (en) 2018-10-24
EP3392592A4 EP3392592A4 (en) 2019-06-26

Family

ID=59055673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16874532.1A Withdrawn EP3392592A4 (en) 2015-12-15 2016-08-15 Inlet flow regulating structure and plate heat exchanger

Country Status (4)

Country Link
US (1) US20190310033A1 (en)
EP (1) EP3392592A4 (en)
CN (1) CN106885396B (en)
WO (1) WO2017101472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110685A1 (en) * 2018-11-26 2020-06-04 三菱電機株式会社 Plate-type heat exchanger and heat-pump-type hot-water supply system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347003B1 (en) * 2017-01-25 2018-06-20 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド LNG ship evaporative gas reliquefaction method and system
CN111397406A (en) * 2018-12-28 2020-07-10 丹佛斯有限公司 Plate heat exchanger
GB201915900D0 (en) * 2019-11-01 2019-12-18 Fives Landis Ltd Temperature controls in machine tools
CN112097566B (en) * 2020-09-23 2022-09-30 哈尔滨工业大学 Rectification structure of printed circuit board heat exchanger
CN114396814B (en) * 2021-12-28 2022-12-30 宏雷机械设备(南通)有限公司 Heat exchanger with adjustable flow
CN115507681B (en) * 2022-09-23 2023-10-24 浙江英特科技股份有限公司 Plate heat exchanger
CN116817644A (en) * 2022-10-19 2023-09-29 浙江三花板换科技有限公司 Plate heat exchanger

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3824073C2 (en) * 1988-07-15 1993-12-09 Laengerer & Reich Kuehler oil cooler
JP3052121B2 (en) * 1995-08-22 2000-06-12 株式会社ショウエイ Heat exchanger
DE59701152D1 (en) * 1996-05-24 2000-03-30 Alenko Ag Zuerich Heat exchanger and device for performing a cycle
JPH1183352A (en) * 1997-09-05 1999-03-26 Sanou Kogyo Kk Heat exchanger
JP2000002498A (en) * 1998-06-17 2000-01-07 Calsonic Corp Rectifier for heat exchanger
JP4454779B2 (en) * 2000-03-31 2010-04-21 株式会社日阪製作所 Plate heat exchanger
US20080190134A1 (en) * 2006-11-29 2008-08-14 Parker-Hannifin Corporation Refrigerant flow distributor
CN102052874A (en) * 2011-01-13 2011-05-11 江苏宝得换热设备有限公司 Plate type heat exchanger with high bearing pressure
CN202361872U (en) * 2011-12-09 2012-08-01 襄阳航力机电技术发展有限公司 Plate-fin heat exchanger
SI2674716T1 (en) * 2012-06-14 2015-08-31 Alfa Laval Corporate Ab A plate heat exchanger
CN102829655A (en) * 2012-09-19 2012-12-19 江苏宝得换热设备有限公司 Plate type heat exchanger
US9989322B2 (en) * 2013-03-01 2018-06-05 Dana Canada Corporation Heat recovery device with improved lightweight flow coupling chamber and insertable valve
EP2977704B1 (en) * 2013-03-22 2020-06-17 Mitsubishi Electric Corporation Plate-type heat exchanger and refrigeration cycle device with same
CN104296586A (en) * 2013-07-15 2015-01-21 杭州三花研究院有限公司 Heat exchanger sheet, heat exchanger heat exchange unit and heat exchanger
CN203928850U (en) * 2014-05-13 2014-11-05 青岛海信日立空调系统有限公司 A kind of heat exchanger uniform flow orifice and plate type heat exchanger
CN204421430U (en) * 2015-02-02 2015-06-24 重庆雅马拓科技有限公司 A kind of cooling-water machine heat exchange mechanisms

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110685A1 (en) * 2018-11-26 2020-06-04 三菱電機株式会社 Plate-type heat exchanger and heat-pump-type hot-water supply system
JPWO2020110685A1 (en) * 2018-11-26 2021-06-03 三菱電機株式会社 Plate heat exchanger and heat pump hot water supply system

Also Published As

Publication number Publication date
CN106885396B (en) 2019-07-19
EP3392592A4 (en) 2019-06-26
US20190310033A1 (en) 2019-10-10
WO2017101472A1 (en) 2017-06-22
CN106885396A (en) 2017-06-23

Similar Documents

Publication Publication Date Title
EP3392592A1 (en) Inlet flow regulating structure and plate heat exchanger
CN106918165B (en) Heat exchanger
US8167029B2 (en) Plate heat exchanger
EP2977704B1 (en) Plate-type heat exchanger and refrigeration cycle device with same
US8061416B2 (en) Heat exchanger and method for the production thereof
JP4885858B2 (en) Reversing valve with shunt
JP5665983B2 (en) Plate heat exchanger and refrigeration cycle apparatus
JP6349465B2 (en) Arc shaped plate heat exchanger
EP2420791A2 (en) Plate heat exchanger
EP2977706A1 (en) Manifold and heat exchanger having same
JPWO2014184916A1 (en) Laminated header, heat exchanger, and air conditioner
EP2998680B1 (en) Laminated header, heat exchanger, and air conditioner
KR20170074991A (en) Layered header, heat exchanger, and air-conditioning device
JP2018189352A (en) Heat exchanger
KR101900232B1 (en) Plate heat exchanger
EP3904816A1 (en) Multi-loop plate heat exchanger
WO2016034092A1 (en) Plate-type heat exchanger
EP2990749B1 (en) Heat exchanger
CN116793118A (en) Plate heat exchanger
WO2019029659A1 (en) Passage member for passages of plate heat exchanger, and plate heat exchanger
CN115540648A (en) Heat exchanger and preparation method thereof
US20220026152A1 (en) Heat Exchanger Flat Tube and Heat Exchanger with Heat Exchanger Flat Tube
KR101987599B1 (en) The plate heat exchanger of welding type
JP2010196857A (en) Four-way selector valve
WO2018121467A1 (en) Plate type heat exchanger

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180522

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190528

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/02 20060101ALI20190522BHEP

Ipc: F28D 9/00 20060101AFI20190522BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200805