WO2020110528A1 - 2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品 - Google Patents

2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品 Download PDF

Info

Publication number
WO2020110528A1
WO2020110528A1 PCT/JP2019/041661 JP2019041661W WO2020110528A1 WO 2020110528 A1 WO2020110528 A1 WO 2020110528A1 JP 2019041661 W JP2019041661 W JP 2019041661W WO 2020110528 A1 WO2020110528 A1 WO 2020110528A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
curable epoxy
fiber
range
Prior art date
Application number
PCT/JP2019/041661
Other languages
English (en)
French (fr)
Inventor
菜々 杉本
真実 木村
小林 厚子
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201980078137.XA priority Critical patent/CN113166376A/zh
Priority to US17/295,983 priority patent/US20220025108A1/en
Priority to JP2020553685A priority patent/JP6897887B2/ja
Publication of WO2020110528A1 publication Critical patent/WO2020110528A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4071Curing agents not provided for by the groups C08G59/42 - C08G59/66 phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention has a two-component curable epoxy resin composition which has a low viscosity and has a good impregnation property into fibers, and which can form a cured product excellent in mechanical properties, heat resistance and surface smoothness, and a cured product. And fiber-reinforced composite materials and molded articles.
  • the fiber-reinforced resin molded product can be manufactured by molding a fiber-reinforced composite material by a molding method such as a filament winding method, a press molding method, a hand lay-up method, a pull-through method or an RTM method.
  • the fiber-reinforced composite material is made by impregnating reinforcing fibers with a resin. Since the resin used for the fiber-reinforced composite material is required to have stability at room temperature, durability and strength of a cured product, etc., in general, unsaturated polyester resin, vinyl ester resin, epoxy resin, etc. A thermosetting resin is used. Among these, the epoxy resin is being put to practical use in various applications as a resin for fiber-reinforced composite materials, because a cured product having high strength and elastic modulus and excellent heat resistance can be obtained.
  • the epoxy resin for the fiber-reinforced composite material is required to have low viscosity because the reinforcing fiber is impregnated with the resin.
  • the heat resistance of the cured product is set so that the fiber reinforced resin molded products can withstand harsh usage environments for a long time. Resins with excellent properties and mechanical strength are required.
  • an epoxy resin composition containing a bisphenol type epoxy resin, an acid anhydride, and an imidazole compound is widely known (see, for example, Patent Document 1). Also known is an epoxy resin composition obtained by using a glycidyl ether of a dihydric phenol and a glycidyl amine type epoxy resin in combination with a curing agent (see, for example, Patent Document 2).
  • an epoxy resin composition that contains a curing agent that is unlikely to cause a decarboxylation reaction and that has excellent long-term storage stability, and that has excellent impregnability into reinforcing fibers, and a curing that has excellent mechanical properties, heat resistance, and surface smoothness.
  • the problem to be solved by the present invention is to contain a curing agent having excellent long-term storage stability, have a low viscosity and a good impregnation property into fibers, and have excellent mechanical properties and heat resistance.
  • a curing agent having excellent long-term storage stability, have a low viscosity and a good impregnation property into fibers, and have excellent mechanical properties and heat resistance.
  • the present inventors have used a main agent containing an epoxy resin, an acid anhydride, and a curing agent containing a specific amount of an organic phosphorus compound in a specific mass ratio. As a result, they have found that the above problems can be solved, and have completed the present invention.
  • the present invention is a two-component curing type epoxy resin containing a main agent (i) containing an epoxy resin (A) and a curing agent (ii) containing an acid anhydride (B) and an organic phosphorus compound (C).
  • the mass ratio [(i)/(ii)] of the main agent (i) and the curing agent (ii) is in the range of 35/65 to 75/25
  • a two-component curing type wherein the amount of C) used is in the range of 0.5 to 5 parts by mass with respect to 100 parts by mass of the total of the epoxy resin (A) and the acid anhydride (B).
  • the present invention relates to an epoxy resin composition, a cured product of the two-component curable epoxy resin composition, a fiber-reinforced composite material using the two-component curable epoxy resin composition, and a molded article.
  • the two-part curable epoxy resin composition of the present invention contains a curing agent that does not cause decarboxylation reaction and has excellent long-term storage stability, has a low viscosity, and has good impregnability into fibers. Since the obtained cured product has excellent mechanical properties, heat resistance, and surface smoothness, it can be suitably used for fiber-reinforced composite materials and the like.
  • excellent mechanical properties referred to in the present invention mean high strength and high elastic modulus.
  • the two-part curable epoxy resin composition of the present invention is characterized by containing a main agent (i) and a curing agent (ii).
  • the epoxy resin (A) must be used as the main component (i).
  • Examples of the epoxy resin (A) include bisphenol type epoxy resin, biphenyl type epoxy resin, novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin. , Alcohol type epoxy resins, phenol aralkyl type epoxy resins, epoxy resins having a naphthalene skeleton in the molecular structure, phosphorus atom-containing epoxy resins and the like. These epoxy resins can be used alone or in combination of two or more kinds.
  • Examples of the bisphenol type epoxy resin include bisphenol A type epoxy resin and bisphenol F type epoxy resin.
  • biphenyl type epoxy resin examples include tetramethyl biphenyl type epoxy resin and the like.
  • novolac type epoxy resin examples include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bisphenol A novolac type epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group, and biphenyl novolac.
  • Type epoxy resin and the like examples include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bisphenol A novolac type epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic hydroxyl group, and biphenyl novolac.
  • Type epoxy resin and the like examples include a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a bisphenol A novolac type epoxy resin, an epoxidized product of a condensate of phenols and an aromatic aldehyde having a phenolic
  • Examples of the alcohol type epoxy resin include diglycidyl ether of 1,4-butanediol.
  • Examples of the epoxy resin having a naphthalene skeleton in the molecular structure include naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-contracting novolac type epoxy resin, naphthol-cresol co-contracting novolac type epoxy resin, diglycidyl.
  • Examples thereof include oxynaphthalene and 1,1-bis(2,7-diglycidyloxy-1-naphthyl)alkane.
  • the bisphenol type epoxy resin is preferable because it has impregnability into the reinforcing fiber and excellent heat resistance in the cured product.
  • the epoxy equivalent of the epoxy resin (A) is preferably in the range of 120 to 300 g/eq, particularly 130 to 230 g/eq. The range is more preferable.
  • the viscosity of the epoxy resin (A) at 20° C. to 40° C. is in the range of 500 mPa ⁇ s to 200,000 mPa ⁇ s because a two-component curable epoxy resin composition having excellent impregnation property into reinforcing fibers can be obtained. Is preferable, and the range of 1,000 mPa ⁇ s to 15,000 mPa ⁇ s is more preferable.
  • an acid anhydride (B) and an organic phosphorus compound (C) are essential.
  • Examples of the acid anhydride (B) include tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylendoethylenetetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride. , Methyl nadic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, maleic acid anhydride and the like.
  • methyltetrahydrophthalic anhydride and methylhexahydrophthalic anhydride are preferable because they are liquid and have excellent impregnability into fibers and workability. Further, these acid anhydrides can be used alone or in combination of two or more kinds.
  • the acid anhydride equivalent of the acid anhydride (B) is preferably in the range of 120 to 250 g/eq, particularly preferably 150, from the viewpoint of better impregnation into the reinforcing fiber and curing rate. It is more preferably in the range of to 190 g/eq.
  • the free acid content in the acid anhydride is in the range of 0.05 to 2 mass %, the storage stability of the curing agent and the mechanical properties of the epoxy resin composition. It is preferable from the viewpoint of characteristics.
  • the “free acid amount” in the present invention is a value calculated by the following method.
  • V Titration amount of the tri-n-propylamine solution required for the sample (ml)
  • B Titration amount of tri-n-propylamine solution required for blank test (ml)
  • W Sample amount (g)
  • organic phosphorus compound (C) examples include triphenylphosphine, tris(4-methylphenyl)phosphine, tris(4-ethylphenyl)phosphine, tris(4-propylphenyl)phosphine, tris(4-butylphenyl).
  • Phosphine compounds such as phosphine, tris(2,4-dimethylphenyl)phosphine, tris(2,4,6-trimethylphenyl)phosphine, tributylphosphine, trioctylphosphine, triphenylphosphite, tris(nonylphenyl)phosphite, Tris(2,4-di-tert-butylphenyl)phosphite, tridecylphosphite, trioctylphosphite, trioctadecylphosphite, didecylmonophenylphosphite, dioctylmonophenylphosphite, diisopropylmonophenylphosphite, Examples thereof include phosphite compounds such as monobutyl diphenyl phosphite, phosphate compounds such as trimethyl phosphate, triethyl phosphate
  • a trivalent organic phosphorus compound such as a phosphine compound or a phosphite compound is preferable, and triphenylphosphine is particularly preferable, because a cured product having excellent curability and high heat resistance can be obtained. Further, these organic phosphorus compounds can be used alone or in combination of two or more kinds.
  • the amount of the organic phosphorus compound (C) used is 100 parts by mass of the total amount of the epoxy resin (A) and the acid anhydride (B), from the viewpoint of achieving both the impregnating ability into the reinforcing fiber and the mechanical properties. It is in the range of 0.5 to 5 parts by mass, preferably in the range of 0.8 to 4 parts by mass.
  • curing agent (ii) in addition to the acid anhydride (B) and the organic phosphorus compound (C), other curing agents or curing accelerators can be used, if necessary.
  • any of various compounds generally used as a curing agent or curing accelerator for epoxy resin can be used.
  • it can be obtained by reacting dicyandiamide, or an aliphatic dicarboxylic acid such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid, or a carboxylic acid compound such as fatty acid and dimer acid with an amine compound.
  • dicyandiamide or an aliphatic dicarboxylic acid such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid
  • a carboxylic acid compound such as fatty acid and dimer acid
  • Imidazole 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2 -Imidazole derivatives such as methylimidazole and 1-cyanoethyl-2-phenylimidazole;
  • the mass ratio [(i)/(ii)] of the main agent (i) and the curing agent (ii) is in the range of 35/65 to 75/25 from the viewpoint of achieving both heat resistance and mechanical properties. , 40/60 to 70/30 is preferable.
  • the two-component curing type epoxy resin composition of the present invention contains other resins other than the epoxy resin (A), a flame retardant/flame retardant auxiliary agent, a filler, an additive and an organic solvent as long as the effects of the present invention are not impaired. Can be included.
  • Examples of the other resins include polycarbonate resins, polyphenylene ether resins, phenol resins, curable resins other than the above, and thermoplastic resins.
  • polycarbonate resin examples include a polycondensation product of a divalent or bifunctional phenol and a carbonyl halide, or a polymer obtained by polymerizing a divalent or difunctional phenol and a carbonic acid diester by a transesterification method. Can be mentioned.
  • the divalent or bifunctional phenol which is a raw material of the polycarbonate resin
  • bis(hydroxyphenyl)alkanes are preferable, and
  • examples of the carbonyl halide or carbonic acid diester reacted with a divalent or bifunctional type phenol include phosgene; divalent phenol dihaloformates, diphenyl carbonates, ditolyl carbonates, bis(chlorophenyl) carbonates, and m-cresyl carbonates. And diaryl carbonates; aliphatic carbonate compounds such as dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, diamyl carbonate, dioctyl carbonate, and the like.
  • the polycarbonate resin may have a branched structure in addition to the one having a linear molecular structure in its polymer chain.
  • the branched structure has 1,1,1-tris(4-hydroxyphenyl)ethane, ⁇ , ⁇ ′, ⁇ ′′-tris(4-hydroxyphenyl)-1,3,5-triisopropylbenzene as a raw material component, It can be introduced by using phloroglucin, trimellitic acid, isatin bis(o-cresol) or the like.
  • polyphenylene ether resin examples include poly(2,6-dimethyl-1,4-phenylene)ether, poly(2-methyl-6-ethyl-14-phenylene)ether, poly(2,6-diethyl-1). , 4-phenylene) ether, poly(2-ethyl-6-n-propyl-1,4-phenylene) ether, poly(2,6-di-n-propyl-1,4-phenylene) ether, poly(2 -Methyl-6-n-butyl-1,4-phenylene)ether, poly(2-ethyl-6-isopropyl-1,4-phenylene)ether, poly(2-methyl-6-hydroxyethyl-1,4-) Examples thereof include phenylene) ether. Among these, poly(2,6-dimethyl-1,4-phenylene) ether is preferable.
  • the polyphenylene ether resin includes 2-(dialkylaminomethyl)-6-methylphenylene ether unit, 2-(N-alkyl-N-phenylaminomethyl)-6-methylphenylene ether unit as a partial structure. It may be one.
  • the polyphenylene ether resin a reactive functional group such as a carboxyl group, an epoxy group, an amino group, a mercapto group, a silyl group, a hydroxyl group, an anhydrous dicarboxyl group is introduced into the resin structure by a method such as a graft reaction or a copolymerization.
  • the modified polyphenylene ether resin described above can also be used within a range that does not impair the object of the present invention.
  • phenol resin examples include resol type phenol resin, novolac type phenol resin, phenol aralkyl resin, polyvinyl phenol resin, triazine-modified phenol novolac resin modified with melamine or benzoguanamine.
  • the curable resin and the thermoplastic resin other than the above are not specified, but examples thereof include polypropylene resin, polyethylene resin, polystyrene resin, syndiotactic polystyrene resin, ABS resin. , AS resin, biodegradable resin, polybutylene terephthalate, polyethylene terephthalate, polypropylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate and other polyalkylene arylate resins, unsaturated polyester resins, vinyl ester resins, diallyl phthalate resins, cyanates Resin, xylene resin, triazine resin, urea resin, melamine resin, benzoguanamine resin, urethane resin, oxetane resin, ketone resin, alkyd resin, furan resin, styryl pyridine resin, silicone resin, synthetic rubber and the like can be mentioned. These resins can be used alone or in combination of two or more kinds.
  • Examples of the flame retardant/flame retardant aid include non-halogen flame retardants.
  • non-halogen flame retardant examples include phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organic metal salt flame retardants, and the like. These flame retardants can be used alone or in combination of two or more kinds.
  • the phosphorus-based flame retardant either an inorganic phosphorus-based flame retardant or an organic phosphorus-based flame retardant can be used.
  • the inorganic phosphorus-based flame retardant include red phosphorus, ammonium monophosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amide. Is mentioned.
  • the red phosphorus is preferably surface-treated for the purpose of preventing hydrolysis and the like.
  • Examples of the surface treatment method include (i) coating treatment with an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof.
  • a method (ii) a method of coating with a mixture of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide and titanium hydroxide, and a thermosetting resin such as a phenol resin, (iii) magnesium hydroxide, water
  • an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide and titanium hydroxide
  • a thermosetting resin such as a phenol resin
  • magnesium hydroxide water
  • examples thereof include a method in which a coating of an inorganic compound such as aluminum oxide, zinc hydroxide or titanium hydroxide is double coated with a thermosetting resin such as phenol resin.
  • organic phosphorus-based flame retardants examples include general-purpose organic phosphorus-based compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds.
  • organic phosphorus-based flame retardants include general-purpose organic phosphorus-based compounds such as phosphoric acid ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds.
  • -Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide 10-(2,5-dihydrooxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide
  • 10-(2, Examples thereof include cyclic organic phosphorus compounds such as 7-dihydrooxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide.
  • hydrotalcite magnesium hydroxide, borate compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc.
  • hydrotalcite magnesium hydroxide, borate compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc.
  • nitrogen-based flame retardants examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, and phenothiazine.
  • triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, as well as amino sulfates such as guanyl melamine sulfate, melem sulfate, and melam sulfate.
  • examples thereof include triazine compounds, aminotriazine-modified phenol resins, and aminotriazine-modified phenol resins further modified with tung oil, isomerized linseed oil, and the like.
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • the range of 0.05 mass% to 10 mass% is preferable, and the range of 0.1 mass% to 5 mass% is more preferable.
  • metal hydroxide, molybdenum compound, etc. When using the nitrogen-based flame retardant, metal hydroxide, molybdenum compound, etc. can be used together.
  • the silicone-based flame retardant can be used without particular limitation as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the blending amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • the range of 0.05 to 20% by mass is preferable in the liquid curable epoxy resin composition.
  • a molybdenum compound, alumina or the like can be used together.
  • inorganic flame retardant examples include metal hydroxides, metal oxides, metal carbonate compounds, metal powders, boron compounds, low-melting glass and the like.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • metal oxide examples include zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide. , Chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, titanium carbonate and the like.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, tin and the like.
  • Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, borax, and the like.
  • low-melting glass examples include Sipley (Bokusui Brown Co.), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O. Glassy such as 5- B 2 O 3 -PbO-MgO system, P-Sn-O-F system, PbO-V 2 O 5 -TeO 2 system, Al 2 O 3 -H 2 O system, lead borosilicate system A compound etc. are mentioned.
  • the blending amount of the inorganic flame retardant is appropriately selected depending on the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • the range of 0.05% by mass to 20% by mass is preferable, and the range of 0.5% by mass to 15% by mass is preferable.
  • organic metal salt-based flame retardant examples include ferrocene, acetylacetonato metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, ionic bond between metal atom and aromatic compound or heterocyclic compound or Examples thereof include compounds having a coordinate bond.
  • the amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy.
  • the range of 0.005% by mass to 10% by mass is preferable in the two-component curable epoxy resin composition of the present invention.
  • the filler examples include titanium oxide, glass beads, glass flakes, glass fibers, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, potassium titanate, aluminum borate, magnesium borate, fused silica, crystalline silica, alumina, Examples thereof include silicon nitride, aluminum hydroxide, fibrous reinforcing agents such as kenaf fibers, carbon fibers, alumina fibers, and quartz fibers, and non-fibrous reinforcing agents. These fillers can be used alone or in combination of two or more. Further, these fillers may be covered with an organic substance, an inorganic substance or the like.
  • glass fiber When glass fiber is used as the filler, long fiber type roving, short fiber type chopped strand, milled fiber, etc. can be selected and used. It is preferable to use a glass fiber whose surface is treated for the resin used.
  • the strength of the non-combustible layer (or carbonized layer) generated during combustion can be further improved, the non-combustible layer (or carbonized layer) once generated during combustion is less likely to be damaged, and is stable. Since the heat insulating ability can be exerted, a larger flame retarding effect can be obtained, and high rigidity can be imparted to the material.
  • additives examples include plasticizers, antioxidants, ultraviolet absorbers, stabilizers such as light stabilizers, antistatic agents, conductivity imparting agents, stress relieving agents, mold release agents, crystallization accelerators, and hydrous agents.
  • Degradation inhibitors, lubricants, impact imparting agents, slidability improvers, compatibilizers, nucleating agents, reinforcing agents, reinforcing agents, flow control agents, dyes, sensitizers, coloring pigments, rubber polymers examples thereof include tackifiers, anti-settling agents, anti-sagging agents, antifoaming agents, coupling agents, rust preventives, antibacterial/antifungal agents, antifouling agents, conductive polymers and the like.
  • organic solvent examples include methyl ethyl ketone acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like.
  • the exothermic temperature range in the DSC (Differential Scanning Calorimetry) measurement of the two-component curable epoxy resin composition of the present invention that is, "(end set temperature)-(on set temperature)" is excellent in impregnation into the reinforcing fiber.
  • the range of 20 to 38° C. is preferable because a two-component curable epoxy resin composition can be obtained and the reaction can be easily controlled.
  • the initial compound viscosity (hereinafter abbreviated as “initial viscosity”) of the two-component curable epoxy resin composition of the present invention at 30° C. is a two-component curable epoxy resin composition excellent in impregnation into reinforcing fibers. Is preferable and the moldability is excellent, the range of 100 to 3000 mPa ⁇ s is preferable.
  • the viscosity in the present invention is a value measured using an E-type viscometer.
  • the "initial viscosity" in the present invention means the viscosity immediately after blending.
  • the “initial viscosity” and the viscosity after 8 hours at 30° C. (hereinafter abbreviated as “8 hours viscosity”) satisfy the relationship of the following formula (1). It is preferable because it gives a two-component curing type epoxy resin composition which has a working time and is excellent in impregnation property into the reinforcing fiber.
  • the two-component curable epoxy resin composition of the present invention contains a curing agent that does not cause decarboxylation and has excellent long-term storage stability, has excellent impregnability into reinforcing fibers, and has excellent mechanical strength in the resulting cured product. Since it has heat resistance and surface smoothness, it can be used for various applications such as paints, electric/electronic materials, adhesives, and molded products.
  • the two-part curable epoxy resin composition of the present invention can be suitably used for a fiber-reinforced composite material, a fiber-reinforced resin molded product, and the like, in addition to the use by curing itself. These will be described below.
  • a curing reaction of a two-component curing type epoxy resin composition containing the main agent (i) and the curing agent (ii) is performed. Is what you get.
  • the method for obtaining the cured product is not particularly limited, and examples thereof include a method of kneading and manufacturing the main agent (i) and the curing agent (ii) using a kneader.
  • Examples of the kneader include an extruder, a heating roll, a kneader, a roller mixer, and a Banbury mixer.
  • the curing reaction may be based on a general method for curing a curable resin composition, and the heating temperature conditions can be appropriately selected depending on the type and application of the curing agent to be combined.
  • a method of heating the two-component curing type epoxy resin composition in a temperature range of room temperature to 250° C. may be mentioned.
  • a general curable resin composition method can be used, and particularly, the conditions peculiar to the two-component curable epoxy resin composition of the present invention are unnecessary.
  • the fiber-reinforced composite material of the present invention is a material in a state before being impregnated with the two-component curable epoxy resin composition and before being cured.
  • the reinforcing fiber may be any twisted yarn, untwisted yarn, untwisted yarn, or the like, but untwisted yarn or untwisted yarn is preferable because it has excellent moldability in the fiber-reinforced composite material.
  • a fiber in which the fiber directions are aligned in one direction or a woven fabric can be used as the form of the reinforcing fiber.
  • a plain weave, a satin weave, etc. can be freely selected according to the site to be used and the application.
  • carbon fiber examples include carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber because they have excellent mechanical strength and durability. These can be used alone or in combination of two or more. You can also do it. Among these, carbon fibers are preferable from the viewpoint that the strength of the molded product is good, and various carbon fibers such as polyacrylonitrile-based, pitch-based and rayon-based can be used.
  • the method for obtaining the fiber-reinforced composite material from the two-component curable epoxy resin composition of the present invention is not particularly limited, but for example, the components constituting the two-component curable epoxy resin composition are uniformly mixed to produce a varnish. Then, a method of immersing the unidirectional reinforcing fibers in which the reinforcing fibers are aligned in one direction in the varnish obtained above (the state before curing by the pull-truth method or filament winding method), Examples include a method of stacking woven fabrics and setting them in a concave shape, then sealing with a convex shape, and then injecting a resin for pressure impregnation (state before curing by RTM method).
  • the two-part curable epoxy resin composition does not necessarily have to be impregnated to the inside of the fiber bundle, and the two-part curable epoxy resin composition is localized near the surface of the fiber. It may be in a changed form.
  • the volume content of the reinforcing fibers to the total volume of the fiber-reinforced composite material is preferably 40% to 85%, and from the viewpoint of strength, it is in the range of 50% to 70%. Is more preferable.
  • the volume content is 40% or more, the content of the two-part curable epoxy resin composition is appropriate, and the obtained cured product is required to have a fiber-reinforced composite material excellent in flame retardancy, specific elastic modulus and specific strength. It becomes easy to satisfy the required characteristics.
  • the volume content is 85% or less, the adhesiveness between the reinforcing fiber and the two-component curable epoxy resin composition is good.
  • the fiber-reinforced resin molded product of the present invention is a molded product having a reinforced fiber and a cured product of a two-component curable epoxy resin composition, and is obtained by heat curing a fiber-reinforced composite material. It is a thing.
  • the volume content of the reinforcing fibers in the fiber-reinforced molded product is preferably in the range of 40% to 85%, and from the viewpoint of strength, it is 50% to 70%. The range is particularly preferable.
  • fiber-reinforced resin molded products include, for example, front subframes, rear subframes, front pillars, center pillars, side members, cross members, side sills, roof rails, propeller shafts, and other automotive parts, wire cable core members, Examples include pipe materials for subsea oil fields, roll/pipe materials for printing machines, robot fork materials, primary structural materials for aircraft, and secondary structural materials.
  • the method for obtaining a fiber-reinforced molded product from the two-component curable epoxy resin composition of the present invention is not particularly limited, but it is preferable to use a pultrusion molding method (pultrusion method), a filament winding method, an RTM method, or the like.
  • the pultrusion method is a method in which a fiber-reinforced composite material is introduced into a mold, heated and cured, and then a fiber-reinforced resin molded product is molded by drawing it with a drawing device.
  • the fiber-reinforced resin molded product As a molding condition of the fiber-reinforced resin molded product, it is preferable to heat-mold the fiber-reinforced composite material in a temperature range of 50° C. to 250° C., and more preferable to mold it in a temperature range of 70° C. to 220° C. .. This is because if the molding temperature is too low, sufficient rapid curability may not be obtained, and if it is too high, warpage due to thermal strain may easily occur.
  • Other molding conditions include a two-step process in which the fiber-reinforced composite material is pre-cured at 50°C to 100°C to form a tack-free cured product, and further treated at a temperature condition of 120°C to 200°C. Examples thereof include a curing method.
  • a hand lay-up method in which a fiber aggregate is laid on a mold and the varnish and the fiber aggregate are laminated in multiple layers, Using spray-up method, male type or female type, stacking and molding while impregnating varnish on base material made of reinforcing fiber, cover with a flexible mold that can apply pressure to the molded product, airtight seal
  • spray-up method male type or female type, stacking and molding while impregnating varnish on base material made of reinforcing fiber, cover with a flexible mold that can apply pressure to the molded product, airtight seal
  • the method include a vacuum bag method of vacuum-forming (depressurizing) the formed product, and an SMC press method of compression-molding a sheet-shaped varnish containing reinforcing fibers in advance with a mold.
  • Synthesis Example 1 Production of curing agent (1) Methyltetrahydrophthalic anhydride (free acid amount: 0.2% by mass, acid anhydride) was placed in a four-necked flask equipped with a nitrogen inlet tube, a cooling tube, a thermometer and a stirrer. Equivalent weight: 166 g/eq) 91.3 parts by mass and triphenylphosphine 3.8 parts by mass were charged and heated to 60°C. Then, the mixture was stirred for 1 hour, it was confirmed that triphenylphosphine was dissolved, and a curing agent (1) was obtained.
  • Synthesis Examples 2 to 8 Production of Curing Agents (2) to (8) Curing agents (2) to (8) were obtained in the same manner as in Synthesis Example 1 except that the compositions and blending amounts shown in Table 1 were used. ..
  • the curing agent (7) obtained in Synthetic Example 7 was obtained in Synthetic Example 8 though the can was slightly swollen after 200 mL or more of the curing agent was put into a 250 mL capacity square can and sealed and left at 40° C. for 14 days. It was confirmed that the swelling was half or less when compared with the curing agent (8).
  • Examples 1 to 5 Preparation of two-component curing type epoxy resin compositions (1) to (5)
  • the respective components were blended according to the formulation shown in Table 2 below, and uniformly mixed by stirring to obtain two-pack curable epoxy resin compositions (1) to (5).
  • DSC measurement method Differential scanning calorimeter (“DSC1” manufactured by METTOLER TOLEDO Co., Ltd., sample amount 4.0 to 8.0 mg, aluminum sample pan size ⁇ 5 ⁇ 2.5 mm, heating rate 10° C./min, nitrogen flow rate 40 ml/min, The exothermic temperature range was measured in the temperature range of 25 to 250°C. The "onset temperature” and the “endset temperature” were automatically calculated by a computer.
  • the measurement conditions of the dynamic viscoelasticity measurement were temperature condition: room temperature to 260° C., heating rate: 3° C./min, frequency: 1 Hz (sine wave), strain amplitude: 10 ⁇ m.
  • the two-part curable epoxy resin composition obtained in each of the examples and comparative examples was poured into a mold having a width of 90 mm, a length of 110 mm and a thickness of 4 mm, and heat cured in a dryer at 120° C. for 15 minutes. A cured product was obtained. The obtained cured product was cut into a width of 50 mm and a length of 50 mm with a diamond cutter and used as a test piece. The number of bubbles on the surface of the test piece was confirmed and evaluated according to the following criteria.
  • The number of bubbles on the surface of the test piece was less than 5. ⁇ : The number of bubbles on the surface of the test piece was 5 or more and less than 10. X: The number of bubbles on the surface of the test piece was 10 or more.
  • Table 2 shows the compositions and evaluation results of the two-pack curable epoxy resin compositions (1) to (5) and (C1) to (C5) obtained in Examples 1 to 5 and Comparative Examples 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

優れた長期保存安定性を有する硬化剤を含有し、低粘度で繊維への良好な含浸性を有しており、かつ、優れた機械特性、耐熱性、及び表面平滑性を有する硬化物を形成可能な2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料、並びに成形品を提供する。具体的には、エポキシ樹脂(A)を含有する主剤(i)と、酸無水物(B)及び有機リン化合物(C)を含有する硬化剤(ii)とを含む2液硬化型エポキシ樹脂組成物であって、前記主剤(i)と前記硬化剤(ii)との質量割合[(i)/(ii)]が、35/65~75/25の範囲であり、前記有機リン化合物(C)の使用量が、前記エポキシ樹脂(A)及び前記酸無水物(B)の合計100質量部に対して、0.5~5質量部の範囲であることを特徴とする2液硬化型エポキシ樹脂組成物を用いる。

Description

2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品
 本発明は、低粘度で繊維への良好な含浸性を有しており、また、機械特性、耐熱性及び表面平滑性に優れた硬化物を形成可能な2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品に関する。
 近年、強化繊維で強化した繊維強化樹脂成形品は、軽量でありながら機械強度に優れるといった特徴が注目され、自動車や航空機、船舶等の筐体或いは各種部材をはじめ、様々な構造体用途での利用が拡大している。前記繊維強化樹脂成形品は、フィラメントワインディング法、プレス成形法、ハンドレイアップ法、プルトルージョン法、RTM法などの成形方法にて繊維強化複合材料を成形し、製造することができる。
 前記繊維強化複合材料は、強化繊維に樹脂を含浸させたものである。前記繊維強化複合材料に用いられる樹脂には、常温での安定性、硬化物の耐久性や強度等が求められることから、一般的には、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂等の熱硬化性樹脂が用いられている。これらの中でも、エポキシ樹脂は、高い強度及び弾性率、並びに優れた耐熱性を有する硬化物が得られることから繊維強化複合材料用樹脂として様々な用途において実用化が進んでいる。
 前記繊維強化複合材料用のエポキシ樹脂としては、上述の通り、樹脂を強化繊維に含浸させて用いることから、低粘度であることが求められる。また、繊維強化樹脂成形品として、自動車等におけるエンジン周りの構造部品や、電線コア材に用いられる場合には、繊維強化樹脂成形品が過酷な使用環境に長期間耐えうるよう、硬化物における耐熱性や機械強度に優れる樹脂が求められる。
 前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、酸無水物、及びイミダゾール化合物を含有するエポキシ樹脂組成物が広く知られている(例えば、特許文献1参照。)。また、2価フェノールのグリシジルエーテルと、グリシジルアミン型エポキシ樹脂を併用して硬化剤と組み合わせてなるエポキシ樹脂組成物も知られている(例えば、特許文献2参照。)。しかし、前記特許文献1、及び2で提供されているエポキシ樹脂組成物は、強化繊維への含浸性が高く、硬化物における耐熱性や機械強度にも一定の性能を発現するものの、エポキシ樹脂と、硬化剤(酸無水物)と、硬化促進剤との3液を混合するため、混合液数に起因した計量ミスや、煩雑な混合工程に伴う混合ミスなどを招く等の問題があった。
 上記問題を解決する手段としては、硬化剤(酸無水物)に硬化促進剤を内添した2液硬化システムが提案されているが、前記特許文献1記載のエポキシ樹脂組成物等のエポキシ/酸無水物硬化系においては、硬化促進剤としてイミダゾール化合物が用いられることが多く、このような硬化促進剤を硬化物(酸無水物)中に内添しても、前記酸無水物の脱炭酸反応により、炭酸ガスが生じる懸念があった。これは、硬化剤として保存する際に、容器の膨張を引き起こすなど長期保存安定性を欠く恐れがあるだけでなく、このような硬化促進剤を用いた混合物は、エポキシ樹脂との硬化中にも脱炭酸反応を起こし、表面が平滑な硬化物が得られない等の問題があった。
 そこで、脱炭酸反応を引き起こしにくい長期保存安定性に優れた硬化剤を含有する、強化繊維への含浸性に優れたエポキシ樹脂組成物、並びに優れた機械特性、耐熱性及び表面平滑性を有する硬化物を形成可能なエポキシ樹脂組成物が求められていた。
特開2010-163573号公報 国際公開第2016/148175号
 従って、本発明が解決しようとする課題は、優れた長期保存安定性を有する硬化剤を含有し、低粘度で繊維への良好な含浸性を有しており、かつ、優れた機械特性、耐熱性、及び表面平滑性を有する硬化物を形成可能な2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料、並びに成形品を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、エポキシ樹脂を含有する主剤と、酸無水物、及び特定量の有機リン化合物を含有する硬化剤とを特定の質量割合で用いることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、エポキシ樹脂(A)を含有する主剤(i)と、酸無水物(B)及び有機リン化合物(C)を含有する硬化剤(ii)とを含む2液硬化型エポキシ樹脂組成物であって、前記主剤(i)と前記硬化剤(ii)との質量割合[(i)/(ii)]が、35/65~75/25の範囲であり、前記有機リン化合物(C)の使用量が、前記エポキシ樹脂(A)及び前記酸無水物(B)の合計100質量部に対して、0.5~5質量部の範囲であることを特徴とする2液硬化型エポキシ樹脂組成物、前記2液硬化型エポキシ樹脂組成物の硬化物、前記2液硬化型エポキシ樹脂組成物を用いた繊維強化複合材料、及び成形品に関するものである。
 本発明の2液硬化型エポキシ樹脂組成物は、脱炭酸反応を引き起こさない長期保存安定性に優れた硬化剤を含有し、低粘度で繊維への良好な含浸性を有しており、また、得られる硬化物において優れた機械特性、耐熱性、及び表面平滑性を有することから、繊維強化複合材料等に好適に用いることができる。なお、本発明でいう「優れた機械特性」とは、高強度及び高弾性率のことを指す。
 本発明の2液硬化型エポキシ樹脂組成物は、主剤(i)と硬化剤(ii)とを含有することを特徴とする。
 前記主剤(i)としては、エポキシ樹脂(A)を必須として用いる。
 前記エポキシ樹脂(A)としては、例えば、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、アルコール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、分子構造中にナフタレン骨格を有するエポキシ樹脂、リン原子含有エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は単独で用いることも2種以上を併用することもできる。
 前記ビスフェノール型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が挙げられる。
 前記ビフェニル型エポキシ樹脂としては、例えば、テトラメチルビフェニル型エポキシ樹脂等が挙げられる。
 前記ノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等が挙げられる。
 前記アルコール型エポキシ樹脂としては、例えば、1,4-ブタンジオールのジグリシジルエーテル等が挙げられる。
 前記分子構造中にナフタレン骨格を有するエポキシ樹脂としては、例えば、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等が挙げられる。
 これらのエポキシ樹脂の中でも、強化繊維への含浸性と、硬化物における優れた耐熱性を有することから、ビスフェノール型エポキシ樹脂が好ましい。
 また、強化繊維への含浸性、硬化速度がより良好となる観点から、エポキシ樹脂(A)のエポキシ当量としては、120~300g/eqの範囲であることが好ましく、特に130~230g/eqの範囲であることがより好ましい。
 前記エポキシ樹脂(A)の20℃~40℃における粘度は、強化繊維への含浸性に優れた2液硬化型エポキシ樹脂組成物が得られることから、500mPa・s~200,000mPa・sの範囲が好ましく、1,000mPa・s~15,000mPa・sの範囲がより好ましい。
 前記硬化剤(ii)としては、酸無水物(B)及び有機リン化合物(C)を必須として用いる。
 前記酸無水物(B)としては、例えば、無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルエンドエチレンテトラヒドロフタル酸、無水トリアルキルテトラヒドロフタル酸、無水メチルナジック酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸等が挙げられる。これらの中でも、液状で繊維への含浸性や作業性に優れることから、無水メチルテトラヒドロフタル酸、無水メチルヘキサヒドロフタル酸が好ましい。また、これらの酸無水物は、単独で用いることも2種以上を併用することもできる。
 これらの中でも、強化繊維への含浸性、硬化速度がより良好となる観点から、酸無水物(B)の酸無水物当量としては、120~250g/eqの範囲であることが好ましく、特に150~190g/eqの範囲であることがより好ましい。
 また、前記酸無水物(B)としては、酸無水物中に含まれる遊離酸量が0.05~2質量%の範囲であることが、硬化剤の保存安定性及びエポキシ樹脂組成物の機械特性の観点より好ましい。なお、本発明における「遊離酸量」は、以下の方法により算出される値である。
[遊離酸量の算出方法]
 試料をアセトニトリルに溶解させた後、0.05mol/lのトリ-n-プロピルアミンアセトン溶液を、pH4.6を終点として、電位差滴定を行う。同時に空試験を実施し、以下の式により遊離酸量を算出する。
Figure JPOXMLDOC01-appb-M000002
 V;試料に要したトリ-n-プロピルアミン溶液の滴定量(ml)
 B;空試験に要したトリ-n-プロピルアミン溶液の滴定量(ml)
 W;試料量(g)
 前記有機リン化合物(C)としては、例えば、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリブチルホスフィン、トリオクチルホスフィン等のホスフィン化合物、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト等のホスファイト化合物、トリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェートなどのホスフェート化合物等が挙げられる。これらの中でも硬化性に優れ、耐熱性の高い硬化物が得られることから、ホスフィン化合物やホスファイト化合物といった3価の有機リン化合物が好ましく、特にトリフェニルホスフィンが好ましい。また、これらの有機リン化合物は、単独で用いることも2種以上を併用することもできる。
 前記有機リン化合物(C)の使用量は、強化繊維への含浸性と機械特性を両立させる観点から、前記エポキシ樹脂(A)及び前記酸無水物(B)の合計100質量部に対して、0.5~5質量部の範囲であり、0.8~4質量部の範囲が好ましい。
 また、硬化速度、および硬化物の耐熱性、機械特性のバランスにより優れる観点から、前記酸無水物(B)における酸無水物基のモル数と、前記エポキシ樹脂(A)におけるエポキシ基とのモル数との比、酸無水物基のモル数/エポキシ基のモル数が0.8~1.2の範囲となるように主剤(i)と硬化剤(ii)とを用いることがより好ましい。
 前記硬化剤(ii)としては、前記酸無水物(B)及び前記有機リン化合物(C)以外に、必要に応じて、その他の硬化剤または硬化促進剤を用いることもできる。
 前記その他の硬化剤または硬化促進剤としては、エポキシ樹脂の硬化剤または硬化促進剤として一般的に用いられている様々な化合物の何れも用いることができる。例えば、ジシアンジアミド、或いは、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸等の脂肪族ジカルボン酸や、脂肪酸、ダイマー酸等のカルボン酸化合物とアミン化合物とを反応させて得られるアミド化合物;
 ポリヒドロキシベンゼン、ポリヒドロキシナフタレン、ビフェノール化合物、ビスフェノール化合物、フェノール、クレゾール、ナフトール、ビスフェノール、ビフェノール等、各種フェノール化合物の一種乃至複数種からなるノボラック型フェノール樹脂、トリフェノールメタン型フェノール樹脂、テトラフェノールエタン型フェノール樹脂、フェノール又はナフトールアラルキル型フェノール樹脂、フェニレン又はナフチレンエーテル型フェノール樹脂樹脂、ジシクロペンタジエン-フェノール付加反応物型フェノール樹脂、フェノール性水酸基含有化合物-アルコキシ基含有芳香族化合物共縮合型フェノール樹脂等のフェノール樹脂;
 イミダゾール、2-メチルイミダゾール、2-エチル4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール等のイミダゾール誘導体;
 p-クロロフェニル-N,N-ジメチル尿素、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-N,N-ジメチル尿素、N-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素等の尿素化合物;
 有機酸金属塩;ルイス酸;アミン錯塩などが挙げられる。
 前記主剤(i)と、前記硬化剤(ii)との質量割合[(i)/(ii)]は、耐熱性と機械特性を両立させる観点から、35/65~75/25の範囲であり、40/60~70/30の範囲が好ましい。
 本発明の2液硬化型エポキシ樹脂組成物は、本発明の効果を阻害しない範囲でエポキシ樹脂(A)以外のその他の樹脂、難燃剤/難燃助剤、充填剤、添加剤、有機溶剤を含有することができる。
 前記その他の樹脂としては、例えば、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、フェノール樹脂、上記以外の硬化性樹脂、熱可塑性樹脂等が挙げられる。
 前記ポリカーボネート樹脂としては、例えば、2価又は2官能型のフェノールとハロゲン化カルボニルとの重縮合物、或いは、2価又は2官能型のフェノールと炭酸ジエステルとをエステル交換法により重合させたものが挙げられる。
 ここで、ポリカーボネート樹脂の原料である2価又は2官能型のフェノールとしては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)ケトン、ハイドロキノン、レゾルシン、カテコール等が挙げられる。これら2価のフェノールの中でも、ビス(ヒドロキシフェニル)アルカン類が好ましく、さらに、2,2-ビス(4-ヒドロキシフェニル)プロパンを主原料としたものが特に好ましい。
 他方、2価又は2官能型のフェノールと反応させるハロゲン化カルボニル又は炭酸ジエステルとしては、例えば、ホスゲン;二価フェノールのジハロホルメート、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート等のジアリールカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジアミルカーボネート、ジオクチルカーボネート等の脂肪族カーボネート化合物などが挙げられる。
 また、前記ポリカーボネート樹脂は、そのポリマー鎖の分子構造が直鎖構造であるもののほか、これに分岐構造を有していてもよい。前記分岐構造は、原料成分として、1,1,1-トリス(4-ヒドロキシフェニル)エタン、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等を用いることにより導入することができる。
 前記ポリフェニレンエーテル樹脂としては、例えば、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-エチル-14-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-n-プロピル-1,4-フェニレン)エーテル、ポリ(2,6-ジ-n-プロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-n-ブチル-1,4-フェニレン)エーテル、ポリ(2-エチル-6-イソプロピル-1,4-フェニレン)エーテル、ポリ(2-メチル-6-ヒドロキシエチル-1,4-フェニレン)エーテル等が挙げられる。これらの中でも、ポリ(2,6-ジメチル-1,4-フェニレン)エーテルが好ましい。
 また、前記ポリフェニレンエーテル樹脂としては、2-(ジアルキルアミノメチル)-6-メチルフェニレンエーテルユニット、2-(N-アルキル-N-フェニルアミノメチル)-6-メチルフェニレンエーテルユニット等を部分構造として含むものであってもよい。
 さらに、前記ポリフェニレンエーテル樹脂は、その樹脂構造にカルボキシル基、エポキシ基、アミノ基、メルカプト基、シリル基、水酸基、無水ジカルボキル基等の反応性官能基を、グラフト反応、共重合等の方法で導入した変性ポリフェニレンエーテル樹脂も本発明の目的を損なわない範囲で用いることができる。
 前記フェノール樹脂としては、例えば、レゾール型フェノール樹脂、ノボラック型フェノール樹脂、フェノールアラルキル樹脂、ポリビニルフェノール樹脂、メラミンまたはベンゾグアナミンで変性されたトリアジン変性フェノールノボラック樹脂等が挙げられる。
 上記以外の硬化性樹脂、熱可塑性樹脂等としては、何等規定されるものではないが、一例を挙げると、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、シンジオタクテックポリスチレン系樹脂、ABS系樹脂、AS系樹脂、生分解性樹脂、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート等のポリアルキレンアリレート系樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、シアネート樹脂、キシレン樹脂、トリアジン樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ウレタン樹脂、オキセタン樹脂、ケトン樹脂、アルキド樹脂、フラン樹脂、スチリルピリジン樹脂、シリコン樹脂、合成ゴム等が挙げられる。これらの樹脂は、単独で用いることも2種以上を併用することもできる。
 前記難燃剤/難燃助剤としては、例えば、非ハロゲン系難燃剤等が挙げられる。
 前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。これらの難燃剤は、単独で用いることも2種以上を併用することもできる。
 前記リン系難燃剤としては、無機リン系難燃剤、有機リン系難燃剤のいずれも使用することができる。前記無機リン系難燃剤としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましい。前記表面処理の方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系難燃剤としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状有機リン化合物などが挙げられる。なお、本発明において、前記有機リン系難燃剤は、前記有機リン化合物(C)とは異なるものである。
 また、前記リン系難燃剤を用いる場合、前記リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用することもできる。
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられる。これらの中でも、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、硫酸グアニルメラミン、硫酸メレム、硫酸メラム等の硫酸アミノトリアジン化合物、アミノトリアジン変性フェノール樹脂、アミノトリアジン変性フェノール樹脂を更に桐油、異性化アマニ油等で変性したものなどが挙げられる。
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等が挙げられる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、本発明の2液硬化型エポキシ樹脂組成物中に、0.05質量%~10質量%の範囲が好ましく、0.1質量%~5質量%の範囲がより好ましい。
 また、前記窒素系難燃剤を用いる場合、金属水酸化物、モリブデン化合物等を併用することもできる。
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、本発明の2液硬化型エポキシ樹脂組成物中に、0.05質量%~20質量%の範囲が好ましい。また、前記シリコーン系難燃剤を使用する場合、モリブデン化合物、アルミナ等を併用することもできる。
 前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等が挙げられる。
 前記金属酸化物としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等が挙げられる。
 前記金属炭酸塩化合物としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等が挙げられる。
 前記金属粉としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等が挙げられる。
 前記ホウ素化合物としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等が挙げられる。
 前記低融点ガラスとしては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物などが挙げられる。
 前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、本発明の2液硬化型エポキシ樹脂組成物中に、0.05質量%~20質量%の範囲が好ましく、0.5質量%~15質量%の範囲が好ましい。
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、本発明の2液硬化型エポキシ樹脂組成物中に、0.005質量%~10質量%の範囲が好ましい。
 前記充填剤としては、例えば、酸化チタン、ガラスビーズ、ガラスフレーク、ガラス繊維、炭酸カルシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、チタン酸カリウム、硼酸アルミニウム、硼酸マグネシウム、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミや、ケナフ繊維、炭素繊維、アルミナ繊維、石英繊維等の繊維状補強剤や、非繊維状補強剤等が挙げられる。これらの充填剤は、単独で用いることも2種以上を併用することもできる。また、これらの充填剤は、有機物や無機物等で被覆されていてもよい。
 また、充填剤としてガラス繊維を用いる場合、長繊維タイプのロービング、短繊維タイプのチョップドストランド、ミルドファイバー等から選択して用いることが出来る。ガラス繊維は使用する樹脂用に表面処理した物を用いるのが好ましい。充填材は配合されることによって、燃焼時に生成する不燃層(又は炭化層)の強度を一層向上させることができ、燃焼時に一度生成した不燃層(又は炭化層)が破損しにくくなり、安定した断熱能力を発揮できるようになることから、より大きな難燃効果が得られるとともに、材料に高い剛性も付与することができる。
 前記添加剤としては、例えば、可塑剤、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、帯電防止剤、導電性付与剤、応力緩和剤、離型剤、結晶化促進剤、加水分解抑制剤、潤滑剤、衝撃付与剤、摺動性改良剤、相溶化剤、核剤、強化剤、補強剤、流動調整剤、染料、増感材、着色用顔料、ゴム質重合体、増粘剤、沈降防止剤、タレ防止剤、消泡剤、カップリング剤、防錆剤、抗菌・防カビ剤、防汚剤、導電性高分子等が挙げられる。
 前記有機溶剤としては、メチルエチルケトンアセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
 本発明の2液硬化型エポキシ樹脂組成物のDSC(示差走査熱量分析)測定における発熱温度領域、すなわち、「(エンドセット温度)-(オンセット温度)」は、強化繊維への含浸性に優れた2液硬化型エポキシ樹脂組成物が得られること、及び反応の制御が容易なことから、20~38℃の範囲が好ましい。
 本発明の2液硬化型エポキシ樹脂組成物の30℃における初期配合物粘度(以下、「初期粘度」と略記する。)は、強化繊維への含浸性に優れた2液硬化型エポキシ樹脂組成物が得られること、及び成形性に優れることから、100~3000mPa・sの範囲が好ましい。なお、本発明における粘度は、E型粘度計を用いて測定した値である。
 なお、本発明における「初期粘度」とは、配合直後の粘度をいう。
 また、前記「初期粘度」と、30℃で8時間経過後の粘度(以下、「8時間後粘度」と略記する。)とが、下記式(1)の関係を満たすことが、十分な可使時間を有し、強化繊維への含浸性に優れた2液硬化型エポキシ樹脂組成物が得られることから好ましい。
Figure JPOXMLDOC01-appb-M000003
 本発明の2液硬化型エポキシ樹脂組成物は、脱炭酸反応を引き起こさない長期保存安定性に優れた硬化剤を含有し、強化繊維への含浸性に優れ、得られる硬化物において優れた機械強度、耐熱性及び表面平滑性を有することから、塗料や電気・電子材料、接着剤、成型品等、様々な用途に用いることができる。本発明の2液硬化型エポキシ樹脂組成物はそれ自体を硬化させて用いる用途の他、繊維強化複合材料や繊維強化樹脂成形品等にも好適に用いることができる。以下にこれらについて説明する。
・2液硬化型エポキシ樹脂組成物の硬化物
 本発明の硬化物としては、前記前記主剤(i)と前記硬化剤(ii)とを含有する2液硬化型エポキシ樹脂組成物を硬化反応させて得られるものである。前記硬化物を得る方法としては、特に制限されず、例えば、前記主剤(i)と前記硬化剤(ii)とを混錬機を用いて混錬製造する方法が挙げられる。
 前記混錬機としては、例えば、押出機、加熱ロール、ニーダー、ローラミキサー、バンバリーミキサー等が挙げられる。
 また、前記硬化反応は、一般的な硬化性樹脂組成物の硬化方法に準拠すればよく、加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択することができる。例えば、前記2液硬化型エポキシ樹脂組成物を、室温~250℃程度の温度範囲で加熱する方法が挙げられる。さらに、成形方法なども一般的な硬化性樹脂組成物の方法を用いることが可能であり、特に本発明の2液硬化型エポキシ樹脂組成物に特有の条件は不要である。
・繊維強化複合材料
 本発明の繊維強化複合材料とは、前記2液硬化型エポキシ樹脂組成物を強化繊維に含浸させた後の硬化前の状態の材料のことである。ここで、強化繊維は、有撚糸、解撚糸、または無撚糸などいずれでも良いが、解撚糸や無撚糸が、繊維強化複合材料において優れた成形性を有することから、好ましい。さらに、強化繊維の形態は、繊維方向が一方向に引き揃えたものや、織物が使用できる。織物では、平織り、朱子織りなどから、使用する部位や用途に応じて自由に選択することができる。具体的には、機械強度や耐久性に優れることから、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが挙げられ、これらは単独で用いることも2種以上を併用することもできる。これらの中でもとりわけ成形品の強度が良好なものとなる点から炭素繊維が好ましく、かかる、炭素繊維は、ポリアクリロニトリル系、ピッチ系、レーヨン系などの各種のものが使用できる。
 本発明の2液硬化型エポキシ樹脂組成物から繊維強化複合材料を得る方法としては、特に限定されないが、例えば、前記2液硬化型エポキシ樹脂組成物を構成する各成分を均一に混合してワニスを製造し、次いで、前記で得られたワニスに強化繊維を一方向に引き揃えた一方向強化繊維を浸漬させる方法(プルトルージョン法やフィラメントワインディング法での硬化前の状態)や、強化繊維の織物を重ねて凹型にセットし、その後、凸型で密閉してから樹脂を注入し圧力含浸させる方法(RTM法での硬化前の状態)等が挙げられる。
 本発明の繊維強化複合材料は、前記2液硬化型エポキシ樹脂組成物が必ずしも繊維束の内部まで含浸されている必要はなく、繊維の表面付近に前記2液硬化型エポキシ樹脂組成物が局在化している態様であっても良い。
 さらに、本発明の繊維強化複合材料は、繊維強化複合材料の全体積に対する強化繊維の体積含有率が40%~85%であることが好ましく、強度の点から50%~70%の範囲であることがさらに好ましい。体積含有率が40%以上の場合、前記2液硬化型エポキシ樹脂組成物の含有量が適切であり、得られる硬化物の難燃性、比弾性率と比強度に優れる繊維強化複合材料に要求される諸特性を満たすことが容易になる。また、体積含有率が85%以下であると、強化繊維と2液硬化型エポキシ樹脂組成物の接着性が良好である。
・繊維強化樹脂成形品
 本発明の繊維強化樹脂成形品とは、強化繊維と2液硬化型エポキシ樹脂組成物の硬化物とを有する成形品であり、繊維強化複合材料を熱硬化させて得られるものである。本発明の繊維強化樹脂成形品として、具体的には、繊維強化成形品における強化繊維の体積含有率が40%~85%の範囲であることが好ましく、強度の観点から50%~70%の範囲であることが特に好ましい。そのような繊維強化樹脂成形品としては、例えば、フロントサブフレーム、リアサブフレーム、フロントピラー、センターピラー、サイドメンバー、クロスメンバー、サイドシル、ルーフレール、プロペラシャフトなどの自動車部品、電線ケーブルのコア部材、海底油田用のパイプ材、印刷機用ロール・パイプ材、ロボットフォーク材、航空機の一次構造材、二次構造材などを挙げることができる。
 本発明の2液硬化型エポキシ樹脂組成物から繊維強化成形品を得る方法としては、特に限定されないが、引き抜き成形法(プルトルージョン法)、フィラメントワインディング法、RTM法などを用いることが好ましい。引き抜き成形法(プルトルージョン法)とは、繊維強化複合材料を金型内へ導入して、加熱硬化したのち、引き抜き装置で引き抜くことにより繊維強化樹脂成形品を成形する方法であり、フィラメントワインディング法とは、繊維強化複合材料(一方向繊維を含む)を、アルミライナーやプラスチックライナー等に回転させながら巻きつけたのち、加熱硬化させて繊維強化樹脂成形品を成形する方法であり、RTM法とは、凹型と凸型の2種類の金型を使用する方法であって、前記金型内で繊維強化複合材料を加熱硬化させて繊維強化樹脂成形品を成形する方法である。なお、大型製品や複雑な形状の繊維強化樹脂成形品を成形する場合には、RTM法を用いることが好ましい。
 繊維強化樹脂成形品の成形条件としては、繊維強化複合材料を50℃~250℃の温度範囲で熱硬化させて成形することが好ましく、70℃~220℃の温度範囲で成形することがより好ましい。かかる成形温度が低すぎると、十分な速硬化性が得られない場合があり、逆に高すぎると、熱歪みによる反りが発生しやすくなったりする場合があるためである。他の成形条件としては、繊維強化複合材料を50℃~100℃で予備硬化させ、タックフリー状の硬化物にした後、更に、120℃~200℃の温度条件で処理するなど、2段階で硬化させる方法などを挙げることができる。
 本発明の2液硬化型エポキシ樹脂組成物から繊維強化成形品を得る他の方法としては、金型に繊維骨材を敷き、前記ワニスや繊維骨材を多重積層してゆくハンドレイアップ法やスプレーアップ法、オス型・メス型のいずれかを使用し、強化繊維からなる基材にワニスを含浸させながら積み重ねて成形、圧力を成形物に作用させることのできるフレキシブルな型をかぶせ、気密シールしたものを真空(減圧)成型する真空バッグ法、あらかじめ強化繊維を含有するワニスをシート状にしたものを金型で圧縮成型するSMCプレス法などが挙げられる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。
 合成例1:硬化剤(1)の製造
 窒素導入管、冷却管、温度計及び攪拌機をセットした4つ口フラスコに、無水メチルテトラヒドロフタル酸(遊離酸量;0.2質量%、酸無水物当量:166g/eq)91.3質量部とトリフェニルホスフィン3.8質量部を仕込み、60℃まで加熱した。次いで、1時間攪拌し、トリフェニルホスフィンが溶解したことを確認し、硬化剤(1)を得た。
 合成例2~8:硬化剤(2)~(8)の製造
 表1に示す組成及び配合量とした以外は、合成例1と同様にして、硬化剤(2)~(8)を得た。合成例7で得られた硬化剤(7)は、硬化剤を250mL容量の角缶に200mL以上入れ密封し、40℃で14日間放置後に缶が若干膨れていたが、合成例8で得られた硬化剤(8)と比較した場合、その膨れが半分以下であることを確認できた。
Figure JPOXMLDOC01-appb-T000004
(実施例1~5:2液硬化型エポキシ樹脂組成物(1)~(5)の調製)
 下記表2に0示す配合に従って各成分を配合し、均一に攪拌混合して2液硬化型エポキシ樹脂組成物(1)~(5)を得た。
(比較例1~5:2液硬化型エポキシ樹脂組成物(C1)~(C5)の調製)
 下記表2に示す配合に従って各成分を配合し、均一に攪拌混合して2液硬化型エポキシ樹脂組成物(C1)~(C2)を得た。
 上記の実施例1~5及び比較例1~5で得られた2液硬化型エポキシ樹脂組成物を用いて、下記の評価を行った。
[粘度の測定方法]
 E型粘度計(東機産業株式会社製「TV-22」)を用いて、30℃における前記2液硬化型エポキシ樹脂組成物の初期配合物粘度「初期粘度」、及び8時間経過後の「8時間後粘度」の測定を行った。
[DSCの測定方法]
 示差走査熱量分析装置(METTOLER TOLEDO株式会社製「DSC1」、サンプル量4.0~8.0mg、アルミ製サンプルパンサイズφ5×2.5mm、昇温速度10℃/min、窒素流量40ml/min、温度範囲25~250℃、)により発熱温度領域を測定した。なお、「オンセット(Onset)温度」及び「エンドセット(Endset)温度」はコンピュータにより自動計算した。
[機械特性の評価方法]
 機械強度の評価は、曲げ強度及び曲げ弾性率の測定により行った。
<曲げ強度及び曲げ弾性率の測定>
 各実施例及び比較例で得られた2液硬化型エポキシ樹脂組成物を、幅90mm、長さ110mm、厚さ4mmの型枠内に流し込み、120℃15分乾燥機の中で熱硬化させて硬化物を得た。得られた硬化物をJIS K 6911(2006)に準拠して、硬化物の曲げ強度及び曲げ弾性率を測定した。
[耐熱性の評価方法]
 各実施例及び比較例で得られた2液硬化型エポキシ樹脂組成物を、幅90mm、長さ110mm、厚さ2mmの型枠内に流し込み、120℃15分乾燥機の中で熱硬化させて硬化物を得た。得られた硬化物をダイヤモンドカッターで幅5mm、長さ55mmに切り出し、これを試験片とした。次に、エスアイアイ・ナノテクノロジー社製「DMS6100」を用いて以下の条件による両持ち曲げによる動的粘弾性を測定し、tanδが最大値となる温度をガラス転移温度(Tg)として評価した。
 なお、動的粘弾性測定の測定条件は、温度条件:室温~260℃、昇温速度:3℃/分、周波数:1Hz(正弦波)、歪振幅:10μmとした。
[表面平滑性の評価方法]
 各実施例及び比較例で得られた2液硬化型エポキシ樹脂組成物を、幅90mm、長さ110mm、厚さ4mmの型枠内に流し込み、120℃15分乾燥機の中で熱硬化させて硬化物を得た。得られた硬化物をダイヤモンドカッターで幅50mmm、長さ50mmに切り出し、これを試験片とした。前記試験片表面の気泡の数を確認し、下記の基準に従い評価した。
 ○:試験片表面の気泡の数が5個未満であった。
 △:試験片表面の気泡の数が5個以上10個未満であった。
 ×:試験片表面の気泡の数が10個以上であった。
 実施例1~5及び比較例1~5で得た2液硬化型エポキシ樹脂組成物(1)~(5)及び(C1)~(C5)の組成及び評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 なお、表2中の「ビスフェノールA型エポキシ樹脂」は、DIC株式会社製「EPICLON 840-S(エポキシ当量:184g/eq)」を示す。

Claims (11)

  1.  エポキシ樹脂(A)を含有する主剤(i)と、
    酸無水物(B)及び有機リン化合物(C)を含有する硬化剤(ii)と、を含む2液硬化型エポキシ樹脂組成物であって、
    前記主剤(i)と前記硬化剤(ii)との質量割合[(i)/(ii)]が、35/65~75/25の範囲であり、
    前記有機リン化合物(C)の使用量が、前記エポキシ樹脂(A)及び前記酸無水物(B)の合計100質量部に対して、0.5~5質量部の範囲であることを特徴とする2液硬化型エポキシ樹脂組成物。
  2.  前記硬化剤(ii)において、前記有機リン化合物(C)の使用量が、前記酸無水物(B)100質量部に対して1.0~10質量部の範囲である請求項1記載の2液型硬化型エポキシ樹脂組成物。
  3.  前記有機リン化合物(C)が、3価の有機リン化合物である請求項1又は2記載の2液硬化型エポキシ樹脂組成物。
  4.  前記有機リン化合物(C)が、トリフェニルホスフィンである請求項1~3の何れか1項記載の2液硬化型エポキシ樹脂組成物。
  5.  前記酸無水物(B)に含まれる遊離酸量が、0.05~2質量%の範囲である請求項1~4の何れか1項記載の2液硬化型エポキシ樹脂組成物。
  6.  前記エポキシ樹脂(A)のエポキシ当量が130~230g/eqの範囲であり、前記酸無水物(B)の酸無水物当量が150~190g/eqの範囲であり、且つ、酸無水物基のモル数/エポキシ基のモル数が0.8~1.2の範囲となるように主剤(i)と硬化剤(ii)とを用いる、請求項1~5の何れか1項記載の2液硬化型エポキシ樹脂組成物。
  7.  前記2液硬化型エポキシ樹脂組成物のDSC測定における発熱温度領域(「エンドセット温度」-「オンセット温度」)が、20~38℃の範囲である請求項1~6の何れか1項記載の2液硬化型エポキシ樹脂組成物。
  8.  前記2液硬化型エポキシ樹脂組成物の30℃における初期配合物粘度「初期粘度」が、100~3000mPa・sの範囲であり、かつ、前記「初期粘度」と、30℃で8時間経過後の粘度「8時間後粘度」とが、下記式(1)の関係を満たすものである請求項1~7の何れか1項記載の2液硬化型エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-M000001
  9.  請求項1~8のいずれか1項記載の2液硬化型エポキシ樹脂組成物の硬化反応物であることを特徴とする硬化物。
  10.  請求項1~8のいずれか1項記載の2液硬化型エポキシ樹脂組成物と、
    強化繊維と、を含有することを特徴とする繊維強化複合材料。
  11.  請求項10記載の繊維強化複合材料からなることを特徴とする成形品。
PCT/JP2019/041661 2018-11-29 2019-10-24 2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品 WO2020110528A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980078137.XA CN113166376A (zh) 2018-11-29 2019-10-24 双液固化型环氧树脂组合物、固化物、纤维增强复合材料及成形品
US17/295,983 US20220025108A1 (en) 2018-11-29 2019-10-24 Two-pack curable epoxy resin composition, cured product, fiber-reinforced composite material and molded article
JP2020553685A JP6897887B2 (ja) 2018-11-29 2019-10-24 2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223583 2018-11-29
JP2018223583 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110528A1 true WO2020110528A1 (ja) 2020-06-04

Family

ID=70853904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041661 WO2020110528A1 (ja) 2018-11-29 2019-10-24 2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品

Country Status (4)

Country Link
US (1) US20220025108A1 (ja)
JP (1) JP6897887B2 (ja)
CN (1) CN113166376A (ja)
WO (1) WO2020110528A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023288149A1 (en) * 2021-07-15 2023-01-19 Henkel Ag & Co., Kgaa Two-component curable compositions

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457600A (en) * 1977-10-17 1979-05-09 Matsushita Electric Ind Co Ltd Epoxy resin compositon
JPH07288330A (ja) * 1994-04-18 1995-10-31 Nitto Denko Corp 光半導体装置
JP2003026763A (ja) * 2001-07-13 2003-01-29 New Japan Chem Co Ltd エポキシ樹脂組成物
JP2005330335A (ja) * 2004-05-18 2005-12-02 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2006241230A (ja) * 2005-03-01 2006-09-14 Nitto Denko Corp エポキシ樹脂組成物硬化体およびその製法ならびにそれを用いた光半導体装置
WO2007125759A1 (ja) * 2006-04-24 2007-11-08 Toray Industries, Inc. エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
JP2009013263A (ja) * 2007-07-03 2009-01-22 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2014214169A (ja) * 2013-04-23 2014-11-17 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2015046030A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
JP2016509113A (ja) * 2013-02-28 2016-03-24 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated エポキシ樹脂系用の無水物促進剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960701117A (ko) * 1993-03-15 1996-02-24 크리스트, 노르드만 인-개질된 에폭시 수지, 이들의 제조방법 및 이들의 용도(phosphorus-modified epoxy resins, process for producing them and their use)
DE102012205046A1 (de) * 2012-03-29 2013-10-02 Siemens Aktiengesellschaft Elektroisolationskörper für eine Hochspannungsrotationsmaschine und Verfahren zum Herstellen des Elektroisolationskörpers
KR101849833B1 (ko) * 2012-09-14 2018-04-17 셍기 테크놀로지 코. 엘티디. 에폭시 수지 조성물 및 상기 조성물을 사용하여 제작된 프리프레그 및 동박적층판

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457600A (en) * 1977-10-17 1979-05-09 Matsushita Electric Ind Co Ltd Epoxy resin compositon
JPH07288330A (ja) * 1994-04-18 1995-10-31 Nitto Denko Corp 光半導体装置
JP2003026763A (ja) * 2001-07-13 2003-01-29 New Japan Chem Co Ltd エポキシ樹脂組成物
JP2005330335A (ja) * 2004-05-18 2005-12-02 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2006241230A (ja) * 2005-03-01 2006-09-14 Nitto Denko Corp エポキシ樹脂組成物硬化体およびその製法ならびにそれを用いた光半導体装置
WO2007125759A1 (ja) * 2006-04-24 2007-11-08 Toray Industries, Inc. エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
JP2009013263A (ja) * 2007-07-03 2009-01-22 Nitto Denko Corp 光半導体素子封止用エポキシ樹脂組成物およびそれを用いた光半導体装置
JP2016509113A (ja) * 2013-02-28 2016-03-24 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated エポキシ樹脂系用の無水物促進剤
JP2014214169A (ja) * 2013-04-23 2014-11-17 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料
WO2015046030A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023288149A1 (en) * 2021-07-15 2023-01-19 Henkel Ag & Co., Kgaa Two-component curable compositions

Also Published As

Publication number Publication date
CN113166376A (zh) 2021-07-23
JPWO2020110528A1 (ja) 2021-02-15
JP6897887B2 (ja) 2021-07-07
US20220025108A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP5954516B1 (ja) エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法
JP6624341B2 (ja) 硬化性組成物及び繊維強化複合材料
JP6825757B1 (ja) エポキシ樹脂組成物、硬化物、繊維強化複合材料、プリプレグ及びトウプリプレグ
JP6769540B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物及び繊維強化複合材料
JP6923090B2 (ja) 硬化性組成物、硬化物、繊維強化複合材料、成形品及びその製造方法
JP6897887B2 (ja) 2液硬化型エポキシ樹脂組成物、硬化物、繊維強化複合材料及び成形品
JP7388049B2 (ja) エポキシ樹脂用硬化剤、エポキシ樹脂組成物及びその硬化物
WO2017033632A1 (ja) エポキシ樹脂組成物及び繊維強化複合材料
JP7006853B2 (ja) 硬化性組成物、硬化物、繊維強化複合材料、成形品及びその製造方法
JP7172180B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法
JP6780318B2 (ja) 硬化性組成物及び繊維強化複合材料
JP6606924B2 (ja) エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法
JP6780317B2 (ja) 硬化性組成物及び繊維強化複合材料
JP2016020444A (ja) エポキシ樹脂組成物、硬化物、繊維強化複合材料、繊維強化樹脂成形品、半導体封止材料、半導体装置、プリプレグ、回路基板、ビルドアップフィルム、及びビルドアップ基板
JP7239076B1 (ja) 硬化性組成物、硬化物、繊維強化複合材料、及び、繊維強化樹脂成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888610

Country of ref document: EP

Kind code of ref document: A1