WO2020108154A1 - 一种雌激素受体下调剂的盐型、晶型及其制备方法 - Google Patents

一种雌激素受体下调剂的盐型、晶型及其制备方法 Download PDF

Info

Publication number
WO2020108154A1
WO2020108154A1 PCT/CN2019/111624 CN2019111624W WO2020108154A1 WO 2020108154 A1 WO2020108154 A1 WO 2020108154A1 CN 2019111624 W CN2019111624 W CN 2019111624W WO 2020108154 A1 WO2020108154 A1 WO 2020108154A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
ray powder
powder diffraction
diffraction pattern
Prior art date
Application number
PCT/CN2019/111624
Other languages
English (en)
French (fr)
Inventor
贺辉君
施沈一
陆剑宇
丁照中
胡利红
施斌
杨文谦
董加强
王铁林
Original Assignee
罗欣药业(上海)有限公司
山东罗欣药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗欣药业(上海)有限公司, 山东罗欣药业集团股份有限公司 filed Critical 罗欣药业(上海)有限公司
Priority to CN201980078425.5A priority Critical patent/CN113166056A/zh
Priority to US17/295,878 priority patent/US20220017463A1/en
Priority to JP2021530238A priority patent/JP7416540B2/ja
Priority to KR1020217020007A priority patent/KR20210097742A/ko
Priority to EP19888746.5A priority patent/EP3889136A4/en
Publication of WO2020108154A1 publication Critical patent/WO2020108154A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a salt form and a crystal form of an estrogen receptor down-regulator and a preparation method thereof, and further includes the application of the salt form and the crystal form in preparing a medicine for treating breast cancer.
  • breast cancer has become the second highest incidence cancer in the world and the highest incidence among women.
  • the role of the estrogen-estrogen receptor signaling pathway in the development of breast cancer has been determined; and the estrogen receptor (ER) has also developed into the most important biomarker for breast cancer.
  • ER estrogen receptor
  • breast cancer can be divided into estrogen receptor positive breast cancer and estrogen receptor negative breast cancer; among them, estrogen receptor positive breast cancer accounts for more than 70% of the total breast cancer patients .
  • Endocrine Therapy which targets the estrogen-estrogen receptor signaling pathway in breast cancer cells, has become the first choice for the treatment of estrogen receptor-positive breast cancer because of its minimal harm and remarkable efficacy.
  • Endocrine therapy mainly includes the following three treatment methods: ovarian suppression therapy, aromatase inhibitor (Aromatase inhibitor, AI), selective estrogen receptor modulator (Selective Etrogen receptor modulator, SERM). Ovarian suppression therapy is less effective than the other two therapies because of its unsatisfactory efficacy and low patient satisfaction.
  • aromatase inhibitor letrozole and the selective estrogen receptor modulator tamoxifen have shown good efficacy in the treatment of estrogen receptor-positive breast cancer, with the application of two types of drugs, estrogen Receptor-positive breast cancer resistance to aromatase inhibitors and selective estrogen receptor modulators has become increasingly prominent.
  • estrogen receptors can produce corresponding mutations.
  • the mutated estrogen receptor can maintain its agitated conformation in the absence of estrogen, allowing it to continue to function as a receptor to promote breast cancer cell proliferation.
  • the mechanism of resistance of breast cancer cells to the selective estrogen receptor modulator tamoxifen is complex and diverse.
  • breast cancer cells can compensate for the lack of function of estrogen receptor activation domain-2 (AF-2) due to tamoxifen by activating the function of estrogen receptor activation domain-1 (AF-1).
  • breast cancer cells can adapt to the conformation of the estrogen receptor after being combined with tamoxifen by adjusting the structure or concentration of the estrogen receptor coactivator, so that the function of the estrogen receptor is restored, thereby causing drug resistance.
  • Selective estrogen receptor down-regulator has shown its unique advantages in the treatment of breast cancer resistant to the two hormone therapy.
  • selective estrogen receptor down-regulators antagonize the function of estrogen receptors, which can greatly accelerate the ubiquitination degradation of estrogen receptors (normal or variant) in breast cancer cells, completely blocking estrogen/estrogen The receptor signaling pathway achieves the purpose of inhibiting the growth and proliferation of normal or drug-resistant breast cancer cells.
  • selective estrogen receptor downregulators can effectively inhibit the proliferation of hormone-resistant breast cancer cells.
  • Fulvestrant Fulvestrant
  • fulvestrant itself has many problems. First, because of its poor PK properties, fulvestrant showed zero oral bioavailability; at the same time, fulvestrant had a higher blood clearance rate. For the above two reasons, this drug can only be administered by intramuscular injection. However, due to its strong esterophilic structure, fulvestrant administered intramuscularly also has serious problems in tissue distribution. Therefore, the development of selective estrogen receptor down-regulators with oral bioavailability is an urgent medical need.
  • WO2012037411A2 reported that the oral selective estrogen receptor down-regulator ARN-810, a clinical phase II trial of this molecule in the treatment of ER-positive breast cancer is underway. According to reports [J.Med.Chem.2015,58(12),4888-4904], the important pharmacophore of the molecule is the indazole structure on the left side of the molecule. The nitrogen atom in the indazole structure acts as a hydrogen bond acceptor Estrogen receptor binding.
  • WO2017162206A1 reports a series of oral selective estrogen receptor down-regulating agents, including the preparation of compound I-8 (Example 8 in WO2017162206A1) and its biological activity:
  • the present invention provides compounds of formula (I),
  • the present invention also provides the crystalline form A of the compound of formula (I), characterized in that its X-ray powder diffraction pattern measured using Cu-K ⁇ has characteristic diffraction peaks at the following 2 ⁇ angles: 5.52 ⁇ 0.2°, 13.68 ⁇ 0.2° , 19.98 ⁇ 0.2°, 20.80 ⁇ 0.2°, 22.02 ⁇ 0.2°, 22.44 ⁇ 0.2°, 24.94 ⁇ 0.2° and 26.96 ⁇ 0.2°,
  • the above crystalline form A is characterized in that the X-ray powder diffraction pattern measured by Cu-K ⁇ is in nine or more, ten or more, or eleven or There are more characteristic diffraction peaks at the 2 ⁇ angle selected from the group: 5.52 ⁇ 0.2°, 13.68 ⁇ 0.2°, 18.86 ⁇ 0.2°, 19.98 ⁇ 0.2°, 20.80 ⁇ 0.2°, 21.62 ⁇ 0.2°, 22.02 ⁇ 0.2° , 22.44 ⁇ 0.2°, 23.34 ⁇ 0.2°, 24.94 ⁇ 0.2°, 26.96 ⁇ 0.2° and 28.42 ⁇ 0.2°.
  • the above crystalline form A the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 1.
  • the above Form A has a differential scanning calorimetry curve with an endothermic peak at 239.46°C ⁇ 3°C.
  • the above-mentioned crystal form A has a differential scanning calorimetry curve as shown in FIG. 2.
  • the present invention also provides Form B of the compound of formula (I), characterized in that its X-ray powder diffraction pattern measured using Cu-K ⁇ has characteristic diffraction peaks at the following 2 ⁇ angles: 5.68 ⁇ 0.2°, 12.36 ⁇ 0.2° , 19.24 ⁇ 0.2°, 19.86 ⁇ 0.2°, 20.62 ⁇ 0.2°, 21.64 ⁇ 0.2°, 22.68 ⁇ 0.2° and 24.96 ⁇ 0.2°.
  • the above crystalline form B is characterized in that the X-ray powder diffraction pattern measured by Cu-K ⁇ is in nine or more, ten or more, or eleven or More selected characteristic diffractions at 2 ⁇ angles from the group: 5.68 ⁇ 0.2°, 12.36 ⁇ 0.2°, 13.42 ⁇ 0.2°, 19.24 ⁇ 0.2°, 19.86 ⁇ 0.2°, 20.62 ⁇ 0.2°, 21.64 ⁇ 0.2°, 22.68 ⁇ 0.2°, 24.96 ⁇ 0.2°, 26.38 ⁇ 0.2°, 27.44 ⁇ 0.2° and 30.62 ⁇ 0.2°.
  • the above-mentioned crystal form B, the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 3.
  • the invention also provides compounds of formula (II),
  • the present invention also provides the crystalline form C of the compound of formula (II), the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 4.
  • the invention also provides compounds of formula (III),
  • the present invention also provides the crystalline form D of the compound of formula (III).
  • the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 5.
  • the present invention also provides the crystalline form E of the compound of formula (III).
  • the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 6.
  • the invention also provides compounds of formula (IV),
  • the present invention also provides the crystalline form F of the compound of formula (IV).
  • the X-ray powder diffraction pattern measured by Cu-K ⁇ is shown in FIG. 7.
  • the present invention also provides the crystalline form G of the compound of formula (IV), the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 8.
  • the invention also provides compounds of formula (V),
  • the present invention also provides the crystalline form H of the compound of formula (V), and the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 9.
  • the present invention also provides the crystalline form I of the compound of formula (V).
  • the X-ray powder diffraction pattern measured by Cu-K ⁇ is shown in FIG. 10.
  • the present invention also provides the crystalline form J of the compound of formula (V).
  • the X-ray powder diffraction pattern measured by Cu-K ⁇ is shown in FIG. 11.
  • the invention also provides compounds of formula (VI),
  • the present invention also provides the crystalline form K of the compound of formula (VI), and the X-ray powder diffraction pattern measured using Cu-K ⁇ is shown in FIG. 12.
  • the invention also provides the application of the above compound or crystal form in the preparation of a medicine for treating breast cancer.
  • intermediate compounds of the present invention can be prepared by various synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by the combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
  • Pd(OAc) 2 represents palladium acetate
  • Pd(PPh 3 ) 2 Cl 2 represents bis(triphenylphosphine) palladium dichloride
  • Pd(PPh 3 ) 3 Cl represents rhodium tris(triphenylphosphine) chloride
  • Pd(OH) 2 represents palladium hydroxide
  • Xantphos represents 4,5-bis(diphenylphosphine)-9,9-dimethylxanthene
  • Xphos stands for 2-dicyclohexylphosphonium-2',4',6'-triisopropylbiphenyl
  • BINAP stands for ( ⁇ )-2,2'-bis-(diphenylphosphino)-1,1'- Binaphthalene
  • Xantphos represents 4,5-bis-(diphenylphosphino)-9,9-dimethylxanthene
  • Xphos-Pd-G1 represents chloro(2-dicy
  • Test method about 10 ⁇ 20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Anti-scattering slit 7.10mm.
  • Step size 0.02deg.
  • Step size 0.12 seconds.
  • DSC Differential Scanning Calorimeter
  • Test method Take a sample ( ⁇ 1mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL/min and N2, the sample is heated from room temperature to 250°C (or 280°C) at a heating rate of 10°C/min.
  • Thermogravimetric analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take a sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under the condition of 25mL/min and N2, the sample is heated from room temperature to 300°C or a weight loss of 20% at a heating rate of 10°C/min.
  • Fig. 1 is an XRPD spectrum of Form A of the compound of formula (I).
  • Fig. 2 is a DSC spectrum of Form A of the compound of formula (I).
  • Figure 3 is an XRPD spectrum of Form B of the compound of formula (I).
  • Figure 4 is an XRPD spectrum of Form C of the compound of formula (II).
  • FIG. 5 is an XRPD spectrum of Form D of the compound of formula (III).
  • Fig. 7 is an XRPD spectrum of Form F of the compound of formula (IV).
  • Fig. 8 is an XRPD spectrum of the crystalline form G of the compound of formula (IV).
  • Fig. 9 is an XRPD spectrum of the crystalline form H of the compound of formula (V).
  • Fig. 10 is an XRPD spectrum of the crystalline form I of the compound of formula (V).
  • Fig. 11 is an XRPD spectrum of the crystalline form J of the compound of formula (V).
  • Fig. 12 is an XRPD spectrum of the crystal form K of the compound of formula (VI).
  • 0.2 g of free acid was dissolved in acetonitrile (2 mL) and stirred at 50°C for 30 minutes, 110.08 mg of benzyl star was added and stirred at 50°C for 5 hours, and then cooled to 25°C and stirred for 16 hours. A large amount of white solid was precipitated and filtered. The filter cake was washed with acetonitrile (2 mL ⁇ 3), and the filter cake was concentrated to obtain a white solid.
  • parameter Compound I-8 Compound of formula (I) Form A P.O. dose (mg/kg) 300 300 C max (nM) 43467 75167 T max (h) 6 9.3 AUC 0-last (nM.h) 613021 1309787 MRT 0-last (h) 10.6 13.3

Abstract

一种雌激素受体下调剂的盐型、晶型及其制备方法被公开,所述盐型和晶型可治疗乳腺癌。

Description

一种雌激素受体下调剂的盐型、晶型及其制备方法
本申请要求申请日为2018年11月28日的中国专利申请CN201811434915.8的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种雌激素受体下调剂的盐型、晶型及其制备方法,还包括所述盐型和晶型在制备治疗乳腺癌药物中的应用。
背景技术
根据WHO统计,乳腺癌已成为全球发病率第二高的癌症,也是女性中发病率最高的癌症。经过多年的研究,已经确定了雌激素-雌激素受体信号通路在乳腺癌发展中的作用;而雌激素受体(ER)也已经发展成了乳腺癌最重要的生物标记物。以雌激素受体表达为判别指标,乳腺癌可以划分为雌激素受体阳性乳腺癌及雌激素受体阴性乳腺癌;其中,雌激素受体阳性的乳腺癌占乳腺癌患者总数的70%以上。
针对乳腺癌细胞内雌激素-雌激素受体信号通路的内分泌疗法(Endocrine Therapy,ET)因其危害性最小,疗效显著,已经成为治疗雌激素受体阳性乳腺癌的首选疗法。内分泌疗法主要包含以下三种治疗方法:卵巢抑制疗法,芳香化酶抑制剂(Aromatase inhibitor,AI),选择性雌激素受体调节剂(Selective estrogen receptor modulator,SERM)。卵巢抑制疗法因为疗效不理想,患者满意度低而应用较其他两种疗法少。早期的芳香化酶抑制剂(第一代,第二代)靶点选择性低,毒副作用大;经过多年的研究,第三代芳香化酶抑制剂大大提高了其选择性,解决了早期芳香化酶抑制剂的问题而得到了广泛的应用。其中,来曲唑等已作为一线药物用于治疗雌激素受体阳性乳腺癌。选择性雌激素受体调节剂(SERM)直接作用于雌激素受体以阻断此信号通路,疗效显著,应用历史较长。其中,他莫昔芬是最具有代表性的选择性雌激素受体调节剂。作为优先推荐使用的一线药物,他莫昔芬用于预防和治疗雌激素受体阳性乳腺癌表现出显著的临床疗效。
尽管芳香化酶抑制剂来曲唑以及选择性雌激素受体调节剂他莫昔芬在治疗雌激素受体阳性乳腺癌方面表现了良好的疗效,但是,随着两类药物的应用,雌激素受体阳性乳腺癌针对芳香化酶抑制剂以及选择性雌激素受体调节剂的耐药性问题也表现的越来越突出。大量的研究表明,乳腺癌对上述两种荷尔蒙疗法的耐药机理是不完全相同的。对于芳香化酶抑制剂,雌激素受体可产生相应的变异。变异后的雌激素受体可在无雌激素存 在的条件下本身保持激动的构象,使得其继续发挥受体功能以促进乳腺癌细胞增殖。乳腺癌细胞对于选择性雌激素受体调节剂他莫昔芬的耐药机理较为复杂多样。首先,乳腺癌细胞可通过激活雌激素受体激活功能区-1(AF-1)功能来补偿因他莫昔芬导致的雌激素受体激活功能区-2(AF-2)的功能缺失。同时,乳腺癌细胞可通过调节雌激素受体共激活因子结构或者浓度来适应与他莫昔芬结合后的雌激素受体的构象,使得雌激素受体功能恢复,从而引起耐药。
在治疗耐上述两种荷尔蒙疗法的乳腺癌上,选择性雌激素受体下调剂(Selective estrogen receptor down-regulator,SERD)体现出了特有的优越性。机理上,选择性雌激素受体下调剂拮抗雌激素受体功能,可大大加速乳腺癌细胞内(正常的或者变异的)雌激素受体的泛素化降解,彻底阻断雌激素/雌激素受体信号通路,达到抑制正常的或者耐药性乳腺癌细胞生长增殖的目的。研究表明,选择性雌激素受体下调剂可有效抑制耐荷尔蒙的乳腺癌细胞的增殖。作为唯一上市的选择性雌激素受体下调剂氟维司群(Fulvestrant)在治疗耐荷尔蒙疗法的乳腺癌上表现出了良好的效果,验证了选择性雌激素受体下调剂的独特优势。但是,氟维司群本身存在很多问题。首先,因为其PK性质很差,氟维司群表现出了零口服生物利用度;同时,氟维司群又有较高的血液清除率。由于以上两种原因,这个药物只能通过肌肉注射给药。但是,因为其强亲酯性结构,肌肉注射给药的氟维司群在组织分布上也存在严重问题。因此,研发有口服生物利用度的选择性雌激素受体下调剂是亟需的医疗需求。
WO2012037411A2报道了口服型的选择性雌激素受体下调剂ARN-810,这个分子治疗ER阳性乳腺癌的临床II期试验正在进行中。据报道[J.Med.Chem.2015,58(12),4888-4904],该分子的重要药效团为分子左侧的吲唑结构,吲唑结构内的氮原子作为氢键受体与雌激素受体结合。
Figure PCTCN2019111624-appb-000001
WO2017162206A1报道了一系列口服型的选择性雌激素受体下调剂,包含了化合物I-8(WO2017162206A1中实施例8)的制备及其生物活性:
Figure PCTCN2019111624-appb-000002
发明内容
本发明提供式(I)化合物,
Figure PCTCN2019111624-appb-000003
本发明还提供式(I)化合物的晶型A,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.52±0.2°、13.68±0.2°、19.98±0.2°、20.80±0.2°、22.02±0.2°、22.44±0.2°、24.94±0.2°和26.96±0.2°,
Figure PCTCN2019111624-appb-000004
在本发明的一些方案中,上述晶型A,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在九个或更多个、十个或更多个,或十一个或更多个选自下组的2θ角处具有特征衍射峰:5.52±0.2°、13.68±0.2°、18.86±0.2°、19.98±0.2°、20.80±0.2°、21.62±0.2°、22.02±0.2°、22.44±0.2°、23.34±0.2°、24.94±0.2°、26.96±0.2°和28.42±0.2°。
在本发明的一些方案中,上述晶型A,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示。
表1式(I)化合物晶型A的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000005
在本发明的一些方案中,上述晶型A,其差示扫描量热曲线在239.46℃±3℃处具有吸热峰。
在本发明的一些方案中,上述晶型A,其差示扫描量热曲线图谱如图2所示。
本发明还提供式(I)化合物的晶型B,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.68±0.2°、12.36±0.2°、19.24±0.2°、19.86±0.2°、20.62±0.2°、21.64±0.2°、22.68±0.2°和24.96±0.2°。
在本发明的一些方案中,上述晶型B,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在九个或更多个、十个或更多个,或十一个或更多个选自下组的2θ角处具有特征衍射:5.68±0.2°、12.36±0.2°、13.42±0.2°、19.24±0.2°、19.86±0.2°、20.62±0.2°、21.64±0.2°、22.68±0.2°、24.96±0.2°、26.38±0.2°、27.44±0.2°和30.62±0.2°。
在本发明的一些方案中,上述晶型B,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图3所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示。
表2式(I)化合物晶型B的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000006
本发明还提供式(II)化合物,
Figure PCTCN2019111624-appb-000007
本发明还提供式(II)化合物的晶型C,其使用Cu-Kα测量得到的X射线粉末衍射 图谱如图4所示。
本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示。
表3式(II)化合物晶型C的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000008
本发明还提供式(III)化合物,
Figure PCTCN2019111624-appb-000009
本发明还提供式(III)化合物的晶型D,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图5所示。
本发明的一些方案中,上述D晶型的XRPD图谱解析数据如表4所示。
表4式(III)化合物晶型D的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000010
本发明还提供式(III)化合物的晶型E,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图6所示。
本发明的一些方案中,上述E晶型的XRPD图谱解析数据如表5所示。
表5式(III)化合物晶型E的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000011
Figure PCTCN2019111624-appb-000012
本发明还提供式(IV)化合物,
Figure PCTCN2019111624-appb-000013
本发明还提供式(IV)化合物的晶型F,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图7所示。
本发明的一些方案中,上述F晶型的XRPD图谱解析数据如表6所示。
表6式(IV)化合物晶型F的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000014
本发明还提供式(IV)化合物的晶型G,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图8所示。
本发明的一些方案中,上述G晶型的XRPD图谱解析数据如表7所示。
表7式(IV)化合物晶型G的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000015
本发明还提供式(V)化合物,
Figure PCTCN2019111624-appb-000016
本发明还提供式(V)化合物的晶型H,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图9所示。
本发明的一些方案中,上述H晶型的XRPD图谱解析数据如表8所示。
表8式(V)化合物晶型H的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000017
Figure PCTCN2019111624-appb-000018
本发明还提供式(V)化合物的晶型I,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图10所示。
本发明的一些方案中,上述I晶型的XRPD图谱解析数据如表9所示。
表9式(V)化合物晶型I的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000019
本发明还提供式(V)化合物的晶型J,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图11所示。
本发明的一些方案中,上述J晶型的XRPD图谱解析数据如表10所示。
表10式(V)化合物晶型J的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000020
Figure PCTCN2019111624-appb-000021
本发明还提供式(VI)化合物,
Figure PCTCN2019111624-appb-000022
本发明还提供式(VI)化合物的晶型K,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图12所示。
本发明的一些方案中,上述K晶型的XRPD图谱解析数据如表11所示。
表11式(VI)化合物晶型K的XRPD图谱解析数据
Figure PCTCN2019111624-appb-000023
本发明还提供上述化合物或晶型在制备治疗乳腺癌药物中的应用。
技术效果
相比WO2017162206A1中的报道的化合物I-8的自由酸形式,本发明式(I)化合物及其晶型在水中溶解度上有近百倍的提高;在生物媒介溶解度测试中,式(I)化合物及其晶型的溶解度也有显著的提升;在体内药代动力学研究中,式(I)化合物及其晶型展示出了优越性质,在生物体内的暴露量显著提高。式(I)化合物及其晶型的这些良好性质,使其更利于成药,使患者受益,满足临床需求。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:MW代表微波;r.t.代表室温;aq代表水溶液;DCM代表二氯甲烷;THF代表四氢呋喃;DMSO代表二甲基亚砜;NMP代表N-甲基吡咯烷酮;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;dioxane代表二氧六环;HOAc代表乙酸;Boc代表叔丁氧羰基,Cbz代表苄氧羰基,两者都是胺保护基团;Boc 2O代表二-叔丁基二碳酸酯;DIPEA代表二异丙基乙胺;TEA或Et 3N代表三乙胺;BnNH 2代表苄胺;PMBNH 2代表对甲氧基苄胺;KOAc代表醋酸钾;NaOAc代表醋酸钠;Cs 2CO 3代表碳酸铯;K 2CO 3代表碳酸钾;NaHCO3代表碳酸氢钠;Na2SO4代表硫酸钠;pyridine代表吡啶;NaOH代表氢氧化钠;TEA或Et 3N代表三乙胺;NaH代表钠氢;LiHMDS代表双(三甲基硅基)胺基锂;i-PrMgBr代表异丙基溴化镁;t-BuOK代表叔丁醇钾;t-BuONa代表叔丁醇钠;Pd 2(dba) 3代表三(二亚苄基丙酮)二钯;Pd(PPh 3) 4代表三苯基膦钯;Pd(dppf)Cl 2CH 2Cl 2代表[1,1'-双(二苯基磷)二茂铁]二氯化钯.二氯甲烷;Pd(OAc) 2代表醋酸钯;Pd(PPh 3) 2Cl 2代表二(三苯基膦)二氯化钯;Pd(PPh 3) 3Cl代表代表三(三苯基膦)氯化铑;Pd(OH) 2代表氢氧化钯;Xantphos代表4,5-双(二苯基膦)-9,9-二甲基氧杂蒽;Xphos 代表2-二环己基磷-2',4',6'-三异丙基联苯;BINAP代表(±)-2,2'-双-(二苯膦基)-1,1'-联萘;Xantphos代表4,5-双-(二苯基磷基)-9,9-二甲基氧杂蒽;Xphos-Pd-G1代表氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基乙基苯基)]钯(II);Xphos-PD-G 2代表氯(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II);Xphos-Pd-G3代表甲磺酸(2-二环己基膦基-2',4',6'-三异丙基-1,1'-联苯基)[2-(2'-氨基-1,1'-联苯)]钯(II);I 2代表碘单质;LiCl代表氯化锂;HCl代表盐酸;maleic acid代表马来酸。
化合物经手工或者
Figure PCTCN2019111624-appb-000024
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8advance X-射线衍射仪。
测试方法:大约10~20mg样品用于XRPD检测。
光管:
Figure PCTCN2019111624-appb-000025
光管电压:40kV,光管电流:40mA。
发散狭缝:0.60mm。
探测器狭缝:10.50mm。
防散射狭缝:7.10mm。
扫描范围:3-40deg或4-40deg。
步径:0.02deg。
步长:0.12秒。
样品盘转速:15rpm。
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪。
测试方法:取样品(~1mg)置于DSC铝锅内进行测试。在50mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到250℃(或280℃)。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000IR热重分析仪。
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试。在25mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到300℃或失重20%。
附图说明
图1为式(I)化合物晶型A的XRPD谱图。
图2为式(I)化合物晶型A的DSC谱图。
图3为式(I)化合物晶型B的XRPD谱图。
图4为式(II)化合物晶型C的XRPD谱图。
图5为式(III)化合物晶型D的XRPD谱图。
图6为式(III)化合物晶型E的XRPD谱图。
图7为式(IV)化合物晶型F的XRPD谱图。
图8为式(IV)化合物晶型G的XRPD谱图。
图9为式(V)化合物晶型H的XRPD谱图。
图10为式(V)化合物晶型I的XRPD谱图。
图11为式(V)化合物晶型J的XRPD谱图。
图12为式(VI)化合物晶型K的XRPD谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物晶型A的制备
依次将无水甲醇(4.9L)、胆碱水溶液(重量含量49.5%,467.60g)、无水甲醇(0.12L)加入反应釜,调节温度至25℃。然后向反应釜滴加化合物I-8(1004.15g)的无水甲醇(4.90L)溶液,温度控制在20-25℃之间。滴加完毕,35℃附近搅拌5小时,停止加热和搅拌。向反应液加入乙酸乙酯(10.04L),40℃浓缩至恒重,再重复此过程两次。再加入乙酸乙酯(16.58L),升温至79℃回流42小时。降温至室温,停止搅拌。过滤,滤饼用乙酸乙酯(3.00L)洗涤,收集滤饼,在环境温度(15~25℃)下晾干19小时,滤饼于45~50℃、-0.8MPa条件下干燥约28小时得到式(I)化合物A晶型。
1H NMR(400MHz,DMSO-d6)δ=12.14(br s,1H),7.53-7.45(m,1H),7.45-7.41(m,1H),7.41-7.33(m,1H),7.31-7.22(m,1H),7.22-7.08(m,5H),7.02-6.89(m,3H),6.25(d,J=16.0Hz,1H),3.94-3.77(m,2H),3.47-3.41(m,2H),3.13(s,9H),2.49-2.31(m,2H),0.88(t,J=7.6Hz,3H)
实施例2:式(I)化合物晶型B的制备
20℃下,向化合物I-8(1g)和乙酸乙酯(10mL)中加入羟基胆碱甲醇溶液(重量含量45%,1g)并在20℃下搅拌16小时,得到的黄色溶液逐渐析出固体变为黄色悬浮液。过滤,滤饼用乙酸乙酯(5mL×3)洗涤,真空干燥得式(I)化合物晶型B。
1H NMR(400MHz,DMSO-d6)δ=11.88(br s,1H),7.47(d,J=8.4Hz,1H),7.41(d,J=8.4 Hz,2H),7.28(d,J=8.4Hz,1H),7.20-7.08(m,5H),6.98-6.90(m,3H),6.26(d,J=16.0Hz,1H),3.88-3.80(m,2H),3.45-3.38(m,2H),3.11(s,9H),2.47-2.35(m,2H),0.87(t,J=7.2Hz,3H)
实施例3:式(II)化合物晶型C的制备
1g化合物I-8溶解于10mL乙酸乙酯并在50℃下搅拌30分钟,在50℃下加入羟基胆碱水溶液(重量含量50%,248.86mg)并在50℃下搅拌5小时,然后冷却至20℃搅拌12小时。有固体析出,过滤,滤饼使用乙酸乙酯洗涤(3mL×3),浓缩得到1.08g白色固体,为式(II)化合物晶型C。
1H NMR(400MHz,DMSO-d6)δ=11.62(br s,1H),7.49(d,J=8.4Hz,1H),7.41(d,J=8.4Hz,2H),7.32-7.25(m,3H),7.20-7.08(m,4H),6.97(d,J=8.4Hz,2H),6.38(d,J=16.0Hz,1H),3.88-3.82(m,1H),3.43-3.38(m,1H),3.11(s,4.5H),2.50-2.32(m,2H),0.89(t,J=7.6Hz,3H)
实施例4:式(III)化合物晶型的制备
1)式(III)化合物晶型D的制备
0.2g自由酸溶于乙腈(2mL)并在50℃下搅拌30分钟,加入55.48mg氨丁三醇并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。有固体析出,过滤,滤饼使用正庚烷(5mL)洗涤,固体浓缩得到145mg亮黄色固体。
1H NMR(400MHz,DMSO-d6)δ=11.52(br s,1H),7.49(d,J=8.0Hz,1H),7.40(d,J=8.0Hz,2H),7.32-7.23(m,3H),7.22-7.10(m,4H),6.97(d,J=8.0Hz,2H),6.32(d,J=15.6Hz,1H),3.41(s,6H),2.48-2.39(m,2H),0.87(t,J=7.6Hz,3H)
2)式(III)化合物晶型E的制备
0.2g自由酸溶于异丙醇(2mL)并在50℃下搅拌30分钟,加入55.48mg氨丁三醇并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。溶液一直保持澄清,倒入盛有20mL正庚烷的玻璃瓶,过滤得到粘稠油状物,浓缩得到103mg亮黄色固体二乙胺盐的制备
1H NMR(400MHz,DMSO-d6)δ=11.50(br s,1H),7.48(d,J=8.0Hz,1H),7.40(d,J=8.0Hz,2H),7.33-7.22(m,3H),7.21-7.08(m,4H),6.96(d,J=8.0Hz,2H),6.31(d,J=16.0Hz,1H),3.38(s,6H),2.50-2.39(m,2H),0.88(t,J=7.6Hz,3H)
实施例5:式(IV)化合物的制备
1)式(IV)化合物晶型F的制备
0.2g自由酸溶于丙酮(2mL)并在50℃下搅拌30分钟,加入33.50mg二乙胺并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用 丙酮(2mL×3)洗涤,滤饼浓缩得到161mg白色固体
1H NMR(400MHz,DMSO-d6)δ=11.56(br s,1H),7.51(d,J=7.2Hz,1H),7.40(d,J=7.6Hz,2H),7.31-7.28(m,3H),7.20-7.10(m,4H),6.96(d,J=8.4Hz,2H),6.32(d,J=16.0Hz,1H),2.76(d,J=7.2Hz,4H),2.51-2.43(m,2H),1.11(d,J=7.2Hz,6H),0.89(t,J=7.6Hz,3H)
2)式(IV)化合物晶型G的制备
0.2g自由酸溶于异丙醇(2mL)并在50℃下搅拌30分钟,加入33.50mg二乙胺并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用丙酮(2mL×3)洗涤,滤饼浓缩得到163mg白色固体哌嗪盐的制备
1H NMR(400MHz,DMSO-d6)δ=11.56(br s,1H),7.51(d,J=7.2Hz,1H),7.40(d,J=7.6Hz,2H),7.31-7.28(m,3H),7.20-7.10(m,4H),6.97(d,J=8.0Hz,2H),6.33(d,J=16.0Hz,1H),2.76(d,J=7.2Hz,4H),2.51-2.43(m,2H),1.11(d,J=7.2Hz,6H),0.89(t,J=7.6Hz,3H)
实施例6:式(V)化合物晶型的制备
1)式(V)化合物晶型H的制备
0.2g自由酸溶于丙酮(2mL)并在50℃下搅拌30分钟,加入39.45mg哌嗪并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用丙酮(2mL×3)洗涤,滤饼浓缩得到白色固体。
1H NMR(400MHz,DMSO-d6)δ=11.55(br s,1H),7.49(d,J=8.0Hz,1H),7.43–7.37(m,2H),7.31-7.29(m,3H),7.19-7.11(m,4H),6.96(d,J=8.4Hz,2H),6.32(d,J=15.6Hz,1H),2.78(s,8H),2.50-2.41(m,2H),0.89(t,J=7.6Hz,3H)
2)式(V)化合物晶型I的制备
0.2g自由酸溶于乙腈(2mL)并在50℃下搅拌30分钟,加入39.45mg哌嗪并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用丙酮(2mL×3)洗涤,滤饼浓缩得到白色固体。
1H NMR(400MHz,DMSO-d6)δ=11.55(br s,1H),7.49(d,J=8.0Hz,1H),7.43–7.37(m,2H),7.31-7.29(m,3H),7.19-7.12(m,4H),6.96(d,J=8.0Hz,2H),6.32(d,J=16.0Hz,1H),2.78(s,8H),2.50-2.41(m,2H),0.89(t,J=7.6Hz,3H)
3)式(V)化合物晶型J的制备
0.2g自由酸溶于异丙醇(2mL)并在50℃下搅拌30分钟,加入39.45mg哌嗪并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用丙酮(2mL×3)洗涤,滤饼浓缩得到白色固体。
1H NMR(400MHz,DMSO-d6)δ=11.54(br s,1H),7.50(d,J=8.0Hz,1H),7.43–7.37 (m,2H),7.33-7.25(m,3H),7.21-7.14(m,4H),6.96(d,J=8.4Hz,2H),6.33(d,J=16.0Hz,1H),2.76(s,8H),2.50-2.35(m,2H),0.89(t,J=7.6Hz,3H)
实施例7:式(VI)化合物晶型K的制备
0.2g自由酸溶于乙腈(2mL)并在50℃下搅拌30分钟,加入110.08mg苄星并在50℃下搅拌5小时,然后冷却至25℃搅拌16小时。大量白色固体析出,过滤,滤饼使用乙腈(2mL×3)洗涤,滤饼浓缩得到白色固体。
1H NMR(400MHz,DMSO-d6)δ=11.53(br s,1H),7.51(d,J=7.2Hz,1H),7.45–7.05(m,19H),7.01–6.98(m,2H),6.39(d,J=16.0Hz,1H),3.73(s,4H),2.66(s,4H),2.50-2.42(m,2H),0.91–0.89(m,3H)
实施例8:溶解度实验
实验材料:化合物I-8、式(I)化合物晶型A、水、FaSSIF(模拟餐前小肠肠液)、FeSSIF(模拟餐后小肠肠液)。
实验方法:分别称量4份化合物I-8和式(I)化合物晶型A加入到4mL的玻璃瓶中,然后分别加入2mL生物媒介溶液(FaSSIF,FeSSIF)和纯化水,混匀并将磁子加入到上述混悬液中,置于磁力搅拌加热仪上进行搅拌(温度为37 oC,避光)。搅拌24小时后取样,将所得样品液快速离心,取上清液稀释合适倍数,用HPLC测定其浓度。
实验结果:见表12。
表12溶解度对比-不同生物媒介溶解度
Figure PCTCN2019111624-appb-000026
“*”:式(I)化合物晶型A溶解度为以自由酸计算的溶解度
实验结论:式(I)化合物晶型A相比化合物I-8在溶解度上面有显著提高。
实施例9:体内PK实验
实验材料:比格犬,三只每组,共两组(分别为化合物I-8及化合物A给药组)
实验方法:各组动物经口服单次灌胃给予相应的化合物,并在给药前及给药后2小时(±2分钟)、4小时(±5分钟)、6小时(±5分钟)、8小时(±5分钟)、12小时(±5分钟)、24小时(±10分钟)采集血样。样品以LC-MS/MS法检测,采用WinNonlin 6.4版算AUC,C max、T max参数。
实验结果:见表13。
表13
参数 化合物I-8 式(I)化合物晶型A
P.O.剂量(mg/kg) 300 300
C max(nM) 43467 75167
T max(h) 6 9.3
AUC 0-last(nM.h) 613021 1309787
MRT 0-last(h) 10.6 13.3
实验结论:式(I)化合物晶型A具有良好的药代动力学性质。

Claims (24)

  1. 式(I)化合物,
    Figure PCTCN2019111624-appb-100001
  2. 式(I)化合物的晶型A,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.52±0.2°、13.68±0.2°、19.98±0.2°、20.80±0.2°、22.02±0.2°、22.44±0.2°、24.94±0.2°和26.96±0.2°,
    Figure PCTCN2019111624-appb-100002
  3. 根据权利要求2所述的晶型A,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在九个或更多个、十个或更多个,或十一个或更多个选自下组的2θ角处具有特征衍射峰:5.52±0.2°、13.68±0.2°、18.86±0.2°、19.98±0.2°、20.80±0.2°、21.62±0.2°、22.02±0.2°、22.44±0.2°、23.34±0.2°、24.94±0.2°、26.96±0.2°和28.42±0.2°。
  4. 根据权利要求3所述的晶型A,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图1所示。
  5. 根据权利要求2-4任意一项所述的晶型A,其差示扫描量热曲线在239.46℃±3℃处具有吸热峰。
  6. 根据权利要求5所述的晶型A,其差示扫描量热曲线图谱如图2所示。
  7. 式(I)化合物的晶型B,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:5.68±0.2°、12.36±0.2°、19.24±0.2°、19.86±0.2°、20.62±0.2°、21.64±0.2°、22.68±0.2°和24.96±0.2°。
  8. 根据权利要求7所述的晶型B,其特征在于,其使用Cu-Kα测量得到的X射线粉末衍射图谱在九个或更多个、十个或更多个,或十一个或更多个选自下组的2θ角处具有特征衍射:5.68±0.2°、12.36±0.2°、13.42±0.2°、19.24±0.2°、19.86±0.2°、20.62±0.2°、21.64±0.2°、22.68±0.2°、24.96±0.2°、26.38±0.2°、27.44±0.2°和30.62±0.2°。
  9. 根据权利要求8所述的晶型B,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图3所示。
  10. 式(II)化合物,
    Figure PCTCN2019111624-appb-100003
  11. 式(II)化合物的晶型C,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图4所示。
  12. 式(III)化合物,
    Figure PCTCN2019111624-appb-100004
  13. 式(III)化合物的晶型D,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图5所示。
  14. 式(III)化合物的晶型E,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图6所示。
  15. 式(IV)化合物,
    Figure PCTCN2019111624-appb-100005
  16. 式(IV)化合物的晶型F,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图7所示。
  17. 式(IV)化合物的晶型G,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图8所示。
  18. 式(V)化合物,
    Figure PCTCN2019111624-appb-100006
  19. 式(V)化合物的晶型H,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图9所示。
  20. 式(V)化合物的晶型I,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图10所示。
  21. 式(V)化合物的晶型J,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图11所示。
  22. 式(VI)化合物,
    Figure PCTCN2019111624-appb-100007
  23. 式(VI)化合物的晶型K,其使用Cu-Kα测量得到的X射线粉末衍射图谱如图12所示。
  24. 根据权利要求1-23任意一项所述化合物或晶型在制备治疗乳腺癌药物中的应用。
PCT/CN2019/111624 2018-11-28 2019-10-17 一种雌激素受体下调剂的盐型、晶型及其制备方法 WO2020108154A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980078425.5A CN113166056A (zh) 2018-11-28 2019-10-17 一种雌激素受体下调剂的盐型、晶型及其制备方法
US17/295,878 US20220017463A1 (en) 2018-11-28 2019-10-17 Salt Form of Estrogen Receptor Downregulator, Crystalline Form Thereof, and Preparation Method Therefor
JP2021530238A JP7416540B2 (ja) 2018-11-28 2019-10-17 エストロゲン受容体ダウンレギュレーターの塩形態、結晶形及びその製造方法
KR1020217020007A KR20210097742A (ko) 2018-11-28 2019-10-17 에스트로겐 수용체 하향 조절제의 염 형태와 결정형, 및 이의 제조방법
EP19888746.5A EP3889136A4 (en) 2018-11-28 2019-10-17 SALINE FOME OF AN ESTROGEN RECEPTOR DOWN-REGULATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811434915 2018-11-28
CN201811434915.8 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020108154A1 true WO2020108154A1 (zh) 2020-06-04

Family

ID=70852402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111624 WO2020108154A1 (zh) 2018-11-28 2019-10-17 一种雌激素受体下调剂的盐型、晶型及其制备方法

Country Status (6)

Country Link
US (1) US20220017463A1 (zh)
EP (1) EP3889136A4 (zh)
JP (1) JP7416540B2 (zh)
KR (1) KR20210097742A (zh)
CN (1) CN113166056A (zh)
WO (1) WO2020108154A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037411A2 (en) 2010-09-16 2012-03-22 Aragon Pharmaceuticals, Inc. Estrogen receptor modulators and uses thereof
CN106488767A (zh) * 2014-03-13 2017-03-08 豪夫迈·罗氏有限公司 调节雌激素受体突变体的方法和组合物
WO2017162206A1 (zh) 2016-03-25 2017-09-28 南京明德新药研发股份有限公司 作为雌激素受体降解剂的吲哚并取代哌啶类化合物
WO2019057201A1 (zh) * 2017-09-25 2019-03-28 罗欣生物科技(上海)有限公司 一种雌激素受体抑制剂的晶型及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660969A (zh) * 2014-08-11 2017-05-10 豪夫迈·罗氏有限公司 雌激素受体调节剂的结晶形式
BR122023025347A2 (pt) * 2015-06-12 2024-01-16 Gb006, Inc. Sal de meglumina ou trometamina de um composto, formas cristalinas e formulações farmacêuticas dos mesmos e seus usos
SI3519407T1 (sl) * 2016-09-30 2022-01-31 Receptos Llc Dimetilaminoetanolna sol modulatorja receptorja GLP-1

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037411A2 (en) 2010-09-16 2012-03-22 Aragon Pharmaceuticals, Inc. Estrogen receptor modulators and uses thereof
CN103189361A (zh) * 2010-09-16 2013-07-03 亚拉冈制药公司 雌激素受体调节剂及其用途
CN106488767A (zh) * 2014-03-13 2017-03-08 豪夫迈·罗氏有限公司 调节雌激素受体突变体的方法和组合物
WO2017162206A1 (zh) 2016-03-25 2017-09-28 南京明德新药研发股份有限公司 作为雌激素受体降解剂的吲哚并取代哌啶类化合物
WO2019057201A1 (zh) * 2017-09-25 2019-03-28 罗欣生物科技(上海)有限公司 一种雌激素受体抑制剂的晶型及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.MEDCHEM., vol. 58, no. 12, 2015, pages 4888 - 4904
See also references of EP3889136A4

Also Published As

Publication number Publication date
EP3889136A4 (en) 2022-08-24
JP2022510918A (ja) 2022-01-28
JP7416540B2 (ja) 2024-01-17
KR20210097742A (ko) 2021-08-09
EP3889136A1 (en) 2021-10-06
US20220017463A1 (en) 2022-01-20
CN113166056A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CA3115830C (en) Compounds for inhibition of .alpha.4.beta.7 integrin
AU2014265279B2 (en) Bipyrazole derivatives as JAK inhibitors
JP2021098757A (ja) Jakキナーゼ阻害剤としてのナフチリジン化合物
BR112021005606A2 (pt) processo de produção de um composto para inibir a atividade de shp2
WO2017118277A1 (zh) 一种btk激酶抑制剂的结晶形式及其制备方法
CA3101086A1 (en) Substituted alkoxypyridinyl indolsulfonamides
CN111253394A (zh) 选择性cdk4/6抑制剂的固态形式
JP7382973B2 (ja) ピリジニル及びピラジニル-(アザ)インドールスルホンアミド
EP3983384B1 (en) N-(phenyl)-indole-3-sulfonamide derivatives and related compounds as gpr17 modulators for treating cns disorders such as multiple sclerosis
PT689536E (pt) Derivados de naftaleno
WO2022037647A1 (zh) 一种选择性Nav抑制剂的结晶形式及其制备方法
WO2013134298A1 (en) Raf inhibitor compounds
MX2014014622A (es) Compuesto de pirrolo [2,1-f] [1,2,4]triazina, y metodo de preparacion y aplicacion el mismo.
CA2999332A1 (en) Crystalline form of 2-(2,6-dichlorophenyl)-1-[(1s,3r)-3-(hydroxymethyl)-5-(3-hydroxy-3-methylbutyl)-1-methyl-3,4-dihydroisoquinolin-2(1h)-yl]ethanone for the treatment of parkinson's disease
WO2021129589A1 (zh) Kd-025的新晶型及其制备方法
WO2020108154A1 (zh) 一种雌激素受体下调剂的盐型、晶型及其制备方法
WO2015113521A1 (zh) 氘代喹唑啉酮化合物以及包含该化合物的药物组合物
JPH0253795A (ja) 新規なエステル
KR20200081359A (ko) 2-(5-(4-(2-모르폴리노에톡시)페닐)피리딘-2-일)-n-벤질아세트아미드의 고체 형태
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
US11034653B2 (en) Crystal form of estrogen receptor inhibitor and preparation method therefor
EP4010330A1 (en) Quinoline derivatives as protein kinase inhibitors
WO2018177276A1 (zh) 一种微管蛋白抑制剂的a晶型
WO2023222122A1 (en) Solid forms of a compound for treating or preventing hyperuricemia or gout
WO2019011316A1 (zh) 一种btk激酶抑制剂的结晶形式及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217020007

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019888746

Country of ref document: EP

Effective date: 20210628