WO2020107636A1 - 微创手术辅助装置及其控制方法 - Google Patents

微创手术辅助装置及其控制方法 Download PDF

Info

Publication number
WO2020107636A1
WO2020107636A1 PCT/CN2018/125924 CN2018125924W WO2020107636A1 WO 2020107636 A1 WO2020107636 A1 WO 2020107636A1 CN 2018125924 W CN2018125924 W CN 2018125924W WO 2020107636 A1 WO2020107636 A1 WO 2020107636A1
Authority
WO
WIPO (PCT)
Prior art keywords
external magnetic
rotation
magnetic
axis
freedom
Prior art date
Application number
PCT/CN2018/125924
Other languages
English (en)
French (fr)
Inventor
段晓东
马亚坤
Original Assignee
上海安翰医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海安翰医疗技术有限公司 filed Critical 上海安翰医疗技术有限公司
Priority to JP2021530313A priority Critical patent/JP2022516693A/ja
Priority to EP18941338.8A priority patent/EP3888565A4/en
Priority to US17/298,001 priority patent/US20210393253A1/en
Priority to KR1020217015825A priority patent/KR102608897B1/ko
Publication of WO2020107636A1 publication Critical patent/WO2020107636A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/08Wound clamps or clips, i.e. not or only partly penetrating the tissue ; Devices for bringing together the edges of a wound
    • A61B17/083Clips, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00269Type of minimally invasive operation endoscopic mucosal resection EMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00345Micromachines, nanomachines, microsystems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets

Definitions

  • the invention relates to an auxiliary device for minimally invasive surgery, in particular to an auxiliary device for minimally invasive surgery that can assist in expanding the surgical field and a control method thereof.
  • Minimally invasive surgery as a treatment method that changes the traditional surgical mode, has won the favor of hospitals and doctors for its many advantages such as less bleeding, less wounds, less impact on organ function, faster recovery, and less postoperative complications. Substantial breakthroughs and applications in many surgical operations. As the advantages of minimally invasive surgery are more and more recognized, its deficiencies are gradually revealed, such as extended study time of doctors and higher requirements for operation accuracy; traditional surgical instruments can no longer meet the needs and need to be continuously improved or even completely Innovation, and this involves not only a wide range of technical aspects, but also requires cutting-edge technical innovation to integrate to meet the special needs of minimally invasive surgery.
  • Endoscopic submucosal dissection is an endoscopic treatment technique used to treat early cancer or precancerous lesions of the gastrointestinal tract. ESD treatment can completely remove the diseased mucosa.
  • ESD treatment can completely remove the diseased mucosa.
  • the method of using an external magnetic field to draw during the operation began to attract attention.
  • the magnetic column is fixed to the end of the hemostatic clip with a flexible connecting wire. After pre-cutting around the ESD mucosa, the hemostatic clip is clamped to the edge of the mucosa. Finally, the magnetic column is guided by an external magnetic field, which drives the hemostatic clip to pull the mucosal layer and make it roll up, which makes ESD surgery less difficult to operate in a clear field of view.
  • the mucosa to be peeled can be located at any spatial position in the digestive tract, its normal has any orientation in the space.
  • the specific spatial and postural information of the mucosa cannot be obtained only through the endoscopic image feedback, making it difficult for the external magnet to accurately control the rolling of the mucosa in the desired direction, only relying on the operator to observe the movement direction of the magnetic column relative to the mucosa in the body
  • this operation method is difficult, low repeatability, long time, and low safety, which is not conducive to the promotion and application of magnetic control traction technology in clinical ESD.
  • the present invention is directed to the problems in the prior art, and its purpose is to provide a minimally invasive surgery auxiliary device and its control method.
  • the present invention provides a minimally invasive surgery auxiliary device, including: an extracorporeal device, the extracorporeal device includes an extracorporeal magnetic generation device that provides a rotating magnetic field, and a drive that drives the extracorporeal magnetic generation device to move and/or rotate Mechanism; in-vivo device, the in-vivo device includes a magnetic auxiliary part, a fixing clip connected to the magnetic auxiliary part; a positioning probe, the positioning probe includes a magnetic field sensor that detects the magnetic field strength of the extracorporeal magnetic generating device; a control system, The driving mechanism and the positioning probe are directly or indirectly communicatively connected to the control system.
  • the driving mechanism includes a motor controlled by a control system, a mechanical arm driven by the motor to move and/or rotate the extracorporeal magnetic generation device, or a two-degree-of-freedom turntable.
  • the magnetic auxiliary member includes a first limiting member, a second limiting member, at least one magnetic tube and a connection between the first limiting member and the second limiting member Line
  • the first limiter includes a first through hole penetrating the first limiter
  • the second limiter includes a second through hole penetrating the second limiter
  • the magnetic tube A third through hole is provided, and the connecting wire passes through the first through hole, the third through hole, and the second through hole to connect the first limiting member, at least one of the magnetic tube, and the second limiting member.
  • the magnetic field sensor is a magnetic field sensor based on a magnetoresistance effect, or a Hall sensor.
  • the extracorporeal device and the positioning probe are configured to: when the positioning probe is placed at the center of the pre-cut mucosa to be peeled; the driving mechanism drives the extracorporeal magnetic generating device to move when When the intensity of the magnetic field detected by the positioning probe reaches the maximum peak, the external magnetic generation device stops at the current position and does not move.
  • the in-vitro device and the in-vivo device are configured to:
  • the control system defines two rotations of the extracorporeal magnetic dipole according to the default trajectory generator Degree of freedom, and the driving mechanism drives the external magnetic generating device to rotate the external magnetic dipole to a combination of the above two rotational degrees of freedom, the magnetic auxiliary member moves and/or rotates correspondingly with the rotation of the external magnetic generating device .
  • the in-vitro device and the in-vivo device are configured to:
  • the driving mechanism drives the external magnetic generating device to rotate, and the magnetic auxiliary member moves and/or rotates correspondingly with the rotation of the external magnetic generating device, and at the same time, the magnetic auxiliary member is adjusted to be a layer that is flush with the mucosa to be peeled off Position P1', and record the position of the external magnetic dipole as the first flat position P1 through the control system;
  • the driving mechanism drives the external magnetic generating device to rotate, and the magnetic auxiliary member moves and/or rotates correspondingly with the rotation of the external magnetic generating device, and at the same time, the magnetic auxiliary member is adjusted to be flat against the mucosa to be peeled off.
  • a position P2', and the position of the external magnetic dipole at this time is recorded by the control system as the second flat bonding position P2, the first flat bonding position P1 and the second flat bonding position P2 form a plane S, two flat The pasting positions P1' and P2' form a plane S';
  • the control system defines the two rotational degrees of freedom for the rotation of the external magnetic dipole as follows: the first degree of rotation is rotation in the plane S, and the second degree of rotation is the plane normal vector around the plane S and the second The rotation axis obtained after cross-pinning at the sticking position P2;
  • the driving mechanism drives the external magnetic dipole to rotate the first 1'degree of freedom of rotation, then the magnetic auxiliary member rotates in the plane S'of the mucosa, and adjusts the magnetic auxiliary member to the center of the mucosal plane S'or other initial position of the roll-up;
  • the driving mechanism drives the external magnetic dipole to rotate the 2'degree of freedom of rotation, and the magnetic auxiliary member starts to roll over.
  • the default trajectory generator is:
  • the carrier coordinate system O-XYZ of the external magnetic dipole is established, and the two rotational degrees of freedom of the external magnetic dipole rotating in the carrier coordinate system are defined as the rotation around the X axis and the Z axis;
  • the direction of the dipole is taken as the Y-axis direction.
  • the X-axis and Z-axis are the coordinate axes selected in the plane perpendicular to the Y-axis.
  • the X-axis, Y-axis, and Z-axis conform to the right-hand rule.
  • control system is configured to:
  • the control system After the external magnetic dipole rotates the combination of the above two degrees of freedom of rotation, and the control system records the first flat attachment position P1 and the second flat attachment position P2 of the external magnetic dipole, the control system applies the first flat attachment The position P1 and the second flat position P2 update the trajectory generator, and the control system enters the mucosal rolling operation state.
  • the in-vitro device and the in-vivo device are configured to:
  • the extracorporeal magnetic generating device When the in-vivo device is placed on the edge of the mucosa to be peeled off, the fixing clip holds the mucosa to be peeled off, and the extracorporeal magnetic generating device generates an extracorporeal magnetic field;
  • the carrier coordinate system O-XYZ of the extracorporeal magnetic dipole is established in the control system, and It is defined that the two degrees of freedom of rotation of the external magnetic dipole in the carrier coordinate system are rotation around the X axis and the Z axis; where the direction of the external magnetic dipole is the Y axis direction, and the X axis and the Z axis are respectively at The coordinate axes selected in the plane perpendicular to the Y axis, X axis, Y axis and Z axis comply with the right-hand rule;
  • the driving mechanism drives the extracorporeal magnetic generating device to rotate the extracorporeal magnetic dipole to rotate the combination of the above two degrees of freedom, and the magnetic auxiliary member moves and/or rotates with the rotation of the extracorporeal magnetic generating device, and simultaneously
  • the magnetic auxiliary component is adjusted to a position P1' that is flatly attached to the mucosa to be peeled, and the position of the external magnetic dipole at this time is recorded as the first flatly attached position P1 by the control system;
  • the external magnetic field generating device is driven by the driving mechanism so that the external magnetic dipole rotates a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member also moves and/or rotates correspondingly with the rotation of the external magnetic field generating device, and at the same time Adjust the magnetic auxiliary piece to another position P2' that is flatly attached to the mucosa to be peeled off, and record the position of the external magnetic dipole at this time as the second flat attachment position P2 and the first flat attachment position through the control system P1 and the second flat bonding position P2 form a plane S, and the two flat bonding positions P1' and P2' form a plane S';
  • the driving mechanism drives the external magnetic dipole to rotate in the plane S for the first 1'degree of freedom of rotation, then the magnetic auxiliary member rotates in the plane S'of the mucosa to adjust the magnetic auxiliary member to the center of the mucosal plane S'or other rolling Initial position
  • the driving mechanism drives the external magnetic dipole to rotate the 2'degree of freedom of rotation, and the magnetic auxiliary member starts to roll over.
  • the combination of the above-mentioned two degrees of freedom of rotation of the external magnetic dipole is specifically: a) a first degree of freedom of rotation around the current z0 axis After changing to o-x0'y0'z0, the external magnetic dipole reaches the position oy0'; b) After rotating the second rotation degree of freedom ⁇ 0 around the current x0' axis, it becomes o-x0'y1z1, and the external magnetic dipole reaches Position o y1; c) rotate the first rotation degree of freedom around the current z1 axis Later it becomes o-x1y1'z1, and the external magnetic dipole reaches position o y1'.
  • the driving mechanism drives the external magnetic generating device so that the external magnetic dipole rotates according to 2 degrees of freedom of rotation: the current position of the external magnetic dipole is oy, and the external magnetic dipole is established
  • the carrier coordinate system is o-xyz; and the base coordinate system for establishing the driving mechanism is O-XYZ; according to the position change of the external magnetic dipole before and after any one of the two rotation degrees of freedom, the external magnetic dipole is calculated
  • the spherical coordinate angle component before and after the rotation the driving mechanism determines the rotation angle of the extracorporeal magnetism generating device according to the angle component and drives the extracorporeal magnetism generating device to rotate.
  • the present invention also provides a control method of a minimally invasive surgery auxiliary device, which includes the following steps:
  • the drive mechanism drives the extracorporeal magnetic generating device to move, and when the magnetic field strength detected by the positioning probe reaches the maximum peak, the external magnetic generating device stops at The current position no longer moves;
  • the extracorporeal magnetic generating device When the in-vivo device is placed at the edge of the mucosa to be peeled off, the fixing clip holds the mucosa to be peeled off, and the extracorporeal magnetic generating device generates an extracorporeal magnetic field;
  • the carrier coordinate system O-XYZ of the extracorporeal magnetic dipole is established in the control system , And define that the two degrees of freedom of rotation of the external magnetic dipole in the carrier coordinate system are rotation around the X axis and Z axis; where the direction of the external magnetic dipole is taken as the Y axis direction, and the X axis and Z axis are respectively
  • the coordinate axis selected in the plane perpendicular to the Y axis the X axis, Y axis, and Z axis comply with the right-hand rule;
  • the driving mechanism drives the external magnetic generating device to rotate the external magnetic dipole to a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member moves and/or rotates correspondingly with the rotation of the external magnetic generating device, while Adjust the magnetic auxiliary member to a position P1' that is flatly attached to the mucosa to be peeled, and record the position of the external magnetic dipole at this time as the first flatly attached position P1 through the control system;
  • the external magnetic field generating device is driven by the driving mechanism so that the external magnetic dipole rotates a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member also moves and/or rotates correspondingly with the rotation of the external magnetic field generating device, and at the same time Adjust the magnetic auxiliary piece to another position P2' that is flatly attached to the mucosa to be peeled off, and record the position of the external magnetic dipole at this time as the second flat attachment position P2 and the first flat attachment position through the control system P1 and the second flat bonding position P2 form a plane S, and the two flat bonding positions P1' and P2' form a plane S';
  • the X axis is determined by the right-hand rule;
  • the control system defines the two rotational degrees of freedom of the external magnetic dipole rotating in the updated carrier coordinate system as follows: the 1st rotational degree of freedom is the rotation around the Z axis of the new carrier coordinate system, The 2'rotation degree of freedom is the rotation axis obtained by cross-multiplying the plane normal vector of the plane S and the second flat position P2;
  • the driving mechanism drives the external magnetic dipole to rotate in the plane S for the first degree of freedom of rotation, and accordingly, the magnetic auxiliary member rotates in the plane S'of the mucosa to adjust the magnetic auxiliary member to the plane of the mucosa S' The center or other initial position of the roll;
  • the driving mechanism drives the external magnetic dipole to rotate the 2'rotation degree of freedom, and accordingly, the magnetic auxiliary member starts to roll over.
  • the minimally invasive surgery auxiliary device of the present invention detects the peak value of the magnetic field generated by the extracorporeal magnetic generation device through the positioning probe and locates the position of the extracorporeal magnetic field generation device so that the extracorporeal magnetic generation device and the mucosa to be peeled are in the same The vertical line to ensure the maximum twisting force of the subsequent rewinding operation; and the accurate control of the movement and/or rotation of the in-vivo device by the extracorporeal device through the control system, so that the in-vivo device's rewinding operation to peel off the mucosa provides ESD surgery convenient.
  • control method of the minimally invasive surgery auxiliary device of the present invention can achieve the effects of easy control of the mucosal rewind angle, high repeatability of operation, fast speed, safety and reliability for any spatially oriented mucosa to be peeled; on the other hand, It can effectively control the magnetic auxiliary parts to roll the mucosa to a suitable angle, so that the new submucosa tissue is exposed, which is convenient for the subsequent application of the electric knife to continue the resection and peel off the mucosa.
  • FIG. 1 is a schematic diagram of the positioning device of the present invention cooperating with an extracorporeal device to position an extracorporeal magnetic generation device;
  • FIG. 2 is a schematic diagram of two rotational degrees of freedom of the external magnetic dipole of the present invention
  • FIG. 3 is a schematic view of the present invention separately controlling the combination of two external rotation degrees of rotation of the external magnetic dipole so that the magnetic auxiliary device is flat on the surface of the mucosa to be peeled;
  • Fig. 4 shows that the magnetic auxiliary member is guided to the center position of the mucosa to be peeled off by the external magnetic dipole rotation 1'rotation degree of freedom, as the starting point of rolling, and the magnetic auxiliary member is controlled by the external magnetic dipole rotation 2'rotation degree of freedom Schematic diagram of turning the mucous membrane to be peeled;
  • Fig. 5 is a schematic diagram of adjusting the magnetic auxiliary member to adjust the pulling direction by the first 1'degree of freedom of rotation of the external magnetic dipole after the magnetic auxiliary member is deflected during the inversion of the mucosa to be peeled;
  • Fig. 6 is a schematic diagram showing the principle of using a two-degree-of-freedom rotary table to rotate an external magnetic dipole around an arbitrary axis in space.
  • the mucosa M to be peeled off in the body may be the mucosa of the gastrointestinal tract such as human or animal, the mucosa of the gastrointestinal tract of the isolated tissue, the mucosa of the gastrointestinal tract corresponding to the digestive tract model, or the simulated gastrointestinal tract Road mucosa, etc.
  • the present invention provides a minimally invasive surgical auxiliary device for pulling a lesion, which includes an in-vivo device that is located inside the body to draw the mucosa M to be peeled, and is located outside the body to control
  • the extracorporeal device 2 that the in-vivo device 1 moves and/or rotates, a positioning probe 3 that cooperates with the extracorporeal device 2 to assist in positioning the extracorporeal device 2, and a control system (not shown).
  • the mucosa M to be peeled off may be a mucosa of an isolated animal tissue or a mucosa on a simulated medical model.
  • the extracorporeal device 2 includes an extracorporeal magnetic generation device 21 that provides a uniform magnetic field, and a drive mechanism 22 that drives the extracorporeal magnetic generation device 21 to move and/or rotate;
  • the uniform magnetic field can be understood as a uniform magnetic field, an approximately uniform magnetic field, and a partial spatial magnetic field It is a uniform magnetic field.
  • the external magnetic generating device 21 may be a spherical permanent magnet, or a Helmitz coil, or a cylindrical permanent magnet.
  • the external magnetic generating device 21 may be controlled to move and rotate by human or mechanical equipment. In order to be able to generate a uniform rotating magnetic field in any direction. In order to conveniently describe the movement and rotation direction of the external magnetic generation device 21, when the external magnetic generation device 21 generates an external magnetic field, it is called an external magnetic dipole.
  • the driving mechanism 22 includes a motor (not shown) controlled by a control system, and a robot arm driven by the motor to move and/or rotate the 3-10 axis of the extracorporeal magnetic generating device 21 Or two degrees of freedom turntable.
  • the control system receives commands through a human-machine interface, and then controls the movement of the mechanical arm through a motor to control the external magnetic generating device 21 to perform three-dimensional movement and/or rotation in space.
  • the 3-10 axis linked mechanical arm refers to any mechanical equipment that can fix the external magnetic generating device 21 and can drive the external magnetic generating device 21 to perform three-dimensional movement and/or rotation in the external space, and its specific structure Not limited.
  • the extracorporeal device 2 controls the extracorporeal magnetic generating device 21 to perform three-dimensional movement and/or two-dimensional rotation in space through the driving mechanism, please refer to Chinese Patent No. 201310136094.0.
  • the in-vivo device 1 includes a magnetic auxiliary member 11 and a fixing clip 12 connected to the magnetic auxiliary member 11.
  • the fixing clip 12 is used to fix the magnetic auxiliary member 11 to the mucosa to be pulled.
  • the magnetic auxiliary part 11 moves accordingly when the direction of the magnetic field of the extracorporeal magnetic generating device 21 changes And/or rotation, which in turn causes the lesion to move at a controlled speed and/or to rotate around the body device 1 at a controlled angle to expand the surgical field during ESD surgery.
  • the fixing clip 12 is usually a medical hemostatic clip, a hemostatic forceps, a titanium clip, etc., all of which clamp the lesion in a clamp-like manner, and the material is usually a medical material, such as pure titanium or titanium alloy.
  • the structure and shape of the magnetic auxiliary member 11 are not limited, as long as it can move and/or rotate when the external magnetic field changes.
  • the magnetic auxiliary member 11 has a column shape, which is convenient for controlling its movement and/or rotation.
  • the magnetic auxiliary member 11 includes a first limiting member, a second limiting member, at least one magnetic tube and a connecting position between the first limiting member and the second limiting member The first limiting member and the connecting line of the at least one magnetic tube and the second limiting member.
  • the first limiter includes a first through hole penetrating the first limiter
  • the second limiter includes a second through hole penetrating the second limiter
  • the magnetic There is a third through hole in the tube, and the connecting wire passes through the first through hole, the third through hole, and the second through hole to connect the first limiting member, at least one of the magnetic tube, and the second limiting member .
  • the first limiting member and the second limiting member may be made of plastic, stainless steel, magnet, or other materials.
  • the magnetic tube is a functional component of the magnetic auxiliary member 11, and the material may be a permanent magnet material such as ferrite, neodymium iron boron, samarium cobalt, or aluminum nickel cobalt.
  • the surface of the magnetic tube may also be coated with a biocompatible film, the biocompatible film is titanium, titanium nitride, titanium oxide, nickel, nickel oxide, parylene or fluoride, etc.
  • the fluoride is preferably Teflon.
  • At least one magnetic tube may be a magnetic tube, which is suitable for a case where the operation space is relatively narrow. In the case where the total size of the at least one magnetic tube is the same as the magnetic force provided by the extracorporeal device 2, the turning torque of only one magnetic tube is greater than the turning torque of a plurality of magnetic tubes.
  • At least one magnet tube can also be multiple magnet tubes; multiple magnet tubes are organized into larger magnets, which can ensure that the magnetic auxiliary component 11 can smoothly pass through the clamp channel under the condition that the endoscope lens body is highly curved, and meet ESD Operational requirements for clinical operations. The number of the magnetic tubes is determined by the size of the lesion to be pulled.
  • the polarization direction of the magnetic tubes is axial polarization, and at this time, the polarization directions of all the magnetic tubes are the same.
  • the polarization direction of the magnetic tube may also be radial polarization.
  • the magnetic auxiliary member 11 includes an odd number of magnetic tubes connected by the magnetic force under the connection of the connecting line, and the adjacent two The polarization direction of each magnet tube is opposite.
  • the first limiting member, the second limiting member and the connecting wire are used to connect at least one of the magnetic tubes into a magnetic whole.
  • the connecting wire can be selected from but not limited to nylon suture, polypropylene (prolin) and other medical sutures; and one end of the connecting wire is in the form of a node, an adjustable diameter ring, etc., which can be connected to the fixing clip 12 Fixing, the specific fixing method can refer to Chinese Patent Application No. 201510661964.5.
  • the positioning probe 3 includes a magnetic field sensor that detects the magnetic field strength of the extracorporeal magnetic generation device 21, and the magnetic field sensor may be a magnetic field sensor based on a magnetoresistive effect, or a Hall sensor. Taking the Hall sensor as an example, the method of using the positioning probe 3 is described. As shown in FIG. 1, the positioning probe 3 is placed in the center of the pre-cut mucosa, and the external magnetic generation device 21 is moved by the driving mechanism 22 until the Hall sensor detects that the magnetic field intensity generated by the external magnetic generation device 21 is maximum , The external magnetic generating device 21 no longer moves.
  • the positioning of the extracorporeal magnetism generating device 21 by the positioning probe 3 not only ensures that the extracorporeal magnetism generating device 21 can control the in vivo magnetism generating device to achieve the maximum torque in the subsequent operation, but also can interact with the in vivo device 1 Cooperate with magnetically controlled pulling of the mucosa in any spatial position, the pulling angle is easy to control, the operation is repeatable, the speed is fast, safe and reliable.
  • the driving mechanism 22 and the positioning probe 3 are directly or indirectly communicatively connected with the control system to realize signal transmission.
  • One of the indirect communication methods is to provide signals to the control system through the human-machine interface.
  • the auxiliary device for minimally invasive surgery further includes a support tube that assists the delivery of the positioning probe 3 and the in-vivo device 1 into the body; when in use, the positioning probe 3 and the extracorporeal device 2 enter the mucosa to be peeled through the support tube Office.
  • the extracorporeal device 2 and the positioning probe 3 are set as follows: As shown in FIG. 1, after the positioning probe 3 is placed at the center of the pre-cut mucosa M to be peeled off; the driving mechanism 22 drives the extracorporeal The magnetic generating device 21 moves. When the intensity of the magnetic field detected by the positioning probe 3 reaches the maximum peak, the external magnetic generating device 21 stops at the current position and does not move.
  • the control of the extracorporeal magnetic generating device 21 by the driving mechanism 22 is that the control system controls the motor to start, and the motor drives the mechanical arm to drive the extracorporeal magnetic generating device 21 to move until the magnetic field strength detected by the positioning probe 3 reaches the maximum peak value.
  • the positioning probe 3 is released to the site of the lesion through the support pipe, resisting the center point of the pre-cut around mucosa M to be peeled off, and keeping the positioning probe 3 stationary; Send a command to the control system through the human-machine interface, the control system controls the motor to start, so that the mechanical arm drives the external magnetic generation device 21 to move, and when the magnetic field strength detected by the positioning probe 3 reaches the peak value, the external magnetic generation device 21 stops moving, At this time, the external magnetic generating device 21 and the mucosa to be peeled are on the same vertical line to ensure that the subsequent turning operation has the maximum torque; after the positioning of the external magnetic generating device 21 is completed, the location can be taken out through the support pipe ⁇ Positioning probe 3.
  • the in-vitro device 2 and the in-vivo device 1 are configured as shown in FIG. 2, when the in-vivo device 1 is placed on the edge of the mucosa M to be peeled, and the fixing clip 12 clamps the mucosa M to be peeled, and the After the magnetic generating device 21 generates an external magnetic field; the control system defines two rotational degrees of freedom of the external magnetic dipole according to the default trajectory generator, and the driving mechanism 22 drives the external magnetic generating device 21 to rotate the external magnetic dipole to the above two rotations With the combination of degrees of freedom, the magnetic auxiliary member 11 also moves and/or rotates with the rotation of the extracorporeal magnetic generating device 21.
  • the default trajectory generator is: the carrier coordinate system O-XYZ of the external magnetic dipole is established in the control system, the direction of the external magnetic dipole is taken as the Y axis direction, and the X axis and the Z axis are perpendicular to the Y
  • the coordinate axes selected in the plane of the axis, X-axis, Y-axis and Z-axis conform to the right-hand rule; the two rotational degrees of freedom in which the external magnetic dipole rotates in the carrier coordinate system are defined as rotation around the X-axis and Z-axis, respectively.
  • the direction of the external magnetic dipole always coincides with the Y axis in the carrier coordinate system, according to the external definition of the default trajectory generator
  • the two degrees of freedom of rotation of the magnetic dipole are respectively rotation around the X axis and the Z axis; that is, when the external magnetic dipole is in different postures, its carrier coordinate system will be adjusted accordingly according to its specific posture.
  • the driving mechanism 22 drives the external magnetic generating device 21 to rotate the external magnetic dipole to a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member 11 also occurs with the rotation of the external magnetic generating device 21
  • the magnetic auxiliary member 11 is adjusted to a position P1' that is flush with the mucosa M to be peeled off in conjunction with the endoscope image, and the position of the external magnetic dipole at this time is recorded by the control system Is the first flat position P1;
  • the external magnetic field generating device 21 is driven to rotate the external magnetic dipole to a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member 11 also moves and/or rotates correspondingly with the rotation of the external magnetic field generating device 21, and at the same time Combine the endoscope image to adjust the magnetic auxiliary member 11 to another position P2' that is flatly attached to the mucosa M to be peeled off, and record the position of the external magnetic dipole at this time as the second flat attachment position P2 through the control system ;
  • the combination of the above two rotation degrees of freedom of the external magnetic dipole rotation can be specifically referred to as shown in FIG. 2, where the first rotation degree of freedom is rotation around the Z axis, and the second rotation degree of freedom is rotation around the X axis as
  • the rotation method of the combination of the above two rotation degrees of freedom of the external magnetic dipole rotation is described:
  • the control system updates the trajectory generator according to the first flat position P1 and the second flat position P2, and the control system enters the mucosal rolling operation state, that is, the magnetic auxiliary part starts to roll according to the updated carrier coordinate system.
  • the two rotational degrees of freedom of the external magnetic dipole are defined as follows:
  • the first rotational degree of freedom is the rotation around the Z axis of the new carrier coordinate system, that is, the external magnetic dipole is in the first flat Rotating in the plane S formed by the sticking position P1 and the second flat sticking position P2, accordingly the magnetic auxiliary member 11 will rotate in the plane S'formed by the two flat sticking positions P1' and P2' of the mucosa M to be peeled off ;
  • the 2'rotation degree of freedom is the rotation axis obtained by cross multiplying the plane normal vector of the plane S and the second flat attachment position P2.
  • the control system controls the driving mechanism to drive the external magnetic dipole to rotate in the plane S by the first degree of freedom of rotation. Accordingly, the magnetic auxiliary member 11 rotates in the plane of the mucosa S’ Endoscopic image, adjust the magnetic auxiliary member 11 to the center of the mucosal plane S'or the initial position of the roll-back that the ESD surgeon thinks is more suitable as the initial position of the next roll-back operation;
  • the control system controls the drive mechanism to drive the external magnetic dipole to rotate.
  • the second degree of freedom of rotation causes the external magnetic dipole to rotate around the X axis of the new carrier coordinate system.
  • the magnetic auxiliary member 11 begins to roll over, and the mucous membrane begins to be peeled off. Wrapped on the in-vivo device 1, combined with the endoscopic image, the magnetic auxiliary member 11 is controlled to be rolled at an appropriate angle, so that the submucosal tissue is exposed, which is convenient for the surgeon to start excision and peel off the mucosa with an electric knife;
  • the magnetic auxiliary member 11 is deflected due to the sliding of the magnetic auxiliary member 11 and the mucous membrane or the magnetic auxiliary member 11 and the anchor point, after the deflection, it can be rotated by rotating the 1′
  • the degree of freedom realizes adjustment of the pulling direction of the magnetic auxiliary member 11, and after the adjustment, the mucosa is rolled by the second degree of rotation rotation in the new pulling direction.
  • the adjustment of the pulling direction of the magnetic auxiliary member 11 can be selected by rotating the first rotation degree of freedom, and the degree of mucosal rewinding can be controlled by rotating the second rotation degree of freedom.
  • the space-oriented to-be-peeled mucosa M can achieve the effects of easy control of the mucosal rewind angle, high repeatability of operation, fast speed, safety and reliability;
  • the exposed submucosa tissue is convenient for the subsequent application of electrocautery to continue excision and peeling off the mucosa.
  • the rotation axes of the first and second degrees of freedom of rotation are arbitrary vectors during the movement of the external magnetic dipole, it is necessary to realize that the external magnetic dipole can be used on the spherical surface of the external magnetic generation device 21 Rotate around any axis.
  • the driving mechanism 22 drives the external magnetic generating device 21 so that the external magnetic dipole rotates according to 2 degrees of freedom of rotation: the current position of the external magnetic dipole is oy, and the carrier coordinate system of the external magnetic dipole is established as o -xyz; and establish the base coordinate system of the driving mechanism 22 as O-XYZ; calculate the ball of the external magnetic dipole before and after rotation according to the position change of the external magnetic dipole before and after any one of the two degrees of freedom of rotation For the coordinate angle component, the drive mechanism 22 determines the rotation angle of the extracorporeal magnetism generating device 21 according to the angle component and drives the extracorporeal magnetism generating device 21 to rotate.
  • the current position of the external magnetic dipole is oy
  • the carrier coordinate system of the external magnetic dipole is o-xyz
  • the base coordinate system of the two-degree-of-freedom turntable is O-XYZ
  • the first degree of rotation is the z-axis around the carrier coordinate system Rotation-Rotz
  • the 2nd degree of freedom of rotation is rotation around the x-axis of the carrier coordinate system-Rotx.
  • the invention also provides a control method of the above minimally invasive surgery auxiliary device, including the following steps:
  • the drive mechanism 22 drives the extracorporeal magnetic generating device 21 to move, and when the magnetic field strength detected by the positioning probe 3 reaches the maximum peak, the in vitro The magnetic generating device 21 stops at the current position and no longer moves;
  • the fixing clip 12 clamps the mucosa M to be peeled off, and the extracorporeal magnetic generating device 21 generates an extracorporeal magnetic field;
  • the carrier for establishing an extracorporeal magnetic dipole within the control system The coordinate system is O-XYZ, and the two rotational degrees of freedom of the external magnetic dipole rotating in the carrier coordinate system are defined as the rotation around the X axis and the Z axis; where the direction of the external magnetic dipole is taken as the Y axis direction, X
  • the axis and the Z axis are the coordinate axes selected in the plane perpendicular to the Y axis, respectively.
  • the X axis, the Y axis, and the Z axis conform to the right-hand rule;
  • the driving mechanism 22 drives the extracorporeal magnetic generating device 21 so that the extracorporeal magnetic dipole rotates a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member 11 moves accordingly with the rotation of the extracorporeal magnetic generating device 21 and/or Or rotate, and at the same time adjust the magnetic auxiliary member 11 to a position P1' that is flatly attached to the mucosa M to be peeled, and record the position of the external magnetic dipole at this time as the first flatly attached position P1 through the control system;
  • the external magnetic generating device 21 is driven by the driving mechanism 22 so that the external magnetic dipole rotates a combination of the above two degrees of freedom of rotation, and the magnetic auxiliary member 11 also moves correspondingly with the rotation of the external magnetic generating device 21 and /Or rotate, and at the same time adjust the magnetic auxiliary member 11 to another position P2' that is flatly attached to the mucosa M to be peeled off, and record the position of the external magnetic dipole at this time as the second flat attachment position P2 through the control system ,
  • the first flat attachment position P1 and the second flat attachment position P2 form a plane S
  • the two flat attachment positions P1' and P2' form a plane S';
  • the X axis is determined by the right-hand rule;
  • the control system defines the two rotational degrees of freedom of the external magnetic dipole rotating in the updated carrier coordinate system as follows: the 1st rotational degree of freedom is the rotation around the Z axis of the new carrier coordinate system, The 2'rotation degree of freedom is the rotation axis obtained by cross-multiplying the plane normal vector of the plane S and the second flat position P2;
  • the control system controls the driving mechanism to drive the external magnetic dipole to rotate in the plane S for the first degree of freedom of rotation, and accordingly, the magnetic auxiliary member 11 rotates in the plane S'of the mucosa to move the magnetic auxiliary member 11 Adjust to the center of the mucosal plane S'or other initial position of rolling;
  • the control system controls the driving mechanism to drive the external magnetic dipole to rotate the 2'rotation degree of freedom, and accordingly, the magnetic auxiliary member 11 starts to roll the mucosa.
  • the driving mechanism 22 drives the external magnetic generating device 21 so that the external magnetic dipole rotates according to two degrees of freedom of rotation: the current coordinate of the external magnetic dipole is oy, and the carrier coordinate system of the external magnetic dipole is established It is o-xyz; and the base coordinate system of the drive mechanism 22 is established as O-XYZ; according to the change of the position of the external magnetic dipole before and after any one of the 2 rotation degrees of freedom, calculate the external magnetic dipole before and after rotation
  • the angular component of the spherical coordinate of the drive the driving mechanism 22 determines the rotation angle of the external magnetic generating device 21 according to the angular component and drives the external magnetic generating device 21 to rotate.
  • the minimally invasive surgery assisting device of the present invention detects the peak value of the magnetic field generated by the external magnetic field generating device 21 through the positioning probe 3, and locates the location of the external magnetic field generating device, so that the external magnetic field generating device 21 and the mucosa to be peeled are in On the same vertical line, to ensure that the subsequent turning operation has the maximum torque; and the control system realizes the precise control of the movement and/or rotation of the in-vivo device 2 by the in-vivo device 2, so that the in-vivo device 1 performs the rewinding operation of the mucous membrane to be peeled off as ESD surgery provides convenience.
  • control method of the minimally invasive surgery auxiliary device of the present invention can achieve the effects of easy control of the mucosal rewind angle, high repeatability of operation, fast speed, safety and reliability for any spatial orientation of the mucosa M to be peeled; , Can effectively control the magnetic auxiliary member 11 to roll the mucous membrane to a proper angle, so that the new submucosal tissue is exposed, which is convenient for the subsequent application of an electric knife to continue the resection and peel off the mucous membrane.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种微创手术辅助装置,包括:体外装置(2),包括体外磁产生装置(21)、驱动机构(22);体内装置(1),包括磁性辅助件(11)、固定夹(12);定位探头(3),包括磁场传感器;以及控制系统。该装置对任意空间朝向的待剥离粘膜,均能达到粘膜翻卷角度易于控制、操作重复性高、速度快、安全可靠的效果。

Description

微创手术辅助装置及其控制方法
本申请要求了申请日为2018年11月27日,申请号为201811423746.8,发明名称为“微创手术辅助装置及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种微创手术的辅助装置,尤其涉及一种可辅助扩大术野的微创手术辅助装置及其控制方法。
背景技术
微创手术,作为改变传统外科手术模式的治疗方式,以其出血少、创口小、对器脏功能影响小、康复快、术后并发症少等诸多优点,博得医院及医生的青睐,并在诸多外科手术中取得实质性突破及应用。在微创手术的优势得到越来越多的认同时,其缺陷也在逐步显露出来,比如医生的学习时间延长、操作精准度要求更高;传统手术器械已不能满足需求,需要不断改进甚至完全创新,而这所涉及到的技术方面不仅范围广,而且需要前沿的技术创新来融入,以满足微创手术所需要的特殊需求。
内镜粘膜下剥离术(endoscopic submucosal dissection,ESD)是一种用于治疗胃肠道早期癌或癌前病变的内镜下治疗技术,通过ESD治疗可以完整剥离病变粘膜。为了方便医生操作、减少术后并发症,采用外部磁场在术中牵拉的方法开始得到关注。将磁柱用柔性连接线固定在止血夹一端,在完成ESD粘膜四周预切开后,将止血夹夹持到粘膜边缘。最后用外部磁场引导磁柱,带动止血夹对粘膜层进行牵拉,使其翻卷,使得ESD手术在清晰的视野下减少操作的难度。
由于待剥离粘膜可处于消化道内任意空间位置,因此其法线在空间具有任意朝向。而仅通过内窥镜图像反馈无法获得粘膜具体的空间位姿信息,使得外部磁体很难实现以期望的方向对粘膜的翻卷进行精确控制,仅依靠操作者观察体内磁柱相对于粘膜的运动方向来不断试错,控制体外磁场方向进行粘膜翻卷,这样的操作方法难度大、操作重复性低、时间长、安全性低,不利于磁控牵拉技术在ESD临床中的推广和应用。
有鉴于此,有必要提供一种微创手术辅助装置及其控制方法。
发明内容
本发明针对现有技术存在的问题,其目的在于提供一种微创手术辅助装置及其控制方法。
为实现上述目的,本发明提供了一种微创手术辅助装置,包括:体外装置,所述体外装置包括提供转动磁场的体外磁产生装置、驱动所述体外磁产生装置移动和/或转动的驱动机构;体内装置,所述体内装置包括磁性辅助件、与所述磁性辅助件连接的固定夹;定位探头, 所述定位探头包括检测所述体外磁产生装置的磁场强度的磁场传感器;控制系统,所述驱动机构、所述定位探头均与所述控制系统直接或间接地通讯连接。
作为本发明的进一步改进,所述驱动机构包括由控制系统控制的电机、由电机驱动以移动和/或转动所述体外磁产生装置的机械臂或二自由度转台。
作为本发明的进一步改进,所述磁性辅助件包括第一限位件、第二限位件、位于所述第一限位件与所述第二限位件之间的至少一个磁管及连接线,所述第一限位件包括贯穿所述第一限位件的第一通孔,所述第二限位件包括贯穿所述第二限位件的第二通孔,所述磁管内具有第三通孔,所述连接线穿过第一通孔、第三通孔、第二通孔将所述第一限位件、至少一个所述磁管、第二限位件相连接。
作为本发明的进一步改进,所述磁场传感器为基于磁阻效应的磁场传感器、或霍尔传感器。
作为本发明的进一步改进,所述体外装置与所述定位探头被配置为:当所述定位探头置于预切开的待剥离粘膜中心处后;驱动机构驱动所述体外磁产生装置移动,当定位探头检测到的磁场强度到达最大峰值时,体外磁产生装置停止在当前位置不再移动。
作为本发明的进一步改进,所述体外装置与所述体内装置被配置为:
当体内装置被置于待剥离粘膜的边缘,所述固定夹夹持待剥离粘膜,且体外磁产生装置产生体外磁场后;控制系统根据默认的轨迹生成器定义体外磁偶极子的2个旋转自由度,且驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动。
作为本发明的进一步改进,所述体外装置与所述体内装置被配置为:
驱动机构驱动体外磁产生装置转动,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
驱动机构驱动体外磁产生装置转动,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
控制系统定义体外磁偶极子转动的2个旋转自由度分别为:第1’旋转自由度为在平面S内转动,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
驱动机构驱动体外磁偶极子旋转第1’旋转自由度,则所述磁性辅助件在粘膜的平面S’ 内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
驱动机构驱动体外磁偶极子旋转第2’旋转自由度,则磁性辅助件开始翻卷。
作为本发明的进一步改进,所述默认的轨迹生成器为:
控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则。
作为本发明的进一步改进,所述控制系统被配置为:
在体外磁偶极子旋转上述2个旋转自由度的组合,并且控制系统记录体外磁偶极子的第一平贴位置P1和第二个平贴位置P2后,控制系统根据第一个平贴位置P1和第二个平贴位置P2更新轨迹生成器,控制系统进入到粘膜翻卷运行状态。
作为本发明的进一步改进,所述体外装置与所述体内装置被配置为:
当体内装置被置于待剥离粘膜的边缘,所述固定夹夹持待剥离粘膜,且体外磁产生装置产生体外磁场后;控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则;
驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
通过驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动也发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
控制系统根据第一个平贴位置P1和第二个平贴位置P2更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定;控制系统定义体外磁偶极子在更新的载体坐标系中转动的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位 置P2叉乘后得到的旋转轴旋转;
驱动机构驱动体外磁偶极子在平面S内旋转第1’旋转自由度,则所述磁性辅助件在粘膜的平面S’内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
驱动机构驱动体外磁偶极子旋转第2’旋转自由度,则磁性辅助件开始翻卷。
作为本发明的进一步改进,体外磁偶极子旋转上述2个旋转自由度的组合具体为:a)绕当前z0轴旋转第1旋转自由度
Figure PCTCN2018125924-appb-000001
后变为o-x0'y0'z0,体外磁偶极子到达位置oy0';b)绕当前x0'轴旋转第2旋转自由度θ0后变为o-x0’y1z1,体外磁偶极子到达位置o y1;c)绕当前z1轴旋转第1旋转自由度
Figure PCTCN2018125924-appb-000002
后变为o-x1y1'z1,体外磁偶极子到达位置o y1'。
作为本发明的进一步改进,驱动机构驱动体外磁产生装置使得体外磁偶极子按照2个旋转自由度旋转的驱动方式为:以体外磁偶极子当前位置为oy,建立体外磁偶极子的载体坐标系为o-xyz;并建立驱动机构的基坐标系为O-XYZ;根据体外磁偶极子在旋转2个旋转自由度中的任意一个前后的位置变化,计算体外磁偶极子在旋转前后的球坐标角度分量,驱动机构根据该角度分量确定体外磁产生装置的转动角度并驱动体外磁产生装置转动。
为实现上述发明目的,本发明还提供一种微创手术辅助装置的控制方法,包括如下步骤:
S1.当所述定位探头置于预切开的待剥离粘膜中心处后;驱动机构驱动所述体外磁产生装置移动,当定位探头检测到的磁场强度到达最大峰值时,体外磁产生装置停止在当前位置不再移动;
S2.当体内装置被置于待剥离粘膜的边缘,所述固定夹夹持待剥离粘膜,且体外磁产生装置产生体外磁场后;控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则;
S3.驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
通过驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动也发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶 极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
S4.控制系统根据第一个平贴位置P1和第二个平贴位置P2更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定;控制系统定义体外磁偶极子在更新的载体坐标系中转动的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
S5.驱动机构驱动体外磁偶极子在平面S内旋转第1’旋转自由度,相应地,所述磁性辅助件在粘膜的平面S’内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
S6.驱动机构驱动体外磁偶极子旋转第2’旋转自由度,相应地,磁性辅助件开始翻卷。
本发明的有益效果是:本发明的微创手术辅助装置,通过定位探头检测体外磁产生装置产生的磁场的峰值,定位体外磁场产生装置的位置,使得体外磁产生装置与待剥离的粘膜处于同一竖直线上,以保证后面的翻卷操作具有最大的扭力;并且通过控制系统实现体外装置对体内装置移动和/或转动的精确控制,从而使得体内装置对待剥离黏膜的翻卷操作为ESD手术提供了便利。
另外,本发明的微创手术辅助装置的控制方法,对任意的空间朝向的待剥离粘膜,均能达到粘膜翻卷角度易于控制、操作重复性高、速度快、安全可靠的效果;另一方面,能够有效地控制磁性辅助件翻卷粘膜至合适角度,使新的粘膜下层组织暴露,便于后续应用电刀继续切除,剥离粘膜。
附图说明
图1为本发明的定位装置与体外装置配合以定位体外磁产生装置的示意图;
图2为本发明的体外磁偶极子的2个旋转自由度示意图;
图3为本发明分别控制体外磁偶极子旋转2个旋转自由度组合使得磁性辅助装置平贴于待剥离粘膜表面的示意图;
图4为通过体外磁偶极子旋转第1’旋转自由度将磁性辅助件引导至待剥离粘膜中心位置,作为翻卷的起点,通过体外磁偶极子旋转第2’旋转自由度控制磁性辅助件对待剥离粘膜进行翻卷的示意图;
图5为在待剥离黏膜翻转过程中,若磁性辅助件发生偏斜后,通过体外磁偶极子旋转 第1’旋转自由度调整磁性辅助件以调整牵拉方向的示意图;
图6为使用二自由度转台实体外磁偶极子绕空间任意轴旋转的原理示意图。
具体实施方式
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构或功能上的变换均包含在本发明的保护范围内。
在本发明中,所述体内待剥离粘膜M可为人体或动物等胃肠道的粘膜,离体组织的胃肠道粘膜,消化道模型所对应的胃肠道粘膜等,或者仿真的胃肠道粘膜等。
请参阅图1~图6所示,本发明提供一种用于牵拉病灶的微创手术辅助装置,包括在使用时位于体内用以牵拉待剥离粘膜M的体内装置1、位于体外以控制所述体内装置1移动和/或转动的体外装置2、与所述体外装置2相配合以辅助定位体外装置2的定位探头3、控制系统(未图示)。所述待剥离粘膜M可为动物离体组织的粘膜或仿真医疗模型上的粘膜等。
所述体外装置2包括提供均匀磁场的体外磁产生装置21、驱动所述体外磁产生装置21移动和/或转动的驱动机构22;均匀磁场可理解为均匀磁场、近似均匀磁场、部分空间的磁场为均匀磁场。本发明中,所述体外磁产生装置21可以为圆球形永磁体、或赫尔姆兹线圈、或柱形永磁体,所述体外磁产生装置21可通过人或机械设备控制其移动和转动,以能够产生任意方向均匀旋转磁场。为了方便描述体外磁产生装置21的移动和转动方向,在体外磁产生装置21产生体外磁场时,被称作体外磁偶极子。
于其中一个实施例中,所述驱动机构22包括由控制系统控制的电机(未图示)、由电机驱动以移动和/或转动所述体外磁产生装置21的3~10轴联动的机械臂或二自由度转台。所述控制系统通过人机接口接受命令,再通过电机控制所述机械臂的动作,以控制所述体外磁产生装置21在空间内做三维移动和/或转动。
所述3~10轴联动的机械臂指的是可固定体外磁产生装置21、并可带动所述外磁产生装置21在体外空间内做三维移动和/或转动的任何机械设备,其具体结构不限。有关体外装置2如何通过驱动机构控制体外磁产生装置21在空间内做三维移动和/或二维转动,可参考第201310136094.0号中国专利。
所述体内装置1包括磁性辅助件11、与所述磁性辅助件11连接的固定夹12,该固定夹12用于将所述磁性辅助件11与待牵拉的粘膜相固定。所述磁性辅助件11与固定夹12相固定,且固定夹12与待牵拉的病灶固定后,所述磁性辅助件11在所述体外磁产生装置21的磁场的方向变化时发生相应的移动和/或转动,进而使得病灶以控制的速度移动和/或以控制的角度转动卷包在体内装置1上,以在ESD手术中扩大术野。
所述固定夹12通常为医用止血夹、止血钳、钛夹等,均呈钳状以夹持方式夹持病灶等,且材料通常为医用材料,例如纯钛或钛合金。
所述磁性辅助件11的结构和形状不限,只要能够在体外磁场变化时发生移动和/或转动即可。优选地,所述磁性辅助件11呈柱状,便于对其移动和/或转动进行控制。本实施例中,所述磁性辅助件11包括第一限位件、第二限位件、位于所述第一限位件和所述第二限位件之间的至少一个磁管、连接所述第一限位件和所述至少一个磁管和所述第二限位件的连接线。具体地,所述第一限位件包括贯穿所述第一限位件的第一通孔,所述第二限位件包括贯穿所述第二限位件的第二通孔,所述磁管内具有第三通孔,所述连接线穿过第一通孔、第三通孔、第二通孔将所述第一限位件、至少一个所述磁管、第二限位件相连接。所述第一限位件及第二限位件可由塑料、不锈钢或磁铁等材料制成。
其中,所述磁管是所述磁性辅助件11的功能部件,材料可以是铁氧体、钕铁硼、钐钴或铝镍钴等永磁材料。另外,所述磁管的表面还可以镀有生物兼容性薄膜,所述生物兼容性薄膜为钛、氮化钛、氧化钛、镍、氧化镍、派瑞林或氟化物等,氟化物优选为聚四氟乙烯。
本领域技术人员可以理解的是:“至少一个磁管”可以为一个磁管,适用于手术空间比较狭小的情况。在所述至少一个磁管的总尺寸和体外装置2提供的磁力相同的情况下,仅设置一个磁管的翻卷力矩要比多个磁管的翻卷力矩大。“至少一个磁管”也可以为多个磁管;多个磁管组织成为较大的磁体,能够保证磁性辅助件11在内镜镜体高度弯曲的情况下,依旧顺利通过钳道,满足ESD手术临床的操作需求。所述磁管的数目由待牵拉的病灶的大小决定,病灶越大,所述磁管的数目越多,反之亦然。所述磁管极化方向为轴向极化,此时所有磁管的极化方向相同。当然,所述磁管极化方向也可以为径向极化,此时所述磁性辅助件11包括奇数个磁管在所述连接线的穿引下通过磁力作用前后相接组成,相邻两个磁管的极化方向相反。
所述第一限位件、所述第二限位件和所述连接线用以将至少一个所述磁管连接成一个磁性的整体。所述连接线可选用但不限于尼龙线、聚丙烯(普罗林)等医用缝合线;且所述连接线的一端采用结点、直径可调的环等形式,可与所述固定夹12相固定,其具体的固定方法可参考第201510661964.5号中国专利申请。
所述定位探头3包括检测所述体外磁产生装置21的磁场强度的磁场传感器,所述磁场传感器可以为基于磁阻效应的磁场传感器,也可以为霍尔传感器。以霍尔传感器为例,来说明所述定位探头3的使用方法。如图1所示,将定位探头3置入预切开的粘膜中心,通过驱动机构22移动所述体外磁产生装置21直到霍尔传感器检测到所述体外磁产生装置21产生的磁场强度最大时,所述体外磁产生装置21不再移动。通过所述定位探头3定位所述体外磁产生装置21的位置,不但能够保证所述体外磁产生装置21在后续操作中对体内磁产生装置的控制达到最大扭力,还可以与所述体内装置1配合以对任意空间位姿的粘膜进行磁控牵拉,牵拉角度易于控制、操作重复性高、速度快、安全可靠。
所述驱动机构22、所述定位探头3均与所述控制系统直接或间接地通讯连接,以实现信号的传输。其中一个间接地通讯方式为,通过人机接口向控制系统提供信号。
所述微创手术辅助装置还包括辅助向体内输送所述定位探头3、所述体内装置1的支撑管道;使用时,所述定位探头3、所述体外装置2通过支撑管道进入到待剥离黏膜处。
其中,所述体外装置2和所述定位探头3被设置为:如图1所示,当所述定位探头3置于预切开的待剥离粘膜M中心处后;驱动机构22驱动所述体外磁产生装置21移动,当定位探头3检测到的磁场强度到达最大峰值时,体外磁产生装置21停止在当前位置不再移动。驱动机构22对体外磁产生装置21的控制为:控制系统控制电机启动,电机驱动机械臂带动所述体外磁产生装置21移动,直至定位探头3检测到的磁场强度到达最大峰值。
具体地,将粘膜四周预切开后,通过支撑管道将所述定位探头3释放到病灶部位,抵住四周预切开的待剥离粘膜M的中心点,并保持所述定位探头3不动;通过人机接口向控制系统发送命令,控制系统控制电机启动,使得机械臂带动所述体外磁产生装置21移动,当定位探头3检测到的磁场强度到达峰值时,体外磁产生装置21停止移动,此时体外磁产生装置21与待剥离的粘膜处于同一竖直线上,以保证后面的翻卷操作具有最大的扭力;所述体外磁产生装置21定位完成后,即可通过所述支撑管道取出所述定位探头3。
所述体外装置2和所述体内装置1被配置为:如图2所示,当体内装置1被置于待剥离粘膜M的边缘,且所述固定夹12夹持待剥离粘膜M,且体外磁产生装置21产生体外磁场后;控制系统根据默认的轨迹生成器定义体外磁偶极子的2个旋转自由度,驱动机构22驱动体外磁产生装置21使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件11随着所述体外磁产生装置21的转动也发生相应的移动和/或转动。
所述默认的轨迹生成器为:控制系统内建立体外磁偶极子的载体坐标系O-XYZ,以体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则;定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转。本领域技术人员可以理解的是,不论体外磁偶极子处于球面上的何种姿态,体外磁偶极子的方向始终与载体坐标系中的Y轴重合,根据默认的轨迹生成器定义的体外磁偶极子的2个旋转自由度分别为绕X轴、Z轴旋转;也即体外磁偶极子处于不同的姿态时,其载体坐标系会根据其具体姿态做相应的调整。
如图3所示,驱动机构22驱动体外磁产生装置21使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件11随着所述体外磁产生装置21的转动也发生相应的移动和/或转动,同时结合内窥镜图像将所述磁性辅助件11调整为与待剥离粘膜M平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
驱动体外磁产生装置21使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件11随着所述体外磁产生装置21的转动也发生相应的移动和/或转动,同时结合内窥镜图像将所述磁性辅助件11调整为与待剥离粘膜M平贴的另一个位置P2’,并通过控制系 统记录此时体外磁偶极子的位置为第二个平贴位置P2;
其中“体外磁偶极子旋转上述2个旋转自由度的组合”具体可参考图2所示,以第1旋转自由度为绕Z轴的旋转、第2旋转自由度为绕X轴的旋转为例,参考图2说明体外磁偶极子旋转上述2个旋转自由度的组合的旋转方式:
a)绕当前z0轴旋转
Figure PCTCN2018125924-appb-000003
后变为o-x0'y0'z0(旋第1旋转自由度),体外磁偶极子到达位置oy0';b)绕当前x0'轴旋转θ0后变为o-x0’y1z1(旋转第2旋转自由度),体外磁偶极子到达位置o y1;c)绕当前z1轴旋转
Figure PCTCN2018125924-appb-000004
后变为o-x1y1'z1(旋转第1旋转自由度),体外磁偶极子到达位置o y1'。
如图3~图5所示,在体外磁偶极子旋转上述2个旋转自由度的组合,并且控制系统记录体外磁偶极子的第一平贴位置P1和第二个平贴位置P2后,控制系统根据第一个平贴位置P1和第二个平贴位置P2更新轨迹生成器,控制系统进入到粘膜翻卷运行状态,即磁性辅助件根据更新的载体坐标系开始翻卷。通过人机接口向控制系统发送命令,控制系统更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定。
根据更新后的轨迹生成器定义体外磁偶极子的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,即体外磁偶极子在第一个平贴位置P1和第二个平贴位置P2形成的平面S内旋转,相应地所述磁性辅助件11将在待剥离粘膜M的两个平贴位置P1’和P2’构成的平面S’内旋转;第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转。
其中,体外磁偶极子旋转第1’旋转自由度时在平面S内旋转,相应地所述磁性辅助件11在粘膜的平面S’内旋转,是由以下原理保证的:Ω=H·ω;其中,Ω为体外磁偶极子旋转方向,ω为磁性辅助件11的旋转方向,H为方位矩阵;由于体外磁产生装置21与磁性辅助件11的相对空间位置不变,H为常数,因此当体外磁偶极子在某一平面内旋转时,磁性辅助件11将在对应的平面内旋转。
如图4所示,控制系统控制驱动机构使其驱动体外磁偶极子在平面S内旋转第1’旋转自由度,相应地,所述磁性辅助件11在粘膜的平面S’内旋转,结合内窥镜图像,将磁性辅助件11调整到粘膜平面S’的中心或者ESD外科医生认为更加合适的翻卷初始位置处,作为接下来翻卷操作的初始位置;
控制系统控制驱动机构使其驱动体外磁偶极子旋转第2’旋转自由度使得体外磁偶极子绕新载体坐标系的X轴旋转,相应地,磁性辅助件11开始翻卷,待剥离粘膜开始卷包于体内装置1上,结合内窥镜图像,控制磁性辅助件11翻卷合适角度,使得粘膜下层组织暴露,便于外科医生应用电刀开始切除,剥离粘膜;
详细如图5所示,在翻卷过程中,如磁性辅助件11发生由磁性辅助件11和粘膜或磁性辅助件11和锚定点的滑动产生的偏斜,偏斜后可通过旋转第1’旋转自由度实现对磁性辅助 件11的牵拉方向的调整,调整后再以新的牵拉方向通过旋转第2’旋转自由度对粘膜翻卷。
根据外科医生的手术需求,可选择通过旋转第1’旋转自由度实现对磁性辅助件11的牵拉方向的调整,通过旋转第2’旋转自由度控制粘膜翻卷的程度,一方面使得对于任意的空间朝向的待剥离粘膜M,均能达到粘膜翻卷角度易于控制、操作重复性高、速度快、安全可靠的效果;另一方面,能够有效地控制磁性辅助件11翻卷粘膜至合适角度,使新的粘膜下层组织暴露,便于后续应用电刀继续切除,剥离粘膜。
另外,由于第1’旋转自由度和第2’旋转自由度的旋转轴在体外磁偶极子运动过程中为任意矢量,因此需要实现体外磁偶极子在体外磁产生装置21所属球面上可以绕任意轴旋转。
驱动机构22驱动体外磁产生装置21使得体外磁偶极子按照2个旋转自由度旋转的驱动方式为:以体外磁偶极子当前位置为oy,建立体外磁偶极子的载体坐标系为o-xyz;并建立驱动机构22的基坐标系为O-XYZ;根据体外磁偶极子在旋转2个旋转自由度中的任意一个前后的位置变化,计算体外磁偶极子在旋转前后的球坐标角度分量,驱动机构22根据该角度分量确定体外磁产生装置21的转动角度并驱动体外磁产生装置21转动。
本实施例中,如图6所示,以二自由度转台实现体外磁偶极子绕空间任意轴旋转为例,其原理为:
体外磁偶极子当前位置为oy,体外磁偶极子的载体坐标系为o-xyz,二自由度转台的基坐标系为O-XYZ,第1’旋转自由度为绕载体坐标系z轴转动——Rotz,第2’旋转自由度为绕载体坐标系x轴转动——Rotx。若向控制系统下发命令进行Rotz旋转角度:A=<oy,oy’>,即体外磁偶极子期望位置为球面上oy’位置——y’(a,b,c),计算得出oy’球坐标角度分量(θ,
Figure PCTCN2018125924-appb-000005
),也即二自由度转台的Axis1与Axis2角度位置量。对于绕载体坐标系的x轴旋转第2’旋转自由度的情况,与上述计算方法是一致的,于此不再叙述。
本发明还提供了一种上述微创手术辅助装置的控制方法,包括如下步骤:
S1.当所述定位探头3置于预切开的待剥离粘膜M中心处后;驱动机构22驱动所述体外磁产生装置21移动,当定位探头3检测到的磁场强度到达最大峰值时,体外磁产生装置21停止在当前位置不再移动;
S2.当体内装置1被置于待剥离粘膜M的边缘,所述固定夹12夹持待剥离粘膜M,且体外磁产生装置21产生体外磁场后;控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则;
S3.驱动机构22驱动体外磁产生装置21使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件11随着所述体外磁产生装置21的转动发生相应的移动和/或转动,同时将所述磁性辅助件11调整为与待剥离粘膜M平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
再通过驱动机构22驱动体外磁产生装置21使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件11随着所述体外磁产生装置21的转动也发生相应的移动和/或转动,同时将所述磁性辅助件11调整为与待剥离粘膜M平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成的平面S’;
S4.控制系统根据第一个平贴位置P1和第二个平贴位置P2更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定;控制系统定义体外磁偶极子在更新的载体坐标系中转动的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
S5.控制系统控制驱动机构使其驱动体外磁偶极子在平面S内旋转第1’旋转自由度,相应地,所述磁性辅助件11在粘膜的平面S’内旋转,将磁性辅助件11调整到粘膜平面S’的中心或者其他翻卷初始位置处;
S6.控制系统控制驱动机构使其驱动体外磁偶极子旋转第2’旋转自由度,相应地,磁性辅助件11开始翻卷粘膜。
其中,驱动机构22驱动体外磁产生装置21使得体外磁偶极子按照2个旋转自由度旋转的驱动方式为:以体外磁偶极子当前位置为oy,建立体外磁偶极子的载体坐标系为o-xyz;并建立驱动机构22的基坐标系为O-XYZ;根据体外磁偶极子在旋转2个旋转自由度中的任意一个前后的位置变化,计算体外磁偶极子在旋转前后的球坐标角度分量,驱动机构22根据该角度分量确定体外磁产生装置21的转动角度并驱动体外磁产生装置21转动。
另外,微创手术辅助装置中其他具体的步骤均可以用于微创手术辅助装置的控制方法,于此不再赘述。
综上所述,本发明的微创手术辅助装置,通过定位探头3检测体外磁产生装置21产生的磁场的峰值,定位体外磁场产生装置的位置,使得体外磁产生装置21与待剥离的粘膜处于同一竖直线上,以保证后面的翻卷操作具有最大的扭力;并且通过控制系统实现体外装置2对体内装置1移动和/或转动的精确控制,从而使得体内装置1对待剥离黏膜的翻卷操作为ESD手术提供了便利。
另外,本发明的微创手术辅助装置的控制方法,对任意的空间朝向的待剥离粘膜M,均能达到粘膜翻卷角度易于控制、操作重复性高、速度快、安全可靠的效果;另一方面,能够有效地控制磁性辅助件11翻卷粘膜至合适角度,使新的粘膜下层组织暴露,便于后续应用电刀继续切除,剥离粘膜。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其 他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种微创手术辅助装置,其特征在于:包括:
    体外装置,所述体外装置包括提供转动磁场的体外磁产生装置、驱动所述体外磁产生装置移动和/或转动的驱动机构;
    体内装置,所述体内装置包括磁性辅助件、与所述磁性辅助件连接的固定夹;
    定位探头,所述定位探头包括检测所述体外磁产生装置的磁场强度的磁场传感器;
    控制系统,所述驱动机构、所述定位探头均与所述控制系统直接或间接地通讯连接。
  2. 根据权利要求1所述的微创手术辅助装置,其特征在于:所述驱动机构包括由控制系统控制的电机、由电机驱动以移动和/或转动所述体外磁产生装置的机械臂或二自由度转台。
  3. 根据权利要求1所述的微创手术辅助装置,其特征在于:所述磁性辅助件包括第一限位件、第二限位件、位于所述第一限位件与所述第二限位件之间的至少一个磁管及连接线,所述第一限位件包括贯穿所述第一限位件的第一通孔,所述第二限位件包括贯穿所述第二限位件的第二通孔,所述磁管内具有第三通孔,所述连接线穿过第一通孔、第三通孔、第二通孔将所述第一限位件、至少一个所述磁管、第二限位件相连接。
  4. 根据权利要求1所述的微创手术辅助装置,其特征在于:所述磁场传感器为基于磁阻效应的磁场传感器、或霍尔传感器。
  5. 根据权利要求1所述的微创手术辅助装置,其特征在于:所述体外装置与所述定位探头被配置为:当所述定位探头置于预切开的待剥离粘膜中心处后;驱动机构驱动所述体外磁产生装置移动,当定位探头检测到的磁场强度到达最大峰值时,体外磁产生装置停止在当前位置不再移动。
  6. 根据权利要求1所述的微创手术辅助装置,其特征在于:所述体外装置与所述体内装置被配置为:
    当体内装置被置于待剥离粘膜的边缘,所述固定夹夹持待剥离粘膜,且体外磁产生装置产生体外磁场后;控制系统根据默认的轨迹生成器定义体外磁偶极子的2个旋转自由度,且驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动。
  7. 根据权利要求1或6所述的微创手术辅助装置,其特征在于:所述体外装置与所述 体内装置被配置为:
    驱动机构驱动体外磁产生装置转动,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
    驱动机构驱动体外磁产生装置转动,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
    控制系统定义体外磁偶极子转动的2个旋转自由度分别为:第1’旋转自由度为在平面S内转动,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
    驱动机构驱动体外磁偶极子旋转第1’旋转自由度,则所述磁性辅助件在粘膜的平面S’内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
    驱动机构驱动体外磁偶极子旋转第2’旋转自由度,则磁性辅助件开始翻卷。
  8. 根据权利要求6所述的微创手术辅助装置,其特征在于:所述默认的轨迹生成器为:
    控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则。
  9. 根据权利要求6所述的微创手术辅助装置,其特征在于:所述控制系统被配置为:
    在体外磁偶极子旋转上述2个旋转自由度的组合,并且控制系统记录体外磁偶极子的第一平贴位置P1和第二个平贴位置P2后,控制系统根据第一个平贴位置P1和第二个平贴位置P2更新轨迹生成器,控制系统进入到粘膜翻卷运行状态。
  10. 根据权利要求1或6或9所述的微创手术辅助装置,其特征在于:所述体外装置与所述体内装置被配置为:
    驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
    通过驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合, 所述磁性辅助件随着所述体外磁产生装置的转动也发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
    控制系统根据第一个平贴位置P1和第二个平贴位置P2更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定;控制系统定义体外磁偶极子在更新的载体坐标系中转动的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
    驱动机构驱动体外磁偶极子在平面S内旋转第1’旋转自由度,则所述磁性辅助件在粘膜的平面S’内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
    驱动机构驱动体外磁偶极子旋转第2’旋转自由度,则磁性辅助件开始翻卷。
  11. 根据权利要求6所述的微创手术辅助装置,其特征在于:体外磁偶极子旋转上述2个旋转自由度的组合具体为:a)绕当前z0轴旋转第1旋转自由度
    Figure PCTCN2018125924-appb-100001
    后变为o-x0'y0'z0,体外磁偶极子到达位置oy0';b)绕当前x0'轴旋转第2旋转自由度θ0后变为o-x0’y1z1,体外磁偶极子到达位置oy1;c)绕当前z1轴旋转第1旋转自由度
    Figure PCTCN2018125924-appb-100002
    后变为o-x1y1'z1,体外磁偶极子到达位置oy1'。
  12. 根据权利要求6所述的微创手术辅助装置,其特征在于:驱动机构驱动体外磁产生装置使得体外磁偶极子按照2个旋转自由度旋转的驱动方式为:以体外磁偶极子当前位置为oy,建立体外磁偶极子的载体坐标系为o-xyz;并建立驱动机构的基坐标系为O-XYZ;根据体外磁偶极子在旋转2个旋转自由度中的任意一个前后的位置变化,计算体外磁偶极子在旋转前后的球坐标角度分量,驱动机构根据该角度分量确定体外磁产生装置的转动角度并驱动体外磁产生装置转动。
  13. 一种用于权利要求1~12任意一项所述的微创手术辅助装置的控制方法,其特征在于:包括如下步骤:
    S1.当所述定位探头置于预切开的待剥离粘膜中心处后;驱动机构驱动所述体外磁产生装置移动,当定位探头检测到的磁场强度到达最大峰值时,体外磁产生装置停止在当前位置不再移动;
    S2.当体内装置被置于待剥离粘膜的边缘,所述固定夹夹持待剥离粘膜,且体外磁产生装置产生体外磁场后;控制系统内建立体外磁偶极子的载体坐标系O-XYZ,并定义体外磁 偶极子在载体坐标系中转动的2个旋转自由度分别为绕X轴、Z轴旋转;其中,体外磁偶极子的方向作为Y轴方向,X轴、Z轴分别为在垂直于Y轴的平面内选取的坐标轴,X轴、Y轴和Z轴符合右手规则;
    S3.驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的一个位置P1’,并通过控制系统记录此时体外磁偶极子的位置为第一个平贴位置P1;
    通过驱动机构驱动体外磁产生装置使得体外磁偶极子旋转上述2个旋转自由度的组合,所述磁性辅助件随着所述体外磁产生装置的转动也发生相应的移动和/或转动,同时将所述磁性辅助件调整为与待剥离粘膜平贴的另一个位置P2’,并通过控制系统记录此时体外磁偶极子的位置为第二个平贴位置P2,第一个平贴位置P1和第二个平贴位置P2形成平面S,两个平贴位置P1’和P2’构成平面S’;
    S4.控制系统根据第一个平贴位置P1和第二个平贴位置P2更新体外磁偶极子的载体坐标系:以P2作为Y轴,以Z=P2×P1作为坐标系的Z轴,X轴则由右手法则确定;控制系统定义体外磁偶极子在更新的载体坐标系中转动的2个旋转自由度分别为:第1’旋转自由度为绕新载体坐标系的Z轴旋转,第2’旋转自由度为绕平面S的平面法向量与第二个平贴位置P2叉乘后得到的旋转轴旋转;
    S5.驱动机构驱动体外磁偶极子在平面S内旋转第1’旋转自由度,则所述磁性辅助件在粘膜的平面S’内旋转,将磁性辅助件调整到粘膜平面S’的中心或者其他翻卷初始位置处;
    S6.驱动机构驱动体外磁偶极子旋转第2’旋转自由度,则磁性辅助件开始翻卷。
PCT/CN2018/125924 2018-11-27 2018-12-30 微创手术辅助装置及其控制方法 WO2020107636A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021530313A JP2022516693A (ja) 2018-11-27 2018-12-30 低侵襲手術支援装置及びその制御方法
EP18941338.8A EP3888565A4 (en) 2018-11-27 2018-12-30 AUXILIARY DEVICE FOR MINIMALLY INVASIVE SURGERY AND ASSOCIATED CONTROL METHOD
US17/298,001 US20210393253A1 (en) 2018-11-27 2018-12-30 Auxiliary apparatus for minimally invasive surgery and method to use the same
KR1020217015825A KR102608897B1 (ko) 2018-11-27 2018-12-30 최소 침습술 보조장치 및 그 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811423746.8 2018-11-27
CN201811423746.8A CN109288549B (zh) 2018-11-27 2018-11-27 微创手术辅助装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2020107636A1 true WO2020107636A1 (zh) 2020-06-04

Family

ID=65144766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125924 WO2020107636A1 (zh) 2018-11-27 2018-12-30 微创手术辅助装置及其控制方法

Country Status (6)

Country Link
US (1) US20210393253A1 (zh)
EP (1) EP3888565A4 (zh)
JP (1) JP2022516693A (zh)
KR (1) KR102608897B1 (zh)
CN (1) CN109288549B (zh)
WO (1) WO2020107636A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112146657B (zh) * 2020-09-10 2022-10-28 中国人民解放军海军工程大学 一种基于旋转磁偶极子的两点轴频磁场定位方法和装置
CN112043325B (zh) * 2020-10-12 2021-10-01 天津市人民医院 一种体腔手术用磁力拉件及工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041714A1 (ja) * 2008-10-10 2010-04-15 学校法人自治医科大学 内視鏡的粘膜下層剥離術(esd)用外科手術システム及び外科手術方法
CN102762244A (zh) * 2010-02-19 2012-10-31 库克医学技术有限责任公司 用于内窥镜粘膜下剥离术的装置和方法
JP2012239528A (ja) * 2011-05-17 2012-12-10 Fujifilm Corp 内視鏡キットおよび内視鏡先端部の誘導方法
DE102013202324A1 (de) * 2013-02-13 2014-08-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Anhebung einer Läsion eines Hohlorgans
CN104323778A (zh) * 2014-11-03 2015-02-04 上海交通大学 结肠腔内无创检测系统定位装置
CN104546119A (zh) * 2015-01-05 2015-04-29 张建国 黏膜剥离器
CN105125245A (zh) * 2015-05-14 2015-12-09 上海安翰医疗技术有限公司 用于微创手术的辅助装置及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147315B2 (ja) * 2002-09-13 2008-09-10 Hoya株式会社 磁気アンカー遠隔誘導システム
JP4766483B2 (ja) * 2006-01-19 2011-09-07 独立行政法人国立がん研究センター 磁気誘導装置
WO2008131128A1 (en) * 2007-04-18 2008-10-30 The Brigham And Women's Hospital, Inc. Magnetic manipulation and retraction for surgical procedures
EP2676101B1 (en) * 2011-02-18 2021-04-14 DePuy Synthes Products, LLC Tool with integrated navigation and guidance system
US20140094681A1 (en) * 2012-10-02 2014-04-03 Covidien Lp System for navigating surgical instruments adjacent tissue of interest
CN103637803B (zh) * 2013-11-14 2015-08-19 上海交通大学 基于永磁和感应线圈的胶囊内镜空间定位系统及定位方法
CN103932654B (zh) * 2014-04-17 2015-11-04 上海交通大学 基于永磁和三轴力传感器的胶囊内镜控制系统及控制方法
CN203953720U (zh) * 2014-07-10 2014-11-26 张自雄 一种由磁力牵引活动建腔适于颈部内镜手术的装置
JP7007086B2 (ja) * 2016-11-17 2022-01-24 地方独立行政法人東京都立産業技術研究センター 粘膜下局注用コラーゲンゾル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041714A1 (ja) * 2008-10-10 2010-04-15 学校法人自治医科大学 内視鏡的粘膜下層剥離術(esd)用外科手術システム及び外科手術方法
CN102762244A (zh) * 2010-02-19 2012-10-31 库克医学技术有限责任公司 用于内窥镜粘膜下剥离术的装置和方法
JP2012239528A (ja) * 2011-05-17 2012-12-10 Fujifilm Corp 内視鏡キットおよび内視鏡先端部の誘導方法
DE102013202324A1 (de) * 2013-02-13 2014-08-14 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Anhebung einer Läsion eines Hohlorgans
CN104323778A (zh) * 2014-11-03 2015-02-04 上海交通大学 结肠腔内无创检测系统定位装置
CN104546119A (zh) * 2015-01-05 2015-04-29 张建国 黏膜剥离器
CN105125245A (zh) * 2015-05-14 2015-12-09 上海安翰医疗技术有限公司 用于微创手术的辅助装置及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3888565A4

Also Published As

Publication number Publication date
EP3888565A1 (en) 2021-10-06
US20210393253A1 (en) 2021-12-23
CN109288549B (zh) 2021-03-16
JP2022516693A (ja) 2022-03-02
KR20210081408A (ko) 2021-07-01
CN109288549A (zh) 2019-02-01
EP3888565A4 (en) 2022-01-19
KR102608897B1 (ko) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6546342B2 (ja) 最小侵襲手術に用いられる補助装置およびその制御方法
US11819634B2 (en) Robotic assister for catheter insertion
US20190150966A1 (en) Magnetic introducer systems and methods
EP1689289B1 (en) Robot for minimally invasive interventions
JP4776944B2 (ja) ロボットガイドカテーテル
US20210162177A1 (en) Multi-Dimensional Navigation Within a Body Chamber
WO2020107636A1 (zh) 微创手术辅助装置及其控制方法
JP2022548739A (ja) 突刺部バルーンシールを有する改良された経中隔突刺システムを含む医療処置用の方向性バルーン経中隔挿入デバイス
CN111265297A (zh) 一种微创手术磁锚定系统、控制模块及微创手术辅助装置
JP2022527456A (ja) 医療処置用の方向性バルーン経中隔挿入デバイス
CN209789905U (zh) 磁性辅助件及具有磁性辅助件的微创手术辅助装置
Menciassi et al. From miniature to nano robots for diagnostic and therapeutic applications
JP5334129B2 (ja) 腹腔鏡手術支援用ロボット
Wang et al. Design, control and analysis of a dual-arm continuum flexible robot system
US20220395335A1 (en) Endoscopic magnetic guidance system and methods
US11690611B2 (en) Suturing devices for laparoscopic surgery
CN212369068U (zh) 一种微创手术磁锚定系统、控制模块及微创手术辅助装置
WO2021120464A1 (zh) 一种用于微创手术的床下式磁控设备
WO2022264013A1 (en) Endoscopic magnetic guidance system and methods
JP2003175048A (ja) トロッカー装置
Zhang et al. A Novel Miniature Flexible Instrument With Unfolding and Decoupling Design for Endoscopic Surgery
EP3037044B1 (en) Medical instrument kit for manipulating, in particular retracting tissue or an organ
CN113367744A (zh) 一种适用于肝胆胰外科的手术辅助系统
JP2008110070A (ja) 生体管内手術器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217015825

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021530313

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941338

Country of ref document: EP

Effective date: 20210628