WO2020102963A1 - 一种水雾化法制备金属粉末的方法 - Google Patents

一种水雾化法制备金属粉末的方法

Info

Publication number
WO2020102963A1
WO2020102963A1 PCT/CN2018/116366 CN2018116366W WO2020102963A1 WO 2020102963 A1 WO2020102963 A1 WO 2020102963A1 CN 2018116366 W CN2018116366 W CN 2018116366W WO 2020102963 A1 WO2020102963 A1 WO 2020102963A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
water
copper
metal powder
atomization
Prior art date
Application number
PCT/CN2018/116366
Other languages
English (en)
French (fr)
Inventor
黄劲松
金鑫
Original Assignee
湖南特力新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南特力新材料有限公司 filed Critical 湖南特力新材料有限公司
Priority to JP2021527127A priority Critical patent/JP7242855B2/ja
Priority to US17/295,059 priority patent/US20210323063A1/en
Priority to CN201880099404.7A priority patent/CN112996616A/zh
Priority to PCT/CN2018/116366 priority patent/WO2020102963A1/zh
Priority to EP18940568.1A priority patent/EP3885064A4/en
Publication of WO2020102963A1 publication Critical patent/WO2020102963A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for preparing metal powder by a water atomization method, in particular to a method for preparing copper powder with low oxygen content and copper alloy powder.
  • Metal powders (iron, stainless steel, copper and its alloys, nickel, tin, lead, etc.) are the basic raw materials for the powder metallurgy industry and one of the main raw materials for the automotive powder metallurgy parts, chemical industry, electronic components and other industries. Their performance directly affects The final quality of the product. With the development of science and technology, powder metallurgy has made great progress, and some new technologies have been applied and popularized. Such as 3D printing, metal powder injection molding technology (Metal Powder Injection Molding, referred to as MIM) and so on. MIM is a new type of powder metallurgy near net shape forming technology which is formed by introducing modern plastic injection molding technology into the field of powder metallurgy.
  • MIM Metal Powder Injection Molding
  • Oxygen content in powder performance indicators is a very important indicator, because oxygen is usually an impurity in powder metallurgy products, which has different degrees of damage to the performance of powder metallurgy products, so the lower the content, the better.
  • gas atomization powder can meet the requirements of low oxygen content, high sphericity and fine powder.
  • Gas atomization powder must use at least nitrogen as a medium to control the oxygen content of the powder.
  • the use of this high-pressure nitrogen will significantly increase the production cost, not to mention the use of high-pressure argon or even high-pressure helium, the cost will be higher .
  • the pressure of gas atomizing powder is limited, and making the powder thinner has a great dependence on the pressure.
  • the low yield of fine powder of gas atomizing powder is also high cost when producing fine powder by gas atomization.
  • Ultra-high pressure water atomization powder can use pressure equivalent to 10 times or even tens of times of gas atomization, and can easily obtain fine powder, but the oxygen content is high, and the oxygen content of water atomized copper alloy powder is generally gas atomized copper alloy oxygen The content is 10 times or even dozens of times. Therefore, although the production cost of water atomization powder production is low, the technical performance needs to be improved. It can be seen that although water atomization pulverization is economically feasible, the technology needs to be improved before it can be widely applied.
  • Comparative document Chinese patent CN104511594A discloses an improved water mist method for producing copper alloy powder.
  • the oxygen content of the powder is controlled below 0.08%, and the fine powder rate of -30 ⁇ m is above 70%.
  • the invention patent has better control effect on oxygen content.
  • the present invention By focusing on the powder-making links such as smelting, melt casting, atomization, separation, and drying, the present invention fully analyzes each influencing factor on the oxygen content of the powder, etc., and adopts corresponding technological measures to formulate a brand-new set of water
  • the atomized powdering process has achieved unexpected effects in reducing the oxygen content of the powder, oxidation resistance and powder storage, and efficiently prepared a copper alloy with low oxygen content and long-term oxidation resistance by water atomization.
  • the powder can meet the needs of the market and has broad application prospects.
  • the purpose of the present invention is to solve the problems of high oxygen content in water atomized powder, the powder cannot be stored for a long time, and it is easy to oxidize during storage.
  • the invention adopts a brand-new water atomization powder-making process to efficiently prepare copper and copper alloy powder with low oxygen content, oxidation resistance and long-term storage.
  • the technical solution of the present invention is to provide a method for preparing metal powder by a water atomization method, which includes smelting, atomizing, separating and drying steps, in which the metal powder is freeze-dried.
  • Freeze drying is a drying technique that uses the principle of sublimation to dehydrate materials. Freeze-drying is often used in other fields, but its application in the atomization and pulverization process has not yet been discovered.
  • the metal powder containing a small amount of water is freeze-dried to condense the water into ice, and the ice is directly sublimated. This technology is obviously different from heating and drying.
  • the process of drying metal powder because it also needs to be isolated from oxygen / air, it is generally also evacuated while heating, that is, vacuum heating and drying.
  • a protective atmosphere is used in the melting and / or atomization steps.
  • a protective atmosphere is used from the smelting to atomizing steps.
  • the protective atmosphere is nitrogen.
  • the atomizing liquid is an aqueous solution added with a corrosion inhibitor.
  • Corrosion inhibitors can also be called antioxidants.
  • they can preferentially combine with oxygen to reduce or avoid oxidation of metal powder.
  • the mass of the corrosion inhibitor accounts for 0.02-0.1% of the mass of the aqueous solution.
  • the corrosion inhibitor is composed of mercaptobenzothiazole and benzotriazole.
  • the atomizing liquid is water, and the temperature of the water is 0-4 ° C. Add ice cubes to the water to form an ice-water mixture. It is best to keep the temperature of the water at 0 ° C.
  • the surface of the metal melt is covered with charcoal. Due to the low density of charcoal, it reacts with oxygen at high temperatures so that oxygen cannot directly reach the metal melt. Floating on the surface of the metal melt forms a physical separation layer between the metal liquid phase and the gas phase, reducing the oxidation of the metal liquid. The cost of this technology is very low, so the actual application has been very extensive.
  • the metal powder obtained after the drying step is sieved to obtain a finished metal powder.
  • the metal powder is copper powder (also called red copper powder) or copper alloy powder.
  • the copper alloy powder is bronze powder or brass powder.
  • the minimum oxygen content of copper powder is only 0.020%, the oxygen content of bronze powder is only 0.041%, and the oxygen content of brass powder is only 0.076%.
  • the technical principle of the present invention is that no matter how active the metal is at high temperature, there is a tendency to oxidize, and the oxidation of the active metal is more obvious.
  • To reduce the oxidation of the powder it is necessary to start from smelting. For example, if it is completely sealed, whether it is positive or negative pressure, due to the diversity of smelted metals and the diversity of alloy components, it is easy to cause instantaneous changes in the pressure of the sealed space.
  • the production process Is prone to danger. Occasionally, the pressure increases sharply or even explodes, causing injury to operators and equipment.
  • the invention adopts a relatively sealed method, uses nitrogen to isolate oxygen, and the sealed space has only a slight positive pressure compared with the surrounding atmosphere, and has the advantages of safety and reliability.
  • Nitrogen isolation oxygen starts from the solid raw metal, passes through the liquid molten metal, and continues to the solid alloy powder. During the entire process of powdering, the degree of metal oxidation can be fully reduced and the oxygen content of the alloy powder can be minimized.
  • a small amount of mercaptobenzothiazole and benzotriazole added in the atomized water with a mass fraction of 0.04% each as corrosion inhibitors are also very effective in reducing the melt becoming a solid powder during atomization and the process of separation and drying of water powder. Oxidation, the corrosion inhibitor coats the metal particles after the liquid metal becomes solid, reducing the chance of surface oxidation reaction of copper powder.
  • the alloy powder is separated from water, due to the fine powder, large surface area and high activity, the powder is prone to surface oxidation reaction and the oxygen content increases.
  • the freeze-drying method is used, because the wet powder is dried at a very low temperature, the water turns into ice, and the ice surrounds the metal particles, the oxygen loses the opportunity to react with the metal, and then the water is sublimated and pumped away in the form of ice, so the alloy The oxygenation of the powder can be completely ignored.
  • the metal powder is dried, thanks to the protection of the corrosion inhibitor coated on the surface of the particles, the oxygen and the metal powder are effectively cut off, so the oxidation resistance of the metal powder is effectively improved, and it can be stored for a long time without being oxidized.
  • the beneficial effect of the present invention is that the present invention has found through experiments that freeze-drying is an important factor affecting the oxygen content index of copper and copper alloys, and can be applied to the preparation process of copper and copper alloy powders with low oxygen content and even metal powders.
  • the present invention also considers all the details that may be oxidized during the atomization process, and adopts comprehensive measures to greatly reduce the chance of oxidation of the copper and copper alloy powder, thereby effectively reducing the oxygen content and resistance of the water atomized powder The oxidation ability is not easily oxidized during long-term storage.
  • a coreless intermediate frequency furnace was used for melting to put 100 kg of electrolytic copper plate charge, covered with a thick layer of charcoal on the electrolytic copper plate, and then heated to increase the temperature.
  • the charcoal layer can ensure that the molten copper is in a reducing atmosphere, and the oxygen in the liquid copper is fully removed.
  • the jet atomizer is composed of the atomizer body, 4 fan-shaped nozzles, and each 2 opposing nozzles form a group, a total of 2 groups of nozzles, the 2 groups of nozzles are composed of a group of larger diameter nozzles and a group of smaller diameter nozzles .
  • the leakage eye in the center of the leakage ladle that is, the diversion pipe will guide the melt to flow vertically into the atomization tower, and the high-temperature metal liquid flow is jetted from the jet atomizer (Water temperature 25 °C) Crushed into powder under impact.
  • the jet atomizer is composed of the atomizer body, 4 fan-shaped nozzles, and each 2 opposing nozzles form a group, a total of 2 groups of nozzles, the 2 groups of nozzles are composed of a group of larger diameter nozzles and a group of smaller diameter nozzles .
  • the previous operation is the same as Comparative Example 2.
  • a sealed and transparent device is used and nitrogen is passed in advance to protect the melt, so that oxygen and the intermediate frequency furnace are transferred to the intermediate leaky ladle.
  • the process of high temperature melt isolation Once the melt is poured into the leakage package, the leakage hole in the center of the guide tube will guide the melt to flow vertically into the atomization tower.
  • the high-temperature metal liquid stream is crushed into a high-pressure water jet (water temperature 25 °C) from the jet atomizer. powder.
  • the jet atomizer is composed of the atomizer body, 4 fan-shaped nozzles, and each 2 opposing nozzles form a group, a total of 2 groups of nozzles, the 2 groups of nozzles are composed of a group of larger diameter nozzles and a group of smaller diameter nozzles .
  • the jet atomizer is composed of the atomizer body, 4 fan-shaped nozzles, and each 2 opposing nozzles form a group, a total of 2 groups of nozzles, the 2 groups of nozzles are composed of a group of larger diameter nozzles and a group of smaller diameter nozzles .
  • the bronze powder was prepared according to the method of Example 1. The corresponding results of the prepared bronze powder are shown in Table 1.
  • the brass powder was prepared according to the method of Example 1. The corresponding results of the prepared brass powder are shown in Table 1.

Abstract

一种水雾化法制备金属粉末的方法,该方法包括熔炼、雾化、分离和干燥步骤,在所述干燥步骤中,对金属粉末进行冷冻干燥。经过实验发现,冷冻干燥是影响铜及铜合金氧含量指标的重要影响因素,可应用至低氧含量的铜及铜合金粉末、甚至金属粉末的制备过程中。该方法还考虑了雾化过程中的所有可能被氧化的细节,采取了综合措施,使铜及铜合金粉末被氧化的几率被大幅度减少,从而有效降低了水雾化粉末的氧含量和耐氧化能力,在长期保存的过程也不易被氧化。

Description

一种水雾化法制备金属粉末的方法 技术领域
本发明涉及一种水雾化法制备金属粉末的方法,特别涉及低氧含量的铜粉以及铜合金粉的制备方法。
背景技术
金属粉末(铁、不锈钢、铜及其合金、镍、锡、铅等)是粉末冶金工业的基础原料,也是汽车粉末冶金零件、化工、电子元件等产业的主要原料之一,它们的性能直接影响产品的最终质量。随着科学技术的发展,粉末冶金取得巨大进步,一些新技术得到应用、推广。如3D打印、金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)等。MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。传统的粉末冶金产品也由于其性能的要求越来越高,服役的环境越来越恶劣。这对粉末冶金产品的原料粉末性能也提出了越来越高的要求。粉末性能指标中氧含量是一个非常重要的指标,因为氧通常是粉末冶金产品中的一种杂质,对粉末冶金产品的性能有不同程度的损害,所以其含量越低越好。
单从技术的角度考虑,气雾化制粉能满足低氧含量、球形度高、粉末细小的要求。但一项技术无论有多先进,要得到广泛的应用与推广,还必须在经济上可行,才有推广应用的价值与空间。气雾化制粉必须至少使用氮气做为介质,才能控制粉末的氧含量,这种高压氮气的使用会使生产成本明显升高,更不用说使用高压氩气甚至高压氦气,成本会更高。另一方面,气雾化制粉的压力有限,而使粉末变细对压力有很大的依赖性,气雾化制粉的细粉收得率低也是气雾化生产细粉时成本高的另一个重要因素。气雾化低氧含量高球形度细粉虽然生产技术成熟,但成本高致使其市场推广面临阻碍。超高压水雾化制粉能使用相当于气雾化10倍甚至数十倍的压力,能轻易得到细粉,但氧含量高,水雾化铜合金粉末氧含量一般是气雾化铜合金氧含量的10倍甚至几十倍。故水雾化制粉生产成本虽低,但技术性能有待提高。可见,水雾化制粉虽经济上可行但技术上有待改进,才有可能得到大规模的推广应用。市场迫切需要一种高效的低氧含量铜合金粉末生产技术,以生产出价格低廉的低氧含量铜合金高性能粉末,以满足当前市场对低氧含量铜合金高端粉末的需求。对比文献中国专利CN104511594A公开了一种改进型水雾法生产铜合金粉的工艺,其粉末含氧量控制在0.08%以下,-30μm的细粉率70%以上。跟对比文献中国专利CN104511594A,CN106041049A和 CN106048298A相比,本发明专利对氧含量的控制效果更佳。
本发明通过从熔炼、熔体转浇、雾化、分离、干燥等制粉环节着眼,充分分析每个对粉末含氧量等的影响因素,采取相应的工艺措施,制定了一套全新的水雾化制粉工艺,在降低粉末的氧含量、耐氧化及粉末存储等方面取得了意想不到的效果,通过水雾化的方法高效地制备出了低氧含量且耐氧化能长期保存的铜合金粉末,能满足市场的需求,有广阔的应用前景。
发明内容
本发明的目的在于解决水雾化制粉氧含量高、粉末不能长期保存,在保存的过程中容易氧化等问题。本发明采取一套全新的水雾化制粉工艺,高效地制备出氧含量低、耐氧化、能长期保存的铜及铜合金粉末。
本发明的技术方案是,提供一种水雾化法制备金属粉末的方法,该方法包括熔炼、雾化、分离和干燥步骤,在所述干燥步骤中,对金属粉末进行冷冻干燥。
冷冻干燥是利用升华的原理使物料脱水的一种干燥技术。冷冻干燥在其他领域中经常使用,但是在雾化制粉工艺中的应用尚未发现。本发明将水和金属粉末分离后,对于含有少量水分的金属粉末进行冷冻干燥,使水分凝结成冰,再使冰直接升华。这一技术与加热干燥有明显的区别。在金属粉末干燥的过程中,由于也需要与氧气/空气隔绝,因此一般也在加热的同时进行抽真空,即真空加热干燥。
优选地,在熔炼和/或雾化步骤中使用保护气氛。
优选地,从熔炼至雾化步骤中均使用保护气氛。
优选地,所述保护气氛为氮气。
优选地,雾化步骤中,雾化液为添加有缓蚀剂的水溶液。缓蚀剂也可称为抗氧化剂,添加在雾化液中,可以优先与氧气结合,减少或避免金属粉末的氧化。
优选地,所述水溶液中,缓蚀剂的质量占水溶液质量的0.02-0.1%。
优选地,所述缓蚀剂由巯基苯并噻唑和苯并三唑组成。
优选地,雾化步骤中,雾化液为水,水的温度为0-4℃。在水中加入冰块,形成冰水混合物,最好使水的温度达到并保持为0℃。
优选地,熔炼步骤中,用木炭覆盖在金属熔体的表面。由于木炭的密度低,在高温下与氧发生反应使氧不能直接到达金属熔体,浮在金属熔体的表面使金属液相与气相之间形成一层物理隔离层,减少金属液的氧化。这样技术的成本很低,所以实际应用已经十分广泛。
优选地,将干燥步骤后得到的金属粉末进行筛分,得到成品金属粉末。
优选地,所述金属粉末为铜粉(也称紫铜粉)或铜合金粉。
优选地,所述铜合金粉为青铜粉或黄铜粉。紫铜粉的最低氧含量仅为0.020%,青铜粉的氧含量仅为0.041%,黄铜粉的氧含量仅为0.076%。
本发明的技术原理是:金属在高温下无论其活性程度如何,都存在氧化的趋势,活性金属氧化更明显。为减小粉末的氧化必须从熔炼开始,如采用完全密封的方式,无论是正压还是负压,由于熔炼金属的多样性、合金成分的多样性,容易使密封空间压力出现瞬间变化,生产过程中容易出现危险。有时因压力急剧增大甚至爆炸,给操作人员与设备造成伤害。本发明采用相对密封的方法,采用氮气隔离氧,密闭空间跟周围气氛相比仅有微小正压,具有安全可靠的优点。同时氮气相对便宜,无论在技术上还是经济上都具有可行性。用氮气隔离氧从固态的原料金属开始,经过液态的熔融金属,一直到固态的合金粉末,在整个制粉的全过程中,能充分减少金属氧化程度,最大限度降低合金粉末的氧含量。
雾化水中所添加的质量分数各0.04%的微量巯基苯并噻唑和苯并三唑作为缓蚀剂亦非常有效地减少熔体在雾化时变成固态粉末以及水粉分离、干燥的过程中的氧化,缓蚀剂在液态金属变成固态后将金属颗粒包覆起来,减少了铜粉发生表面氧化反应的机会。
雾化水的温度越低,水的冷却能力越强,且所产生的水汽相对较少且越容易消失,这对减少金属粉末的氧化非常有利。当合金粉末与水分离后,由于粉末细、表面积大活性高,致使粉末容易发生表面氧化反应而使氧含量增加。
采用冷冻干燥的方法,由于湿粉在很低的温度下干燥,水变成冰以后冰将金属颗粒包围起来,氧失去跟金属反应的机会,然后水再以冰的形式升华抽走,这样合金粉末的增氧可完全忽略不计。金属粉末干燥之后,得益于颗粒表面所包覆的缓蚀剂保护,将氧和金属粉末进行有效隔断,故有效地提高了金属粉末的耐氧化能力,可长时间保存而不被氧化。
本发明的有益效果是,本发明经过实验发现,冷冻干燥是影响铜及铜合金氧含量指标的重要影响因素,可应用至低氧含量的铜及铜合金粉末、甚至金属粉末的制备过程中。本发明还考虑了雾化过程中的所有可能被氧化的细节,采取了综合措施,使铜及铜合金粉末被氧化的几率被大幅度减少,从而有效降低了水雾化粉末的氧含量和耐氧化能力,在长期保存的过程也不易被氧化。
具体实施方式
对比例1
使用无芯中频炉熔炼投入100公斤电解铜板炉料,在电解铜板上盖厚层木炭,然后通电升温,木炭层能保证熔融铜处于还原气氛,将液态铜中氧充分脱除。当熔体质量符合要求并 在转浇至中间漏包,漏包中心的漏眼即导流管就会引导熔体垂直流入雾化塔,高温金属液流在喷射雾化器射出的高压水流(水温25℃)冲击下粉碎成粉末。喷射雾化器由雾化器主体、4个扇形喷嘴,每2个相对的喷嘴组成一组,共2组喷嘴,2组喷嘴由一组较大直径的喷嘴和一组直径较小的喷嘴组成。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空加热干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的氧含量为0.25%,保存2年后氧含量为0.25%,-200目粉末收得率为89%。
对比例2
使用无芯中频炉熔炼投入100公斤电解铜板炉料,在电解铜板上盖厚层木炭,然后采取炉盖密闭同时通氮气保护,氮气排氧完成后通电升温,保证电解铜在坩埚中加热时炉膛内无氧,使氧与铜隔绝。厚层木炭能保证熔融铜处于还原气氛,将液态铜中氧充分脱除。当熔体质量符合要求并在转浇至中间漏包时,漏包中心的漏眼即导流管就会引导熔体垂直流入雾化塔,高温金属液流在喷射雾化器射出的高压水流(水温25℃)冲击下粉碎成粉末。喷射雾化器由雾化器主体、4个扇形喷嘴,每2个相对的喷嘴组成一组,共2组喷嘴,2组喷嘴由一组较大直径的喷嘴和一组直径较小的喷嘴组成。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空加热干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
对比例3
此前操作同对比例2,当熔体质量符合要求并在转浇至中间漏包时,采用密封且透明的装置并提前通入氮气保护熔体,使氧与从中频炉转浇到中间漏包的过程中的高温熔体隔绝。熔体一旦浇入漏包,其中心的漏眼即导流管就会引导熔体垂直流入雾化塔,高温金属液流在喷射雾化器射出的高压水流(水温25℃)冲击下粉碎成粉末。喷射雾化器由雾化器主体、4个扇形喷嘴,每2个相对的喷嘴组成一组,共2组喷嘴,2组喷嘴由一组较大直径的喷嘴和一组直径较小的喷嘴组成。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空冷冻干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
对比例4
此前操作同对比例3,在高温熔体转浇进入中间漏包之前,提前将雾化塔内氧气排除并充满氮气,熔体一旦浇入漏包,其中心的漏眼即导流管就会引导熔体垂直流入雾化塔,高温金属液流在喷射雾化器射出的高压水流(水温25℃)冲击下粉碎成粉末。喷射雾化器由雾化器主体、4个扇形喷嘴,每2个相对的喷嘴组成一组,共2组喷嘴,2组喷嘴由一组较大直径的喷嘴和一组直径较小的喷嘴组成。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空加热干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
对比例5
此前操作同对比例4,高压水中加入微量十六烷胺、十八烷胺、磷酸钠、磷酸氢二钠、巯基苯并噻唑、苯并三唑的混合物作为缓蚀剂。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空加热干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
对比例6
此前操作同对比例5,在加缓蚀剂的同时在进水塔里加入冰块以保证冰水共存,以使雾化水的水温尽量接近0℃。水雾化完成后,采用多级射流水粉分离,水粉分离后即用真空加热干燥的方法将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
实施例1
此前操作同对比例6,水粉分离后即用冷冻干燥的方法代替对比例6中的真空加热干燥的方法,将铜合金粉干燥,将干燥后的粉末进行筛分,最后合批得到成品金属粉末。所制备的紫铜粉的相应结果见表1。
实施例2
按实施例1的方法制备青铜粉,所制备的青铜粉的相应结果见表1。
实施例3
按实施例1的方法制备黄铜粉,所制备的黄铜粉的相应结果见表1。
表1铜及铜合金粉末性能
Figure PCTCN2018116366-appb-000001
备注中所使用的用于降低氧含量的相关技术代码:a:熔炼时木炭层保护,b:熔炼使用氮气保护,c:熔体转浇使用氮气保护,d:雾化使用氮气保护,e:雾化液使用缓蚀剂,f:高压水进水塔内加冰块,g:粉末干燥时使用冷冻干燥法。

Claims (12)

  1. 一种水雾化法制备金属粉末的方法,该方法包括熔炼、雾化、分离和干燥步骤,其特征在于,在所述干燥步骤中,对金属粉末进行冷冻干燥。
  2. 如权利要求1所述的方法,其特征在于,在熔炼和/或雾化步骤中使用保护气氛。
  3. 如权利要求1所述的方法,其特征在于,从熔炼至雾化步骤中均使用保护气氛。
  4. 如权利要求1或2所述的方法,其特征在于,所述保护气氛为氮气。
  5. 如权利要求1-4任一项所述的方法,其特征在于,雾化步骤中,雾化液为添加有缓蚀剂的水溶液。
  6. 如权利要求5所述的方法,其特征在于,所述水溶液中,缓蚀剂的质量占水溶液质量的0.02-0.1%。
  7. 如权利要求5或6所述的方法,其特征在于,所述缓蚀剂由巯基苯并噻唑和苯并三唑组成。
  8. 如权利要求1-7任一项所述的方法,其特征在于,雾化步骤中,雾化液为水,水的温度为0-4℃。
  9. 如权利要求1-8任一项所述的方法,其特征在于,熔炼步骤中,用木炭覆盖在金属熔体的表面。
  10. 如权利要求1-9任一项所述的方法,其特征在于,将干燥步骤后得到的金属粉末进行筛分,得到成品金属粉末。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述金属粉末为铜粉或铜合金粉。
  12. 如权利要求11所述的方法,其特征在于,所述铜合金粉为青铜粉或黄铜粉。
PCT/CN2018/116366 2018-11-20 2018-11-20 一种水雾化法制备金属粉末的方法 WO2020102963A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021527127A JP7242855B2 (ja) 2018-11-20 2018-11-20 水噴霧法による金属粉末の製造方法
US17/295,059 US20210323063A1 (en) 2018-11-20 2018-11-20 Method for preparing metal powder by water atomization
CN201880099404.7A CN112996616A (zh) 2018-11-20 2018-11-20 一种水雾化法制备金属粉末的方法
PCT/CN2018/116366 WO2020102963A1 (zh) 2018-11-20 2018-11-20 一种水雾化法制备金属粉末的方法
EP18940568.1A EP3885064A4 (en) 2018-11-20 2018-11-20 PROCESS FOR MANUFACTURING METAL POWDER BY USING WATER ATOMIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116366 WO2020102963A1 (zh) 2018-11-20 2018-11-20 一种水雾化法制备金属粉末的方法

Publications (1)

Publication Number Publication Date
WO2020102963A1 true WO2020102963A1 (zh) 2020-05-28

Family

ID=70773708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116366 WO2020102963A1 (zh) 2018-11-20 2018-11-20 一种水雾化法制备金属粉末的方法

Country Status (5)

Country Link
US (1) US20210323063A1 (zh)
EP (1) EP3885064A4 (zh)
JP (1) JP7242855B2 (zh)
CN (1) CN112996616A (zh)
WO (1) WO2020102963A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351873A (zh) * 2021-06-08 2021-09-07 金川镍钴研究设计院有限责任公司 一种注射成形用的低氧不锈钢粉生产方法
CN115533110B (zh) * 2022-12-05 2023-03-10 福州市富恒新材料有限公司 一种铜锌合金粉末的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941102A (zh) * 2012-11-30 2013-02-27 湖南省天心博力科技有限公司 一种复合铜粉催化剂的制备工艺
CN104511594A (zh) 2014-12-25 2015-04-15 安徽旭晶粉体新材料科技有限公司 一种改进型水雾法生产铜合金粉的工艺
CN104711443A (zh) * 2015-03-18 2015-06-17 上海和伍新材料科技有限公司 一种石墨烯/铜复合材料及其制备方法
CN106041049A (zh) 2016-07-21 2016-10-26 安徽旭晶粉体新材料科技有限公司 一种水雾法制备抗氧化的无铅铜合金粉
CN106048298A (zh) 2016-07-21 2016-10-26 安徽旭晶粉体新材料科技有限公司 一种水雾法制备抗氧化的含磷的铜合金粉
JP2018048358A (ja) * 2016-09-20 2018-03-29 オイレス工業株式会社 銅基焼結合金含油軸受

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304600A (en) * 1979-11-01 1981-12-08 Bell Telephone Laboratories, Incorporated Manufacture of high-strength metallic articles
JPH07113106A (ja) * 1993-10-12 1995-05-02 Daido Kagaku Kogyo Kk 非鉄金属粉末製造における非鉄金属粉末の酸化防止方法
JP2004349364A (ja) 2003-05-21 2004-12-09 Seiko Epson Corp 永久磁石材料粉末及びその製造方法、並びに永久磁石
CN1253280C (zh) * 2004-04-08 2006-04-26 桂林市华纳光电材料有限责任公司 一种制备纳米金属粉体的方法
JP2007284715A (ja) * 2006-04-13 2007-11-01 Sumitomo Osaka Cement Co Ltd ニッケルナノ粒子の製造方法およびニッケルナノ粒子
EP2510524A4 (en) * 2009-12-07 2014-10-01 Univ Duke COMPOSITIONS AND METHODS FOR GROWING COPPER NANOWLAS
KR102303461B1 (ko) * 2014-03-31 2021-09-16 제이에프이 스틸 가부시키가이샤 아토마이즈 금속 분말의 제조 방법
JP6406156B2 (ja) 2015-07-31 2018-10-17 Jfeスチール株式会社 水アトマイズ金属粉末の製造方法
CN105861862B (zh) * 2016-04-23 2017-09-29 东莞市精研粉体科技有限公司 一种含有纳米尺寸弥散强化相的球形铜粉的生产方法
KR102397204B1 (ko) * 2016-12-28 2022-05-11 도와 일렉트로닉스 가부시키가이샤 구리 분말 및 그의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941102A (zh) * 2012-11-30 2013-02-27 湖南省天心博力科技有限公司 一种复合铜粉催化剂的制备工艺
CN104511594A (zh) 2014-12-25 2015-04-15 安徽旭晶粉体新材料科技有限公司 一种改进型水雾法生产铜合金粉的工艺
CN104711443A (zh) * 2015-03-18 2015-06-17 上海和伍新材料科技有限公司 一种石墨烯/铜复合材料及其制备方法
CN106041049A (zh) 2016-07-21 2016-10-26 安徽旭晶粉体新材料科技有限公司 一种水雾法制备抗氧化的无铅铜合金粉
CN106048298A (zh) 2016-07-21 2016-10-26 安徽旭晶粉体新材料科技有限公司 一种水雾法制备抗氧化的含磷的铜合金粉
JP2018048358A (ja) * 2016-09-20 2018-03-29 オイレス工業株式会社 銅基焼結合金含油軸受

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885064A4
YUAN, YI (ED.): "Chemical Engineers' Handbook", 31 January 2001, MACHINERY INDUSTRY PRESS, CN, ISBN: 7-111-07157-3, article YUAN, YI ET AL.: "Vacuum Freeze Drier", pages: 1064 - 1073, XP009528128 *

Also Published As

Publication number Publication date
CN112996616A (zh) 2021-06-18
EP3885064A1 (en) 2021-09-29
US20210323063A1 (en) 2021-10-21
EP3885064A4 (en) 2021-12-22
JP7242855B2 (ja) 2023-03-20
JP2022507703A (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
CN106132599B (zh) 雾化金属粉末的制造方法
JP2012172265A (ja) 管状スパッタターゲット
CN109570521A (zh) 等离子球化制备金属粉末的方法
CN111036927A (zh) 一种基于VIGA工艺制备GRCop-84球形粉的方法
WO2020102963A1 (zh) 一种水雾化法制备金属粉末的方法
CN107671299A (zh) 一种真空气雾化制备Cu‑Cr合金粉末的方法
CN111151764A (zh) 一种基于VIGA工艺制备CuNiSi球形粉的方法
CN111531164A (zh) 一种低成本降低铬粉末颗粒中氧和氮含量的方法
CN104858444B (zh) 一种低氧含锰水雾化钢粉的还原工艺
CN111020402A (zh) 一种用于耐久性涂料的不锈钢粉末及其制备方法
CN111593224B (zh) 一种铜铬电弧熔炼用自耗电极棒的制备方法
CN113523291A (zh) 一种气雾化制备a100超高强度合金钢粉末的方法
CN105002424A (zh) 一种高碳低氮钢的连铸方法
CN113878124B (zh) 一种铁硅铬镓铟氮合金软磁粉末的水气联合雾化制备方法
CN103273054B (zh) 一种铜粉及应用该铜粉的散热件
RU2780822C1 (ru) Способ повышения сферичности частиц порошка коррозионностойкой стали, полученного распылением расплава водой (варианты)
CN113909482B (zh) 一种铁硅铬镓铟氮合金软磁粉末的气雾化制备方法
CN114147230B (zh) 一种铁硅铬锰铋锌合金软磁粉末的制备方法
CN114632939B (zh) 一种NiCoCrAlY抗高温氧化热喷涂合金粉末材料的制备方法
WO2023151165A1 (zh) 非晶粉末及其制备方法
CN114632938B (zh) 一种抗II型热腐蚀CoCrAlY合金粉末的制备方法
CN114472908A (zh) 一种基于两级雾化法的金属粉末制备方法
CN105108166B (zh) 一种注射成型用铁基合金粉末的制备方法
CN115041691A (zh) 一种低氧铝及铝合金粉末的制备方法和制备装置
CN116213735A (zh) 一种注射成形用316l不锈钢粉末的水气联合雾化制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018940568

Country of ref document: EP

Effective date: 20210621