WO2020103334A1 - 微气泡发生器的空化件、微气泡发生器及洗涤装置 - Google Patents

微气泡发生器的空化件、微气泡发生器及洗涤装置

Info

Publication number
WO2020103334A1
WO2020103334A1 PCT/CN2019/073213 CN2019073213W WO2020103334A1 WO 2020103334 A1 WO2020103334 A1 WO 2020103334A1 CN 2019073213 W CN2019073213 W CN 2019073213W WO 2020103334 A1 WO2020103334 A1 WO 2020103334A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavitation
micro
bubble generator
diameter
throat
Prior art date
Application number
PCT/CN2019/073213
Other languages
English (en)
French (fr)
Inventor
高源�
邓永建
熊明
Original Assignee
无锡小天鹅电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920069108.4U external-priority patent/CN209798346U/zh
Application filed by 无锡小天鹅电器有限公司 filed Critical 无锡小天鹅电器有限公司
Priority to JP2020535523A priority Critical patent/JP7239590B2/ja
Priority to US16/962,226 priority patent/US20210062386A1/en
Priority to EP19888175.7A priority patent/EP3725935A4/en
Priority to RU2020142910A priority patent/RU2759473C1/ru
Publication of WO2020103334A1 publication Critical patent/WO2020103334A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F35/00Washing machines, apparatus, or methods not otherwise provided for

Definitions

  • This application is based on a Chinese patent application with an application number of 201811392471.6 and an application date of November 21, 2018 and a Chinese patent application with an application number of 201821926359.1 and an application date of November 21, 2018, with an application number of 201910036304.6 and an application date of 2019
  • the Chinese patent application on January 15, 2015 and the Chinese patent application with the application number of 201920069108.4 and the application date of January 15, 2019 were filed, and the priority of the above Chinese patent application was requested.
  • the entire contents of the above Chinese patent application are incorporated herein Apply as a reference.
  • the invention relates to the field of washing treatment, in particular to a cavitation part of a micro bubble generator, a micro bubble generator and a washing device.
  • the micro-bubble technology is mainly used in the field of environmental protection, and there are also application cases in the field of household use such as skin care, showers and laundry washing devices.
  • most of the micro-bubble generators used in the above-mentioned fields have a complicated structure, and some need additional water pumps, and some need multiple valves to control, and at the same time, there are more restrictions on the water inlet method, resulting in higher costs.
  • the setting of the cavitation part of the micro-bubble generator not only occupies a large volume, the structure is unreasonable, and it is very inconvenient to install and manufacture.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention provides a cavitation part of a micro-bubble generator, which has a simple structure, a good bubble-making effect, and convenient installation.
  • the invention also aims to propose a micro-bubble generator with the above cavitation member.
  • the invention also aims to propose a washing device with the micro-bubble generator.
  • the cavitation member has a cavitation inlet and a cavitation outlet for flowing in and out of water, and at least one cavitation member is defined from the cavitation inlet toward the Venturi channels extending from the cavitation outlet, each of the Venturi channels sequentially including: a tapered section, a throat pipe, and a tapered section in the direction of water flow, the tapered section from the cavitation inlet to the The flow area gradually decreases in the direction of the throat, the flow area gradually increases in the direction from the throat to the cavitation outlet, and the diameter of the throat is 0.2-2.0 mm.
  • the cavitation part of the micro-bubble generator of the embodiment of the present invention has a venturi channel, on the one hand, it ensures the foaming capacity of the cavitation part, on the other hand, because the cavitation part has a simple structure, it is convenient to process Cost is easy to control.
  • the cavitation part has a large foaming amount in this diameter range, and the flow rate is moderate, which makes the cavitation part practical.
  • the diameter of the throat is 0.5-1.0 mm.
  • a splitter groove and a merger groove are formed on both end surfaces of the cavitation member, the opening of the splitter groove constitutes the cavitation inlet, and the opening of the merger groove constitutes the cavitation outlet
  • the venturi channel is formed between the bottom wall of the diverter groove and the bottom wall of the confluence channel.
  • one end of the cavitation member is formed with a mounting section.
  • the outer circumferential wall of the cavitation member is provided with a stop convex ring adjacent to the installation section.
  • the outer circumferential edge of the other end of the cavitation member is provided with an anti-dropping convex ring for connecting a hose.
  • the diameter of the cavitation outlet is 5-15 mm.
  • the diameter of the end of the tapered section toward the end of the cavitation inlet is at least 1.05 times the diameter of the throat.
  • the diameter of the end of the gradually expanding section toward the end of the cavitation outlet is at least 1.05 times the diameter of the throat.
  • the length of the tapered section is less than the length of the tapered section.
  • the length of the tapered section does not exceed four times the length of the tapered section.
  • the number of Venturi channels is 4-6.
  • a micro-bubble generator includes: a dissolved gas tank and a cavitation member of the micro-bubble generator according to the above embodiment of the present invention, the cavitation member is provided outside the dissolved gas tank and is in contact with the The water outlet of the dissolved gas tank is connected, or the cavitation member is provided at the water outlet.
  • the structure of the cavitation member can be used to easily install one end of the cavitation member to the dissolved gas tank, and the other end of the cavitation member to install a pipe or Other components are also very convenient, with a compact overall structure and a small footprint.
  • a filter device is provided between the dissolved gas tank and the cavitation member, and the filter device is provided with at least one filter hole, and the diameter of the filter hole is smaller than the diameter of the narrowest part of the throat pipe.
  • a washing device includes the micro-bubble generator according to the above-described embodiment of the present invention.
  • the structural characteristics of the cavitation member are used to cause the flow rate of the dissolved gas tank to enter and exit the water flow to form a difference in flow rate.
  • the cavitation part can make high-concentration air solution into micro-bubble quickly, with simple structure and easy installation.
  • the above micro-bubble generator does not need to install multiple valves, so the cost is low and the micro-bubble manufacturing effect is good. Washing water contains a lot of micro-bubbles, which reduces the amount of washing powder or detergent, saves water and electricity resources, and reduces the remaining washing powder or detergent on clothes.
  • FIG. 1 is a schematic structural diagram of a micro-bubble generator according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a cavitation member according to an embodiment of the present invention.
  • Fig. 3 is another perspective view of the cavitation member shown in Fig. 2.
  • FIG. 4 is a schematic cross-sectional view of the cavitation member shown in FIG. 3.
  • FIG. 5 is a cross-sectional view of the dissolved gas tank in FIG. 1.
  • Fig. 6 is a comparison diagram of water production results of a cavitation member in various ranges of throat diameters of an embodiment.
  • FIG. 7 is a comparison diagram of water production results of a cavitation member according to an embodiment in various ranges of the ratio of the diameter of the end of the tapered section to the diameter of the throat.
  • FIG. 8 is a comparison diagram of water production results of a cavitation member according to an embodiment in various ranges of the ratio of the length of the gradually expanding section to the length of the gradually decreasing section.
  • Micro bubble generator 100 dissolved gas tank 1, dissolved gas cavity 10, water inlet 11, water outlet 12,
  • Cavitation part 2 cavitation inlet 21, cavitation outlet 22, threaded section 231, abutment convex ring 232, anti-drop convex ring 233, hexagonal convex ring 234, venturi channel 25, tapered section 251, throat 252, The gradually expanding section 253, the diverter groove 261, and the merger groove 262.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or integrally connected; it can be mechanically connected; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • installation should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or integrally connected; it can be mechanically connected; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the connection between two components.
  • the cavitation member 2 of the micro-bubble generator according to the embodiment of the present invention will be described below with reference to FIGS. 1-8.
  • the cavitation member 2 uses the cavitation effect to make micro bubbles.
  • the water flow discharged from the cavitation part 2 contains a large amount of micro-bubbles, which can be directed to the water place to participate in the washing and rinsing process, to the detergent box to participate in the rapid dissolution process of the detergent, and to other components to participate in other processes.
  • the cavitation member 2 can be used alone.
  • Some microbubble generators 100 include: a dissolved gas tank 1 and a cavitation member 2.
  • the dissolved gas tank 1 enters water to dissolve gas to form a solution containing a high concentration of air solute
  • the cavitation member 2 produces microbubbles from the aqueous solution discharged from the dissolved gas tank 1.
  • the cavitation member 2 has a cavitation inlet 21 and a cavitation outlet 22 in and out of the water flow.
  • the cavitation member 2 defines a venturi channel 25 extending from the cavitation inlet 21 toward the cavitation outlet 22.
  • the tapered section 251 extends from the cavitation inlet 21 to the throat 252.
  • the overflow area gradually decreases in the direction, and the gradually expanding section 253 gradually increases in the direction from the throat 252 to the cavitation outlet 22. That is, in each venturi channel 25, the flow area of the throat 252 is the smallest.
  • the cross-sectional shape of the Venturi channel 25 is not limited herein.
  • the cross-section of the Venturi channel 25 may be round to facilitate processing, but in other embodiments, the cross-section of the Venturi channel 25 may be ellipt
  • the water flow entering from the cavitation inlet 21 is distributed into at least one Venturi channel 25, which is equivalent to squeezing the large-section water flow into the Venturi channel 25 with a small cross-section. .
  • each venturi channel 25 the water flow first flows through the tapering section 251 where the flow area gradually decreases, and then flows through the tapering section 253 where the flow area gradually increases, and the flow speed and pressure of the water flow change accordingly.
  • the solubility of air in the water will decrease, so that the air will precipitate out in the form of micro bubbles.
  • the average speed, average pressure and cross-sectional area at the inlet of the tapered section 251 are V1, P1, and S1, respectively, and the average speed, average pressure, and cross-sectional area at the throat 252 are V2, P2, and S2, respectively, and the water density is ⁇
  • V1 * V1 S2 * V2.
  • V1 2/2 + P1 / ⁇ V2 2/2 + P2 / ⁇ .
  • the throat 252 is the smallest dimension in the Venturi channel 25, and the size of this location is the key to determine the role of the Venturi channel 25 in making bubbles.
  • the cavitation part 2 When the diameter d1 of the throat pipe 252 is 0.2-2.0mm, the cavitation part 2 is not only easy to process, but also under the common water pressure of the washing equipment, the cavitation part 2 produces a large amount of microbubbles, and the water flow rate of the cavitation part 2 is also Moderate, so the working condition of the cavitation member 2 defining the diameter d1 of the throat 252 between 0.2-2.0 mm is ideal. When the diameter d1 at the throat 252 is greater than 2.0 mm, the amount of microbubbles produced by the cavitation member 2 will be less. Therefore, after comprehensive consideration, in the cavitation part 2 of the present invention, the diameter d1 of the throat 252 is selected between 0.2-2.0 mm.
  • the diameter d1 of the throat pipe 252 is between 0.5-1.0 mm.
  • the cavitation member 2 not only produces more abundant microbubbles, but also the water flow rate of the cavitation member 2 is more moderate, which is very suitable for the actual washing device. use.
  • the change in diameter from the tapered section 251 to the throat 252 also affects the effect of air bubbles by affecting changes in water flow rate and pressure. Therefore, optionally, the diameter d2 of the end of the tapered section 251 toward the end of the cavitation inlet 21 is at least 1.05 times the diameter d1 of the throat 252. Further optionally, the end of the tapered section 251 toward the end of the cavitation inlet 21 The end diameter d2 is at least 1.3 times the diameter d1 of the throat 252.
  • the change in the diameter of the throat pipe 252 to the gradually expanding pipe 253 will also affect the effect of generating bubbles by affecting the flow velocity and pressure change of the water. Therefore, preferably, the diameter d3 of the end of the gradually expanding section 253 toward the end of the cavitation outlet 22 is at least 1.05 times the diameter d1 of the throat 252. Further optionally, the diameter d3 of the end of the gradually expanding section 253 toward the end of the cavitation outlet 22 is at least 1.3 times the diameter d1 of the throat 252.
  • the cavitation member 2 has a plurality of venturi channels 25, on the one hand to ensure the foaming capacity of the cavitation member 2, on the other hand, because the cavitation member 2 has a simple structure, it is convenient to process and the cost is easy to control.
  • the cavitation member 2 is a cylinder, which is very convenient for installation.
  • the cavitation member 2 When installing the cavitation member 2 on the micro-bubble generator 100, there is no need to provide too many matching structures and sealing structures, which is helpful to reduce the occupied volume of the micro-bubble generator 100 .
  • the cavitation member 2 of the embodiment of the present invention there is no need to design extra water pumps, heating devices or control valves, etc., and there is no additional requirement for the water inlet method of the micro-bubble generator 100.
  • the shape of the cavitation member 2 of the micro-bubble generator in the embodiment of the present invention may not be limited to the cylinder.
  • the cavitation member 2 may also be formed into an L-shaped or S-shaped shape.
  • the length of the Venturi channel 25 is greater than the diameter of the cavitation member 2, and the lengthening of the path length of the Venturi channel 25 is beneficial for sufficient time for the Venturi effect to play.
  • the two ends of the cavitation member 2 are respectively formed with a split groove 261 and a merge groove 262, the opening of the split groove 261 constitutes the cavitation inlet 21, the merge groove 262 The opening constitutes a cavitation outlet 22, and at least one venturi channel 25 is formed between the bottom wall of the splitter groove 261 and the bottom wall of the merger groove 262.
  • the process of the water flow from the diverter groove 261 to the Venturi channel 25 accelerates the water flow entering the Venturi channel 25 in advance, so that the water flow can reach the ideal speed and air pressure after entering the Venturi channel 25.
  • the speed of the water flow is slowed down, so that the newly formed micro-bubbles temporarily enter a stable state to avoid premature rupture.
  • the shunt groove 261 and the merge groove 262 are provided on the cavitation member 2 to facilitate processing and manufacturing.
  • the installation positions of the cavitation member 2 are various.
  • the shunt groove 261 and the merger groove 262 are provided on the cavitation member 2, so that the cavitation member 2 has pre-acceleration and no matter what the installation conditions are Stabilize the flow of microbubbles.
  • one end of the cavitation member 2 is formed with an installation section, and the installation section is used for installation on the dissolved gas tank 1.
  • the installation section is a threaded section 231, and the threaded section 231 may be an internal thread or an external thread.
  • the threaded section 231 of the end of the cavitation member 2 connected to the dissolved gas tank 1 is an external thread, and is screwed to the dissolved gas tank 1 through the screw thread, so the connection is very convenient.
  • the installation section may include a multi-layer collar, the collar is formed on the inner surface or the outer surface of the cavitation member 2, and a sealing ring may be provided between adjacent collars, so that when the cavitation member 2 is connected to When the dissolved gas tank 1 is mounted, a good sealed connection can be formed.
  • the screw segment 231 is formed on the outer peripheral wall of the cavitation member 2, and the outer circumferential wall of the cavitation member 2 is provided with a stop convex ring 232 adjacent to the screw segment 231.
  • the arrangement of the stop ring 232 on the one hand forms the positioning, and on the other hand, it facilitates the sealing.
  • the outer circumferential wall of the cavitation member 2 is provided with a hexagonal convex ring 234, and the outer contour of the hexagonal convex ring 234 is hexagonal, which can be used when screwing the cavitation member 2 Tools such as wrenches are clamped on the hexagonal convex ring 234 and tightened.
  • the outer circumferential edge of the other end of the cavitation member 2 is provided with an anti-dropping convex ring 233 for connecting a hose.
  • an anti-dropping convex ring 233 for connecting a hose.
  • the setting of the anti-loose convex ring 233 can prevent the hose from being detached from the cavitation member 2.
  • the hoop, wire and other structures are located on the side of the anti-loose convex ring 233 after clamping, so that the hose is more difficult to take off.
  • the end surface of the anti-drop projection ring 233 facing the cavitation outlet 22 is formed as a tapered surface, which is advantageous for installing a hose.
  • the cavitation member 2 is generally connected to other components by a pipeline, so the inner diameter of the outlet end of the cavitation member 2 can be selected between 5-15 mm, that is, the diameter of the cavitation outlet 22 is 5-15 mm. Further optionally, the diameter of the cavitation outlet 22 is controlled between 7-10 mm.
  • the number of venturi channels 25 is 1-30, and further optionally, the number of venturi channels 25 is 4-6.
  • the cavitation member 2 as a key component needs to be responsible for the treatment of the water flow into the washing device, and the washing device generally uses domestic tap water.
  • the flow rate of domestic tap water is generally 5-12L / min, and the water pressure is generally 0.02-1Mpa. More commonly, the flow rate is generally 8-10L / min, and the water pressure is generally 0.15-0.3Mpa. Therefore, the number of venturi channels 25 in the cavitation part 2 can be selected from 4-6. In this way, the flow of water distributed by each venturi channel 25 can exactly reach the maximum foaming effect.
  • the gradually expanding section 253 is a diffusion section.
  • the ideal diffusion should make the fluid gradually slow down, so the gradually expanding section 253 needs a certain length.
  • the length L2 of the gradually expanding section 253 is greater than the length L1 of the gradually decreasing section 251. Further optionally, the length L2 of the gradually expanding section 253 is greater than the length L1 of the gradually decreasing section 251 by four parts, That is, the ratio of L2 to L1 is greater than 1 and less than or equal to 4.
  • the cavitation part 2 of the embodiment of the present invention has a compact structure, a simple shape, convenient processing, convenient installation and strong practicability.
  • the diameter d1 of the throat 252 of the cavitation member 2 is changed, and the microbubble water obtained by the cavitation member 2 is different in each parameter selection interval.
  • the diameter d1 of the throat pipe 252 is selected to be 0.2-0.5 mm, the water changes from a transparent color to a rich floating white, and it can be inferred that the content of micro bubbles in the water is high.
  • the diameter d1 of the throat 252 is selected to be 0.5-2 mm, the water maintains a dense white float. It can be inferred that the content of micro-bubbles in the water is still very high, and the water flow rate of the cavitation member 2 is applicable in this interval.
  • the diameter d1 of the throat pipe 252 is selected to be less than 0.2 mm, the flow velocity of the water flow through the cavitation member 2 is too small and is no longer applicable. However, when the diameter d1 of the throat 252 exceeds 2 mm, the content of micro-bubbles in the water is almost negligible and is no longer applicable.
  • the length ratio of the gradually expanding section 253 and the decreasing section 251 is less than or even equal to 1: 1, a large number of bubbles It bursts immediately after it is generated, so the bubble concentration of the produced water is not high.
  • the length ratio of the gradually expanding section 253 and the gradually decreasing section 251 is between 1-4, the water produced is rich and white, and the content of bubbles in the water is very high.
  • the optimal length ratio of the tapered section 253 to the tapered section 251 is between 1-4.
  • the micro-bubble generator according to the embodiment of the present invention includes a dissolved gas tank 1 and a cavitation member 2 of the micro-bubble generator according to the above embodiment of the present invention
  • the dissolved gas tank 1 defines Dissolved gas chamber 10
  • dissolved gas tank 1 is provided with water inlet 11 and water outlet 12
  • cavitation member 2 is provided outside the dissolved gas tank 1 and connected to the water outlet 12 of dissolved gas tank 1, or cavitation member 2 is provided at the outlet 12 outlets.
  • the water out of the dissolved gas tank 1 is slower than the water inlet, and the upper cavity of the dissolved gas chamber 10 can quickly form a high-pressure cavity.
  • a large amount of air is dissolved in the water of the cavitation part 2, so that the cavitation part 2 can produce a large number of micro bubbles.
  • air is a poorly soluble gas relative to water.
  • the percentage of the amount of air dissolved in the water and the amount of air passed is called the dissolved gas efficiency.
  • the dissolved gas efficiency is related to the temperature, dissolved gas pressure and the dynamic contact area of the gas-liquid two phases. The method of changing water temperature or air temperature is more difficult to achieve.
  • a common method to improve the efficiency of dissolved gas is to use a booster pump to pressurize the dissolved gas chamber, but various valves must be configured, so the cost of configuring the booster pump is too high.
  • the embodiment of the present invention proposes that the dissolved gas tank 1 dissolves air in water by dissolving air as a solute in water, that is, the air is dispersed in water molecules in the form of molecules or molecular clusters. In the dissolved state, the air molecules are dispersed, and the gas molecules in the water molecules are more uniform. After that, most of the bubbles precipitated by the cavitation effect are only nanometers and micrometers in the initial stage of formation. This is the microbubbles that our microbubble generator 100 wants to obtain.
  • the micro-bubbles are dissolved with each other, and most of the micro-bubbles obtained can still be kept at millimeter level or even smaller, the effect is the best, and the blasting energy can be It can be effectively communicated between fibers of millimeter and micron size and detergent particles.
  • the time for the bubbles to burst is too fast to participate in the entire washing process of the washing device.
  • air is dissolved in water, and the air dissolved in the water is equivalent to a solute. It takes a certain time for the solute to precipitate water. Therefore, when the water discharged from the dissolved gas tank 1 enters the cavitation member 2, the air in the water is not Will immediately precipitate out.
  • the micro-bubbles made by the cavitation part 2 can immediately participate in the laundry treatment process, and the air in the water will continue to separate out during the treatment process, thereby supplementing the micro-bubbles.
  • the newly added micro-bubbles can continue to participate in the laundry treatment process and reach the laundry treatment
  • the participation of micro-bubbles in the whole process improves the washing capacity and rinsing capacity of the washing device.
  • micro-bubble generator 100 there is no need to install multiple valves, and the generation of micro-bubbles is realized with a relatively simple structure.
  • a filtering device (not shown) is provided between the dissolved gas tank 1 and the cavitation member 2, and the filtering device is provided with at least one filter hole, and the diameter of the filter hole is smaller than the diameter of the narrowest part of the throat 252.
  • the washing device includes the micro-bubble generator 100 according to the above-described embodiment of the present invention, and the structure of the micro-bubble generator 100 will not be repeated here.
  • the structural characteristics of the cavitation member 2 are used to make the flow rate of the dissolved gas tank 1 in and out of the water flow form a difference in flow rate, and the dissolved gas tank 1 is gradually pressurized to form a high pressure chamber So that the amount of dissolved gas can be increased.
  • the cavitation part 2 can make high-concentration air solution into micro-bubble quickly, with simple structure and easy installation.
  • the above micro-bubble generator 100 does not need to install multiple valves, so the cost is low and the micro-bubble manufacturing effect is good. Washing water contains a lot of micro-bubbles, which reduces the amount of washing powder or detergent, saves water and electricity resources, and reduces the remaining washing powder or detergent on the clothes.
  • washing device According to the embodiments of the present invention, such as motors and speed reducers, drain pumps, etc., are known to those of ordinary skill in the art, and will not be described in detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)

Abstract

一种微气泡发生器的空化件、微气泡发生器及洗涤装置。空化件(2)具有空化进口(21)、空化出口(22),空化件(2)内限定出至少一个从空化进口(21)朝向空化出口(22)延伸的文丘里通道(25),每个文丘里通道(25)在水流流动方向上依次包括:渐缩段(251)、喉管(252)和渐扩段(253),渐缩段(251)在从空化进口(21)到喉管(252)的方向上过流面积逐渐减小,渐扩段(253)在从喉管(252)到空化出口(22)的方向上过流面积逐渐增大,喉管(252)的直径为0.2-2.0mm。

Description

微气泡发生器的空化件、微气泡发生器及洗涤装置
相关申请的交叉引用
本申请基于申请号为201811392471.6、申请日为2018年11月21日的中国专利申请以及申请号为201821926359.1、申请日为2018年11月21日的中国专利申请,申请号为201910036304.6、申请日为2019年1月15日的中国专利申请以及申请号为201920069108.4、申请日2019年1月15日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及洗涤处理领域,尤其涉及一种微气泡发生器的空化件、微气泡发生器及洗涤装置。
背景技术
目前微气泡技术主要在环保领域应用,家用方面如护肤、淋浴及衣物洗涤装置等领域也有应用案例。目前应用于上述领域的微气泡发生器大多结构复杂,有的需要额外增加水泵,有的需要多个阀门控制,同时对入水方式等也有较多限制,导致成本较高。其中微气泡发生器空化件的设置不仅占用体积大,结构不合理,安装、制造非常不便。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种微气泡发生器的空化件,结构简单,制泡效果好,安装方便。
本发明还旨在提出一种具有上述空化件的微气泡发生器。
本发明还旨在提出一种具有上述微气泡发生器的洗涤装置。
根据本发明实施例的微气泡发生器的空化件,所述空化件具有出入水流的空化进口、空化出口,所述空化件内限定出至少一个从所述空化进口朝向所述空化出口延伸的文丘里通道,每个所述文丘里通道在水流流动方向上依次包括:渐缩段、喉管和渐扩段,所述渐缩段在从所述空化进口到所述喉管的方向上过流面积逐渐减小,所述渐扩段在从所述喉管到所述空化出口的方向上过流面积逐渐增大,所述喉管的直径为0.2-2.0mm。
根据本发明实施例的微气泡发生器的空化件,空化件具有文丘里通道,一方面保证 空化件的制泡能力,另一方面由于空化件的结构较简单,因此加工方便,成本容易控制。通过限制喉管的直径尺寸为0.2-2.0mm,该直径范围内空化件制泡量大,而且过流流速适中,该空化件的实用性强。
在一些实施例中,所述喉管的直径为0.5-1.0mm。
在一些实施例中,所述空化件的两端端面上分别形成有分流槽和汇流槽,所述分流槽的开口构成所述空化进口,所述汇流槽的开口构成所述空化出口,所述分流槽的底壁与所述汇流槽的底壁之间形成有所述文丘里通道。
在一些实施例中,所述空化件的一端形成有安装段。
在一些实施例中,所述空化件的外周壁上临近所述安装段设有止抵凸环。
在一些实施例中,所述空化件的另一端外周缘上设有用于连接软管的防脱凸环。
在一些实施例中,所述空化出口的直径为5-15mm。
在一些实施例中,所述渐缩段的朝向所述空化进口一端的端部直径至少为所述喉管的直径的1.05倍。
在一些实施例中,所述渐扩段的朝向所述空化出口一端的端部直径至少为所述喉管的直径的1.05倍。
在一些实施例中,所述渐缩段的长度小于所述渐扩段的长度。
在一些实施例中,所述渐扩段的长度不超过所述渐缩段长度的四倍。
在一些实施例中,所述文丘里通道的数量为4-6个。
根据本发明实施例的微气泡发生器,包括:溶气罐和根据本发明上述实施例的微气泡发生器的空化件,所述空化件设在所述溶气罐外并与所述溶气罐的出水口相连,或者所述空化件设在所述出水口处。
根据本发明实施例的微气泡发生器,不仅制泡效果好,而且利用空化件的结构,可以将空化件一端非常便利地安装到溶气罐上,空化件的另一端安装管件或者其他部件也非常方便,整体结构紧凑,占用空间小。
具体地,所述溶气罐和空化件之间设有过滤装置,所述过滤装置上设有至少一个过滤孔,所述过滤孔的直径小于所述喉管最窄处的直径。
根据本发明实施例的洗涤装置,包括根据本发明上述实施例的微气泡发生器。
根据本发明实施例的洗涤装置,通过微气泡发生器的巧妙设计,利用空化件的结构特性使溶气罐出入水流形成流速差,溶气罐内逐渐升压形成高压腔,从而能提高溶气量。空化件能使高浓度空气溶液快速制成微气泡,结构简单,安装容易。上述微气泡发生器,无需安装多个阀门,成本低、微气泡制造效果好。洗涤水中含有大量的微气泡,降低了 洗衣粉或者洗涤剂的用量,节约了水电资源,减少了衣物上残留的洗衣粉或者洗涤剂。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明一个实施例的微气泡发生器的结构示意图。
图2是本发明一个实施例的空化件的立体图。
图3是图2所示空化件的另一立体图。
图4是图3所示空化件的剖视示意图。
图5是图1中在溶气罐处的剖示图。
图6是一个实施例的空化件在喉管直径各范围下的制水成果对比图。
图7是一个实施例的空化件在渐缩段端部直径与喉管直径的比值各范围下的制水成果对比图。
图8是一个实施例的空化件在渐扩段长度与渐缩段长度的比值各范围下的制水成果对比图。
附图标记:
微气泡发生器100、溶气罐1、溶气腔10、进水口11、出水口12、
空化件2、空化进口21、空化出口22、螺纹段231、止抵凸环232、防脱凸环233、六角凸环234、文丘里通道25、渐缩段251、喉管252、渐扩段253、分流槽261、汇流槽262。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“长度”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图8描述根据本发明实施例的微气泡发生器的空化件2。
当含高浓度空气溶质的水进入空化件2后,空化件2利用空化效应制成微气泡。从空化件2排出的水流中含有大量微气泡,可以导向用水处参与洗涤、漂洗过程,可以导向洗涤剂盒参与洗涤剂的快速溶解过程,可以导向其他部件参与其他过程。空化件2可以单独使用,有的微气泡发生器100包括:溶气罐1和空化件2,微气泡发生器100使用时,溶气罐1进水溶气,形成含高浓度空气溶质的水溶液,空化件2将从溶气罐1排出的水溶液中制出微气泡。
参照图1-图4,空化件2具有出入水流的空化进口21、空化出口22,空化件2内限定出从空化进口21朝向空化出口22延伸的文丘里通道25,文丘里通道25为至少一个,每个文丘里通道25在水流流动方向上依次包括:渐缩段251、喉管252和渐扩段253,渐缩段251在从空化进口21到喉管252的方向上过流面积逐渐减小,渐扩段253在从喉管252到空化出口22的方向上过流面积逐渐增大。即在每个文丘里通道25内,喉管252的过流面积最小。文丘里通道25的截面形状这里不作限定,文丘里通道25的截面可选圆形以便于加工,但是在其他实施例中文丘里通道25的截面也可以是椭圆等形状。
大量进水流入空化进口21后,不能通过文丘里通道25平缓流出,文丘里通道25两端形成极大压差,空化进口21处压力大,而空化出口22处压力小。
从空化进口21进入的水流分配到至少一个文丘里通道25中,相当于将大截面的水流挤进小截面的文丘里通道25,高压驱动下进入文丘里通道25内的水流速度会迅速上升。每个文丘里通道25内,水流先流经过流面积逐渐减小的渐缩段251,再流经过流面积逐渐增大的渐扩段253,水流的流动速度及压力随之发生变化。文丘里通道25内在水压变化的过程中,水中空气溶解度会降低,从而空气会以微气泡的形式析出。
空化作用的相关原理为:
渐缩段251进端处的平均速度、平均压力和截面积分别为V1、P1、S1,喉管252 处的平均速度、平均压力和截面积分别为V2,P2,S2,水的密度为ρ,在工作状态下,假设以自来水为工作介质,满足关系式:S1*V1=S2*V2。
利用伯努利定律和连续性方程可以得到关系式:V1 2/2+P1/ρ=V2 2/2+P2/ρ。
在此过程中通过控制S1与S2的变化,使得在文丘里通道25中,喉管252处流速增大,喉管252处压力变小,因此溶解在水中的空气以微气泡的形式释放出来。
在本发明实施例中,喉管252是文丘里通道25中尺寸最小处,该处尺寸大小是决定文丘里通道25发挥制泡作用的关键。
申请人发现,当喉管252的直径d1小于0.2mm时,由于在洗涤装置入水常用水压(约0.15-0.30MPa)下,空化件2出水流量过低,无法满足洗涤需要。同时存在被自来水中携带的泥沙、铁锈等微小物质堵塞风险,而且喉管252的直径d1过小不利于采用模具进行大批量的生产,因为模具注塑的工件在过小孔处不易成型,导致堵孔。
喉管252的直径d1为0.2-2.0mm时,空化件2不仅易加工,同时在洗涤设备常用水压下,空化件2制出微气泡含量多,且空化件2水流通过流速也适中,因此限定喉管252的直径d1在0.2-2.0mm之间的空化件2工作状况理想。当喉管252处直径d1大于2.0mm时,空化件2制出的微气泡量会较少。因此经综合考虑后,本发明的空化件2中,喉管252直径d1选取在0.2-2.0mm之间。
优选地,喉管252直径d1在0.5-1.0mm之间,该区间下空化件2不仅制出微气泡含量更丰富,而且空化件2水流通过流速也更适中,非常适合实际洗涤装置的使用。
渐缩段251到喉管252的直径变化,通过影响水的流速及压力变化,也会影响气泡产生效果。因此可选地,渐缩段251的朝向空化进口21一端的端部直径d2至少为喉管252的直径d1的1.05倍,进一步可选地,渐缩段251的朝向空化进口21一端的端部直径d2至少为喉管252的直径d1的1.3倍。
同样,喉管252到渐扩管253的直径变化,也会通过影响水的流速及压力变化,影响气泡产生效果。因此优选地,渐扩段253的朝向空化出口22一端的端部直径d3至少为喉管252的直径d1的1.05倍。进一步可选地,渐扩段253的朝向空化出口22一端一端的端部直径d3至少为喉管252的直径d1的1.3倍。
可选地,空化件2具有多个文丘里通道25,一方面保证空化件2的制泡能力,另一方面由于空化件2的结构较简单,因此加工方便,成本容易控制。
另外,空化件2为柱体,非常便于安装,将空化件2安装到微气泡发生器100上时无需设置过多配合结构、密封结构,有利于减小微气泡发生器100的占用体积。采用本发明实施例的空化件2,不必设计多余的水泵、加热装置或者控制阀门等等,对微气泡 发生器100的进水方式没有额外要求。
当然,本发明实施例中微气泡发生器的空化件2,其形状也可以不限于柱体,例如根据实际安装需要,空化件2还可以形成为L形或者S形等形状。
具体地,文丘里通道25的长度大于空化件2的直径,加长文丘里通道25的路径长度,有利于文丘里效应发挥的时间充足。
在一些实施例中,如图2-图4所示,空化件2的两端端面上分别形成有分流槽261和汇流槽262,分流槽261的开口构成空化进口21,汇流槽262的开口构成空化出口22,分流槽261的底壁与汇流槽262的底壁之间形成有至少一个文丘里通道25。这里,水流由分流槽261到文丘里通道25的过程,使进入文丘里通道25内的水流提前加速,从而在进入文丘里通道25后水流能达到理想速度和气压。同样,水流由文丘里通道25到汇流槽262的过程,水流的速度减缓下来,使新形成的微气泡暂时进入稳定状态,避免过早破裂。
这里,在空化件2上设置分流槽261和汇流槽262,还可方便加工制造。另外,空化件2的安装位置多样,为适应不同安装结构,在空化件2上设置分流槽261和汇流槽262,使空化件2无论在怎样的安装条件下,都有预先加速和稳定微气泡的流段。
具体地,空化件2的一端形成有安装段,安装段用于安装在溶气罐1上。例如,如图2所示,为方便安装,安装段为螺纹段231,螺纹段231可以是内螺纹也可以是外螺纹。在图1的示例中,空化件2在与溶气罐1相连的一端的螺纹段231为外螺纹,通过螺纹旋接在溶气罐1上,连接非常方便。
可选地,安装段可以包括多层卡圈,卡圈形成在空化件2的内表面或者外表面上,相邻卡圈之间可以设置密封圈,这样当空化件2通过安装段连接到溶气罐1上时,可以形成良好密封连接。
具体地,如图2-图3所示,螺纹段231形成在空化件2的外周壁上,空化件2的外周壁上临近螺纹段231设有止抵凸环232。止抵凸环232的设置一方面形成定位,另一方面有利于密封。
可选地,如图2-图3所示,空化件2的外周壁上设有六角凸环234,六角凸环234的外轮廓为六角形,在旋接空化件2时,可以利用扳手等工具卡在六角凸环234上旋紧。
可选地,如图2-图3所示,空化件2的另一端外周缘上设有用于连接软管的防脱凸环233。采用软管连接非常便利,防脱凸环233的设置可以避免软管从空化件2上脱下。为进一步加强连接可靠性,还可以采用箍圈、铁丝等结构套在软管外侧。箍圈、铁丝等结构卡紧后位于防脱凸环233的一侧,这样软管更不易脱下。进一步可选地,如图3 所示,防脱凸环233的朝向空化出口22的端面形成为锥面,这样有利于安装软管。
空化件2一般利用管路连接进入其他部件,因此空化件2的出口端内径可选在5-15mm之间,即空化出口22的直径为5-15mm。进一步可选地,空化出口22的直径控制在7-10mm之间。
可选地,文丘里通道25的数量为1-30个,进一步可选地,文丘里通道25的数量为4-6个。在洗涤装置中,空化件2作为关键部件,需要承担对洗涤装置入水水流的处理,而洗涤装置入水一般采用生活自来水。生活自来水流量一般为5-12L/min,水压一般为0.02-1Mpa。更常用的,流量一般为8-10L/min,水压一般为0.15-0.3Mpa,因此,空化件2内文丘里通道25的数量可选在4-6个。这样每个文丘里通道25分配的水流量,能恰好达到最大制泡效果。
渐扩段253作为扩散段,比较理想的扩散应该使得流体逐渐减速,因此渐扩段253需要一定的长度。
可选地,如图4所示,渐扩段253的长度L2大于渐缩段251的长度L1,进一步可选地,渐扩段253的长度L2大超过渐缩段251的长度L1的四部,即L2与L1的比值大于1且小于等于4。
综上,本发明实施例的空化件2,结构小巧、造型简单、方便加工,而且安装方便,实用性强。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
如图6所示,在同等结构前提下,改变空化件2的喉管252的直径d1,各参数选择区间下空化件2获得的微气泡水不同。当喉管252的直径d1选取0.2-0.5mm时,水由透明色变化为浓郁的浮白色,由此可以推断水中微气泡含量高。当喉管252的直径d1选取0.5-2mm时,水保持浓郁的浮白色。由此可以推断水中微气泡含量依旧很高,在此区间下空化件2的水流流速适用。当喉管252的直径d1选取小于0.2mm时,水流通过空化件2的流速过小,不再适用。而当喉管252的直径d1选取超过2mm时,水中微气泡含量几乎可以忽略,也不再适用。
实施例2
如图7所示,在同等结构前提下,改变空化件2中,渐缩段251的端部直径d2与 喉管252的直径d1的倍数,实验发现,在不同倍数条件下,空化件2制水的微气泡含量不同。当渐缩段251的端部直径d2与喉管252的直径d1的倍数低于1.05时,制水清澈,明显可以推断出水中微气泡含量过少。而当直径倍数在1.05-1.3时,制水通过颜色可以推断出水中微气泡含量明显增加。尤其在直径倍数超过1.3时,制水呈浓郁的浮白色,说明水中微气泡含量非常高。
在同等结构前提下,改变空化件2中,渐扩段253的端部直径d3与喉管252的直径d1的倍数,也能得到类似的实验结果,这里不再赘述。
实施例3
如图8所示,在同等结构前提下改变空化件2,可以看出当渐扩段253的长度L2与渐缩段251的长度L1的比值发生变化,制泡效果也会产生明显变化。
气泡在喉管252产生后,若渐扩段253梯度变化过大,产生的气泡非常容易破灭,因此若渐扩段253与渐缩段251长度比小于甚至在等于1:1时,大量的气泡在产生后随即破灭,因此制水的气泡浓度并不高。渐扩段253与渐缩段251长度比在1-4之间时,制水呈浓郁的浮白色,水中气泡含量非常高。当渐扩段253与渐缩段251长度比大于4时,由于空化件2总长度相对有限,渐缩段251长度变得相对不足,使得气泡浓郁度开始下降。因此渐扩段253与渐缩段251最佳长度比在1-4之间。
根据本发明实施例的微气泡发生器,如图1、图5所示,包括溶气罐1和根据本发明上述实施例的微气泡发生器的空化件2,溶气罐1内限定出溶气腔10,溶气罐1设置有进水口11及出水口12,空化件2设在溶气罐1外并与溶气罐1的出水口12相连,或者空化件2设在出水口12处。
由于空化件2的结构特性,导致溶气罐1出水慢于入水,溶气腔10上部空腔很快能形成高压腔,空气在高压状态下的溶解度大于低压状态下的溶解度,因此流向空化件2的水中溶解有大量空气,从而空化件2能制出大量微气泡。
需要说明的是,空气相对于水属于难溶气体。溶解于水中的空气量与通入空气量的百分比称为溶气效率,溶气效率与温度、溶气压力及气液两相的动态接触面积有关。改变水温或者空气温度的方法,实现起来较困难。常见的提高溶气效率的方法是采用增压泵向溶气腔里增压,但是要配置各种阀门,因此配置增压泵成本过高。
现有技术中还有的方案是,在溶气装置中设置双进口,一个进口用来进水,另一个进口用来在进水的同时进气。它要将空气注入流动状态的水中,必须要增压泵将空气压 入水中。该方案中因为空气进口位于空化件的下方,进入的气泡会迅速朝向空化件流动而挤出,溶气罐里没有提供空间让气泡慢慢溶解,溶气效果并不理想。利用增压将空气注入水中的方式,相当于直接将大气泡压入水中。这种大气泡在水中停留时间短,溶解时间不足。即使在通过空化件时,大气泡被空化件挤成更多小气泡,但是小气泡尺寸在毫米级甚至更大,会迅速破裂释放。
这里要强调的是,本发明实施例中提出溶气罐1要将空气溶解于水中,是将空气作为一种溶质溶解于水中,即空气以分子或分子团形态分散于水分子中。溶解的状态分散空气分子,水分子中气体分子较均匀。此后经空化效应析出的气泡,在形成初期大部分只有纳米级、微米级大小,这才是我们的微气泡发生器100所希望获得的微气泡。带有微气泡的水即使在流动到最终使用场所后,微气泡相互溶和了,得到的大部分微气泡仍能保持在毫米级甚至更小,其效果才是最佳的,其爆破能量才能有效传达到毫米级、微米级大小的纤维之间、洗涤剂微粒上。
而且如果是强行注入水中的气泡,气泡爆裂的时间过快,无法参与洗涤装置整个洗涤过程。而本发明实施例中,空气是溶解于水中的,溶解于水中的空气相当于一种溶质,溶质析出水需要一定的时间,因此溶气罐1排出的水进入空化件2时水中空气不会立马全部析出。经过空化件2制成的微气泡能立即参与到衣物处理过程中,在处理过程中水中空气还会不断析出,从而补充微气泡,新补充的微气泡能继续参与衣物处理过程,达到衣物处理全程微气泡的参与,提高洗涤装置的洗涤能力、漂净能力。
这样的微气泡发生器100,无需安装多个阀门,用较为简单的结构实现了微气泡的发生。
具体地,溶气罐1和空化件2之间设有过滤装置(图未示出),过滤装置上设有至少一个过滤孔,过滤孔的直径小于喉管252最窄处的直径。这样设置,可以将进入空化件2的水预先过滤,防止细小杂质堵塞文丘里通道25。
根据本发明实施例的洗涤装置,包括根据本发明上述实施例的微气泡发生器100,微气泡发生器100的结构在此不再赘述。
根据本发明实施例的洗涤装置,通过微气泡发生器100的巧妙设计,利用空化件2的结构特性使溶气罐1出入水流形成流速差,溶气罐1内逐渐升压形成高压腔,从而能提高溶气量。空化件2能使高浓度空气溶液快速制成微气泡,结构简单,安装容易。上述微气泡发生器100,无需安装多个阀门,成本低、微气泡制造效果好。洗涤水中含有大量的微气泡,降低了洗衣粉或者洗涤剂的用量,节约了水电资源,减少了衣物上残留 的洗衣粉或者洗涤剂。
根据本发明实施例的洗涤装置的其他构成例如电机和减速器、排水泵等结构以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种微气泡发生器的空化件,其特征在于,
    所述空化件具有出入水流的空化进口、空化出口,
    所述空化件内限定出至少一个文丘里通道,
    所述文丘里通道从所述空化进口朝向所述空化出口延伸,
    每个所述文丘里通道在水流流动方向上依次包括:
    渐缩段、喉管和渐扩段,
    所述渐缩段在从所述空化进口到所述喉管的方向上过流面积逐渐减小,
    所述渐扩段在从所述喉管到所述空化出口的方向上过流面积逐渐增大,
    所述喉管的直径为0.2-2.0mm。
  2. 根据权利要求1所述的微气泡发生器的空化件,其特征在于,所述喉管的直径为0.5-1.0mm。
  3. 根据权利要求1或2所述的微气泡发生器的空化件,其特征在于,
    所述空化件的两端端面上分别形成有分流槽和汇流槽,
    所述分流槽的开口构成所述空化进口,
    所述汇流槽的开口构成所述空化出口,
    所述分流槽的底壁与所述汇流槽的底壁之间形成有所述文丘里通道。
  4. 根据权利要求3所述的微气泡发生器的空化件,其特征在于,所述空化件的一端形成有安装段。
  5. 根据权利要求4所述的微气泡发生器的空化件,其特征在于,所述空化件的外周壁上临近所述安装段设有止抵凸环。
  6. 根据权利要求4或5所述的微气泡发生器的空化件,其特征在于,所述空化件的另一端外周缘上设有用于连接软管的防脱凸环。
  7. 根据权利要求1-6中任一项所述的微气泡发生器的空化件,其特征在于,所述空化出口的直径为5-15mm。
  8. 根据权利要求1-7中任一项所述的微气泡发生器的空化件,其特征在于,所述渐缩段的朝向所述空化进口一端的端部直径至少为所述喉管的直径的1.05倍。
  9. 根据权利要求1-8中任一项所述的微气泡发生器的空化件,其特征在于,所述渐扩段的朝向所述空化出口一端的端部直径至少为所述喉管的直径的1.05倍。
  10. 根据权利要求1-9中任一项所述的微气泡发生器的空化件,其特征在于,所述 渐缩段的长度小于所述渐扩段的长度。
  11. 根据权利要求10所述的微气泡发生器的空化件,其特征在于,所述渐扩段的长度不超过所述渐缩段长度的四倍。
  12. 根据权利要求1-11中任一项所述的微气泡发生器的空化件,其特征在于,所述文丘里通道的数量为4-6个。
  13. 一种微气泡发生器,其特征在于,包括:
    溶气罐和根据权利要求1-12中任一项所述的微气泡发生器的空化件,
    所述空化件设在所述溶气罐外并与所述溶气罐的出水口相连,
    或者所述空化件设在所述出水口处。
  14. 根据权利要求13所述的微气泡发生器,其特征在于,
    所述溶气罐和空化件之间设有过滤装置,
    所述过滤装置上设有至少一个过滤孔,
    所述过滤孔的直径小于所述喉管最窄处的直径。
  15. 一种洗涤装置,其特征在于,包括根据权利要求13或14所述的微气泡发生器。
PCT/CN2019/073213 2018-11-21 2019-01-25 微气泡发生器的空化件、微气泡发生器及洗涤装置 WO2020103334A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020535523A JP7239590B2 (ja) 2018-11-21 2019-01-25 マイクロバブル発生器のキャビテーション部材、マイクロバブル発生器及び洗濯装置
US16/962,226 US20210062386A1 (en) 2018-11-21 2019-01-25 Cavitator of microbubble generator, microbubble generator and washing device
EP19888175.7A EP3725935A4 (en) 2018-11-21 2019-01-25 MICROBUBBLE GENERATOR CAVITATION ELEMENT, MICROBUBBLE GENERATOR AND WASHING DEVICE
RU2020142910A RU2759473C1 (ru) 2018-11-21 2019-01-25 Кавитатор генератора микропузырьков, генератор микропузырьков и стиральная машина

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201811392471.6 2018-11-21
CN201811392471 2018-11-21
CN201821926359.1 2018-11-21
CN201821926359 2018-11-21
CN201910036304.6 2019-01-15
CN201920069108.4 2019-01-15
CN201920069108.4U CN209798346U (zh) 2018-11-21 2019-01-15 微气泡发生器的空化件、微气泡发生器及洗涤装置
CN201910036304.6A CN111206380A (zh) 2018-11-21 2019-01-15 微气泡发生器的空化件、微气泡发生器及洗涤装置

Publications (1)

Publication Number Publication Date
WO2020103334A1 true WO2020103334A1 (zh) 2020-05-28

Family

ID=70773480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073213 WO2020103334A1 (zh) 2018-11-21 2019-01-25 微气泡发生器的空化件、微气泡发生器及洗涤装置

Country Status (1)

Country Link
WO (1) WO2020103334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622374A (zh) * 2022-03-21 2022-06-14 海信(山东)冰箱有限公司 清洗装置控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207271082U (zh) * 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 一种超微气泡发生设备和超微气泡发生器
CN207362525U (zh) * 2017-10-17 2018-05-15 无锡小天鹅股份有限公司 微气泡发生器及衣物处理装置
CN109663516A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统及衣物处理装置
CN109667104A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 衣物处理装置
CN109667105A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统
CN109667106A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡发生器、微气泡的发生方法及衣物处理装置
CN109663515A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统及衣物处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207271082U (zh) * 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 一种超微气泡发生设备和超微气泡发生器
CN207362525U (zh) * 2017-10-17 2018-05-15 无锡小天鹅股份有限公司 微气泡发生器及衣物处理装置
CN109663516A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统及衣物处理装置
CN109667104A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 衣物处理装置
CN109667105A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统
CN109667106A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡发生器、微气泡的发生方法及衣物处理装置
CN109663515A (zh) * 2017-10-17 2019-04-23 无锡小天鹅股份有限公司 微气泡产生循环系统及衣物处理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622374A (zh) * 2022-03-21 2022-06-14 海信(山东)冰箱有限公司 清洗装置控制方法

Similar Documents

Publication Publication Date Title
CN209798346U (zh) 微气泡发生器的空化件、微气泡发生器及洗涤装置
CN210085835U (zh) 衣物处理装置
KR20150003473U (ko) 기체를 액체에 용해시키는 생성 장치 및 유체 노즐
TWM560276U (zh) 微納米氣泡淋浴花灑
WO2020103334A1 (zh) 微气泡发生器的空化件、微气泡发生器及洗涤装置
CN207811449U (zh) 一种溶氧装置
WO2023040755A1 (zh) 一种微纳米气泡发生系统
CN209958076U (zh) 衣物处理装置
JP6075674B1 (ja) 流体混合装置
CN209952609U (zh) 微气泡发生器及洗涤装置
CN209952610U (zh) 微气泡发生器及洗涤装置
CN214486428U (zh) 进气机构、气泡水制备装置及出水设备
CN111636173B (zh) 衣物处理装置
JP3414124B2 (ja) オゾン水製造装置
CN111663306B (zh) 衣物处理装置
WO2020093523A1 (zh) 微气泡发生器和衣物处理装置
CN111659273A (zh) 微气泡发生器及洗涤装置
CN111659274A (zh) 微气泡发生器及洗涤装置
WO2020103379A1 (zh) 衣物处理装置
WO2020103380A1 (zh) 衣物处理装置
CN221156149U (zh) 一种气泡发生器以及应用该气泡发生器的净水器
CN212915215U (zh) 高效液体喷射混合装置
KR20150014583A (ko) 절수샤워기
RU199052U1 (ru) Эжектор - смеситель
CN220091749U (zh) 一种用于净水系统的淹没式后混合磨料空化喷嘴结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020535523

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019888175

Country of ref document: EP

Effective date: 20200715

NENP Non-entry into the national phase

Ref country code: DE