EP2420791A2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
EP2420791A2
EP2420791A2 EP10764664A EP10764664A EP2420791A2 EP 2420791 A2 EP2420791 A2 EP 2420791A2 EP 10764664 A EP10764664 A EP 10764664A EP 10764664 A EP10764664 A EP 10764664A EP 2420791 A2 EP2420791 A2 EP 2420791A2
Authority
EP
European Patent Office
Prior art keywords
plate
flow
heat exchange
fluid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10764664A
Other languages
German (de)
French (fr)
Other versions
EP2420791A4 (en
Inventor
Sang Chul Han
Sin Ii Choi
Rak Gyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Estra Automotive Systems Co Ltd
Original Assignee
Estra Automotive Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Estra Automotive Systems Co Ltd filed Critical Estra Automotive Systems Co Ltd
Publication of EP2420791A2 publication Critical patent/EP2420791A2/en
Publication of EP2420791A4 publication Critical patent/EP2420791A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits

Definitions

  • the present invention relates, in general, to a plate heat exchanger and, more particularly, to a plate heat exchanger which can increase the fluidity of a fluid, thereby realizing improved heat exchange efficiency.
  • a heat exchanger is a device for transferring heat from a higher temperature fluid to a lower temperature fluid through a heat transfer wall, and is used in an air conditioning system, a transmission oil cooler, etc. of an automobile. To be accommodated in a limited space in which the heat exchanger is installed, it is required to realize compactness of the heat exchanger and, accordingly, a plate heat exchanger has been widely used.
  • the plate heat exchanger includes a plurality of heat exchange elements that are stacked to define a flow channel between neighboring plates of the elements.
  • the flow channel includes at least two flow channels through which different heat exchange medium can flow.
  • the different heat exchange medium exchange heat with each other through the heat exchange elements when the medium pass through the respective flow channels.
  • each of the respective plates of the heat exchange elements has an inlet port and an outlet port in opposite ends thereof, wherein the inlet ports and the outlet ports of the respective plates communicate with each other.
  • An inlet cap and an outlet cap are mounted to the inlet and outlet ports of the uppermost plate by brazing, etc.
  • a heat exchange element of a conventional plate heat exchanger is fabricated by assembling a pair of plates 1 and 2 with each other.
  • a plurality of diagonal grooves 1a and 2a are formed by embossing the plates 1 and 2 in such a way that the grooves 1a and 2a extend diagonally.
  • the grooves 1a and 2a form a flow channel.
  • opposite ends of the respective plates 1 and 2 are provided with respective through holes 1b and 2b for forming an inlet port and an outlet port. Depressed edges 1c and 2c are formed around the respective through holes 1b and 2b.
  • a fluid in the flow channel flows along the grooves 1a and 2a of the respective plates 1 and 2, so that the fluid flows in an diagonal direction. Therefore, the flow of fluid may easily stagnate on the depressed edges 1c and 2c around the through holes 1b and 2b, so that the conventional plate heat exchanger excessively reduces the fluidity of the fluid and, accordingly, reduces the heat exchange efficiency.
  • the present invention has been made keeping in mind the above problems occurring in the related art, and is intended to provide a plate heat exchanger which can increase the fluidity of a fluid, thereby realizing improved heat exchange efficiency.
  • the present invention provides a plate heat exchanger, including:
  • the upper flow grooves may extend to the areas around the upper flanges of the upper plate, with at least one upper subsidiary groove being formed in each of the upper flanges of the upper plate, wherein the at least one upper subsidiary groove intersects with the upper flow grooves.
  • the lower flow grooves may extend to the areas around the lower flanges of the lower plate, with at least one lower subsidiary groove being formed in each of the lower flanges of the lower plate, wherein the at least one lower subsidiary groove intersects with the lower flow grooves.
  • At least one upper spacing lug may be formed on an upper surface of the upper plate, and at least one lower spacing lug may be formed on a lower surface of the lower plate.
  • the upper spacing lug of each of the heat exchange elements may be in contact with the lower spacing lug of a neighboring heat exchange element, the upper spacing lug and the lower spacing lug having respective through holes on contact surfaces thereof so that the first flow channels of the heat exchange elements communicate with each other.
  • the plate heat exchanger according to the present invention uses a flow guide structure, by which the fluid can be guided in at least two flow directions in the area around the upper flange of the upper plate and/or around the lower flange of the lower plate, so that the present invention prevents stagnation of the fluid in the areas around the inlet ports and the outlet ports of the heat exchange elements and allows the fluid to smoothly and constantly flow for the whole length of the respective plates and, accordingly, increases the fluidity of the fluid and realizes improved heat exchange efficiency.
  • Figs. 1 through 7 show a plate heat exchanger according to an embodiment of the present invention.
  • the plate heat exchanger of the present invention includes a plurality of heat exchange elements 10, wherein the plurality of heat exchange elements 10 is stacked in such a way that one is laid on top of another.
  • each of the heat exchange elements 10 defines therein a first flow channel 18, through which a first fluid, such as oil or refrigerant, passes.
  • a first fluid such as oil or refrigerant
  • Each of the heat exchange elements 10 is formed by assembling an upper plate 11 with a lower plate 12 into a single structure.
  • the upper plate 11 and the lower plate 12 are made of a metal material having excellent heat conductivity, such as aluminum, and are joined together along the edges 11a and 12a by brazing.
  • the upper plate 11 and the lower plate 12 are provided on facing surfaces thereof with a plurality of flow grooves 11b and 12b. Described in detail, the lower surface of the upper plate 11 is provided with a plurality of upper flow grooves 11b and the upper surface of the lower plate 12 is provided with a plurality of lower flow grooves 12b.
  • the upper flow grooves 11b of the upper plate 11 and the lower flow grooves 12b of the lower plate 12 diagonally extend on a flat plane.
  • the upper plate 11 and the lower plate 12 are stacked in such a way that the upper flow grooves 11b of the upper plate 11 intersect with the lower flow grooves 12b of the lower plate 12.
  • the first flow channel 18 is defined in the heat exchange element 10. Therefore, in the heat exchange element 10, the first fluid, for example, oil, can flow zigzag through the first flow channel 18, so that the flow rate of the first fluid can be increased and the contact surface of the first fluid relative to the heat exchange element can be enlarged to realize improved heat exchange efficiency.
  • the first fluid for example, oil
  • the plurality of the flow grooves 11b and 12b may be formed by subjecting the upper and lower plates 11 and 12 to die-casting or pressing, such as stamping. Further, bulging parts 13a and 14a are formed in the heat exchange element 10 at locations opposed to the flow grooves 11b and 12b, with a plurality of depressed parts 13b and 14b defined between the plurality of bulging parts 13a and 14a. Due to the flow grooves 11b and 12b, the upper and lower plates 11 and 12 have respective wave structures 13 and 14.
  • each of the heat exchange elements 10 is provided with an inlet port 43 in one end thereof and with an outlet port 44 in the other end thereof.
  • the inlet port 43 and the outlet port 44 communicate with the first flow channel 18. Further, when the plurality of the heat exchange elements 10 are stacked, the inlet ports 43 and the outlet ports 44 of the elements 10 communicate with each other.
  • the upper plate 11 has an upper flange 23 which is raised upwards from each of the inlet and outlet ports 43 and 44
  • the lower plate 12 has a lower flange 24 which protrudes downwards from each of the inlet and outlet ports 43 and 44.
  • the upper flange 23 and the lower flange 24 are assembled with each other through fitting. Described in detail, the upper flanges 23 of a lower heat exchange element 10 may be fitted over the respective lower flanges 24 of an upper heat exchange element 10 or the lower flanges 24 of an upper heat exchange element 10 may be fitted into the respective upper flanges 23 of a lower heat exchange element 10, so that the desired fluid tightness can be realized.
  • the neighboring upper and lower flanges 23 and 24 may be integrated with each other by brazing in a leak proof manner. Therefore, the inlet ports 43 and the outlet ports 44 of the heat exchange elements 10 are hermetically sealed from a second flow channel 28.
  • an inlet fitting 25 is mounted to the upper flange 23 of the inlet port 43 and an outlet fitting 26 is mounted to the upper flange 23 of the outlet port 44.
  • the inlet fitting 25 has an opening 25a to which an inlet pipe is connected.
  • the outlet fitting 26 has an opening 26a to which an outlet pipe is connected.
  • the upper flow grooves 11b of the upper plate 11 extend to areas around the upper flanges 23 and the lower flow grooves 12b of the lower plate 12 extend to areas around the lower flange 24. Further, in the heat exchange element 10, the upper flow grooves 11bof the upper plate 11 intersect with the lower flow grooves 12b of the lower plate 12, thereby defining the first flow channel 18 having an intersecting structure. Therefore, when the first fluid is introduced from the inlet port 43 into the first flow channel 18, the first fluid flows zigzag both through the upper flow grooves 11b of the upper plate 11 and through the lower flow grooves 12b of the lower plate 12 prior to being discharged through the outlet port 44.
  • the present invention provides a flow guide structure capable of guiding the first fluid in such a way that the fluid can flow in at least two directions, in other words, the fluid can flow in radial directions in the areas around the inlet and outlet ports 43 and 44. Therefore, the present invention can prevent the stagnation of the first fluid and can realize increased fluidity of the first fluid.
  • the upper plate 11 is provided with at least one upper subsidiary groove 63 in an area around each of the upper flanges 23 and the lower plate 12 is provided with at least one lower subsidiary groove 64 in an area around each of the lower flanges 24.
  • the upper subsidiary groove 63 is formed by embossing, etc. in such a way that the upper subsidiary groove 63 can intersect with the upper flow grooves 11b of the upper plate 11 at a predetermined angle of intersection.
  • the upper flow grooves 11b of the upper plate 11 are formed on the rear surfaces of the bulging parts 13a of the wave structure 13, so that the bulging parts 13a and the upper flow grooves 11b are oriented in the same direction and, accordingly, the upper subsidiary groove 63 intersects with the bulging parts 13a at the predetermined angle of intersection. Therefore, in the area around each of the upper flanges 23 of the upper plate 11, the first fluid can flow in main flow directions (the directions designated by arrow K) in which the fluid flows along the upper flow grooves 11b and, at the same time, can flow in at least one subsidiary flow direction (the direction designated by arrow U) in which the fluid flows along at least one upper subsidiary groove 63.
  • the first fluid can cross-flow both in the main flow directions and in the at least one subsidiary flow direction, so that the first fluid can more evenly, smoothly and constantly flow for the whole length of the upper plate 11 with increased fluidity.
  • the lower subsidiary groove 64 is formed by embossing, etc. in such a way that the lower subsidiary groove 64 can intersect with the lower flow grooves 12b of the lower plate 12 at a predetermined angle of intersection.
  • the lower flow grooves 12b of the lower plate 12 are formed on the rear surfaces of the bulging parts 14a of the wave structure 14 and, accordingly, the bulging parts 14a and the lower flow grooves 12b are oriented in the same direction. Therefore, the lower subsidiary groove 64 intersects with the bulging parts 14a at the predetermined angle of intersection.
  • the first fluid can flow in main flow directions (the directions designated by arrow J) in which the fluid flows along the lower flow grooves 12b and, at the same time, can flow in at least one subsidiary flow direction (the direction designated by arrow W) in which the fluid flows along at least one lower subsidiary groove 64.
  • the first fluid can cross-flow both in the main flow directions and in the at least one subsidiary flow direction, so that the first fluid can more evenly, smoothly and constantly flow for the whole length of the lower plate 12 with increased fluidity.
  • At least one upper subsidiary groove 63 is formed in the area around each of the upper flanges 23 of the upper plate 11 and at least one lower subsidiary groove 64 is formed in the area around each of the lower flanges 24 of the lower plate 12, thereby guiding the first fluid to at least two flow directions in the area around each of the inlet and outlet ports 43 and 44 of the heat exchange element 10. Therefore, the present invention can prevent stagnation of the first fluid in the areas and, accordingly, can allow the fluid to smoothly and constantly flow for the whole length of the respective plates 11 and 12. That is, the present invention increases the fluidity of the first fluid and, accordingly, realizes improved heat exchange efficiency.
  • a second flow channel 28 through which a second fluid, such as cooling water, passes is defined between the stacked heat exchange elements 10.
  • the second flow channel 28 is defined because the plurality of heat exchange elements 10 are spaced apart from each other at a predetermined interval.
  • each of the heat exchange elements 10 that is, the upper surface of the upper plate 11 and the lower surface of the lower plate 12 are provided with a plurality of upper and lower spacing lugs 21 and 22.
  • the plurality of upper spacing lugs 21 are formed on the upper surface of each bulging part 13a of the upper plate 11 in such a way that the lugs 21 are spaced apart from each other at regular intervals.
  • the plurality of lower spacing lugs 22 are formed on the lower surface of each bulging part 14a of the lower plate 12 in such a way that the lugs 22 are spaced apart from each other at regular intervals.
  • the lower spacing lugs 22 of the upper heat exchange elements 10 are brought into contact with the upper spacing lugs 21 of the lower heat exchange elements 10. Because the plurality of upper and lower spacing lugs 21 and 22 are brought into contact with each other as described above, the interval between the stacked heat exchange elements 10 is increased and, accordingly, the sectional area of the second flow channel 28 is increased. Further, the spacing lugs 21 and 22 which are in contact with each other may be joined to each other by brazing, etc. The upper spacing lugs 21 and the corresponding lower spacing lugs 22 are located on points at which the upper flow grooves 11b and the lower flow grooves 12b intersect with each other, so that the stacked structure of the heat exchange elements can have a stable structure.
  • the spacing lugs 21 and 22 may be shaped in the form of any one of a trapezoidal cross-section, a curved cross-section, such as a circular or elliptical cross-section, and a square cross-section. Further, the upper surfaces 21a of the respective upper spacing lugs 21 can be brought into close contact with the lower surfaces 22a of the corresponding lower spacing lugs 22, so that the integration of the upper and lower plates 11 and 12 can be more easily accomplished.
  • the contact surfaces 21a and 22a of the upper and lower spacing lugs 21 and 22, that is, the upper surfaces 21a of upper spacing lugs 21 and the lower surfaces 22a of the lower spacing lugs 22 are provided with respective through holes 21c and 22c. Further, the through holes 21c and 22c of neighboring spacing lugs 21 and 22 which are in contact with each other communicate with each other. Therefore, the first flow channels 18 of the respective heat exchange elements 10 communicate with each other by means of the through holes 21c and 22c.
  • the first fluid, such as oil, inside a heat exchange element 10 can freely flow to the first flow channel 18 of a neighboring heat exchange element 10 through the through holes 21c and 22c, so that the first fluid can be mixed in all of the heat exchange elements 10 and, accordingly, desirably improves the heat exchange efficiency.
  • the upper plate 11 and the lower plate 12 have positioning grooves 11c and positioning protrusions 12c on corresponding ends 11a and 12a thereof. Due to the positioning grooves and positioning protrusions, the upper plate 11 and the lower plate 12 can be easily positioned and, accordingly, the preliminary assembly of the upper and lower plates 11 and 12 can be quickly finished during a process of assembling the plates. Therefore, the precise and firm assembly of the upper and lower plates 11 and 12 can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A plate heat exchanger capable of increasing the fluidity of a fluid and realizing improved heat exchange efficiency, wherein each of stacked heat exchange elements are formed by assembling upper and lower plates, with first and second flow channels for first and second fluids respectively defined in each element and between the elements, inlet and outlet ports formed in opposite ends of the element, upper and lower flanges formed on the respective upper and lower plates, and upper and lower flow grooves diagonally extending on the lower surface of the upper plate and on the upper surface of the lower plate and intersecting with each other to define the first flow channel, wherein a flow guide structure for guiding the first fluid in at least two flow directions is provided on each of the areas around the inlet and outlet ports of the upper and lower plates.

Description

    [Technical Field]
  • The present invention relates, in general, to a plate heat exchanger and, more particularly, to a plate heat exchanger which can increase the fluidity of a fluid, thereby realizing improved heat exchange efficiency.
  • [Background Art]
  • A heat exchanger is a device for transferring heat from a higher temperature fluid to a lower temperature fluid through a heat transfer wall, and is used in an air conditioning system, a transmission oil cooler, etc. of an automobile. To be accommodated in a limited space in which the heat exchanger is installed, it is required to realize compactness of the heat exchanger and, accordingly, a plate heat exchanger has been widely used.
  • The plate heat exchanger includes a plurality of heat exchange elements that are stacked to define a flow channel between neighboring plates of the elements. The flow channel includes at least two flow channels through which different heat exchange medium can flow. In the plate heat exchanger, the different heat exchange medium exchange heat with each other through the heat exchange elements when the medium pass through the respective flow channels. Further, each of the respective plates of the heat exchange elements has an inlet port and an outlet port in opposite ends thereof, wherein the inlet ports and the outlet ports of the respective plates communicate with each other. An inlet cap and an outlet cap are mounted to the inlet and outlet ports of the uppermost plate by brazing, etc.
  • As shown in Fig. 8, a heat exchange element of a conventional plate heat exchanger is fabricated by assembling a pair of plates 1 and 2 with each other. Here, on the facing surfaces of the respective plates 1 and 2, a plurality of diagonal grooves 1a and 2a are formed by embossing the plates 1 and 2 in such a way that the grooves 1a and 2a extend diagonally. When the plates 1 and 2 are assembled with each other, the grooves 1a and 2a form a flow channel. Further, opposite ends of the respective plates 1 and 2 are provided with respective through holes 1b and 2b for forming an inlet port and an outlet port. Depressed edges 1c and 2c are formed around the respective through holes 1b and 2b.
  • During the operation of the plate heat exchanger, a fluid in the flow channel flows along the grooves 1a and 2a of the respective plates 1 and 2, so that the fluid flows in an diagonal direction. Therefore, the flow of fluid may easily stagnate on the depressed edges 1c and 2c around the through holes 1b and 2b, so that the conventional plate heat exchanger excessively reduces the fluidity of the fluid and, accordingly, reduces the heat exchange efficiency.
  • [Disclosure] [Technical Problem]
  • Accordingly, the present invention has been made keeping in mind the above problems occurring in the related art, and is intended to provide a plate heat exchanger which can increase the fluidity of a fluid, thereby realizing improved heat exchange efficiency.
  • [Technical Solution]
  • In an aspect, the present invention provides a plate heat exchanger, including:
    • a plurality of heat exchange elements stacked in such a way that one is laid on top of another, each of the heat exchange elements being formed by assembling an upper plate and a lower plate, with a first flow channel defined in each of heat exchange elements and allowing a first fluid to pass therethrough, and a second flow channel defined between the heat exchange elements and allowing a second fluid to pass therethrough, further including:
      • an inlet port and an outlet port formed in opposite ends of each of the heat exchange elements, an upper flange formed on the upper plate by extending upwards from each of the inlet and outlet ports, a lower flange formed on the lower plate by extending downwards from each of the inlet and outlet ports,
      • a plurality of upper flow grooves diagonally extending on a lower surface of the upper plate, and a plurality of lower flow grooves diagonally extending on an upper surface of the lower plate, wherein the upper plate and the lower plate are assembled with each other in such a way that the upper flow grooves intersect with the lower flow grooves, thereby defining the first flow channel in each of the heat exchange elements, further including:
        • a flow guide structure for guiding the first fluid in at least two flow directions, the flow guide structure being provided on at least one of areas around the inlet and outlet ports of the upper plate and on at least one of areas around the inlet and outlet ports of the lower plate.
  • The upper flow grooves may extend to the areas around the upper flanges of the upper plate, with at least one upper subsidiary groove being formed in each of the upper flanges of the upper plate, wherein the at least one upper subsidiary groove intersects with the upper flow grooves.
  • The lower flow grooves may extend to the areas around the lower flanges of the lower plate, with at least one lower subsidiary groove being formed in each of the lower flanges of the lower plate, wherein the at least one lower subsidiary groove intersects with the lower flow grooves.
  • In the plate heat exchanger, at least one upper spacing lug may be formed on an upper surface of the upper plate, and at least one lower spacing lug may be formed on a lower surface of the lower plate.
  • The upper spacing lug of each of the heat exchange elements may be in contact with the lower spacing lug of a neighboring heat exchange element, the upper spacing lug and the lower spacing lug having respective through holes on contact surfaces thereof so that the first flow channels of the heat exchange elements communicate with each other.
  • [Advantageous Effects]
  • As described above, the plate heat exchanger according to the present invention uses a flow guide structure, by which the fluid can be guided in at least two flow directions in the area around the upper flange of the upper plate and/or around the lower flange of the lower plate, so that the present invention prevents stagnation of the fluid in the areas around the inlet ports and the outlet ports of the heat exchange elements and allows the fluid to smoothly and constantly flow for the whole length of the respective plates and, accordingly, increases the fluidity of the fluid and realizes improved heat exchange efficiency.
  • [Description of Drawings]
    • Fig. 1 is a perspective view illustrating a plate heat exchanger according to an embodiment of the present invention;
    • Fig. 2 is a sectional view illustrating the axial cross-section of the plate heat exchanger according to the embodiment of the present invention;
    • Fig. 3 is an exploded perspective view illustrating upper and lower plates of a heat exchange element according to the present invention when the upper and lower plates are separated from each other;
    • Fig. 4 is an enlarged perspective view illustrating a portion designated by the arrow A in Fig. 3;
    • Fig. 5 is a bottom view of the upper plate viewed in a direction designated by the arrow C in Fig. 4;
    • Fig. 6 is an enlarged perspective view illustrating a portion designated by the arrow B in Fig. 3;
    • Fig. 7 is a bottom view of the lower plate viewed in a direction designated by the arrow D in Fig. 6; and
    • Fig. 8 is a view illustrating a heat exchange element of a conventional plate heat exchanger.
    [Mode for Invention]
  • Hereinbelow, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • Figs. 1 through 7 show a plate heat exchanger according to an embodiment of the present invention.
  • As shown in Fig. 1, the plate heat exchanger of the present invention includes a plurality of heat exchange elements 10, wherein the plurality of heat exchange elements 10 is stacked in such a way that one is laid on top of another.
  • As shown in Fig. 2, each of the heat exchange elements 10 defines therein a first flow channel 18, through which a first fluid, such as oil or refrigerant, passes. Each of the heat exchange elements 10 is formed by assembling an upper plate 11 with a lower plate 12 into a single structure. The upper plate 11 and the lower plate 12 are made of a metal material having excellent heat conductivity, such as aluminum, and are joined together along the edges 11a and 12a by brazing.
  • As shown in Fig. 2, the upper plate 11 and the lower plate 12 are provided on facing surfaces thereof with a plurality of flow grooves 11b and 12b. Described in detail, the lower surface of the upper plate 11 is provided with a plurality of upper flow grooves 11b and the upper surface of the lower plate 12 is provided with a plurality of lower flow grooves 12b. The upper flow grooves 11b of the upper plate 11 and the lower flow grooves 12b of the lower plate 12 diagonally extend on a flat plane. Here, the upper plate 11 and the lower plate 12 are stacked in such a way that the upper flow grooves 11b of the upper plate 11 intersect with the lower flow grooves 12b of the lower plate 12. Due to the intersection stack of the upper flow grooves 11b and the lower flow grooves 12b, the first flow channel 18 is defined in the heat exchange element 10. Therefore, in the heat exchange element 10, the first fluid, for example, oil, can flow zigzag through the first flow channel 18, so that the flow rate of the first fluid can be increased and the contact surface of the first fluid relative to the heat exchange element can be enlarged to realize improved heat exchange efficiency.
  • Here, the plurality of the flow grooves 11b and 12b may be formed by subjecting the upper and lower plates 11 and 12 to die-casting or pressing, such as stamping. Further, bulging parts 13a and 14a are formed in the heat exchange element 10 at locations opposed to the flow grooves 11b and 12b, with a plurality of depressed parts 13b and 14b defined between the plurality of bulging parts 13a and 14a. Due to the flow grooves 11b and 12b, the upper and lower plates 11 and 12 have respective wave structures 13 and 14.
  • As shown in Fig. 2, each of the heat exchange elements 10 is provided with an inlet port 43 in one end thereof and with an outlet port 44 in the other end thereof. In each of the heat exchange elements 10, the inlet port 43 and the outlet port 44 communicate with the first flow channel 18. Further, when the plurality of the heat exchange elements 10 are stacked, the inlet ports 43 and the outlet ports 44 of the elements 10 communicate with each other.
  • Further, the upper plate 11 has an upper flange 23 which is raised upwards from each of the inlet and outlet ports 43 and 44, and the lower plate 12 has a lower flange 24 which protrudes downwards from each of the inlet and outlet ports 43 and 44. Here, the upper flange 23 and the lower flange 24 are assembled with each other through fitting. Described in detail, the upper flanges 23 of a lower heat exchange element 10 may be fitted over the respective lower flanges 24 of an upper heat exchange element 10 or the lower flanges 24 of an upper heat exchange element 10 may be fitted into the respective upper flanges 23 of a lower heat exchange element 10, so that the desired fluid tightness can be realized. Alternatively, the neighboring upper and lower flanges 23 and 24 may be integrated with each other by brazing in a leak proof manner. Therefore, the inlet ports 43 and the outlet ports 44 of the heat exchange elements 10 are hermetically sealed from a second flow channel 28.
  • In the uppermost heat exchange element 10, an inlet fitting 25 is mounted to the upper flange 23 of the inlet port 43 and an outlet fitting 26 is mounted to the upper flange 23 of the outlet port 44. The inlet fitting 25 has an opening 25a to which an inlet pipe is connected. The outlet fitting 26 has an opening 26a to which an outlet pipe is connected.
  • The upper flow grooves 11b of the upper plate 11 extend to areas around the upper flanges 23 and the lower flow grooves 12b of the lower plate 12 extend to areas around the lower flange 24. Further, in the heat exchange element 10, the upper flow grooves 11bof the upper plate 11 intersect with the lower flow grooves 12b of the lower plate 12, thereby defining the first flow channel 18 having an intersecting structure. Therefore, when the first fluid is introduced from the inlet port 43 into the first flow channel 18, the first fluid flows zigzag both through the upper flow grooves 11b of the upper plate 11 and through the lower flow grooves 12b of the lower plate 12 prior to being discharged through the outlet port 44.
  • Here, in the areas around the inlet port 43 and the outlet port 44, the first fluid severally flows along the intersecting upper and lower flow grooves 11b and 12b, so that the first fluid may stagnate in the areas around the inlet and outlet ports 43 and 44 of the heat exchange element 10. In an effort to avoid the stagnation of the fluid in the areas around the inlet and outlet ports 43 and 44, the present invention provides a flow guide structure capable of guiding the first fluid in such a way that the fluid can flow in at least two directions, in other words, the fluid can flow in radial directions in the areas around the inlet and outlet ports 43 and 44. Therefore, the present invention can prevent the stagnation of the first fluid and can realize increased fluidity of the first fluid.
  • To this end, as shown in Fig. 3 through Fig. 7, the upper plate 11 is provided with at least one upper subsidiary groove 63 in an area around each of the upper flanges 23 and the lower plate 12 is provided with at least one lower subsidiary groove 64 in an area around each of the lower flanges 24.
  • As shown in Figs. 4 and 5, the upper subsidiary groove 63 is formed by embossing, etc. in such a way that the upper subsidiary groove 63 can intersect with the upper flow grooves 11b of the upper plate 11 at a predetermined angle of intersection.
  • Further, as shown in Figs. 4 and 5, the upper flow grooves 11b of the upper plate 11 are formed on the rear surfaces of the bulging parts 13a of the wave structure 13, so that the bulging parts 13a and the upper flow grooves 11b are oriented in the same direction and, accordingly, the upper subsidiary groove 63 intersects with the bulging parts 13a at the predetermined angle of intersection. Therefore, in the area around each of the upper flanges 23 of the upper plate 11, the first fluid can flow in main flow directions (the directions designated by arrow K) in which the fluid flows along the upper flow grooves 11b and, at the same time, can flow in at least one subsidiary flow direction (the direction designated by arrow U) in which the fluid flows along at least one upper subsidiary groove 63. Therefore, in the area around each of the upper flanges 23 of the upper plate 11, the first fluid can cross-flow both in the main flow directions and in the at least one subsidiary flow direction, so that the first fluid can more evenly, smoothly and constantly flow for the whole length of the upper plate 11 with increased fluidity.
  • As shown in Figs. 6 and 7, the lower subsidiary groove 64 is formed by embossing, etc. in such a way that the lower subsidiary groove 64 can intersect with the lower flow grooves 12b of the lower plate 12 at a predetermined angle of intersection.
  • As shown in Figs. 6 and 7, the lower flow grooves 12b of the lower plate 12 are formed on the rear surfaces of the bulging parts 14a of the wave structure 14 and, accordingly, the bulging parts 14a and the lower flow grooves 12b are oriented in the same direction. Therefore, the lower subsidiary groove 64 intersects with the bulging parts 14a at the predetermined angle of intersection. Thus, in the area around each of the lower flanges 24 of the lower plate 12, the first fluid can flow in main flow directions (the directions designated by arrow J) in which the fluid flows along the lower flow grooves 12b and, at the same time, can flow in at least one subsidiary flow direction (the direction designated by arrow W) in which the fluid flows along at least one lower subsidiary groove 64. Therefore, in the area around each of the lower flanges 24 of the lower plate 12, the first fluid can cross-flow both in the main flow directions and in the at least one subsidiary flow direction, so that the first fluid can more evenly, smoothly and constantly flow for the whole length of the lower plate 12 with increased fluidity.
  • As described above, in the present invention, at least one upper subsidiary groove 63 is formed in the area around each of the upper flanges 23 of the upper plate 11 and at least one lower subsidiary groove 64 is formed in the area around each of the lower flanges 24 of the lower plate 12, thereby guiding the first fluid to at least two flow directions in the area around each of the inlet and outlet ports 43 and 44 of the heat exchange element 10. Therefore, the present invention can prevent stagnation of the first fluid in the areas and, accordingly, can allow the fluid to smoothly and constantly flow for the whole length of the respective plates 11 and 12. That is, the present invention increases the fluidity of the first fluid and, accordingly, realizes improved heat exchange efficiency.
  • Further, a second flow channel 28 through which a second fluid, such as cooling water, passes is defined between the stacked heat exchange elements 10. The second flow channel 28 is defined because the plurality of heat exchange elements 10 are spaced apart from each other at a predetermined interval.
  • To this end, the upper and lower surfaces of each of the heat exchange elements 10, that is, the upper surface of the upper plate 11 and the lower surface of the lower plate 12 are provided with a plurality of upper and lower spacing lugs 21 and 22. Here, the plurality of upper spacing lugs 21 are formed on the upper surface of each bulging part 13a of the upper plate 11 in such a way that the lugs 21 are spaced apart from each other at regular intervals. In the same manner, the plurality of lower spacing lugs 22 are formed on the lower surface of each bulging part 14a of the lower plate 12 in such a way that the lugs 22 are spaced apart from each other at regular intervals. Here, the lower spacing lugs 22 of the upper heat exchange elements 10 are brought into contact with the upper spacing lugs 21 of the lower heat exchange elements 10. Because the plurality of upper and lower spacing lugs 21 and 22 are brought into contact with each other as described above, the interval between the stacked heat exchange elements 10 is increased and, accordingly, the sectional area of the second flow channel 28 is increased. Further, the spacing lugs 21 and 22 which are in contact with each other may be joined to each other by brazing, etc. The upper spacing lugs 21 and the corresponding lower spacing lugs 22 are located on points at which the upper flow grooves 11b and the lower flow grooves 12b intersect with each other, so that the stacked structure of the heat exchange elements can have a stable structure.
  • The spacing lugs 21 and 22 may be shaped in the form of any one of a trapezoidal cross-section, a curved cross-section, such as a circular or elliptical cross-section, and a square cross-section. Further, the upper surfaces 21a of the respective upper spacing lugs 21 can be brought into close contact with the lower surfaces 22a of the corresponding lower spacing lugs 22, so that the integration of the upper and lower plates 11 and 12 can be more easily accomplished.
  • Further, as shown in Fig. 2, the contact surfaces 21a and 22a of the upper and lower spacing lugs 21 and 22, that is, the upper surfaces 21a of upper spacing lugs 21 and the lower surfaces 22a of the lower spacing lugs 22 are provided with respective through holes 21c and 22c. Further, the through holes 21c and 22c of neighboring spacing lugs 21 and 22 which are in contact with each other communicate with each other. Therefore, the first flow channels 18 of the respective heat exchange elements 10 communicate with each other by means of the through holes 21c and 22c. Therefore, the first fluid, such as oil, inside a heat exchange element 10 can freely flow to the first flow channel 18 of a neighboring heat exchange element 10 through the through holes 21c and 22c, so that the first fluid can be mixed in all of the heat exchange elements 10 and, accordingly, desirably improves the heat exchange efficiency.
  • Further, the upper plate 11 and the lower plate 12 have positioning grooves 11c and positioning protrusions 12c on corresponding ends 11a and 12a thereof. Due to the positioning grooves and positioning protrusions, the upper plate 11 and the lower plate 12 can be easily positioned and, accordingly, the preliminary assembly of the upper and lower plates 11 and 12 can be quickly finished during a process of assembling the plates. Therefore, the precise and firm assembly of the upper and lower plates 11 and 12 can be realized.

Claims (8)

  1. A plate heat exchanger, comprising:
    a plurality of heat exchange elements stacked in such a way that one is laid on top of another, each of the heat exchange elements being formed by assembling an upper plate and a lower plate, with a first flow channel defined in each of heat exchange elements and allowing a first fluid to pass therethrough, and a second flow channel defined between the heat exchange elements and allowing a second fluid to pass therethrough, further comprising:
    an inlet port and an outlet port formed in opposite ends of each of the heat exchange elements, an upper flange formed on the upper plate by extending upwards from each of the inlet and outlet ports, a lower flange formed on the lower plate by extending downwards from each of the inlet and outlet ports,
    a plurality of upper flow grooves diagonally extending on a lower surface of the upper plate, and a plurality of lower flow grooves diagonally extending on an upper surface of the lower plate, wherein the upper plate and the lower plate are assembled with each other in such a way that the upper flow grooves intersect with the lower flow grooves, thereby defining the first flow channel in each of the heat exchange elements, further comprising:
    a flow guide structure for guiding the first fluid in at least two flow directions, the flow guide structure being provided on at least one of areas around the inlet and outlet ports of the upper plate and on at least one of areas around the inlet and outlet ports of the lower plate.
  2. The plate heat exchanger as set forth in claim 1, wherein, in the areas around the inlet and outlet ports of the upper plate, the first fluid is guided in a main flow direction extending along the upper flow grooves of the upper plate and in at least one subsidiary flow direction intersecting with the main flow direction.
  3. The plate heat exchanger as set forth in claim 1, wherein the upper flow grooves extend to the areas around the upper flanges of the upper plate, with at least one upper subsidiary groove being formed in each of the upper flanges of the upper plate, wherein the at least one upper subsidiary groove intersects with the upper flow grooves.
  4. The plate heat exchanger as set forth in claim 1, wherein, in the areas around the inlet and outlet ports of the lower plate, the first fluid is guided in a main flow direction extending along the lower flow grooves of the lower plate and in at least one subsidiary flow direction intersecting with the main flow direction.
  5. The plate heat exchanger as set forth in claim 1, wherein the lower flow grooves extend to the areas around the lower flanges of the lower plate, with at least one lower subsidiary groove being formed in each of the lower flanges of the lower plate, wherein the at least one lower subsidiary groove intersects with the lower flow grooves.
  6. The plate heat exchanger as set forth in claim 1, wherein at least one upper spacing lug is formed on an upper surface of the upper plate, and at least one lower spacing lug is formed on a lower surface of the lower plate.
  7. The plate heat exchanger as set forth in claim 1, wherein the upper spacing lug of each of the heat exchange elements is in contact with the lower spacing lug of a neighboring heat exchange element, the upper spacing lug and the lower spacing lug having respective through holes on contact surfaces thereof so that the first flow channels of the heat exchange elements communicate with each other.
  8. The plate heat exchanger as set forth in claim 1, wherein the upper plate and the lower plate have a positioning groove and a positioning protrusion on corresponding ends thereof, respectively.
EP10764664.8A 2009-04-16 2010-04-15 Plate heat exchanger Withdrawn EP2420791A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090033219A KR100950689B1 (en) 2009-04-16 2009-04-16 Plate type heat exchanger
PCT/KR2010/002323 WO2010120125A2 (en) 2009-04-16 2010-04-15 Plate heat exchanger

Publications (2)

Publication Number Publication Date
EP2420791A2 true EP2420791A2 (en) 2012-02-22
EP2420791A4 EP2420791A4 (en) 2014-03-05

Family

ID=42184011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10764664.8A Withdrawn EP2420791A4 (en) 2009-04-16 2010-04-15 Plate heat exchanger

Country Status (5)

Country Link
US (1) US20120031598A1 (en)
EP (1) EP2420791A4 (en)
KR (1) KR100950689B1 (en)
CN (1) CN102395853B (en)
WO (1) WO2010120125A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278035A (en) * 2013-05-31 2013-09-04 浙江尔格科技有限公司 Heat exchange plate
CN103486729A (en) * 2013-10-14 2014-01-01 胡桂林 Plate-fin heat exchanger
CN104708293A (en) * 2015-03-10 2015-06-17 胡桂林 Manufacturing method for heat exchanger
WO2015086343A1 (en) * 2013-12-10 2015-06-18 Swep International Ab Heat exchanger with improved flow
EP3002536A1 (en) * 2014-10-02 2016-04-06 Valeo Systemes Thermiques Assembly comprising at least a first and a second plate for forming an exchange core of a heat exchanger and heat exchanger including said assembly
EP3346208A4 (en) * 2015-09-04 2019-06-05 Kyungdong Navien Co., Ltd. Curved plate heat exchanger
EP3354998A4 (en) * 2015-09-25 2019-06-05 Kyungdong Navien Co., Ltd. Round plate heat exchanger
FR3100058A1 (en) * 2019-08-23 2021-02-26 Valeo Systemes Thermiques Heat exchanger in particular for a motor vehicle and method of manufacturing such a heat exchanger

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9030822B2 (en) 2011-08-15 2015-05-12 Lear Corporation Power module cooling system
US9076593B2 (en) 2011-12-29 2015-07-07 Lear Corporation Heat conductor for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8971041B2 (en) 2012-03-29 2015-03-03 Lear Corporation Coldplate for use with an inverter in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8971038B2 (en) 2012-05-22 2015-03-03 Lear Corporation Coldplate for use in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
US8902582B2 (en) 2012-05-22 2014-12-02 Lear Corporation Coldplate for use with a transformer in an electric vehicle (EV) or a hybrid-electric vehicle (HEV)
DE102012220594A1 (en) * 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg capacitor
CN103542747A (en) * 2013-09-29 2014-01-29 无锡市鑫盛换热器制造有限公司 Disk stacked heat exchanger
CN104101236A (en) * 2013-12-03 2014-10-15 芜湖美的厨卫电器制造有限公司 Heat exchanger, manufacturing method of heat exchanger, heat exchanger assembly and gas water heater
US9437905B2 (en) 2014-02-25 2016-09-06 Ford Global Technologies, Llc Traction battery thermal plate manifold
CN103822521B (en) * 2014-03-04 2017-02-08 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchange plate and plate type heat exchanger
CN103791759B (en) 2014-03-07 2016-03-30 丹佛斯微通道换热器(嘉兴)有限公司 For plate type heat exchanger heat exchanger plate and there is the plate type heat exchanger of this heat exchanger plate
CN103791758B (en) * 2014-03-07 2016-07-20 丹佛斯微通道换热器(嘉兴)有限公司 For the heat exchanger plate of plate type heat exchanger and have the plate type heat exchanger of this heat exchanger plate
DE102014005149B4 (en) * 2014-04-08 2016-01-21 Modine Manufacturing Company Brazed heat exchanger
US9615490B2 (en) 2014-05-15 2017-04-04 Lear Corporation Coldplate with integrated DC link capacitor for cooling thereof
US9362040B2 (en) 2014-05-15 2016-06-07 Lear Corporation Coldplate with integrated electrical components for cooling thereof
JP2016114300A (en) 2014-12-15 2016-06-23 フタバ産業株式会社 Heat exchanger
DE102015010289A1 (en) * 2015-08-08 2017-02-09 Modine Manufacturing Company Plate heat exchanger
CN105066751B (en) * 2015-09-25 2017-04-12 四平市巨元瀚洋板式换热器有限公司 Plate heat exchanger
KR101789504B1 (en) * 2015-10-05 2017-10-26 주식회사 경동나비엔 Laminated type plate heat exchanger
CN105651084B (en) * 2016-01-13 2018-01-26 宁波市哈雷换热设备有限公司 Heat-exchangers of the plate type
CN105651087B (en) * 2016-01-13 2018-05-04 宁波市哈雷换热设备有限公司 A kind of heat-exchangers of the plate type
CN108645268A (en) * 2018-04-30 2018-10-12 南京理工大学 Add the plate-type heat exchanger slab of semicolumn protrusion
CN108827058A (en) * 2018-04-30 2018-11-16 南京理工大学 A kind of plus shuttle shape protrusion plate-type heat exchanger slab
CN109855436A (en) * 2019-02-27 2019-06-07 西安交通大学 The bionical micro-channel condenser of swordfish shuttle-type-inclined groove
US11280560B1 (en) * 2020-12-08 2022-03-22 Dana Canada Corporation Heat exchanger with two-piece through fittings
FR3122728B1 (en) * 2021-05-06 2023-06-02 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Channel plate heat exchanger module incorporating at least one fluid supply and distribution zone formed by studs.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252275A2 (en) * 1986-07-03 1988-01-13 W. Schmidt GmbH & Co. KG Panel heat exchanger
WO1997039301A1 (en) * 1996-04-16 1997-10-23 Alfa Laval Ab A plate heat exchanger
WO2005088223A1 (en) * 2004-03-11 2005-09-22 Behr Gmbh & Co. Kg Stacked-plate heat exchanger
DE102006048305A1 (en) * 2006-10-12 2008-04-17 Modine Manufacturing Co., Racine Plate heat exchanger has trough-shaped heat-exchanger plates stacked into each other with their outer edges next to each other and flow channels for cooling liquid between the heat-exchanger plates
KR100892109B1 (en) * 2008-07-10 2009-04-08 한국델파이주식회사 Transmission oil cooler

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1376882A (en) * 1919-10-14 1921-05-03 Motor Radiator & Mfg Corp Radiator
US4470455A (en) * 1978-06-19 1984-09-11 General Motors Corporation Plate type heat exchanger tube pass
JPH0666487A (en) * 1992-08-13 1994-03-08 Showa Alum Corp Laminated type heat exchanger
DK171957B1 (en) * 1995-06-06 1997-08-25 Apv Baker As Plate heat exchanger
CN1110682C (en) * 1996-01-16 2003-06-04 奥里恩机械株式会社 Heat exchanger
JPH09196591A (en) * 1996-01-23 1997-07-31 Sanden Corp Heat exchange tube element and heat exchanger using the same
JP2002022374A (en) * 2000-07-07 2002-01-23 Hitachi Ltd Plate type heat exchanger and freezing air conditioning apparatus
KR100718262B1 (en) * 2002-12-30 2007-05-15 한라공조주식회사 Manifold plate for heat exchanger
US20070199687A1 (en) * 2004-03-11 2007-08-30 Behr Gmbh & Co. Kg Stacked-Plate Heat Exchanger
SE526831C2 (en) 2004-03-12 2005-11-08 Alfa Laval Corp Ab Heat exchanger plate and plate package
CN201163159Y (en) * 2008-01-18 2008-12-10 江阴博格机械制冷技术有限公司 Brazing sheet type heat exchanger
CN201199138Y (en) * 2008-02-05 2009-02-25 王玉辉 Novel plate heat exchanger
CN101261057B (en) * 2008-04-18 2010-07-28 江苏宝得换热设备有限公司 Plate heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252275A2 (en) * 1986-07-03 1988-01-13 W. Schmidt GmbH & Co. KG Panel heat exchanger
WO1997039301A1 (en) * 1996-04-16 1997-10-23 Alfa Laval Ab A plate heat exchanger
WO2005088223A1 (en) * 2004-03-11 2005-09-22 Behr Gmbh & Co. Kg Stacked-plate heat exchanger
DE102006048305A1 (en) * 2006-10-12 2008-04-17 Modine Manufacturing Co., Racine Plate heat exchanger has trough-shaped heat-exchanger plates stacked into each other with their outer edges next to each other and flow channels for cooling liquid between the heat-exchanger plates
KR100892109B1 (en) * 2008-07-10 2009-04-08 한국델파이주식회사 Transmission oil cooler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010120125A2 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278035B (en) * 2013-05-31 2015-07-15 浙江尔格科技股份有限公司 Heat exchange plate
CN103278035A (en) * 2013-05-31 2013-09-04 浙江尔格科技有限公司 Heat exchange plate
CN103486729A (en) * 2013-10-14 2014-01-01 胡桂林 Plate-fin heat exchanger
CN105793662B (en) * 2013-12-10 2020-03-10 舒瑞普国际股份公司 Heat exchanger with improved flow
WO2015086343A1 (en) * 2013-12-10 2015-06-18 Swep International Ab Heat exchanger with improved flow
CN105793662A (en) * 2013-12-10 2016-07-20 舒瑞普国际股份公司 Heat exchanger with improved flow
US10837717B2 (en) 2013-12-10 2020-11-17 Swep International Ab Heat exchanger with improved flow
EP3002536A1 (en) * 2014-10-02 2016-04-06 Valeo Systemes Thermiques Assembly comprising at least a first and a second plate for forming an exchange core of a heat exchanger and heat exchanger including said assembly
FR3026834A1 (en) * 2014-10-02 2016-04-08 Valeo Systemes Thermiques ASSEMBLY COMPRISING AT LEAST ONE FIRST AND A SECOND PLATE FOR FORMING AN EXCHANGE BEAM OF A HEAT EXCHANGER AND A HEAT EXCHANGER COMPRISING THIS ASSEMBLY
CN104708293A (en) * 2015-03-10 2015-06-17 胡桂林 Manufacturing method for heat exchanger
EP3346208A4 (en) * 2015-09-04 2019-06-05 Kyungdong Navien Co., Ltd. Curved plate heat exchanger
US10914532B2 (en) 2015-09-04 2021-02-09 Kyungdong Navien Co., Ltd. Curved plate heat exchanger
EP3354998A4 (en) * 2015-09-25 2019-06-05 Kyungdong Navien Co., Ltd. Round plate heat exchanger
US11454453B2 (en) 2015-09-25 2022-09-27 Kyungdong Navien Co., Ltd. Round plate heat exchanger
FR3100058A1 (en) * 2019-08-23 2021-02-26 Valeo Systemes Thermiques Heat exchanger in particular for a motor vehicle and method of manufacturing such a heat exchanger
WO2021038152A1 (en) * 2019-08-23 2021-03-04 Valeo Systemes Thermiques Heat exchanger, in particular for a motor vehicle, and process for manufacturing such a heat exchanger

Also Published As

Publication number Publication date
WO2010120125A2 (en) 2010-10-21
CN102395853B (en) 2014-04-02
EP2420791A4 (en) 2014-03-05
US20120031598A1 (en) 2012-02-09
KR100950689B1 (en) 2010-03-31
WO2010120125A3 (en) 2011-03-10
CN102395853A (en) 2012-03-28

Similar Documents

Publication Publication Date Title
EP2420791A2 (en) Plate heat exchanger
US9250019B2 (en) Plate heat exchanger
CN111316057B (en) Multi-fluid heat exchanger
EP1484567B1 (en) Heat exchanger with parallel flowing fluids
US10520258B2 (en) Heat exchanger
JP5882179B2 (en) Internal heat exchanger with external manifold
EP2929273B1 (en) Plate heat exchanger
US10429132B2 (en) Stacked plate heat exchanger with top and bottom manifolds
CN110411248B (en) Stacked plate heat exchanger
JP2006010130A (en) Multi-fluid heat exchanger
US9989314B2 (en) Heat exchanger assembly
WO2014034509A1 (en) Heat exchanger
CN114608368A (en) Heat exchanger
KR20090049989A (en) Oilcooler
CN216205611U (en) Adapter for heat exchanger manifold
CN112146475B (en) Collecting pipe and heat exchanger
CN116034246A (en) Heat exchanger
KR101071351B1 (en) Plate type heat exchanger
KR101071348B1 (en) Plate type heat exchanger
US7028766B2 (en) Heat exchanger tubing with connecting member and fins and methods of heat exchange
CN215337881U (en) Heat exchanger
CN118670166A (en) Plate heat exchanger, thermal management system and vehicle
JPH0674601A (en) Laminated type heat exchanger
JP4855088B2 (en) Heat exchanger
JPS6242293Y2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140203

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/04 20060101ALI20140128BHEP

Ipc: F28D 9/00 20060101AFI20140128BHEP

Ipc: F28F 3/02 20060101ALI20140128BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERAE AUTOMOTIVE SYSTEMS CO., LTD.

17Q First examination report despatched

Effective date: 20161128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180821