WO2020101337A1 - Nitrogen oxide gas generating apparatus and controlling method therefor - Google Patents

Nitrogen oxide gas generating apparatus and controlling method therefor Download PDF

Info

Publication number
WO2020101337A1
WO2020101337A1 PCT/KR2019/015400 KR2019015400W WO2020101337A1 WO 2020101337 A1 WO2020101337 A1 WO 2020101337A1 KR 2019015400 W KR2019015400 W KR 2019015400W WO 2020101337 A1 WO2020101337 A1 WO 2020101337A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
temperature
nitrogen oxide
unit
oxide gas
Prior art date
Application number
PCT/KR2019/015400
Other languages
French (fr)
Korean (ko)
Inventor
박승일
이창호
김성봉
유승민
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2020101337A1 publication Critical patent/WO2020101337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/10Cooling arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers

Definitions

  • the present invention relates to a nitrogen oxide gas generator and its control method.
  • Plasma is a fourth material state that can be obtained through an electric field, and is a local ionized gas that contains ions, electrons, neutral particles, and radicals.
  • the plasma-based method can be roughly classified into an underwater plasma method using water, a high temperature plasma method, or a low temperature plasma method.
  • the above-described underwater plasma method and high temperature plasma method have a problem in that it is difficult to control the amount of ozone generated.
  • Plasma in the form of ionized gas generated in the form of low temperature plasma type dielectric barrier discharge also includes reactive species and reactive oxygen (O) including electrons, cations, anions, free radicals, ultraviolet rays, and photons. -, O 2, O 3) and hydrogen peroxide as shown in (H 2 O 2) and there is a strong sterilizing power, the gas phase material.
  • O reactive oxygen
  • H 2 O 2 hydrogen peroxide
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a nitrogen oxide gas generator and a control method thereof that can suppress ozone generation using plasma and effectively generate nitrogen oxide gas. have.
  • a reaction chamber for generating a plasma
  • a gas supply unit supplying gas to the reaction chamber
  • a power supply unit supplying power for generating plasma to the reaction chamber
  • a heater unit for raising the temperature of the reaction chamber
  • a sensor unit for sensing the temperature in the reaction chamber
  • a control unit that receives the temperature of the reaction chamber sensed from the sensor unit and controls the heater unit so that the temperature in the reaction chamber is within a preset temperature range.
  • reaction chamber may generate plasma in the form of a dielectric barrier discharge (DBD).
  • DBD dielectric barrier discharge
  • control unit may control the speed of the gas flowing into the reaction chamber from the gas supply unit according to the temperature in the reaction chamber.
  • control unit may turn on the power of the power supply unit.
  • control unit may turn off the power of the power supply unit before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in the preset temperature range.
  • the predetermined temperature range may be 100 °C to 300 °C.
  • the heater unit may be arranged to be spaced apart from the reaction chamber by a predetermined distance.
  • control unit may control the cooling unit to control the temperature of the plasma electrode in the reaction chamber.
  • the cooling unit is a ceramic block disposed on one side of the reaction chamber; An inlet pipe for introducing cooling water into the ceramic block; And it may include a; discharge pipe for discharging the cooling water flowed from the ceramic block.
  • the present invention in the control method of the above-described nitrogen oxide gas generator, driving a heater unit; Determining whether the temperature in the reaction chamber is within a preset temperature range; Generating a plasma in the reaction chamber by turning on the power of the power supply unit; And maintaining the temperature in the reaction chamber in a predetermined range after turning on the power of the power supply unit.
  • the power-off part can be controlled before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in the preset temperature range.
  • the speed of the gas flowing into the reaction chamber from the gas supply unit may be controlled according to the temperature in the reaction chamber.
  • the present invention can control the temperature inside the reaction chamber for generating plasma or control the flow rate of gas at the same time as the temperature control to suppress ozone generation and effectively promote the production of nitrogen oxide gas.
  • FIG. 1 is a perspective view of a nitrogen oxide gas generator according to an embodiment of the present invention.
  • Figure 2 is a view seen from the bottom by removing the housing in Figure 1;
  • FIG. 3 is a module diagram of a nitrogen oxide gas generator according to an embodiment of the present invention.
  • Figure 4 is a flow chart of a control method of a nitrogen oxide gas generator according to an embodiment of the present invention.
  • FIG. 5 is a flow chart embodying the plasma generation step in FIG. 4.
  • FIG. 1 is a perspective view of a nitrogen oxide gas generator according to an embodiment of the present invention
  • FIG. 2 is a view seen from the bottom by removing the housing in FIG. 1
  • FIG. 3 is a nitrogen oxide gas generator according to an embodiment of the present invention It's a modular diagram.
  • the nitrogen oxide gas generator 100 is largely a reaction chamber 110, a housing 115, a gas supply unit 120, a power supply unit 130, a heater unit ( 140), a sensor unit 150 and a control unit 160, and may further include a filter unit 170 and / or a cooling unit 180.
  • the reaction chamber 110 is a place for generating plasma, for example, the reaction chamber 110 may generate plasma in the form of a dielectric barrier discharge (DBD).
  • DBD dielectric barrier discharge
  • the reaction chamber 110 may include a first electrode and a second electrode, and the first electrode and the second electrode may be electrically connected to a power supply unit 130 to be described later.
  • reaction chamber 110 may be implemented with a material that can withstand high temperatures, for example, stainless steel or aluminum, in consideration of the heater unit 140 to be described later.
  • the inside of the reaction chamber 110 or the reaction chamber 110 may be formed of a glass tube, and the glass tube may be formed of a material containing quartz.
  • the reaction chamber 110 may be disposed inside the housing 115.
  • the gas supply unit 120 may supply gas to the reaction chamber 110, and gas may use air. However, when the user needs a more pure nitrogen oxide gas, nitrogen and oxygen gas may be mixed and used.
  • the gas supply unit 120 may include a check valve or the like, and may open and close a flow path of gas flowing into the reaction chamber 110 by a control unit 160 to be described later.
  • control unit 160 may control the flow rate of the gas by adjusting the amount of gas flowing from the gas supply unit 120.
  • the power supply unit 130 may supply power for generating plasma to the reaction chamber 110, and specifically, power for the first electrode and the second electrode.
  • the power of the power supply unit 130 may be, for example, a sine wave, a voltage peak to peak (Vpp) of 5 to 10 kV, and 10 to 30 kHz.
  • Vpp voltage peak to peak
  • Discharge of plasma generates reactive species and reactive oxygen species (O-, O2, O3) including electrons, cations, anions, free radicals, ultraviolet rays, photons, etc.
  • reactive species and reactive oxygen species O-, O2, O3
  • the heater unit 140 is disposed to increase the temperature of the reaction chamber 110, and may be implemented as an infrared lamp-based heater or a heating wire-based heater.
  • the heater unit 140 is an infrared lamp-based heater
  • an opening or a transparent window having a size corresponding to the heater unit 140 is formed at an upper portion of the housing 115 to effectively react with the infrared lamp light. Heat may be transferred to the chamber 110.
  • the heater unit 140 may be disposed to be spaced apart from the reaction chamber 110 in consideration of the gas in the reaction chamber 110.
  • the heater unit 140 may include at least one fan 145, and the fan 145 may be controlled by a control unit 160, which will be described later, to adjust the temperature of the heater unit 140. Can be.
  • the sensor unit 150 may be disposed inside or outside the reaction chamber 110 to sense the temperature in the reaction chamber 110, and transmit the temperature of the reaction chamber 110 to the control unit 160 to be described later. Can be.
  • the filter unit 170 may be disposed in front and / or rear of the reaction chamber 110 to increase the purity of the nitrogen oxide gas.
  • the filter unit 170 is disposed between the gas supply unit 120 and the reaction chamber 110 to filter the first filter 171 to filter dust and other foreign matter from the gas flowing into the reaction chamber 110 It can contain.
  • the filter unit 170 is disposed at the rear of the reaction chamber 110, various incidental gases contained in the nitrogen oxide gas discharged from the reaction chamber 110 or a specific gas, for example, ozone ( O3) may include a second filter 172.
  • the control unit 160 receives the temperature of the reaction chamber 110 sensed from the sensor unit 150, and controls the heater unit 140 so that the temperature in the reaction chamber 110 becomes a preset temperature range. Can be.
  • the preset temperature range may be 100 ° C to 300 ° C, and this temperature range may be changed and set according to the volume of the reaction chamber 110.
  • control unit 160 may control the speed of gas flowing into the reaction chamber 110 from the gas supply unit 120 according to the temperature in the reaction chamber 110.
  • the controller 160 gradually slows the flow rate of gas when it is less than 250 ° C, and gradually increases when it is 250 ° C or more. Quick control.
  • the gas flow can be accelerated to lower the inside of the reaction chamber 110 in an air-cooled manner to promote optimal nitrogen oxide gas generation.
  • control unit 160 can effectively control the temperature in the reaction chamber 110 by organically controlling the heater unit 140 and the gas supply unit 120.
  • control unit 160 can effectively control the temperature in the reaction chamber 110 by organically controlling the power supply unit 130, the heater unit 140, and / or the gas supply unit 120.
  • control of the power supply unit 130 is not a concept of on / off, which will be described later, but is to control a variable degree of voltage or frequency applied to the electrode, and the electrode temperature rise is constant through the power control. Partial adjustment is possible.
  • on / off of the power supply unit 130 may be implemented as follows.
  • the control unit 160 may turn on the power of the power supply unit 130 only when the temperature in the reaction chamber 110 is within a preset temperature range.
  • control unit 160 may turn off the power of the power supply unit 130 before the temperature in the reaction chamber 110 reaches a temperature of 90% of the lowest temperature in the preset temperature range.
  • the present invention may further include a cooling unit 180 disposed on one side of the reaction chamber 110.
  • the cooling unit 180 includes a ceramic block 181 disposed on one side of the reaction chamber 110, an inlet pipe 182 for introducing cooling water into the ceramic block 181, and the ceramic block ( It may include a discharge pipe 183 for discharging the cooling water flowed in 181).
  • the cooling unit 180 is for maintaining a constant temperature of the plasma electrode when the temperature inside the reaction chamber 110 including the plasma electrode is heated by the heater unit 140, the temperature of the plasma electrode reacts When heated and changed by the temperature inside the chamber 110, since the amount of active species by-products generated in the discharge region of the plasma electrode increases, the temperature of the plasma electrode discharge region is kept constant to increase the amount of active species by-products. This is to keep it constant.
  • control unit 160 may control the cooling unit 180 to control the temperature of the plasma electrode in the reaction chamber 110.
  • FIG. 4 is a flow chart of a method for controlling a nitrogen oxide gas generator according to an embodiment of the present invention
  • FIG. 5 is a flow chart embodying the plasma generation step in FIG. 4.
  • the heater unit 140 is driven to increase the temperature in the reaction chamber 110 (S10).
  • control unit 160 may generate the plasma inside the reaction chamber 110 by turning on the power supply unit 130 (S31), and in this case, the gas according to the temperature sensed in real time.
  • the flow rate of the gas flowing into the reaction chamber 110 may be controlled by controlling the supply unit 120 (S32).
  • the gas flow rate can be quickly controlled.
  • the heater unit 140 is controlled to maintain the temperature inside the reaction chamber 110 in a predetermined range (S40), and the reaction chamber ( 110)
  • the power of the power supply unit 130 is turned off before the internal temperature becomes 90% or less of the preset minimum temperature (S50).
  • the amount of ozone generated can be suppressed by turning off the power of the power supply unit 130 before it becomes 90 ° C or less.
  • the present invention can control the temperature inside the reaction chamber 110 for generating plasma, or control the flow rate of gas at the same time as the temperature control, thereby suppressing ozone generation and effectively generating nitrogen oxide gas. There is this.

Abstract

The present invention provides a nitrogen oxide gas generating apparatus and a controlling method therefor. The nitrogen oxide gas generating apparatus comprises: a reaction chamber for generating plasma; a gas supply unit for supplying gas to the reaction chamber; a power unit for supplying electric power for generating plasma to the reaction chamber; a heater unit for increasing the temperature of the reaction chamber; a sensor unit for sensing the temperature in the reaction chamber; and a controller which receives the temperature of the reaction chamber sensed by the sensor unit and controls the heater unit so that the temperature in the reaction chamber is in a temperature range set in advance.

Description

질소 산화물 가스 발생장치 및 이의 제어 방법Nitrogen oxide gas generator and control method therefor
본 발명은 질소 산화물 가스 발생장치 및 이의 제어 방법에 관한 것이다.The present invention relates to a nitrogen oxide gas generator and its control method.
플라즈마는 전기장을 통하여 얻을 수 있는 제4의 물질상태이며, 국부적 전리상태의 가스로 이온, 전자, 중성입자 및 라디컬을 포함한다.Plasma is a fourth material state that can be obtained through an electric field, and is a local ionized gas that contains ions, electrons, neutral particles, and radicals.
플라즈마를 이용한 방식은 크게 물을 이용한 수중 플라즈마 방식, 고온 플라즈마 방식 또는 저온 플라즈마 방식으로 대별될 수 있다.The plasma-based method can be roughly classified into an underwater plasma method using water, a high temperature plasma method, or a low temperature plasma method.
상기한 수중 플라즈마 방식과 고온 플라즈마 방식은 발생하는 오존량을 제어하기가 힘든 문제가 있다.The above-described underwater plasma method and high temperature plasma method have a problem in that it is difficult to control the amount of ozone generated.
저온 플라즈마 방식인 유전체격벽 방전(dielectric barrier discharge, DBD) 형태로 생성된 이온화 가스상태인 플라즈마 또한 전자, 양이온, 음이온, 자유 라디칼, 자외선, 광자 등을 포함한 활성종(reactive species)과 활성산소(O-, O2, O3) 및 과산화수소(H2O2)와 같이 살균력이 강한 기체상 물질이 존재한다.Plasma in the form of ionized gas generated in the form of low temperature plasma type dielectric barrier discharge (DBD) also includes reactive species and reactive oxygen (O) including electrons, cations, anions, free radicals, ultraviolet rays, and photons. -, O 2, O 3) and hydrogen peroxide as shown in (H 2 O 2) and there is a strong sterilizing power, the gas phase material.
한편, 농업 분야, 포장 분야, 의료 분야, 반도체 분야와 같은 분야에서는 오존 발생을 최소화하고, 질소 산화물 가스를 효과적으로 생성할 수 있는 플라즈마 기술이 필요한 실정이다.Meanwhile, in fields such as the agricultural field, packaging field, medical field, and semiconductor field, plasma technology capable of minimizing ozone generation and effectively generating nitrogen oxide gas is required.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 본 발명의 목적은 플라즈마를 이용하여 오존 발생량을 억제하고 질소 산화물 가스를 효과적으로 발생시킬 수 있는 질소 산화물 가스 발생장치 및 이의 제어 방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a nitrogen oxide gas generator and a control method thereof that can suppress ozone generation using plasma and effectively generate nitrogen oxide gas. have.
상기 목적을 달성하기 위해서 본 발명은, 플라즈마를 발생시키는 반응챔버; 상기 반응챔버에 가스를 공급하는 가스공급부; 상기 반응챔버에 플라즈마를 발생시키기 위한 전원을 공급하는 전원부; 상기 반응챔버의 온도를 높히기 위한 히터부; 상기 반응챔버 내의 온도를 센싱하기 위한 센서부; 및 상기 센서부로부터 센싱된 상기 반응챔버의 온도를 수신받으며, 상기 반응챔버 내의 온도가 기설정된 온도 범위가 되도록 히터부를 제어하는 제어부;를 포함하는 질소 산화물 가스 발생장치를 제공한다.In order to achieve the above object, the present invention, a reaction chamber for generating a plasma; A gas supply unit supplying gas to the reaction chamber; A power supply unit supplying power for generating plasma to the reaction chamber; A heater unit for raising the temperature of the reaction chamber; A sensor unit for sensing the temperature in the reaction chamber; And a control unit that receives the temperature of the reaction chamber sensed from the sensor unit and controls the heater unit so that the temperature in the reaction chamber is within a preset temperature range.
또한, 상기 반응챔버는 유전체격벽 방전(dielectric barrier discharge, DBD) 형태로 플라즈마를 발생시킬 수 있다.In addition, the reaction chamber may generate plasma in the form of a dielectric barrier discharge (DBD).
또한, 상기 제어부는 상기 반응챔버 내의 온도에 따라 상기 가스공급부로부터 반응챔버 내로 유동되는 가스의 속도를 제어할 수 있다.In addition, the control unit may control the speed of the gas flowing into the reaction chamber from the gas supply unit according to the temperature in the reaction chamber.
또한, 상기 제어부는 상기 반응챔버 내의 온도가 기설정된 온도 범위 내일 때 상기 전원부의 전원을 온(on)시킬 수 있다.In addition, when the temperature in the reaction chamber is within a preset temperature range, the control unit may turn on the power of the power supply unit.
또한, 상기 제어부는 상기 반응챔버 내의 온도가 기설정된 온도 범위 중 최하 온도의 90%의 온도가 되기 전에 상기 전원부의 전원을 오프(off)시킬 수 있다.In addition, the control unit may turn off the power of the power supply unit before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in the preset temperature range.
또한, 상기 기설정된 온도 범위는 100℃ 내지 300℃일 수 있다.In addition, the predetermined temperature range may be 100 ℃ to 300 ℃.
또한, 상기 히터부는 상기 반응챔버와 소정 간격 이격되게 배치될 수 있다.Further, the heater unit may be arranged to be spaced apart from the reaction chamber by a predetermined distance.
또한, 상기 반응챔버의 일측에 배치되는 냉각부를 더 포함하고, 상기 제어부는 상기 반응챔버 내의 플라즈마 전극의 온도를 제어하기 위해 상기 냉각부를 제어할 수 있다.In addition, further comprising a cooling unit disposed on one side of the reaction chamber, the control unit may control the cooling unit to control the temperature of the plasma electrode in the reaction chamber.
또한, 상기 냉각부는 상기 반응챔버의 일측에 배치되는 세라믹 블록; 상기 세라믹 블록에 냉각수를 유입시키는 유입관; 및 상기 세라믹 블록에서 유동된 냉각수를 배출시키는 배출관;을 포함할 수 있다.In addition, the cooling unit is a ceramic block disposed on one side of the reaction chamber; An inlet pipe for introducing cooling water into the ceramic block; And it may include a; discharge pipe for discharging the cooling water flowed from the ceramic block.
한편, 본 발명은 상기한 질소 산화물 가스 발생 장치의 제어 방법에 있어서, 히터부를 구동시키는 단계; 반응챔버 내의 온도가 기설정된 온도 범위 내의 온도인지를 판단하는 단계; 전원부의 전원을 온(on)시켜서 상기 반응챔버 내에서 플라즈마를 발생시키는 단계; 및 전원부 전원을 온(on)시킨 후 반응챔버 내의 온도를 기설정된 범위로 유지하는 단계;를 포함하는 질소 산화물 가스 발생장치의 제어 방법을 제공할 수 있다.On the other hand, the present invention in the control method of the above-described nitrogen oxide gas generator, driving a heater unit; Determining whether the temperature in the reaction chamber is within a preset temperature range; Generating a plasma in the reaction chamber by turning on the power of the power supply unit; And maintaining the temperature in the reaction chamber in a predetermined range after turning on the power of the power supply unit.
또한, 플라즈마 발생 이후 상기 전원부의 오프(off)는 상기 반응챔버 내의 온도가 기설정된 온도 범위 중 최하 온도의 90%의 온도가 되기 전에 제어될 수 있다.In addition, after the plasma is generated, the power-off part can be controlled before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in the preset temperature range.
또한, 상기 반응챔버 내의 온도에 따라 상기 가스공급부로부터 반응챔버 내로 유동되는 가스의 속도가 제어될 수 있다.In addition, the speed of the gas flowing into the reaction chamber from the gas supply unit may be controlled according to the temperature in the reaction chamber.
본 발명은 플라즈마를 생성하는 반응챔버 내부의 온도를 조절하거나, 또는 온도 조절과 동시에 가스의 유동 속도를 제어하여 오존 발생을 억제시키고 질소 산화물 가스의 생성을 효과적으로 도모할 수 있다.The present invention can control the temperature inside the reaction chamber for generating plasma or control the flow rate of gas at the same time as the temperature control to suppress ozone generation and effectively promote the production of nitrogen oxide gas.
도 1은 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 사시도.1 is a perspective view of a nitrogen oxide gas generator according to an embodiment of the present invention.
도 2는 도 1에서 하우징을 제거하여 하측에서 바라본 도면.Figure 2 is a view seen from the bottom by removing the housing in Figure 1;
도 3은 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 모듈도.3 is a module diagram of a nitrogen oxide gas generator according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 제어 방법의 플로우 차트.Figure 4 is a flow chart of a control method of a nitrogen oxide gas generator according to an embodiment of the present invention.
도 5는 도 4에서 플라즈마 발생 단계를 구체화한 플로우 차트.5 is a flow chart embodying the plasma generation step in FIG. 4.
이하, 본 발명의 바람직한 실시예는 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
특별한 정의가 없는 한 본 명세서의 모든 용어는 당업자가 이해하는 용어의 일반적인 의미와 동일하고, 만약 본 명세서에서 사용된 용어가 당해 용어의 일반적인 의미와 충돌하는 경우에는 본 명세서에 사용된 정의에 따른다.Unless otherwise specified, all terms in this specification are identical to the general meanings of terms understood by those skilled in the art, and if the terms used herein conflict with the general meanings of the terms, the definitions used in the present specification are used.
다만, 이하에 기술될 발명은 본 발명의 실시예를 설명하기 위한 것일 뿐 본 발명의 권리범위를 한정하기 위한 것을 아니며, 명세서 전반에 걸쳐서 동일하게 사용된 참조번호들은 동일한 구성요소들을 나타낸다.However, the invention to be described below is only for describing the embodiments of the present invention and is not intended to limit the scope of the present invention, and the same reference numerals are used throughout the specification.
도 1은 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 사시도이며, 도 2는 도 1에서 하우징을 제거하여 하측에서 바라본 도면이고, 도 3은 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 모듈도이다.1 is a perspective view of a nitrogen oxide gas generator according to an embodiment of the present invention, FIG. 2 is a view seen from the bottom by removing the housing in FIG. 1, and FIG. 3 is a nitrogen oxide gas generator according to an embodiment of the present invention It's a modular diagram.
도 1 내지 도 3을 참조하면 본 발명의 실시예에 따른 질소 산화물 가스 발생장치(100)는 크게 반응챔버(110), 하우징(115), 가스공급부(120), 전원부(130), 히터부(140), 센서부(150) 및 제어부(160)를 포함할 수 있으며, 필터부(170) 및/또는 냉각부(180)를 더 포함할 수 있다.1 to 3, the nitrogen oxide gas generator 100 according to an embodiment of the present invention is largely a reaction chamber 110, a housing 115, a gas supply unit 120, a power supply unit 130, a heater unit ( 140), a sensor unit 150 and a control unit 160, and may further include a filter unit 170 and / or a cooling unit 180.
반응챔버(110)는 플라즈마를 발생시키는 곳이며, 예를 들어, 상기 반응챔버(110)는 유전체격벽 방전(Dielectric Barrier Bischarge, DBD) 형태로 플라즈마를 발생시킬 수 있다.The reaction chamber 110 is a place for generating plasma, for example, the reaction chamber 110 may generate plasma in the form of a dielectric barrier discharge (DBD).
구체적으로, 상기 반응챔버(110)는 제1 전극 및 제2 전극을 포함할 수 있으며, 상기 제1 전극과 제2 전극은 후술할 전원부(130)와 전기적으로 연결될 수 있다.Specifically, the reaction chamber 110 may include a first electrode and a second electrode, and the first electrode and the second electrode may be electrically connected to a power supply unit 130 to be described later.
또한, 상기 반응챔버(110)는 후술할 히터부(140)를 고려하여, 고온에 견딜 수 있는 재질, 예를 들어, 스테인레스 또는 알루미늄 등으로 구현될 수 있다.In addition, the reaction chamber 110 may be implemented with a material that can withstand high temperatures, for example, stainless steel or aluminum, in consideration of the heater unit 140 to be described later.
또한, 상기 반응챔버(110) 또는 반응챔버(110)의 내부는 유리관으로써 형성될 수 있으며, 상기 유리관은 석영을 포함하는 재질로써 형성될 수 있다.In addition, the inside of the reaction chamber 110 or the reaction chamber 110 may be formed of a glass tube, and the glass tube may be formed of a material containing quartz.
이러한 반응챔버(110)는 하우징(115) 내부에 배치될 수 있다.The reaction chamber 110 may be disposed inside the housing 115.
가스공급부(120)는 상기 반응챔버(110)에 가스를 공급할 수 있으며, 가스는 공기를 사용할 수 있다. 다만, 사용자가 좀 더 순수한 질소 산화물 가스를 필요로 하는 경우는 질소와 산소 가스가 혼합되어 사용될 수 있다.The gas supply unit 120 may supply gas to the reaction chamber 110, and gas may use air. However, when the user needs a more pure nitrogen oxide gas, nitrogen and oxygen gas may be mixed and used.
이러한 가스공급부(120)는 체크밸브 등을 포함할 수 있으며, 후술할 제어부(160)에 의해 상기 반응챔버(110)로 유동되는 가스의 유동로를 개폐할 수 있다. The gas supply unit 120 may include a check valve or the like, and may open and close a flow path of gas flowing into the reaction chamber 110 by a control unit 160 to be described later.
또한, 상기 제어부(160)는 상기 가스공급부(120)로부터 유동되는 가스의 양을 조절하여 가스의 유동 속도를 조절할 수 있다.In addition, the control unit 160 may control the flow rate of the gas by adjusting the amount of gas flowing from the gas supply unit 120.
전원부(130)는 상기 반응챔버(110)에 플라즈마를 발생시키기 위한 전원을 공급할 수 있으며, 구체적으로 상기 제1 전극과 제2 전극에 전원을 공급할 수 있다.The power supply unit 130 may supply power for generating plasma to the reaction chamber 110, and specifically, power for the first electrode and the second electrode.
상기 전원부(130)의 전원은, 예를 들어, 사인파(Sine wave), Vpp(Voltage Peak to Peak)는 5 내지 10kV, 10 내지 30kHz일 수 있다.The power of the power supply unit 130 may be, for example, a sine wave, a voltage peak to peak (Vpp) of 5 to 10 kV, and 10 to 30 kHz.
플라즈마를 방전하면 전자, 양이온, 음이온, 자유 라디칼, 자외선, 광자 등을 포함한 활성종(reactive species)과 활성산소(O-, O2, O3)가 발생하는데, 상기 반응챔버(110) 내의 가스 온도를 높힘으로써 오존의 생성은 억제하고 질소 산화물의 생성은 증가시킬 수 있다.Discharge of plasma generates reactive species and reactive oxygen species (O-, O2, O3) including electrons, cations, anions, free radicals, ultraviolet rays, photons, etc. By increasing, ozone production can be suppressed and nitrogen oxide production can be increased.
따라서, 히터부(140)는 상기 반응챔버(110)의 온도를 높히기 위해 배치되며, 적외선 램프 기반의 히터 또는 열선 기반의 히터로써 구현될 수 있다.Accordingly, the heater unit 140 is disposed to increase the temperature of the reaction chamber 110, and may be implemented as an infrared lamp-based heater or a heating wire-based heater.
상기 히터부(140)가 적외선 램프 기반의 히터일 경우, 상기 하우징(115)의 상부는 상기 히터부(140)에 대응되는 크기의 개구 또는 투명창이 형성되어 적외선 램프의 광을 조사함으로써 효과적으로 상기 반응챔버(110)에 열을 전달할 수 있다.When the heater unit 140 is an infrared lamp-based heater, an opening or a transparent window having a size corresponding to the heater unit 140 is formed at an upper portion of the housing 115 to effectively react with the infrared lamp light. Heat may be transferred to the chamber 110.
또한, 상기 히터부(140)는 반응챔버(110) 내의 가스를 고려하여 상기 반응챔버(110)와 소정 간격 이격되게 배치될 수 있다.In addition, the heater unit 140 may be disposed to be spaced apart from the reaction chamber 110 in consideration of the gas in the reaction chamber 110.
또한, 상기 히터부(140)는 적어도 한 개 이상의 팬(145)을 포함할 수 있으며, 이러한 팬(145)은 상기 히터부(140)의 온도 조절을 위해 후술할 제어부(160)에 의해 제어될 수 있다.In addition, the heater unit 140 may include at least one fan 145, and the fan 145 may be controlled by a control unit 160, which will be described later, to adjust the temperature of the heater unit 140. Can be.
센서부(150)는 상기 반응챔버(110) 내의 온도를 센싱하기 위해 상기 반응챔버(110) 내부 또는 외부에 배치될 수 있으며, 후술할 제어부(160)에 상기 반응챔버(110)의 온도를 전송할 수 있다.The sensor unit 150 may be disposed inside or outside the reaction chamber 110 to sense the temperature in the reaction chamber 110, and transmit the temperature of the reaction chamber 110 to the control unit 160 to be described later. Can be.
필터부(170)는 질소 산화물 가스의 순도를 높히기 위해 상기 반응챔버(110)의 전방 및/또는 후방에 배치될 수 있다. The filter unit 170 may be disposed in front and / or rear of the reaction chamber 110 to increase the purity of the nitrogen oxide gas.
구체적으로, 상기 필터부(170)는 상기 가스공급부(120)와 반응챔버(110) 사이에 배치되어 상기 반응챔버(110)로 유입되는 가스에서 먼지 기타 이물을 필터링하는 제1 필터(171)를 포함할 수 있다.Specifically, the filter unit 170 is disposed between the gas supply unit 120 and the reaction chamber 110 to filter the first filter 171 to filter dust and other foreign matter from the gas flowing into the reaction chamber 110 It can contain.
또한, 상기 필터부(170)는 상기 반응챔버(110)의 후방에 배치되어 상기 반응챔버(110)에서 배출되는 질소 산화물 가스에 포함된 각종 부수적인 가스나 또는 특정 가스, 예를 들어, 오존(O3)을 제거하는 제2 필터(172)를 포함할 수 있다.In addition, the filter unit 170 is disposed at the rear of the reaction chamber 110, various incidental gases contained in the nitrogen oxide gas discharged from the reaction chamber 110 or a specific gas, for example, ozone ( O3) may include a second filter 172.
상기 제어부(160)는 상기 센서부(150)로부터 센싱된 상기 반응챔버(110)의 온도를 수신받으며, 상기 반응챔버(110) 내의 온도가 기설정된 온도 범위가 되도록 히터부(140)를 제어할 수 있다.The control unit 160 receives the temperature of the reaction chamber 110 sensed from the sensor unit 150, and controls the heater unit 140 so that the temperature in the reaction chamber 110 becomes a preset temperature range. Can be.
여기서, 상기 기설정된 온도 범위는 100℃ 내지 300℃일 수 있으며, 이러한 온도 범위는 상기 반응챔버(110)의 체적에 따라 변경되어 설정될 수 있다.Here, the preset temperature range may be 100 ° C to 300 ° C, and this temperature range may be changed and set according to the volume of the reaction chamber 110.
또한, 상기 제어부(160)는 상기 반응챔버(110) 내의 온도에 따라 상기 가스공급부(120)로부터 반응챔버(110) 내로 유동되는 가스의 속도를 제어할 수 있다. In addition, the control unit 160 may control the speed of gas flowing into the reaction chamber 110 from the gas supply unit 120 according to the temperature in the reaction chamber 110.
예를 들어, 기설정된 온도 범위는 100℃ 내지 300℃ 중 최적 온도가 250℃라고 할 때, 상기 제어부(160)는 250℃ 미만일 때 가스의 유동속도를 점진적으로 느리게 하고, 250℃ 이상일 때 점진적으로 빠르게 제어할 수 있다.For example, when a predetermined temperature range is 100 ° C to 300 ° C and the optimum temperature is 250 ° C, the controller 160 gradually slows the flow rate of gas when it is less than 250 ° C, and gradually increases when it is 250 ° C or more. Quick control.
이는 전극 근처에서 유동 가스의 낮은 입자 속도로 인해, 방전층의 온도는 실질적으로 증가하고, 이러한 온도의 증가는 오존의 생성을 억제시키기 때문이다. This is because, due to the low particle velocity of the flowing gas near the electrode, the temperature of the discharge layer substantially increases, and this increase in temperature suppresses the production of ozone.
반대로, 질소 산화물 가스의 생성에 최적인 온도인 250℃ 이상인 경우, 가스 유동을 빠르게 하여 반응챔버(110) 내부를 공냉 방식으로 낮춰 최적의 질소 산화물 가스 생성을 도모할 수 있다.Conversely, when the optimum temperature for generating nitrogen oxide gas is 250 ° C. or higher, the gas flow can be accelerated to lower the inside of the reaction chamber 110 in an air-cooled manner to promote optimal nitrogen oxide gas generation.
또한, 상기 제어부(160)는 상기 히터부(140)와 상기 가스공급부(120)를 유기적으로 제어하여 상기 반응챔버(110) 내의 온도를 효과적으로 제어할 수 있다.In addition, the control unit 160 can effectively control the temperature in the reaction chamber 110 by organically controlling the heater unit 140 and the gas supply unit 120.
또한, 상기 제어부(160)는 상기 전원부(130), 상기 히터부(140) 및/또는 상기 가스공급부(120)를 유기적으로 제어하여 상기 반응챔버(110) 내의 온도를 효과적으로 제어할 수 있다.In addition, the control unit 160 can effectively control the temperature in the reaction chamber 110 by organically controlling the power supply unit 130, the heater unit 140, and / or the gas supply unit 120.
여기서, 상기 전원부(130)의 제어는 후술할 온/오프(on/off)의 개념이 아니라, 전극에 인가되는 전압 또는 주파수의 가변 정도를 제어하는 것이며, 이러한 전력 제어를 통해 전극 온도 상승을 일정부분 조절할 수 있다.Here, the control of the power supply unit 130 is not a concept of on / off, which will be described later, but is to control a variable degree of voltage or frequency applied to the electrode, and the electrode temperature rise is constant through the power control. Partial adjustment is possible.
플라즈마 발생시 오존의 생성을 최대한 억제하기 위해, 상기 전원부(130)의 온/오프(on/off)는 다음과 같이 구현될 수 있다.In order to minimize the generation of ozone during plasma generation, on / off of the power supply unit 130 may be implemented as follows.
상기 제어부(160)는 상기 반응챔버(110) 내의 온도가 기설정된 온도 범위 내일 때에만 상기 전원부(130)의 전원을 온(on)시킬 수 있다.The control unit 160 may turn on the power of the power supply unit 130 only when the temperature in the reaction chamber 110 is within a preset temperature range.
또한, 상기 제어부(160)는 상기 반응챔버(110) 내의 온도가 기설정된 온도 범위 중 최하 온도의 90%의 온도가 되기 전에 상기 전원부(130)의 전원을 오프(off)시킬 수 있다.In addition, the control unit 160 may turn off the power of the power supply unit 130 before the temperature in the reaction chamber 110 reaches a temperature of 90% of the lowest temperature in the preset temperature range.
한편, 본 발명은 상기 반응챔버(110) 일측에 배치되는 냉각부(180)를 더 포함할 수 있다. Meanwhile, the present invention may further include a cooling unit 180 disposed on one side of the reaction chamber 110.
구체적으로, 상기 냉각부(180)는 상기 반응챔버(110)의 일측에 배치되는 세라믹 블록(181)과, 상기 세라믹 블록(181)에 냉각수를 유입시키는 유입관(182)과, 상기 세라믹 블록(181)에서 유동된 냉각수를 배출시키는 배출관(183)을 포함할 수 있다.Specifically, the cooling unit 180 includes a ceramic block 181 disposed on one side of the reaction chamber 110, an inlet pipe 182 for introducing cooling water into the ceramic block 181, and the ceramic block ( It may include a discharge pipe 183 for discharging the cooling water flowed in 181).
이러한 냉각부(180)는 플라즈마 전극을 포함하는 반응챔버(110) 내부의 온도가 히터부(140)에 의하여 가열된 경우, 플라즈마 전극의 온도를 일정하게 유지하기 위한 것으로, 플라즈마 전극의 온도가 반응챔버(110) 내부의 온도에 의하여 가열되어 변하게 되면, 플라즈마 전극의 방전 영역에서 발생하는 활성종 부산물의 양이 증가하게 되기 때문에, 플라즈마 전극 방전 영역의 온도를 일정하게 유지하여 활성종 부산물의 양을 일정하게 유지하기 위함이다.The cooling unit 180 is for maintaining a constant temperature of the plasma electrode when the temperature inside the reaction chamber 110 including the plasma electrode is heated by the heater unit 140, the temperature of the plasma electrode reacts When heated and changed by the temperature inside the chamber 110, since the amount of active species by-products generated in the discharge region of the plasma electrode increases, the temperature of the plasma electrode discharge region is kept constant to increase the amount of active species by-products. This is to keep it constant.
따라서, 상기 제어부(160)는 상기 반응챔버(110) 내의 플라즈마 전극의 온도를 제어하기 위해 상기 냉각부(180)를 제어할 수 있다.Therefore, the control unit 160 may control the cooling unit 180 to control the temperature of the plasma electrode in the reaction chamber 110.
이러한 본 발명의 실시예에 따른 질소 산화물 가스 발생장치(100)의 제어 방법을 살펴보자면 다음과 같다.Looking at the control method of the nitrogen oxide gas generator 100 according to an embodiment of the present invention as follows.
도 4는 본 발명의 실시예에 따른 질소 산화물 가스 발생장치의 제어 방법의 플로우 차트이며, 도 5는 도 4에서 플라즈마 발생 단계를 구체화한 플로우 차트이다.4 is a flow chart of a method for controlling a nitrogen oxide gas generator according to an embodiment of the present invention, and FIG. 5 is a flow chart embodying the plasma generation step in FIG. 4.
일단, 플라즈마를 발생시키면 오존 및 기타 활성화 산소가 발생될 소지가 있으므로 히터부(140)를 구동시켜 반응챔버(110) 내의 온도를 상승시킨다(S10).Once the plasma is generated, ozone and other activated oxygen are likely to be generated, so the heater unit 140 is driven to increase the temperature in the reaction chamber 110 (S10).
이 후, 센서부(150)로써 반응챔버(110) 내의 온도를 센싱하여 기설정된 온도 범위 이내에 도달하면(S20), 플라즈마를 발생시킨다(S30).Thereafter, when the temperature in the reaction chamber 110 is sensed by the sensor unit 150 and reaches within a predetermined temperature range (S20), plasma is generated (S30).
구체적으로, 상기 제어부(160)는 상기 전원부(130)를 온(on)시켜 상기 반응챔버(110) 내부에서 플라즈마를 발생시킬 수 있으며(S31), 이 때, 실시간으로 센싱되는 온도에 따라서 상기 가스공급부(120)를 제어하여 상기 반응챔버(110) 내부로 유동되는 가스의 유동 속도를 조절할 수도 있다(S32).Specifically, the control unit 160 may generate the plasma inside the reaction chamber 110 by turning on the power supply unit 130 (S31), and in this case, the gas according to the temperature sensed in real time. The flow rate of the gas flowing into the reaction chamber 110 may be controlled by controlling the supply unit 120 (S32).
즉, 온도가 상승할수록 가스 유동속도를 빠르게 제어할 수 있다.That is, as the temperature increases, the gas flow rate can be quickly controlled.
이 후, 질소 산화물 가스가 원하는 만큼 생성되거나, 원하는 만큼 생성되기 전에는 상기 히터부(140)를 제어하여 상기 반응챔버(110) 내부의 온도를 기설정된 범위로 유지시키고(S40), 상기 반응챔버(110) 내부의 온도가 기설정된 최저온도의 90% 이하가 되기 전에 상기 전원부(130)의 전원을 오프시킨다(S50).Thereafter, before the nitrogen oxide gas is generated as desired or desired, the heater unit 140 is controlled to maintain the temperature inside the reaction chamber 110 in a predetermined range (S40), and the reaction chamber ( 110) The power of the power supply unit 130 is turned off before the internal temperature becomes 90% or less of the preset minimum temperature (S50).
예를 들어, 기설정된 온도 범위가 100℃ 내지 300℃인 경우, 90℃ 이하가 되기 전에 상기 전원부(130)의 전원을 오프(off)시켜 오존 발생량을 억제할 수 있다.For example, when the preset temperature range is 100 ° C to 300 ° C, the amount of ozone generated can be suppressed by turning off the power of the power supply unit 130 before it becomes 90 ° C or less.
요컨대, 본 발명은 플라즈마를 생성하는 반응챔버(110) 내부의 온도를 조절하거나, 또는 온도 조절과 동시에 가스의 유동 속도를 제어하여 오존 발생을 억제시키고 질소 산화물 가스의 생성을 효과적으로 도모할 수 있는 이점이 있다.In short, the present invention can control the temperature inside the reaction chamber 110 for generating plasma, or control the flow rate of gas at the same time as the temperature control, thereby suppressing ozone generation and effectively generating nitrogen oxide gas. There is this.
이상, 상기 설명에 의해 당업자라면 본 발명의 기술적 사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이며, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정되는 것이 아니라 특허청구범위 및 그와 균등한 범위에 의하여 정해져야 한다.As described above, those skilled in the art from the above description will be able to see that various changes and modifications can be made without departing from the technical spirit of the present invention, and the technical scope of the present invention is not limited to the contents described in the Examples, but claims It should be determined by the scope and its equivalent.

Claims (12)

  1. 플라즈마를 발생시키는 반응챔버;A reaction chamber that generates plasma;
    상기 반응챔버에 가스를 공급하는 가스공급부;A gas supply unit supplying gas to the reaction chamber;
    상기 반응챔버에 플라즈마를 발생시키기 위한 전원을 공급하는 전원부;A power supply unit supplying power for generating plasma to the reaction chamber;
    상기 반응챔버의 온도를 높히기 위한 히터부;A heater unit for raising the temperature of the reaction chamber;
    상기 반응챔버 내의 온도를 센싱하기 위한 센서부; 및A sensor unit for sensing the temperature in the reaction chamber; And
    상기 센서부로부터 센싱된 상기 반응챔버의 온도를 수신받으며, 상기 반응챔버 내의 온도가 기설정된 온도 범위가 되도록 히터부를 제어하는 제어부;를 포함하는 질소 산화물 가스 발생장치.Nitrogen oxide gas generator comprising a; control unit for receiving the temperature of the reaction chamber sensed from the sensor unit, and controls the heater unit so that the temperature in the reaction chamber is a predetermined temperature range.
  2. 제1항에 있어서,According to claim 1,
    상기 반응챔버는 유전체격벽 방전(dielectric barrier discharge, DBD) 형태로 플라즈마를 발생시키는 질소 산화물 가스 발생장치.The reaction chamber is a nitrogen oxide gas generator for generating plasma in the form of a dielectric barrier discharge (DBD).
  3. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 반응챔버 내의 온도에 따라 상기 가스공급부로부터 반응챔버 내로 유동되는 가스의 속도를 제어하는 질소 산화물 가스 발생장치.The control unit is a nitrogen oxide gas generator for controlling the speed of the gas flowing into the reaction chamber from the gas supply unit according to the temperature in the reaction chamber.
  4. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 반응챔버 내의 온도가 기설정된 온도 범위 내일 때 상기 전원부의 전원을 온(on)시키는 질소 산화물 가스 발생장치.The controller is a nitrogen oxide gas generator for turning on the power of the power supply when the temperature in the reaction chamber is within a predetermined temperature range.
  5. 제1항에 있어서,According to claim 1,
    상기 제어부는 상기 반응챔버 내의 온도가 기설정된 온도 범위 중 최하 온도의 90%의 온도가 되기 전에 상기 전원부의 전원을 오프(off)시키는 질소 산화물 가스 발생장치.The control unit is a nitrogen oxide gas generator for turning off the power of the power supply unit before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in the preset temperature range.
  6. 제1항에 있어서,According to claim 1,
    상기 기설정된 온도 범위는 100℃ 내지 300℃인 질소 산화물 가스 발생장치.The preset temperature range is 100 ° C to 300 ° C nitrogen oxide gas generator.
  7. 제1항에 있어서,According to claim 1,
    상기 히터부는 상기 반응챔버와 소정 간격 이격되게 배치되는 질소 산화물 가스 발생장치.The heater unit is a nitrogen oxide gas generating device disposed at a predetermined distance from the reaction chamber.
  8. 제1항에 있어서,According to claim 1,
    상기 반응챔버의 일측에 배치되는 냉각부를 더 포함하고,Further comprising a cooling unit disposed on one side of the reaction chamber,
    상기 제어부는 상기 반응챔버 내의 플라즈마 전극의 온도를 제어하기 위해 상기 냉각부를 제어하는 질소 산화물 가스 발생장치.The control unit is a nitrogen oxide gas generator for controlling the cooling unit to control the temperature of the plasma electrode in the reaction chamber.
  9. 제8항에 있어서,The method of claim 8,
    상기 냉각부는,The cooling unit,
    상기 반응챔버의 일측에 배치되는 세라믹 블록;A ceramic block disposed on one side of the reaction chamber;
    상기 세라믹 블록에 냉각수를 유입시키는 유입관; 및An inflow pipe for introducing cooling water into the ceramic block; And
    상기 세라믹 블록에서 유동된 냉각수를 배출시키는 배출관;을 포함하는 질소 산화물 가스 발생장치.Nitrogen oxide gas generator comprising a; discharge pipe for discharging the cooling water flowed from the ceramic block.
  10. 제1항에 따른 질소 산화물 가스 발생 장치의 제어 방법에 있어서,In the control method of the nitrogen oxide gas generating apparatus according to claim 1,
    히터부를 구동시키는 단계;Driving a heater unit;
    반응챔버 내의 온도가 기설정된 온도 범위 내의 온도인지를 판단하는 단계; Determining whether the temperature in the reaction chamber is within a preset temperature range;
    전원부의 전원을 온(on)시켜서 상기 반응챔버 내에서 플라즈마를 발생시키는 단계; 및Generating a plasma in the reaction chamber by turning on the power of the power supply unit; And
    전원부 전원을 온(on)시킨 후 반응챔버 내의 온도를 기설정된 범위로 유지하는 단계;를 포함하는 질소 산화물 가스 발생장치의 제어 방법.After turning on the power supply (on) to maintain the temperature in the reaction chamber in a predetermined range; Control method of a nitrogen oxide gas generator comprising a.
  11. 제10항에 있어서,The method of claim 10,
    플라즈마 발생 이후 상기 전원부의 오프(off)는 상기 반응챔버 내의 온도가 기설정된 온도 범위 중 최하 온도의 90%의 온도가 되기 전에 제어되는 질소 산화물 가스 발생장치의 제어 방법.The control method of the nitrogen oxide gas generator is controlled before plasma power is turned off before the temperature in the reaction chamber reaches a temperature of 90% of the lowest temperature in a predetermined temperature range.
  12. 제10항에 있어서,The method of claim 10,
    상기 반응챔버 내의 온도에 따라 상기 가스공급부로부터 반응챔버 내로 유동되는 가스의 속도가 제어되는 질소 산화물 가스 발생장치의 제어 방법.A method of controlling a nitrogen oxide gas generator, in which the speed of gas flowing from the gas supply unit into the reaction chamber is controlled according to the temperature in the reaction chamber.
PCT/KR2019/015400 2018-11-15 2019-11-13 Nitrogen oxide gas generating apparatus and controlling method therefor WO2020101337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0140770 2018-11-15
KR1020180140770A KR102149432B1 (en) 2018-11-15 2018-11-15 APPARATUS FOR GENERATING NOx GAS AND CONTROLLING METHOD THEREOF

Publications (1)

Publication Number Publication Date
WO2020101337A1 true WO2020101337A1 (en) 2020-05-22

Family

ID=70731592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015400 WO2020101337A1 (en) 2018-11-15 2019-11-13 Nitrogen oxide gas generating apparatus and controlling method therefor

Country Status (2)

Country Link
KR (1) KR102149432B1 (en)
WO (1) WO2020101337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112770470A (en) * 2020-12-25 2021-05-07 西安电子科技大学 Dielectric barrier discharge device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504881B1 (en) * 2022-03-07 2023-02-28 주식회사 제이시스 Reactor temperature control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544329B1 (en) * 2011-09-08 2015-08-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Plasma generation device, cvd device and plasma treatment particle generation device
KR20160062876A (en) * 2014-11-26 2016-06-03 주식회사 플라즈맵 Plasma Treated Water Producing Apparatus And Active Gas Generation Apparatus
KR20170038531A (en) * 2015-09-30 2017-04-07 세메스 주식회사 Method and apparatus for treating substrate
KR20180015053A (en) * 2016-08-02 2018-02-12 주식회사 피글 Implant processing apparatus
US20180221619A1 (en) * 2013-03-15 2018-08-09 The General Hospital Corporation Synthesis of nitric oxide gas for inhalation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544329B1 (en) * 2011-09-08 2015-08-12 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Plasma generation device, cvd device and plasma treatment particle generation device
US20180221619A1 (en) * 2013-03-15 2018-08-09 The General Hospital Corporation Synthesis of nitric oxide gas for inhalation
KR20160062876A (en) * 2014-11-26 2016-06-03 주식회사 플라즈맵 Plasma Treated Water Producing Apparatus And Active Gas Generation Apparatus
KR20170038531A (en) * 2015-09-30 2017-04-07 세메스 주식회사 Method and apparatus for treating substrate
KR20180015053A (en) * 2016-08-02 2018-02-12 주식회사 피글 Implant processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112770470A (en) * 2020-12-25 2021-05-07 西安电子科技大学 Dielectric barrier discharge device

Also Published As

Publication number Publication date
KR20200056737A (en) 2020-05-25
KR102149432B1 (en) 2020-08-31

Similar Documents

Publication Publication Date Title
WO2020101337A1 (en) Nitrogen oxide gas generating apparatus and controlling method therefor
WO2016167516A1 (en) Skin treatment device using plasma
WO2012128561A2 (en) Plasma advanced water treatment apparatus
WO2018199417A1 (en) Glow plasma reaction apparatus for water treatment and operating method thereof
CN101261456A (en) Exhaust device, substrate processing device incorporating same and exhaust method
US8410410B2 (en) Ultraviolet lamp system with cooling air control
EP2808421A1 (en) Vacuum pump with abatement function
WO2022114721A1 (en) Static electricity eliminating apparatus using excimer lamp
WO2019103444A1 (en) Home plasma sterilizer
WO2020153700A1 (en) Cooling and circulation system for near-infrared emission lamps
KR20110110717A (en) Ultraviolet irradiation apparatus
WO2021251688A1 (en) Chamber environment control apparatus for bio three-dimensional printer
WO2019235717A1 (en) Device and method for producing high concentration microbubbles by using ultrasonic waves
US8179046B2 (en) Ultraviolet lamp system with cooling air filter
US6831419B1 (en) Exhaust system for a microwave excited ultraviolet lamp
WO2012036491A2 (en) Plasma treatment device using leakage current transformer
WO2023027234A1 (en) Air sterilization device
WO2021194041A1 (en) System for controlling on/off of static electricity removal device by using vacuum ultraviolet rays
CN110519905A (en) Temperature control device and plasma apparatus
WO2022114246A2 (en) Food processing system and method using atmospheric-pressure plasma generator
WO2021045587A1 (en) Rapid thermal processing equipment cooling system
KR100968065B1 (en) Air supply apparatus comprising the ion generator
CN105940290A (en) Blood smear drying method, device and smearing device
CN212701265U (en) Energy-saving organic waste gas purifying device
WO2015108375A1 (en) Odor reducing device using ion cluster

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884667

Country of ref document: EP

Kind code of ref document: A1