WO2022114246A2 - Food processing system and method using atmospheric-pressure plasma generator - Google Patents

Food processing system and method using atmospheric-pressure plasma generator Download PDF

Info

Publication number
WO2022114246A2
WO2022114246A2 PCT/KR2020/016703 KR2020016703W WO2022114246A2 WO 2022114246 A2 WO2022114246 A2 WO 2022114246A2 KR 2020016703 W KR2020016703 W KR 2020016703W WO 2022114246 A2 WO2022114246 A2 WO 2022114246A2
Authority
WO
WIPO (PCT)
Prior art keywords
air
container
plasma
active species
generating device
Prior art date
Application number
PCT/KR2020/016703
Other languages
French (fr)
Korean (ko)
Other versions
WO2022114246A3 (en
Inventor
이창훈
Original Assignee
이창훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창훈 filed Critical 이창훈
Publication of WO2022114246A2 publication Critical patent/WO2022114246A2/en
Publication of WO2022114246A3 publication Critical patent/WO2022114246A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/015Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with pressure variation, shock, acceleration or shear stress or cavitation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/12Electrical treatment, e.g. electrolysis, electrical field treatment, with or without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/24Heat, thermal treatment

Definitions

  • the present disclosure relates to a food processing system and method using an atmospheric pressure plasma generating device, and more particularly, to a food processing system and method capable of heat-treating or sterilizing food in powder or particle state using a plasma generating device. .
  • Plasma is an ionized gas such as electrons and neutral particles, and a part of the plasma gas has high energy and can change the surface of a material. That is, the plasma can react directly with the surface of another material or by elastic collision.
  • the plasma generating apparatus mainly includes a tube configured to generate plasma by intersecting a high-frequency, high-voltage electric charge with compressed air or nitrogen gas.
  • an atmospheric pressure plasma apparatus instead of a low pressure or vacuum plasma has been increasing.
  • an atmospheric pressure plasma apparatus it can be applied to various materials and substrates through a low-temperature process, and since it does not require a vacuum container or a vacuum evacuation device, the processing speed is fast and economical.
  • the deposition method using atmospheric pressure plasma has good adhesion and lower deposition temperature, in the conventional surface treatment process, semiconductor process, and display process, deformation or denaturation accompanying high-temperature heating can be reduced. It is used in a relatively wide variety of industries.
  • heat treatment or sterilization treatment used in powder or granular food includes ultra-high temperature steam sterilization, electromagnetic wave irradiation, fumigation
  • ultra-high temperature steam sterilization electromagnetic wave irradiation
  • fumigation There are treatment, radiation irradiation, high-frequency heating method, ultraviolet irradiation method, stir-frying treatment using an electric heater, and the like.
  • this method due to carcinogenic substances generated during the processing of powder or granular food, deterioration of food, and destruction of nutrients, and the problem that a lot of energy and time is required for processing the food have.
  • the present disclosure provides a food powder processing system and method capable of heat treatment or antibacterial treatment of food using a plasma generating device.
  • a food processing system using an atmospheric pressure plasma generating device includes a container in which food is accommodated, an air filter that extracts and discharges at least a portion of moisture contained in the air in the container, and at least one of the moisture by the air filter an air compressor for generating compressed air from air from which a portion has been removed, and a plasma generating device for generating active species through plasma discharge using compressed air generated from the air compressor as a plasma discharge gas.
  • the plasma generating apparatus may include a gas supply pipe to which compressed air is supplied, and a nozzle unit through which the plasma gas including the active species is discharged.
  • a food processing system using an atmospheric pressure plasma generating apparatus includes a humidity sensor detecting an amount of moisture contained in air in a container, and controlling whether an air filter is driven based on the amount of moisture detected by the humidity sensor It may further include a controller.
  • an active species sensor for detecting the concentration of active species in the container, and a controller for controlling whether at least one of the air compressor and the plasma generating device is driven based on the concentration of the active species detected by the active species sensor.
  • a controller for controlling whether at least one of the air compressor and the plasma generating device is driven based on the concentration of the active species detected by the active species sensor.
  • it may further include a temperature sensor for detecting the temperature in the container, and a controller for controlling whether the plasma generating device is driven or the intensity of the plasma beam discharged from the plasma generating device based on the temperature detected by the temperature sensor.
  • a food processing method using an atmospheric pressure plasma generating apparatus includes the steps of extracting and discharging at least a portion of moisture contained in air in a container in which food is accommodated by an air filter, by an air compressor, generating compressed air from air from which at least a portion of moisture has been removed by an air filter, and using the compressed air generated from the air compressor as a plasma discharge gas by a plasma generating device to generate active species through plasma discharge includes steps.
  • the method may further include discharging the plasma gas including the active species into the container by the plasma generating device.
  • a food processing method using an atmospheric pressure plasma generating apparatus includes the steps of detecting, by a humidity sensor, the amount of moisture contained in air in a container, and, by a controller, based on the amount of moisture detected by the humidity sensor The method may further include controlling whether the air filter is driven.
  • detecting, by an active species sensor, a concentration of active species in the container and based on, by a controller, the concentration of active species detected by the active species sensor, at least one of an air compressor and a plasma generating device It may further include the step of controlling whether to drive.
  • detecting the temperature in the container by the temperature sensor, and by the controller, based on the temperature detected by the temperature sensor, whether the plasma generating device is driven or the intensity of the plasma beam discharged from the plasma generating device may further include the step of controlling the.
  • efficient heat treatment of food is possible by heat-treating food in powder or particle state using plasma and using less energy than conventional methods.
  • heat treatment optimized for the type of food is possible.
  • the freshness and storage period of food powder or particles can be increased by maintaining low humidity or removing moisture by removing moisture contained in the food powder or particles.
  • FIG. 1 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram schematically illustrating a plasma generating apparatus according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure.
  • references to "A and/or B" in this specification means A, or B, or A and B.
  • the upper part of a drawing may be referred to as “upper” or “upper side”, and the lower side thereof as “lower” or “lower side” of the configuration shown in the drawing.
  • a portion between the upper part and the lower part or the part other than the upper part and the lower part of the illustrated configuration may be referred to as a “side” or a “side”.
  • Relative terms such as “upper” and “upper” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
  • the left side of the drawing may be referred to as “left” or “left”, and the right side may be referred to as “right” or “right” of the configuration shown in the drawing.
  • Relative terms such as “left” and “left” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
  • a direction toward the inner space of a structure may be referred to as “inside”, and a direction protruding into the open outer space may be referred to as “outside”.
  • Relative terms such as “inside” and “outside” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
  • a part when a part is said to be connected to another part, it includes not only a case in which it is directly connected, but also a case in which another component is interposed therebetween.
  • the term 'part or portion' or 'module' means a mechanical or hardware component, a software component, or a combination thereof, and 'part' or 'module' refers to a specific role or function can be configured to perform
  • 'part' or 'module' is not meant to be limited to mechanical components or hardware or software.
  • a 'unit' or 'module' may be configured to reside in an addressable storage medium, or may be configured to execute one or more processors.
  • 'part' or 'module' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
  • Components and 'units' or 'modules' described in the present disclosure may be combined with a smaller number of components and 'units' or 'modules', or additional components and 'units' ' or 'modules'.
  • a 'system' may mean a mechanical device or an electromechanical device including one or more plasma generating devices, an air compressor, an air filter, a computing device, a container, and the like, but is not limited thereto.
  • FIG. 1 is a schematic diagram of a food processing system 100 using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure.
  • the food powder processing system 100 is a container 110 in which food 190 in the form of powder (or powder) or particles (or granules) is stored therein, contained in the air in the container 110 Produced from the air filter 120 that extracts and discharges at least a portion of moisture, the air compressor 130 that generates compressed air from the air from which at least a portion of the moisture has been removed by the air filter 120, and the air compressor 130
  • the plasma generating apparatus 140 may include a plasma generating device 140 that generates active species through plasma discharge using compressed air as a plasma discharge gas.
  • the container 110 includes a cover part 112 in which the nozzle part 142 of the plasma generating device 140 is installed, a body part 114 in which the food 190 is stored, and a body part formed in an empty cylindrical shape. and a rotating part 116 which drives to rotate 114 .
  • the cover part 112 is coupled to the body part 114 and closes the open end of the body part 114 so that the food 190 accommodated in the body part 114 does not leak to the outside.
  • the cover part 112 is disposed to be fixed, while the body part 114 is configured to be rotatable in a clockwise or counterclockwise direction about the rotation shaft 118 by the rotation part 116 .
  • one or more stirring for stirring the food (190) Wings may be installed.
  • the system 100 may be configured such that the air filter 120 is connected to one side of the container 110 so that air in the container 110 can be introduced into the air filter 120 .
  • the air filter 120 may be configured to remove at least a portion of moisture contained in the air introduced from the container 110 .
  • the air in the container 110 may be managed to maintain a constant humidity or to remove the moisture.
  • the air filter 120 may include a cooling type or dry type dehumidifier.
  • the dry dehumidifier may be configured to adsorb moisture contained in the air using a desiccant such as silica gel, alumina gel, and molecular sieves, which are porous materials. have.
  • the cooling-type dehumidifier may be configured to take advantage of the characteristic that air, which has reached a dew point due to a decrease in temperature, is changed into water by sucking air in using a fan and then passing it through a cooling device using a refrigerant.
  • Air from which moisture has been removed by the air filter 120 may be introduced into the air compressor 130 .
  • the air compressor 130 may compress the introduced air to a constant pressure and provide it to the plasma generating device 140 .
  • the air compressor 130 may include, but is not limited to, a reciprocating or piston type, a rotary screw type, or a turbo or centrifugal type compressor.
  • the plasma generating device 140 may include any type of compressor having an appropriate capacity so as to provide air of a required constant pressure.
  • the plasma generating device 140 may be an atmospheric pressure plasma generating device.
  • the plasma generating apparatus 140 may generate a plasma beam through plasma discharge using the introduced compressed air as a plasma discharge gas.
  • the temperature of the plasma beam or gas emitted from the plasma generating device 140 may be in a range from about room temperature to 600° C., but is not limited thereto, and the temperature may be adjusted according to the type of food to be processed. . For example, when the food to be processed requires relatively high heat treatment, such as coffee beans, the temperature of the plasma beam emitted from the plasma generating device 140 may be adjusted to about 200°C to 300°C.
  • the temperature of the plasma beam emitted from the plasma generating device 140 may be adjusted to about 50° C. to 100° C.
  • the plasma beam generated by the plasma generating device 140 may be discharged into the container 110 through the nozzle unit 142 attached to the inside of the container 110 .
  • the air in the container 110 and the temperature of the food 190 increase by the plasma beam discharged in this way, and accordingly, the heat treatment of the food 190 is possible.
  • the plasma generating device 140 may generate active species including ozone (O 3 ) through plasma discharge using the introduced compressed air as a plasma discharge gas.
  • Plasma gas including active species generated by the plasma generating device 140 may be discharged into the container 110 through the nozzle unit 142 attached to the inside of the container 110 . Noxious bacteria or harmful substances contained in the air inside the container 110 are removed by the plasma gas including the discharged active species, and accordingly, the freshness or storage period of the food 190 may be increased.
  • FIG. 2 is a schematic diagram of a food processing system 200 using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure. A description of the configuration corresponding to FIG. 1 among the configurations shown in FIG. 2 will be omitted.
  • the system 200 includes a container 110 , an air filter 120 , an air compressor 130 , a plasma generating device 140 , a humidity sensor 220 installed in the container 110 , and active species. Controls at least one of the air filter 120 , the air compressor 130 , and the plasma generating device 140 so that the sensor 240 and the temperature sensor 260 , and the air in the container 110 have constant humidity and concentration of active species It may include a controller 280 to In the system 200 , the controller 280 receiving a signal from the humidity sensor 220 , the active species sensor 240 and/or the temperature sensor 260 is configured to include the air filter 120 , the air compressor 130 and/or the controller 280 . By controlling the plasma generating device 140 , the humidity, the concentration of active species, and/or the temperature of the air inside the container 110 may be maintained within a predetermined numerical range.
  • the humidity sensor 220 may be installed inside the container 110 .
  • the humidity sensor 220 installed inside the container 110 may be configured to detect the moisture content or humidity of the air inside the container 110 .
  • the humidity sensor 220 may include an electrical resistance type or capacitive type humidity sensor capable of outputting an electrical signal according to humidity, but is not limited thereto.
  • the humidity sensor 220 may serve to check in real time whether the moisture amount or humidity of the air inside the container 110 is maintained within a predetermined numerical range.
  • the humidity sensor 220 may transmit an electrical signal determined according to the amount of moisture or humidity contained in the air inside the container 110 to the controller 280 .
  • the active species sensor 240 may be installed inside the container 110 .
  • the active species sensor 240 installed inside the container 110 may be configured to detect the concentration of active species (eg, O 3 , N x , etc.) in the air inside the container 110 .
  • the active species sensor 240 may include a chemical sensor capable of outputting an electrical signal by changing electrical conductivity according to adsorption or desorption of active species in a gaseous state, but is not limited thereto.
  • the active species sensor 240 may serve to confirm in real time whether the concentration of the active species in the air inside the container 110 is maintained at a concentration greater than or equal to a reference value.
  • the active species sensor 240 may transmit an electrical signal determined according to the presence or concentration of active species contained in the air inside the container 110 to the controller 280 .
  • the temperature sensor 260 may be installed inside the container 110 .
  • the temperature sensor 260 installed inside the container 110 may be configured to detect the temperature of the air inside the container 110 .
  • the temperature sensor 260 may include a contact-type temperature sensor or a non-contact temperature sensor capable of outputting an electrical signal according to temperature, but is not limited thereto.
  • the temperature sensor 260 may serve to confirm in real time whether the temperature of the air inside the container 110 (or the surface temperature of food) is maintained within a predetermined range.
  • the temperature sensor 260 may transmit an electrical signal determined according to the temperature of the air inside the container 110 to the controller 280 .
  • the controller 280 receives an electrical signal transmitted from the humidity sensor 220, the active species sensor 240 and/or the temperature sensor 260, It can be determined whether humidity, concentration of active species and/or temperature are above or below a reference value. According to the humidity, the concentration or temperature of the active species inside the container 110 determined as described above, the controller 280, the air filter 120, the air compressor 130, and the operating time of one or more of the plasma generating device (140) and the intensity of the plasma beam may be controlled.
  • the controller 280 determines that the humidity of the air inside the container 110 is equal to or greater than a reference value based on the electrical signal of the humidity sensor 220 , the controller 280 operates the air filter 120 or The driving time and/or intensity of the filter 120 may be adjusted upward.
  • the controller 280 determines that the concentration of the active species in the air inside the container 110 is equal to or less than the reference value based on the electrical signal of the active species sensor 240 , the air compressor 130 and/or the plasma The generator 140 may be operated, or the operating time and/or intensity of the air compressor 130 and/or the plasma generator 140 may be adjusted upward.
  • the controller 280 determines that the temperature of the air inside the container 110 is out of the reference range based on the electrical signal of the temperature sensor 260 , the controller 280 operates the plasma generating device 140 or generates plasma.
  • the actuation time and/or intensity of the device 140 may be adjusted upwards or downwards.
  • the controller 280 may set a reference temperature range of the air inside the container 110 based on a user input regarding the type of food to be processed through a control panel (not shown). For example, when a food to be processed requires a relatively high temperature heat treatment, such as a coffee bean, the reference temperature range of the air inside the container 110 may be set to 200°C to 300°C. In another example, when the processing target food requires a relatively low temperature heat treatment, such as pepper powder, red pepper powder, etc., the reference temperature range of the air inside the container 110 may be set to 50 °C to 100 °C.
  • the controller 280 determines that the temperature of the air inside the container 110 is out of the reference temperature range based on the electrical signal of the temperature sensor 260 . , it is possible to operate the plasma generating device 140 or to adjust the driving time and/or intensity of the plasma generating device 140 upward or downward.
  • the operation control of the air filter 120 , the operation control of the air compressor 130 and/or the operation control of the plasma generating device 140 by the controller 280 as described above may be sequentially executed. have.
  • the controller 280 may execute the operation control of the air compressor 130 and/or the plasma generating device 140 , and control the operation of these two steps can be repeated.
  • the control of the operation of the air filter 120 by the controller 280 and the control of the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280 are parallel and simultaneous. can be executed
  • only one of an operation control of the air filter 120 by the controller 280 and an operation control of the air compressor 130 and/or the plasma generating device 140 by the controller 280 may be executed have.
  • the concentration and temperature of moisture, active species contained in the internal air are maintained within an appropriate range, so that the freshness and storage period of the food 190 can be increased, or an appropriate heat treatment of the food 190 can be performed.
  • FIG. 3 is a schematic diagram of a food processing system 300 using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure. Among the configurations shown in FIG. 3 , descriptions of configurations corresponding to those of FIGS. 1 and 2 will be omitted.
  • the system 300 includes a container 310 , an air filter 120 , an air compressor 130 , a plasma generating device 140 , a humidity sensor 220 installed in the container 310 , and active species. Controls at least one of the air filter 120 , the air compressor 130 , and the plasma generating device 140 so that the sensor 240 and the temperature sensor 260 , and the air in the container 110 have constant humidity and concentration of active species It may include a controller 280 to In the system 300 , the controller 280 receiving a signal from the humidity sensor 220 , the active species sensor 240 and/or the temperature sensor 260 is configured to include the air filter 120 , the air compressor 130 and/or the controller 280 . By controlling the plasma generating device 140 , humidity, active species concentration, and/or temperature of the air inside the container 310 may be maintained within a predetermined numerical range.
  • the container 310 is formed in a nozzle mounting part 312 in which the plasma nozzle part 142 and the air nozzle part 132 of the plasma generating device 140 are installed, and an empty cylindrical or rectangular shape, so that the food 190 is provided. and a body portion 314 to be stored.
  • the nozzle mounting part 312 is coupled to the body part 314, and by forming a partition wall between the body part 314 and the nozzle mounting part 312, the food 190 accommodated in the body part 114 is transferred to the nozzle mounting part 312. It may be configured not to move to the side.
  • the food 190 may be configured to be movable so that the plasma nozzle unit 142 and the air nozzle unit 132 can contact the food 190 .
  • the nozzle mounting portion 312 may be integrally formed with the body portion 314 .
  • the food 190 is configured to be in direct contact with the plasma nozzle unit 142 and the air nozzle unit 132 without installing a partition wall for separating the space between the nozzle mounting unit 312 and the body unit 314 .
  • the container 310 including the nozzle mounting part 312 and the body part 314 may be configured to be fixed at a fixed position without being rotated.
  • the temperature inside the container 310 may be rapidly increased by the plasma beam discharged from the plasma nozzle unit 142 .
  • the system 300 including the fixedly installed container 310 may be suitable for heat treatment of granular foods such as coffee beans that require heat treatment at a relatively high temperature.
  • the system 300 may be configured such that the air filter 120 is connected to one side of the container 310 so that air in the container 310 can be introduced into the air filter 120 .
  • the air filter 120 may be configured to remove at least a portion of moisture included in the air introduced from the container 310 . According to this configuration, the air in the container 310 may be managed to maintain a constant humidity or to remove the moisture. Also, air from which moisture has been removed by the air filter 120 may be introduced into the air compressor 130 .
  • the plasma generating apparatus 140 may generate a plasma beam through plasma discharge using the introduced compressed air as a plasma discharge gas.
  • the temperature of the plasma beam or gas emitted from the plasma generating device 140 may be in a range from about room temperature to 600° C., but is not limited thereto, and the temperature may be adjusted according to the type of food to be processed.
  • the plasma beam generated by the plasma generating device 140 may be discharged into the container 110 through the plasma nozzle unit 142 attached to the inside of the container 110 .
  • the air in the container 110 and the temperature of the food 190 increase by the plasma beam discharged in this way, and accordingly, the heat treatment of the food 190 is possible.
  • the air compressor 130 may compress the introduced air to a constant pressure and provide it to the main body 314 of the container 310 through the air nozzle unit 132 .
  • the powder or particles of the food 190 may be appropriately stirred by the air pressure injected into the body portion 314 through the air nozzle portion 132 .
  • the air in the body 314 heated by the plasma beam discharged from the plasma nozzle 142 by the air pressure injected into the body 314 through the air nozzle 132 is smoothly flowed. temperature can be controlled to an appropriate level.
  • the controller 280 receives an electrical signal transmitted from the humidity sensor 220, the active species sensor 240 and/or the temperature sensor 260, It can be determined whether humidity, concentration of active species and/or temperature are above or below a reference value. According to the humidity, the concentration or temperature of the active species inside the container 310 determined as described above, the controller 280, the air filter 120, the air compressor 130, and the operating time of one or more of the plasma generating device 140 and the intensity of the plasma beam may be controlled. For example, the controller 280, based on the electrical signal of the humidity sensor 220, when determining that the humidity of the air inside the container 310 is equal to or greater than a reference value, operates the air filter 120 or The driving time and/or intensity of the filter 120 may be adjusted upward.
  • the air compressor 130 and/or the plasma The generator 140 may be operated, or the operating time and/or intensity of the air compressor 130 and/or the plasma generator 140 may be adjusted upward.
  • the controller 280 determines that the temperature of the air inside the container 310 is out of the reference range based on the electrical signal of the temperature sensor 260 , the plasma generating device 140 and/or the air compressor ( 130) or the operating time and/or intensity of the plasma generating device 140 and/or the air compressor 130 may be adjusted upward or downward.
  • the operation control of the air filter 120 , the operation control of the air compressor 130 and/or the operation control of the plasma generating device 140 by the controller 280 as described above may be sequentially executed. have.
  • the controller 280 may execute the operation control of the air compressor 130 and/or the plasma generating device 140 , and control the operation of these two steps can be repeated.
  • the control of the operation of the air filter 120 by the controller 280 and the control of the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280 are parallel and simultaneous. can be executed
  • only one of an operation control of the air filter 120 by the controller 280 and an operation control of the air compressor 130 and/or the plasma generating device 140 by the controller 280 may be executed have.
  • the container 310 is ), the concentration and temperature of moisture, active species contained in the internal air are maintained within an appropriate range, so that the freshness and storage period of the food 190 can be increased, or an appropriate heat treatment of the food 190 can be performed.
  • the food 190 is properly stirred or the internal temperature is controlled to an appropriate level, so that the heat treatment is performed to an even degree throughout the food 190. can be executed
  • FIG. 4 is a schematic diagram schematically illustrating a plasma generating apparatus 400 according to an embodiment of the present disclosure.
  • the plasma generating apparatus 400 illustrated in FIG. 4 may be used as the plasma generating apparatus 140 of the systems 100 , 200 , and 300 illustrated in FIGS. 1 to 3 , for example.
  • the plasma generating apparatus 400 may be an atmospheric pressure plasma generating apparatus.
  • the plasma generating apparatus 400 may include a generator, a high voltage transformer, electrodes generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment.
  • the nozzle part 420 from which plasma is discharged, the nozzle part 420 is detached from one side, and a gas supply pipe (not shown) to which the working gas (or compressed air) is supplied from the other side.
  • a cable connected to a high voltage transformer may include a body portion 440 to which the detachable body portion 440 is detached.
  • the high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body portion 440, and a high frequency discharge in the form of an electric arc is generated between the electrodes by the applied voltage.
  • a high frequency discharge in the form of an electric arc is generated between the electrodes by the applied voltage.
  • FIG. 5 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to an embodiment of the present disclosure.
  • the food processing method 500 shown in FIG. 5 uses the food processing system 100 shown in FIG. 1 , and the components of the food processing method 500 are the food processing system 100 shown in FIG. 1 . may correspond to the components of In addition, among the components, for components having the same or similar reference numbers or names as those described in FIG. 1 described above, detailed descriptions may be omitted to avoid repetition, and only changes or additional parts will be described. can
  • the food processing method 500 may be initiated by extracting and discharging at least a portion of the moisture contained in the air in the container in which the food in powder or particle form is accommodated by an air filter ( S520 ). This is to reduce the amount of moisture exceeding the standard value in the container so that the air in the container maintains a constant humidity.
  • step S540 compressed air is generated from the air from which at least a portion of moisture has been removed by the air filter by the air compressor, which is to provide air at a constant pressure required by the plasma generating device.
  • step S560 the plasma generating device generates active species including ozone (O 3 ) together with a plasma beam through plasma discharge using compressed air generated from an air compressor as a plasma discharge gas.
  • active species including ozone (O 3 ) together with a plasma beam through plasma discharge using compressed air generated from an air compressor as a plasma discharge gas.
  • step (S560) the plasma beam or gas is discharged into the container, heat treatment is performed on the food inside the container, and harmful bacteria or harmful substances contained in the air inside the container are removed, so that the freshness of the food contained in the container or the The storage period can be increased, and heat treatment processing for food can be carried out.
  • FIG. 6 is a flowchart of a food powder processing method using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure.
  • the food processing method 600 illustrated in FIG. 6 may correspond to at least some of the steps of the food powder processing method 500 illustrated in FIG. 5 .
  • the steps S630 and S660 of the food processing method 600 shown in FIG. 6 substantially correspond to the steps S520, S540 and S560 of the food processing method 500 shown in FIG. 5 .
  • the food processing method 600 may start with a step ( S610 ) of detecting the amount of moisture contained in the air in the container by a humidity sensor.
  • step S620 the controller controls whether the air filter is driven or not based on the amount of moisture detected by the humidity sensor. For example, the controller determines whether the amount of moisture detected by the humidity sensor is greater than or equal to a preset reference value, and if the amount of moisture detected by the humidity sensor is greater than or equal to the reference value, the air filter is driven, and the amount of moisture detected by the humidity sensor is greater than the reference value If it is less than, the air filter may not be driven.
  • step S630 the controller operates the air filter to extract and discharge at least a portion of the moisture contained in the air in the container in which the food is accommodated by the air filter.
  • the active species sensor Detects the concentration of active species (eg, O 3 , N x , etc.) contained in the air in the container.
  • step S650 the controller determines whether the detected active species concentration is equal to or less than a reference value, and controls whether at least one of the air compressor and the plasma generating device is driven based on the active species concentration detected by the active species sensor. For example, if the concentration of the active species is determined to be less than or equal to the reference value in step S650 , the controller operates at least one of the air compressor and the plasma generating device in step S660 to generate the active species in the container. On the other hand, if it is determined that the concentration of the active species exceeds the reference value in step S650, step S660 is not performed by the controller.
  • step S650 After the active species concentration detected by the active species sensor exceeds the reference value in step S650 or at least one of the air compressor and the plasma generating device is operated in step S660 to generate active species in the container, step S670 , a temperature sensor detects the temperature in the container.
  • step S680 the controller determines whether the detected temperature in the container is within a reference range, and based on the detected temperature by the temperature sensor, whether the plasma generating device and/or the air compressor are driven or plasma discharged from the plasma generating device Controls the intensity of the beam. For example, if it is determined in step S680 that the temperature does not reach the reference range, in step S690, the controller operates the plasma generating device to increase the intensity of the plasma beam or increase the operating time to increase the temperature in the container. increase On the other hand, if it is determined in step S680 that the temperature exceeds the reference range, in step S690, the controller operates the plasma generating device to reduce the intensity of the plasma beam or reduce the operating time to reduce the temperature in the container. . Alternatively or additionally, in step S690 , the controller operates the air compressor to increase the intensity or time for injecting compressed air into the container to decrease the temperature in the container.
  • the additional operation control steps ( S670 to S690 ) of the air compressor and/or the plasma generating device by the method may be sequentially executed. For example, after executing the steps S610 to S630, after executing the steps S640 to S660, the steps S670 to S690 may be executed, and these steps may be repeatedly executed.
  • the operation control steps (S610 to S630) of the air filter by the controller, and the operation control steps (S640 to S660) and steps (S670 to S690) of the air compressor and/or the plasma generating device by the controller ) can be executed simultaneously in parallel.
  • the operation control steps (S610 to S630) of the air filter by the controller, and the operation control steps (S640 to S660) and steps (S670 to S670) of the air compressor and/or plasma generating device by the controller S690), any one of them may be executed.

Abstract

The present disclosure provides a food processing system and method using an atmospheric-pressure plasma generator. The food processing system using an atmospheric-pressure plasma generator comprises: a container in which food is accommodated; an air filter which extracts at least a part of moisture contained in the air within the container and discharges same out of the container; an air compressor which generates compressed air from the air from which at least a part of moisture contained therein has been removed by the air filter; and a plasma generator which generates a plasma beam containing active species through a plasma discharge by using the compressed air generated from the air compressor as a plasma discharge gas.

Description

대기압 플라즈마 발생 장치를 이용한 식품 가공 시스템 및 방법Food processing system and method using atmospheric pressure plasma generator
본 개시는 대기압 플라즈마 발생 장치를 이용한 식품 가공 시스템 및 방법에 관한 것으로, 보다 상세하게는, 플라즈마 발생 장치를 이용하여 파우더 또는 입자 상태인 식품의 열처리 또는 살균처리가 가능한 식품 가공 시스템 및 방법에 관한 것이다.The present disclosure relates to a food processing system and method using an atmospheric pressure plasma generating device, and more particularly, to a food processing system and method capable of heat-treating or sterilizing food in powder or particle state using a plasma generating device. .
플라즈마(Plasma)는 전자, 중성입자 등의 이온화된 가스로서, 플라즈마 가스의 일부분은 높은 에너지를 갖고 있어 물질 표면을 변화시킬 수 있다. 즉, 플라즈마는 다른 재료의 표면과 직접 반응하거나 탄성 충돌에 의해 반응할 수 있다. 플라즈마 발생 장치는, 주로 압축된 공기 또는 질소 가스가 고주파수, 고전압의 전하와 교차하여 플라즈마를 발생하도록 구성된 튜브를 포함한다. 최근에는 저압 또는 진공 플라즈마를 대신하여 대기압 플라즈마 장치를 이용하는 경우가 증가해 오고 있다. 대기압 플라즈마 장치의 경우, 저온공정으로 다양한 재료와 기판에 적용할 수 있고, 진공 용기나 진공 배기 장치를 필요로 하지 않기 때문에 처리속도가 빠르고 경제적이다. 또한, 대기압 플라즈마를 이용한 증착법을 이용할 경우 부착력이 좋고 증착 온도가 낮아지기 때문에, 종래의 표면처리 공정, 반도체 공정, 디스플레이 공정에서, 고온 가열에 수반되는 변형 또는 변성을 줄일 수 있는 등의 장점을 활용하여 비교적 다양한 산업에서 사용되고 있다.Plasma is an ionized gas such as electrons and neutral particles, and a part of the plasma gas has high energy and can change the surface of a material. That is, the plasma can react directly with the surface of another material or by elastic collision. The plasma generating apparatus mainly includes a tube configured to generate plasma by intersecting a high-frequency, high-voltage electric charge with compressed air or nitrogen gas. Recently, the case of using an atmospheric pressure plasma apparatus instead of a low pressure or vacuum plasma has been increasing. In the case of an atmospheric pressure plasma apparatus, it can be applied to various materials and substrates through a low-temperature process, and since it does not require a vacuum container or a vacuum evacuation device, the processing speed is fast and economical. In addition, since the deposition method using atmospheric pressure plasma has good adhesion and lower deposition temperature, in the conventional surface treatment process, semiconductor process, and display process, deformation or denaturation accompanying high-temperature heating can be reduced. It is used in a relatively wide variety of industries.
한편, 분말형 또는 입자형 식품(스프류, 향신료, 커피 분말과 같은 각종 분말류, 커피빈과 같은 알갱이 또는 입자류 등)에 사용되는 가열 처리 또는 살균 처리에는, 초고온 증기 살균, 전자파 조사, 훈증 처리, 방사선 조사, 고주파 가열법, 자외선 조사 방식, 전기적인 가열기를 이용한 볶음 처리 등이 있다. 그러나, 분말형 또는 입자형 식품의 가공 중에 발생하는 발암성 물질, 식품의 변질 및 영양소 파괴 등의 이유로 이러한 방식의 사용에 많은 제약이 수반되며, 해당 식품 가공에 많은 에너지와 시간이 소요되는 문제점이 있다.On the other hand, heat treatment or sterilization treatment used in powder or granular food (various powders such as soups, spices, coffee powder, grains or particles such as coffee beans, etc.) includes ultra-high temperature steam sterilization, electromagnetic wave irradiation, fumigation There are treatment, radiation irradiation, high-frequency heating method, ultraviolet irradiation method, stir-frying treatment using an electric heater, and the like. However, there are many restrictions on the use of this method due to carcinogenic substances generated during the processing of powder or granular food, deterioration of food, and destruction of nutrients, and the problem that a lot of energy and time is required for processing the food have.
본 개시는 이상 설명한 바와 같은 종래기술의 문제점을 해결하기 위해, 플라즈마 발생 장치를 이용하여 식품의 가열 처리 또는 향균 처리가 가능한 식품 파우더 가공 시스템 및 방법을 제공한다.In order to solve the problems of the prior art as described above, the present disclosure provides a food powder processing system and method capable of heat treatment or antibacterial treatment of food using a plasma generating device.
본 개시의 일 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 시스템은, 식품이 수용되는 컨테이너, 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 공기 필터, 공기 필터에 의해 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하는 공기 압축기, 및 공기 압축기로부터 생성되는 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 활성종을 생성하는 플라즈마 발생 장치를 포함한다.A food processing system using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure includes a container in which food is accommodated, an air filter that extracts and discharges at least a portion of moisture contained in the air in the container, and at least one of the moisture by the air filter an air compressor for generating compressed air from air from which a portion has been removed, and a plasma generating device for generating active species through plasma discharge using compressed air generated from the air compressor as a plasma discharge gas.
일 실시예에 따르면, 플라즈마 발생 장치는, 압축 공기가 공급되는 가스 공급관, 및 활성종을 포함하는 플라즈마 가스가 토출되는 노즐부를 포함할 수 있다.According to an embodiment, the plasma generating apparatus may include a gas supply pipe to which compressed air is supplied, and a nozzle unit through which the plasma gas including the active species is discharged.
본 개시의 다른 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 시스템은, 컨테이너 내의 공기에 포함된 수분량을 검출하는 습도 센서, 및 습도 센서가 검출한 수분량에 기초하여 공기 필터의 구동 여부를 제어하는 제어기를 더 포함할 수 있다.A food processing system using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure includes a humidity sensor detecting an amount of moisture contained in air in a container, and controlling whether an air filter is driven based on the amount of moisture detected by the humidity sensor It may further include a controller.
다른 실시예에 따르면, 컨테이너 내의 활성종의 농도를 검출하는 활성종 센서, 및 활성종 센서가 검출한 활성종의 농도에 기초하여 공기 압축기 및 플라즈마 발생 장치 중 적어도 하나의 구동 여부를 제어하는 제어기를 더 포함할 수 있다.According to another embodiment, there is provided an active species sensor for detecting the concentration of active species in the container, and a controller for controlling whether at least one of the air compressor and the plasma generating device is driven based on the concentration of the active species detected by the active species sensor. may include more.
다른 실시예에 따르면, 컨테이너 내의 온도를 검출하는 온도 센서, 및 온도 센서가 검출한 온도에 기초하여 플라즈마 발생 장치의 구동 여부 또는 플라즈마 발생 장치로부터 토출되는 플라즈마 빔의 강도를 제어하는 제어기를 더 포함할 수 있다.According to another embodiment, it may further include a temperature sensor for detecting the temperature in the container, and a controller for controlling whether the plasma generating device is driven or the intensity of the plasma beam discharged from the plasma generating device based on the temperature detected by the temperature sensor. can
본 개시의 일 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법은, 공기 필터에 의해, 식품이 수용되는 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 단계, 공기 압축기에 의해, 공기 필터에 의해 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하는 단계, 및 플라즈마 발생 장치에 의해, 공기 압축기로부터 생성되는 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 활성종을 생성하는 단계를 포함한다.A food processing method using an atmospheric pressure plasma generating apparatus according to an embodiment of the present disclosure includes the steps of extracting and discharging at least a portion of moisture contained in air in a container in which food is accommodated by an air filter, by an air compressor, generating compressed air from air from which at least a portion of moisture has been removed by an air filter, and using the compressed air generated from the air compressor as a plasma discharge gas by a plasma generating device to generate active species through plasma discharge includes steps.
일 실시예에 따르면, 플라즈마 발생 장치에 의해, 활성종이 포함된 플라즈마 가스를 컨테이너 내부로 토출하는 단계를 더 포함할 수 있다.According to an embodiment, the method may further include discharging the plasma gas including the active species into the container by the plasma generating device.
본 개시의 다른 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법은, 습도 센서에 의해, 컨테이너 내의 공기에 포함된 수분량을 검출하는 단계, 및 제어기에 의해, 습도 센서가 검출한 수분량에 기초하여 공기 필터의 구동 여부를 제어하는 단계를 더 포함할 수 있다.A food processing method using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure includes the steps of detecting, by a humidity sensor, the amount of moisture contained in air in a container, and, by a controller, based on the amount of moisture detected by the humidity sensor The method may further include controlling whether the air filter is driven.
다른 실시예에 따르면, 활성종 센서에 의해, 컨테이너 내의 활성종의 농도를 검출하는 단계, 및 제어기에 의해, 활성종 센서가 검출한 활성종의 농도에 기초하여 공기 압축기 및 플라즈마 발생 장치 중 적어도 하나의 구동 여부를 제어하는 단계를 더 포함할 수 있다.According to another embodiment, detecting, by an active species sensor, a concentration of active species in the container, and based on, by a controller, the concentration of active species detected by the active species sensor, at least one of an air compressor and a plasma generating device It may further include the step of controlling whether to drive.
다른 실시예에 따르면, 온도 센서에 의해, 컨테이너 내의 온도를 검출하는 단계, 및 제어기에 의해, 온도 센서가 검출한 온도에 기초하여 플라즈마 발생 장치의 구동 여부 또는 플라즈마 발생 장치로부터 토출되는 플라즈마 빔의 강도를 제어하는 단계를 더 포함할 수 있다.According to another embodiment, detecting the temperature in the container by the temperature sensor, and by the controller, based on the temperature detected by the temperature sensor, whether the plasma generating device is driven or the intensity of the plasma beam discharged from the plasma generating device It may further include the step of controlling the.
본 개시의 다양한 실시예들에 따르면, 플라즈마를 이용하여 파우더 또는 입자 상태의 식품을 열처리하여 기존 방식에 비해 적은 에너지를 사용함으로써, 효율적인 식품 열처리가 가능하다. 또한, 식품의 종류에 따라 플라즈마 빔의 세기 및/또는 공기 분사량을 조절함으로써, 식품의 종류에 최적화된 열처리가 가능하다.According to various embodiments of the present disclosure, efficient heat treatment of food is possible by heat-treating food in powder or particle state using plasma and using less energy than conventional methods. In addition, by adjusting the intensity of the plasma beam and/or the amount of air injection according to the type of food, heat treatment optimized for the type of food is possible.
또한, 본 개시의 다양한 실시예들에 따르면, 식품 파우더 또는 입자에 포함된 수분을 제거함으로써 습도를 낮게 유지하거나 습기를 제거함으로써, 파우더 또는 입자 상태의 식품의 신선도와 보관 기간을 증가시킬 수 있다.In addition, according to various embodiments of the present disclosure, the freshness and storage period of food powder or particles can be increased by maintaining low humidity or removing moisture by removing moisture contained in the food powder or particles.
또한, 본 개시의 다양한 실시예들에 따르면, 식품 파우더 또는 입자의 습도를 제거함과 동시에 살균 또는 소독 효과가 있는 플라즈마 가스를 발생시킴으로써, 식품의 신선도와 보관 기간을 더욱 증가시켜 식품의 상품성을 개선할 수 있다.In addition, according to various embodiments of the present disclosure, by generating a plasma gas having a sterilizing or disinfecting effect while removing the humidity of food powder or particles, it is possible to further increase the freshness and storage period of food to improve the marketability of food. can
본 개시의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
본 개시의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이며, 여기서 유사한 참조 번호는 유사한 요소들을 나타내지만, 이에 한정되지는 않는다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present disclosure will be described with reference to the accompanying drawings described below, in which like reference numerals denote like elements, but are not limited thereto.
도 1은 본 개시의 일 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템의 개략도이다.1 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure.
도 2는 본 개시의 다른 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템의 개략도이다.2 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure.
도 3은 본 개시의 또 다른 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템의 개략도이다.3 is a schematic diagram of a food processing system using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure.
도 4는 본 개시의 일 실시예에 따른 플라즈마 발생 장치를 개략적으로 나타낸 개략도이다.4 is a schematic diagram schematically illustrating a plasma generating apparatus according to an embodiment of the present disclosure.
도 5는 본 개시의 일 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법의 흐름도이다.5 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to an embodiment of the present disclosure.
도 6은 본 개시의 다른 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법의 흐름도이다.6 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.Hereinafter, specific contents for carrying out the present disclosure will be described in detail with reference to the accompanying drawings. However, in the following description, if there is a risk of unnecessarily obscuring the gist of the present disclosure, detailed descriptions of well-known functions or configurations will be omitted.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응되는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.In the accompanying drawings, the same or corresponding components are assigned the same reference numerals. In addition, in the description of the embodiments below, overlapping description of the same or corresponding components may be omitted. However, even if descriptions regarding components are omitted, it is not intended that such components are not included in any embodiment.
본 개시에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다. 본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서, 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.Terms used in the present disclosure will be briefly described, and the disclosed embodiments will be described in detail. Terms used in this specification have been selected as currently widely used general terms as possible while considering the functions in the present disclosure, but these may vary depending on the intention or precedent of a person skilled in the art, the emergence of new technology, and the like. In addition, in a specific case, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in detail in the description of the corresponding invention. Therefore, the terms used in the present disclosure should be defined based on the meaning of the term and the content throughout the present disclosure, rather than the simple name of the term.
본 개시에서, 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한, 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다.In this disclosure, expressions in the singular include plural expressions unless the context clearly dictates the singular. Also, the plural expression includes the singular expression unless the context clearly dictates the plural.
본 개시에서, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.In the present disclosure, when a part includes a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 명세서에서 "A 및/또는 B"의 기재는 A, 또는 B, 또는 A 및 B를 의미한다.Reference to "A and/or B" in this specification means A, or B, or A and B.
본 개시의 실시예들을 상술하기에 앞서, 도면의 위쪽은 그 도면에 도시된 구성의 "상부" 또는 "상측", 그 아래쪽은 "하부" 또는 "하측"이라고 지칭할 수 있다. 또한, 도면에 있어서 도시된 구성의 상부와 하부의 사이 또는 상부와 하부를 제외한 나머지 부분은 "측부" 또는 "측면"이라고 지칭할 수 있다. 이러한 "상부", "상측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.Prior to describing the embodiments of the present disclosure in detail, the upper part of a drawing may be referred to as "upper" or "upper side", and the lower side thereof as "lower" or "lower side" of the configuration shown in the drawing. In addition, in the drawings, a portion between the upper part and the lower part or the part other than the upper part and the lower part of the illustrated configuration may be referred to as a “side” or a “side”. Relative terms such as “upper” and “upper” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
본 개시의 실시예들에서 도면의 왼쪽은 그 도면에 도시된 구성의 "좌" 또는 "좌측", 그 오른쪽은 "우" 또는 "우측" 이라고 지칭할 수 있다. 이러한 "좌", "좌측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.In embodiments of the present disclosure, the left side of the drawing may be referred to as “left” or “left”, and the right side may be referred to as “right” or “right” of the configuration shown in the drawing. Relative terms such as “left” and “left” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
본 개시에서, 한 구조물의 내부 공간으로 향하는 방향을 "내측", 개방된 외부 공간으로 돌출된 방향을 "외측"이라고 지칭할 수 있다. 이러한 "내측", "외측" 등과 같은 상대적인 용어는, 도면에 도시된 구성들 간의 관계를 설명하기 위하여 사용될 수 있으며, 본 개시는 그러한 용어에 의해 한정되지 않는다.In the present disclosure, a direction toward the inner space of a structure may be referred to as “inside”, and a direction protruding into the open outer space may be referred to as “outside”. Relative terms such as “inside” and “outside” may be used to describe the relationship between the components shown in the drawings, and the present disclosure is not limited by such terms.
본 명세서에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우 뿐 아니라, 그 중간에 다른 구성을 사이에 두고 연결되어 있는 경우도 포함한다.In the present specification, when a part is said to be connected to another part, it includes not only a case in which it is directly connected, but also a case in which another component is interposed therebetween.
본 개시에서, 용어 '부(part 또는 portion)' 또는 '모듈(module)'은 기계적 또는 하드웨어 구성요소, 소프트웨어 구성요소 또는 이들의 조합을 의미하며, '부' 또는 '모듈'은 특정 역할이나 기능을 수행하기 위해 구성될 수 있다. 그렇지만 '부' 또는 '모듈'은 기계적 구성요소 또는 하드웨어 또는 소프트웨어에 한정되는 의미는 아니다. '부' 또는 '모듈'은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고, 하나 또는 그 이상의 프로세서들을 실행시키도록 구성될 수도 있다. 따라서, 일 예로서 '부' 또는 '모듈'은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 본 개시에서 설명되는 구성요소들과 '부' 또는 '모듈'들은 그 내부에서 제공되는 기능은 더 작은 수의 구성요소들 및 '부' 또는 '모듈'들로 결합되거나 추가적인 구성요소들과 '부' 또는 '모듈'들로 더 분리될 수 있다.In the present disclosure, the term 'part or portion' or 'module' means a mechanical or hardware component, a software component, or a combination thereof, and 'part' or 'module' refers to a specific role or function can be configured to perform However, 'part' or 'module' is not meant to be limited to mechanical components or hardware or software. A 'unit' or 'module' may be configured to reside in an addressable storage medium, or may be configured to execute one or more processors. Thus, as an example, 'part' or 'module' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, Includes procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables. Components and 'units' or 'modules' described in the present disclosure may be combined with a smaller number of components and 'units' or 'modules', or additional components and 'units' ' or 'modules'.
본 개시에서, '시스템'은 하나 이상의 플라즈마 발생 장치, 공기 압축기, 공기 필터, 컴퓨팅 장치, 컨테이너 등을 포함하는 기계적인 장치 또는 전자 기계적인 장치를 의미할 수 있으나, 이에 한정되는 것은 아니다.In the present disclosure, a 'system' may mean a mechanical device or an electromechanical device including one or more plasma generating devices, an air compressor, an air filter, a computing device, a container, and the like, but is not limited thereto.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 통상의 기술자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.Advantages and features of the disclosed embodiments, and methods of achieving them, will become apparent with reference to the embodiments described below in conjunction with the accompanying drawings. However, the present disclosure is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the present disclosure to be complete, and the present disclosure provides those skilled in the art with the scope of the invention. It is provided for complete information only.
도 1은 본 개시의 일 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템(100)의 개략도이다.1 is a schematic diagram of a food processing system 100 using an atmospheric pressure plasma generating device according to an embodiment of the present disclosure.
도시된 바와 같이, 식품 파우더 가공 시스템(100)은, 파우더(또는 분말) 또는 입자(또는 알갱이) 형태의 식품(190)이 내부에 보관되는 컨테이너(110), 컨테이너(110) 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 공기 필터(120), 공기 필터(120)에 의해 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하는 공기 압축기(130), 및 공기 압축기(130)로부터 생성되는 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 활성종을 생성하는 플라즈마 발생 장치(140)를 포함할 수 있다.As shown, the food powder processing system 100 is a container 110 in which food 190 in the form of powder (or powder) or particles (or granules) is stored therein, contained in the air in the container 110 Produced from the air filter 120 that extracts and discharges at least a portion of moisture, the air compressor 130 that generates compressed air from the air from which at least a portion of the moisture has been removed by the air filter 120, and the air compressor 130 The plasma generating apparatus 140 may include a plasma generating device 140 that generates active species through plasma discharge using compressed air as a plasma discharge gas.
컨테이너(110)는, 플라즈마 발생 장치(140)의 노즐부(142)가 설치되는 덮개부(112), 내부가 빈 원통 형상으로 형성되어 식품(190)이 보관되는 본체부(114), 본체부(114)를 회전시키도록 구동하는 회전부(116)를 포함한다. 덮개부(112)는 본체부(114)와 결합되어, 본체부(114)의 개방된 일단을 밀폐시킴으로써 본체부(114)에 수용된 식품(190)이 외부로 누출되지 않도록 구성된다. 또한, 덮개부(112)는 고정되도록 배치되는 반면, 본체부(114)는 회전부(116)에 의해 회전축(118)을 중심으로 시계방향 또는 반시계반향으로 회전 가능하도록 구성된다.The container 110 includes a cover part 112 in which the nozzle part 142 of the plasma generating device 140 is installed, a body part 114 in which the food 190 is stored, and a body part formed in an empty cylindrical shape. and a rotating part 116 which drives to rotate 114 . The cover part 112 is coupled to the body part 114 and closes the open end of the body part 114 so that the food 190 accommodated in the body part 114 does not leak to the outside. In addition, the cover part 112 is disposed to be fixed, while the body part 114 is configured to be rotatable in a clockwise or counterclockwise direction about the rotation shaft 118 by the rotation part 116 .
또한, 본체부(114) 내에는, 본체부(114)가 회전되는 동안에 식품(190)이 전체적으로 노즐부(142)로부터 토출되는 플라즈마 빔에 노출될 수 있도록 식품(190)을 교반시키는 하나 이상의 교반 날개(미도시)가 설치될 수 있다.In addition, in the body portion 114, while the body portion 114 is rotated, the food 190 as a whole is exposed to the plasma beam discharged from the nozzle portion 142, one or more stirring for stirring the food (190) Wings (not shown) may be installed.
시스템(100)은, 컨테이너(110)의 일 측면에 공기 필터(120)가 연결되어, 컨테이너(110) 내의 공기가 공기 필터(120)로 유입될 수 있도록 구성될 수 있다. 공기 필터(120)는 컨테이너(110)로부터 유입된 공기 중에 포함된 수분의 적어도 일부를 제거하도록 구성될 수 있다. 이러한 구성에 따라 컨테이너(110) 내의 공기가 일정한 습도를 유지하거나 습기가 제거되도록 관리될 수 있다. 일 실시예에서 공기 필터(120)는 냉각식 또는 건조식 제습기를 포함할 수 있다. 예를 들어, 건조식 제습기는, 다공성 물질인 실리카겔(silica gel), 알루미나겔(alumina gel), 몰레큘러시브(molecular sieves)와 같은 흡습제를 이용하여 공기 중에 포함된 수분을 흡착하도록 구성될 수 있다. 다른 예에서, 냉각식 제습기는, 공기를 팬을 이용하여 빨아들인 뒤 냉매를 이용한 냉각장치를 통과시킴으로써, 온도가 낮아져 이슬점에 도달한 공기가 물로 변하는 특성을 이용하도록 구성될 수 있다.The system 100 may be configured such that the air filter 120 is connected to one side of the container 110 so that air in the container 110 can be introduced into the air filter 120 . The air filter 120 may be configured to remove at least a portion of moisture contained in the air introduced from the container 110 . According to this configuration, the air in the container 110 may be managed to maintain a constant humidity or to remove the moisture. In an embodiment, the air filter 120 may include a cooling type or dry type dehumidifier. For example, the dry dehumidifier may be configured to adsorb moisture contained in the air using a desiccant such as silica gel, alumina gel, and molecular sieves, which are porous materials. have. In another example, the cooling-type dehumidifier may be configured to take advantage of the characteristic that air, which has reached a dew point due to a decrease in temperature, is changed into water by sucking air in using a fan and then passing it through a cooling device using a refrigerant.
공기 필터(120)에 의해 수분이 제거된 공기는 공기 압축기(130)로 유입될 수 있다. 공기 압축기(130)는 유입된 공기를 일정한 압력으로 압축하여 플라즈마 발생 장치(140)로 제공할 수 있다. 일 실시예에서, 공기 압축기(130)는, 왕복식(reciprocating or piston type), 스크류식(rotary screw type), 또는 터보식(turbo or centrifugal type) 압축기를 포함할 수 있으나, 이에 한정되는 것은 아니며, 플라즈마 발생 장치(140)가 요구하는 일정한 압력의 공기를 제공할 수 있도록 적절한 용량을 갖는 임의의 종류의 압축기를 포함할 수 있다.Air from which moisture has been removed by the air filter 120 may be introduced into the air compressor 130 . The air compressor 130 may compress the introduced air to a constant pressure and provide it to the plasma generating device 140 . In an embodiment, the air compressor 130 may include, but is not limited to, a reciprocating or piston type, a rotary screw type, or a turbo or centrifugal type compressor. , the plasma generating device 140 may include any type of compressor having an appropriate capacity so as to provide air of a required constant pressure.
일 실시예에서, 플라즈마 발생 장치(140)는 대기압 플라즈마 발생 장치일 수 있다. 플라즈마 발생 장치(140)는 유입된 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 플라즈마 빔을 생성할 수 있다. 또한, 플라즈마 발생 장치(140)로부터 방출되는 플라즈마 빔 또는 가스의 온도는 대략 상온에서 600℃까지의 범위 내일 수 있으나, 이에 한정되는 것은 아니며, 가공 대상 식품의 종류에 따라 그 온도가 조절될 수 있다. 예를 들어, 가공 대상 식품이 커피 빈과 같이 비교적 고온의 열처리가 필요한 경우, 플라즈마 발생 장치(140)로부터 방출되는 플라즈마 빔의 온도는 약 200℃ 내지 300℃로 조절될 수 있다. 다른 예에서, 가공 대상 식품이 후추가루, 고추가루 등 과 같이 비교적 저온의 열처리가 필요한 경우, 플라즈마 발생 장치(140)로부터 방출되는 플라즈마 빔의 온도는 약 50℃ 내지 100℃로 조절될 수 있다. 플라즈마 발생 장치(140)에 의해 생성된 플라즈마 빔은 컨테이너(110) 내부에 부착된 노즐부(142)를 통해 컨테이너(110) 내부로 토출될 수 있다. 이와 같이 토출된 플라즈마 빔에 의해 컨테이너(110) 내부의 공기 및 식품(190)의 온도가 증가하며, 이에 따라 식품(190)의 열처리가 가능하다.In an embodiment, the plasma generating device 140 may be an atmospheric pressure plasma generating device. The plasma generating apparatus 140 may generate a plasma beam through plasma discharge using the introduced compressed air as a plasma discharge gas. In addition, the temperature of the plasma beam or gas emitted from the plasma generating device 140 may be in a range from about room temperature to 600° C., but is not limited thereto, and the temperature may be adjusted according to the type of food to be processed. . For example, when the food to be processed requires relatively high heat treatment, such as coffee beans, the temperature of the plasma beam emitted from the plasma generating device 140 may be adjusted to about 200°C to 300°C. In another example, when a relatively low temperature heat treatment is required for the food to be processed, such as black pepper powder, red pepper powder, etc., the temperature of the plasma beam emitted from the plasma generating device 140 may be adjusted to about 50° C. to 100° C. The plasma beam generated by the plasma generating device 140 may be discharged into the container 110 through the nozzle unit 142 attached to the inside of the container 110 . The air in the container 110 and the temperature of the food 190 increase by the plasma beam discharged in this way, and accordingly, the heat treatment of the food 190 is possible.
일 실시예에서, 플라즈마 발생 장치(140)는 유입된 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 오존(O 3)을 포함하는 활성종들을 생성할 수 있다. 플라즈마 발생 장치(140)에 의해 생성된 활성종들을 포함하는 플라즈마 가스는 컨테이너(110) 내부에 부착된 노즐부(142)를 통해 컨테이너(110) 내부로 토출될 수 있다. 이와 같이 토출된 활성종들을 포함하는 플라즈마 가스에 의해 컨테이너(110) 내부의 공기 중에 포함된 유해균 또는 유해물질이 제거되며, 이에 따라 식품(190)의 신선도나 보관 기간이 증가할 수 있다.In an embodiment, the plasma generating device 140 may generate active species including ozone (O 3 ) through plasma discharge using the introduced compressed air as a plasma discharge gas. Plasma gas including active species generated by the plasma generating device 140 may be discharged into the container 110 through the nozzle unit 142 attached to the inside of the container 110 . Noxious bacteria or harmful substances contained in the air inside the container 110 are removed by the plasma gas including the discharged active species, and accordingly, the freshness or storage period of the food 190 may be increased.
도 2는 본 개시의 다른 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템(200)의 개략도이다. 도 2에 개시된 구성 중 도 1과 대응하는 구성에 대해서는 설명을 생략한다.2 is a schematic diagram of a food processing system 200 using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure. A description of the configuration corresponding to FIG. 1 among the configurations shown in FIG. 2 will be omitted.
도시된 바와 같이, 시스템(200)은, 컨테이너(110), 공기 필터(120), 공기 압축기(130), 플라즈마 발생 장치(140), 컨테이너(110) 내에 설치되는 습도 센서(220), 활성종 센서(240) 및 온도 센서(260), 및 컨테이너(110) 내의 공기가 일정한 습도와 활성종 농도를 갖도록 공기 필터(120), 공기 압축기(130) 및 플라즈마 발생 장치(140) 중 하나 이상을 제어하는 제어기(280)를 포함할 수 있다. 시스템(200)에서, 습도 센서(220), 활성종 센서(240) 및/또는 온도 센서(260)로부터 신호를 전달받은 제어기(280)가 공기 필터(120), 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)를 제어함으로써, 컨테이너(110) 내부 공기의 습도, 활성종 농도 및/또는 온도를 일정 수치 범위 내로 유지시킬 수 있다.As shown, the system 200 includes a container 110 , an air filter 120 , an air compressor 130 , a plasma generating device 140 , a humidity sensor 220 installed in the container 110 , and active species. Controls at least one of the air filter 120 , the air compressor 130 , and the plasma generating device 140 so that the sensor 240 and the temperature sensor 260 , and the air in the container 110 have constant humidity and concentration of active species It may include a controller 280 to In the system 200 , the controller 280 receiving a signal from the humidity sensor 220 , the active species sensor 240 and/or the temperature sensor 260 is configured to include the air filter 120 , the air compressor 130 and/or the controller 280 . By controlling the plasma generating device 140 , the humidity, the concentration of active species, and/or the temperature of the air inside the container 110 may be maintained within a predetermined numerical range.
일 실시예에서, 습도 센서(220)는 컨테이너(110) 내부에 설치될 수 있다. 컨테이너(110) 내부에 설치된 습도 센서(220)는 컨테이너(110) 내부 공기의 수분량 또는 습도를 검출하도록 구성될 수 있다. 예를 들어, 습도 센서(220)는, 습도에 따라 전기적인 신호를 출력할 수 있는 전기저항식 또는 전기용량식 습도 센서를 포함할 수 있으나, 이에 한정되는 것은 아니다. 습도 센서(220)는 컨테이너(110) 내부 공기의 수분량 또는 습도가 일정 수치 범위 내로 유지되고 있는지 실시간으로 확인하는 역할을 수행할 수 있다. 습도 센서(220)는 컨테이너(110) 내부 공기에 포함된 수분량 또는 습도에 따라 결정되는 전기적인 신호를 제어기(280)에 전달할 수 있다.In an embodiment, the humidity sensor 220 may be installed inside the container 110 . The humidity sensor 220 installed inside the container 110 may be configured to detect the moisture content or humidity of the air inside the container 110 . For example, the humidity sensor 220 may include an electrical resistance type or capacitive type humidity sensor capable of outputting an electrical signal according to humidity, but is not limited thereto. The humidity sensor 220 may serve to check in real time whether the moisture amount or humidity of the air inside the container 110 is maintained within a predetermined numerical range. The humidity sensor 220 may transmit an electrical signal determined according to the amount of moisture or humidity contained in the air inside the container 110 to the controller 280 .
일 실시예에서, 활성종 센서(240)는 컨테이너(110) 내부에 설치될 수 있다. 컨테이너(110) 내부에 설치된 활성종 센서(240)는 컨테이너(110) 내부 공기의 활성종(예를 들어, O 3, N x 등)의 농도를 검출하도록 구성될 수 있다. 예를 들어, 활성종 센서(240)는, 기체 상태인 활성종의 흡착 또는 탈착에 따라 전기 전도도가 변화되어 전기적인 신호를 출력할 수 있는 화학 센서를 포함할 수 있으나, 이에 한정되는 것은 아니다. 활성종 센서(240)는 컨테이너(110) 내부 공기의 활성종 농도가 기준치 이상의 농도로 유지되고 있는지 실시간으로 확인하는 역할을 수행할 수 있다. 활성종 센서(240)는 컨테이너(110) 내부 공기에 포함된 활성종의 존재 여부 또는 활성종의 농도에 따라 결정되는 전기적인 신호를 제어기(280)로 전달할 수 있다.In an embodiment, the active species sensor 240 may be installed inside the container 110 . The active species sensor 240 installed inside the container 110 may be configured to detect the concentration of active species (eg, O 3 , N x , etc.) in the air inside the container 110 . For example, the active species sensor 240 may include a chemical sensor capable of outputting an electrical signal by changing electrical conductivity according to adsorption or desorption of active species in a gaseous state, but is not limited thereto. The active species sensor 240 may serve to confirm in real time whether the concentration of the active species in the air inside the container 110 is maintained at a concentration greater than or equal to a reference value. The active species sensor 240 may transmit an electrical signal determined according to the presence or concentration of active species contained in the air inside the container 110 to the controller 280 .
일 실시예에서, 온도 센서(260)는 컨테이너(110) 내부에 설치될 수 있다. 컨테이너(110) 내부에 설치된 온도 센서(260)는 컨테이너(110) 내부 공기의 온도를 검출하도록 구성될 수 있다. 예를 들어, 온도 센서(260)는, 온도에 따라 전기적인 신호를 출력할 수 있는 접촉식 온도 센서 또는 비접촉식 온도 센서를 포함할 수 있으나, 이에 한정되는 것은 아니다. 온도 센서(260)는 컨테이너(110) 내부 공기의 온도(또는 식품의 표면 온도)가 일정 범위 내로 유지되고 있는지 실시간으로 확인하는 역할을 수행할 수 있다. 온도 센서(260)는 컨테이너(110) 내부 공기의 온도에 따라 결정되는 전기적인 신호를 제어기(280)에 전달할 수 있다.In an embodiment, the temperature sensor 260 may be installed inside the container 110 . The temperature sensor 260 installed inside the container 110 may be configured to detect the temperature of the air inside the container 110 . For example, the temperature sensor 260 may include a contact-type temperature sensor or a non-contact temperature sensor capable of outputting an electrical signal according to temperature, but is not limited thereto. The temperature sensor 260 may serve to confirm in real time whether the temperature of the air inside the container 110 (or the surface temperature of food) is maintained within a predetermined range. The temperature sensor 260 may transmit an electrical signal determined according to the temperature of the air inside the container 110 to the controller 280 .
일 실시예에서, 제어기(280)는, 습도 센서(220), 활성종 센서(240) 및/또는 온도 센서(260)로부터 전송되는 전기적인 신호를 입력 받아, 컨테이너(110) 내부 공기에 포함된 습도, 활성종의 농도 및/또는 온도가 기준치 이상 또는 미만인지를 결정할 수 있다. 이와 같이 결정되는 컨테이너(110) 내부의 습도, 활성종의 농도 또는 온도에 따라, 제어기(280)는, 공기 필터(120), 공기 압축기(130) 및 플라즈마 발생 장치(140) 중 하나 이상의 구동 시간 및 플라즈마 빔의 강도 등을 제어할 수 있다. 예를 들어, 제어기(280)는, 습도 센서(220)의 전기적인 신호에 기초하여, 컨테이너(110) 내부 공기의 습도가 기준치 이상에 해당한다고 결정하면, 공기 필터(120)를 가동시키거나 공기 필터(120)의 구동 시간 및/또는 강도를 상향 조정할 수 있다. 또한, 제어기(280)는, 활성종 센서(240)의 전기적인 신호에 기초하여, 컨테이너(110) 내부 공기의 활성종 농도가 기준치 이하에 해당한다고 결정하면, 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)를 가동시키거나 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 구동 시간 및/또는 강도를 상향 조정할 수 있다. 또한, 제어기(280)는, 온도 센서(260)의 전기적인 신호에 기초하여, 컨테이너(110) 내부 공기의 온도가 기준 범위를 벗어난다고 결정하면, 플라즈마 발생 장치(140)를 가동시키거나 플라즈마 발생 장치(140)의 구동 시간 및/또는 강도를 상향 또는 하향 조정할 수 있다.In one embodiment, the controller 280 receives an electrical signal transmitted from the humidity sensor 220, the active species sensor 240 and/or the temperature sensor 260, It can be determined whether humidity, concentration of active species and/or temperature are above or below a reference value. According to the humidity, the concentration or temperature of the active species inside the container 110 determined as described above, the controller 280, the air filter 120, the air compressor 130, and the operating time of one or more of the plasma generating device (140) and the intensity of the plasma beam may be controlled. For example, if the controller 280 determines that the humidity of the air inside the container 110 is equal to or greater than a reference value based on the electrical signal of the humidity sensor 220 , the controller 280 operates the air filter 120 or The driving time and/or intensity of the filter 120 may be adjusted upward. In addition, if the controller 280 determines that the concentration of the active species in the air inside the container 110 is equal to or less than the reference value based on the electrical signal of the active species sensor 240 , the air compressor 130 and/or the plasma The generator 140 may be operated, or the operating time and/or intensity of the air compressor 130 and/or the plasma generator 140 may be adjusted upward. In addition, when the controller 280 determines that the temperature of the air inside the container 110 is out of the reference range based on the electrical signal of the temperature sensor 260 , the controller 280 operates the plasma generating device 140 or generates plasma. The actuation time and/or intensity of the device 140 may be adjusted upwards or downwards.
다른 실시예에 따르면, 제어기(280)는, 제어 패널(미도시)을 통한 가공 대상 식품의 종류에 관한 사용자 입력에 기초하여, 컨테이너(110) 내부 공기의 기준 온도 범위를 설정할 수 있다. 예를 들어, 가공 대상 식품이 커피 빈과 같이 비교적 고온의 열처리가 필요한 경우, 컨테이너(110) 내부 공기의 기준 온도 범위는 200℃ 내지 300℃로 설정될 수 있다. 다른 예에서, 가공 대상 식품이 후추가루, 고추가루 등 과 같이 비교적 저온의 열처리가 필요한 경우, 컨테이너(110) 내부 공기의 기준 온도 범위는 50℃ 내지 100℃로 설정될 수 있다. 이와 같이 사용자 입력에 따라 설정된 기준 온도 범위가 설정된 후, 제어기(280)는, 온도 센서(260)의 전기적인 신호에 기초하여, 컨테이너(110) 내부 공기의 온도가 기준 온도 범위를 벗어난다고 결정하면, 플라즈마 발생 장치(140)를 가동시키거나 플라즈마 발생 장치(140)의 구동 시간 및/또는 강도를 상향 또는 하향 조정할 수 있다.According to another embodiment, the controller 280 may set a reference temperature range of the air inside the container 110 based on a user input regarding the type of food to be processed through a control panel (not shown). For example, when a food to be processed requires a relatively high temperature heat treatment, such as a coffee bean, the reference temperature range of the air inside the container 110 may be set to 200°C to 300°C. In another example, when the processing target food requires a relatively low temperature heat treatment, such as pepper powder, red pepper powder, etc., the reference temperature range of the air inside the container 110 may be set to 50 ℃ to 100 ℃. After the reference temperature range set according to the user input is set in this way, the controller 280 determines that the temperature of the air inside the container 110 is out of the reference temperature range based on the electrical signal of the temperature sensor 260 . , it is possible to operate the plasma generating device 140 or to adjust the driving time and/or intensity of the plasma generating device 140 upward or downward.
일 실시예에서, 이상 설명한 바와 같은 제어기(280)에 의한 공기 필터(120)의 동작 제어, 공기 압축기(130)의 동작 제어 및/또는 플라즈마 발생 장치(140)의 동작 제어는, 순차적으로 실행될 수 있다. 예를 들어, 제어기(280)는 공기 필터(120)의 동작 제어를 실행한 후, 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어를 실행할 수 있으며, 이러한 2 단계의 동작 제어를 반복할 수 있다. 다른 실시예에서, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어는, 병렬적으로 동시에 실행될 수 있다. 또 다른 실시예에서, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어 중 어느 하나만 실행될 수도 있다.In an embodiment, the operation control of the air filter 120 , the operation control of the air compressor 130 and/or the operation control of the plasma generating device 140 by the controller 280 as described above may be sequentially executed. have. For example, after executing the operation control of the air filter 120 , the controller 280 may execute the operation control of the air compressor 130 and/or the plasma generating device 140 , and control the operation of these two steps can be repeated. In another embodiment, the control of the operation of the air filter 120 by the controller 280 and the control of the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280 are parallel and simultaneous. can be executed In another embodiment, only one of an operation control of the air filter 120 by the controller 280 and an operation control of the air compressor 130 and/or the plasma generating device 140 by the controller 280 may be executed have.
이상 설명한 바와 같은, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어에 의해, 컨테이너(110) 내부의 공기 중에 포함된 수분, 활성종의 농도 및 온도가 적절한 범위 내로 유지되어 식품(190)의 신선도와 보관 기간이 증가할 수 있거나 식품(190)의 적절한 열처리가 실행될 수 있다.As described above, by controlling the operation of the air filter 120 by the controller 280 and controlling the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280, the container 110 ), the concentration and temperature of moisture, active species contained in the internal air are maintained within an appropriate range, so that the freshness and storage period of the food 190 can be increased, or an appropriate heat treatment of the food 190 can be performed.
도 3은 본 개시의 또 다른 실시예에 따른 대기압 플라스마 발생 장치를 이용한 식품 가공 시스템(300)의 개략도이다. 도 3에 개시된 구성 중 도 1 및 도 2와 대응하는 구성에 대해서는 설명을 생략한다.3 is a schematic diagram of a food processing system 300 using an atmospheric pressure plasma generating device according to another embodiment of the present disclosure. Among the configurations shown in FIG. 3 , descriptions of configurations corresponding to those of FIGS. 1 and 2 will be omitted.
도시된 바와 같이, 시스템(300)은, 컨테이너(310), 공기 필터(120), 공기 압축기(130), 플라즈마 발생 장치(140), 컨테이너(310) 내에 설치되는 습도 센서(220), 활성종 센서(240) 및 온도 센서(260), 및 컨테이너(110) 내의 공기가 일정한 습도와 활성종 농도를 갖도록 공기 필터(120), 공기 압축기(130) 및 플라즈마 발생 장치(140) 중 하나 이상을 제어하는 제어기(280)를 포함할 수 있다. 시스템(300)에서, 습도 센서(220), 활성종 센서(240) 및/또는 온도 센서(260)로부터 신호를 전달받은 제어기(280)가 공기 필터(120), 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)를 제어함으로써, 컨테이너(310) 내부 공기의 습도, 활성종 농도 및/또는 온도를 일정 수치 범위 내로 유지시킬 수 있다.As shown, the system 300 includes a container 310 , an air filter 120 , an air compressor 130 , a plasma generating device 140 , a humidity sensor 220 installed in the container 310 , and active species. Controls at least one of the air filter 120 , the air compressor 130 , and the plasma generating device 140 so that the sensor 240 and the temperature sensor 260 , and the air in the container 110 have constant humidity and concentration of active species It may include a controller 280 to In the system 300 , the controller 280 receiving a signal from the humidity sensor 220 , the active species sensor 240 and/or the temperature sensor 260 is configured to include the air filter 120 , the air compressor 130 and/or the controller 280 . By controlling the plasma generating device 140 , humidity, active species concentration, and/or temperature of the air inside the container 310 may be maintained within a predetermined numerical range.
컨테이너(310)는, 플라즈마 발생 장치(140)의 플라즈마 노즐부(142) 및 공기 노즐부(132)가 설치되는 노즐 장착부(312), 내부가 빈 원통 형상 또는 직사각형으로 형성되어 식품(190)이 보관되는 본체부(314)를 포함한다. 노즐 장착부(312)는 본체부(314)와 결합되며, 본체부(314)와 노즐 장착부(312) 사이의 격벽을 형성함으로써, 본체부(114)에 수용된 식품(190)이 노즐 장착부(312) 측으로 이동하지 않도록 구성될 수 있다. 이 경우, 본체부(314)와 노즐 장착부(312) 사이의 격벽에는 플라즈마 노즐부(142) 및 공기 노즐부(132)로부터 분사되는 플라즈마 빔 및 공기가 통과할 수 있는 복수의 개구가 형성되거나, 플라즈마 노즐부(142) 및 공기 노즐부(132)가 동작하기 전에 식품(190)이 플라즈마 노즐부(142) 및 공기 노즐부(132)에 접촉 가능하도록 이동 가능하게 구성될 수도 있다. 대안적으로, 노즐 장착부(312)는 본체부(314)와 일체적으로 형성될 수도 있다. 이 경우, 노즐 장착부(312)와 본체부(314)의 공간 구분을 위한 격벽을 설치하지 않고, 식품(190)이 플라즈마 노즐부(142) 및 공기 노즐부(132)와 직접 접촉 가능하도록 구성할 수 있다.The container 310 is formed in a nozzle mounting part 312 in which the plasma nozzle part 142 and the air nozzle part 132 of the plasma generating device 140 are installed, and an empty cylindrical or rectangular shape, so that the food 190 is provided. and a body portion 314 to be stored. The nozzle mounting part 312 is coupled to the body part 314, and by forming a partition wall between the body part 314 and the nozzle mounting part 312, the food 190 accommodated in the body part 114 is transferred to the nozzle mounting part 312. It may be configured not to move to the side. In this case, a plurality of openings through which the plasma beam and air sprayed from the plasma nozzle unit 142 and the air nozzle unit 132 can pass are formed in the partition wall between the body unit 314 and the nozzle mounting unit 312, Before the plasma nozzle unit 142 and the air nozzle unit 132 are operated, the food 190 may be configured to be movable so that the plasma nozzle unit 142 and the air nozzle unit 132 can contact the food 190 . Alternatively, the nozzle mounting portion 312 may be integrally formed with the body portion 314 . In this case, the food 190 is configured to be in direct contact with the plasma nozzle unit 142 and the air nozzle unit 132 without installing a partition wall for separating the space between the nozzle mounting unit 312 and the body unit 314 . can
또한, 노즐 장착부(312) 및 본체부(314)를 포함하는 컨테이너(310)는, 회전되지 않고 일정한 위치에 고정되도록 구성될 수 있다. 이와 같이 컨테이너(310)가 고정 설치되는 경우, 플라즈마 노즐부(142)로부터 토출되는 플라즈마 빔에 의해 컨테이너(310) 내부의 온도가 빨리 상승할 수 있다. 따라서, 고정 설치된 컨테이너(310)를 포함하는 시스템(300)은, 비교적 고온의 열처리가 필요한 커피 빈과 같은 입자형 식품의 열처리에 적합할 수 있다.In addition, the container 310 including the nozzle mounting part 312 and the body part 314 may be configured to be fixed at a fixed position without being rotated. When the container 310 is fixedly installed as described above, the temperature inside the container 310 may be rapidly increased by the plasma beam discharged from the plasma nozzle unit 142 . Accordingly, the system 300 including the fixedly installed container 310 may be suitable for heat treatment of granular foods such as coffee beans that require heat treatment at a relatively high temperature.
시스템(300)은, 컨테이너(310)의 일 측면에 공기 필터(120)가 연결되어, 컨테이너(310) 내의 공기가 공기 필터(120)로 유입될 수 있도록 구성될 수 있다. 공기 필터(120)는 컨테이너(310)로부터 유입된 공기 중에 포함된 수분의 적어도 일부를 제거하도록 구성될 수 있다. 이러한 구성에 따라 컨테이너(310) 내의 공기가 일정한 습도를 유지하거나 습기가 제거되도록 관리될 수 있다. 또한, 공기 필터(120)에 의해 수분이 제거된 공기는 공기 압축기(130)로 유입될 수 있다.The system 300 may be configured such that the air filter 120 is connected to one side of the container 310 so that air in the container 310 can be introduced into the air filter 120 . The air filter 120 may be configured to remove at least a portion of moisture included in the air introduced from the container 310 . According to this configuration, the air in the container 310 may be managed to maintain a constant humidity or to remove the moisture. Also, air from which moisture has been removed by the air filter 120 may be introduced into the air compressor 130 .
플라즈마 발생 장치(140)는 유입된 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 플라즈마 빔을 생성할 수 있다. 또한, 플라즈마 발생 장치(140)로부터 방출되는 플라즈마 빔 또는 가스의 온도는 대략 상온에서 600℃까지의 범위 내일 수 있으나, 이에 한정되는 것은 아니며, 가공 대상 식품의 종류에 따라 그 온도가 조절될 수 있다. 플라즈마 발생 장치(140)에 의해 생성된 플라즈마 빔은 컨테이너(110) 내부에 부착된 플라즈마 노즐부(142)를 통해 컨테이너(110) 내부로 토출될 수 있다. 이와 같이 토출된 플라즈마 빔에 의해 컨테이너(110) 내부의 공기 및 식품(190)의 온도가 증가하며, 이에 따라 식품(190)의 열처리가 가능하다.The plasma generating apparatus 140 may generate a plasma beam through plasma discharge using the introduced compressed air as a plasma discharge gas. In addition, the temperature of the plasma beam or gas emitted from the plasma generating device 140 may be in a range from about room temperature to 600° C., but is not limited thereto, and the temperature may be adjusted according to the type of food to be processed. . The plasma beam generated by the plasma generating device 140 may be discharged into the container 110 through the plasma nozzle unit 142 attached to the inside of the container 110 . The air in the container 110 and the temperature of the food 190 increase by the plasma beam discharged in this way, and accordingly, the heat treatment of the food 190 is possible.
또한, 공기 압축기(130)는 유입된 공기를 일정한 압력으로 압축하여 공기 노즐부(132)를 통해 컨테이너(310)의 본체부(314)로 제공할 수 있다. 공기 노즐부(132)를 통해 본체부(314) 내부로 분사되는 공기압에 의해, 식품(190)의 분말 또는 입자가 적절히 교반될 수 있다. 또한, 공기 노즐부(132)를 통해 본체부(314) 내부로 분사되는 공기압에 의해, 플라즈마 노즐부(142)에서 토출되는 플라즈마 빔에 의해 가열된 본체부(314) 내부의 공기의 흐름을 원활하게 하여 온도를 적절한 수준으로 제어할 수 있다.In addition, the air compressor 130 may compress the introduced air to a constant pressure and provide it to the main body 314 of the container 310 through the air nozzle unit 132 . The powder or particles of the food 190 may be appropriately stirred by the air pressure injected into the body portion 314 through the air nozzle portion 132 . In addition, the air in the body 314 heated by the plasma beam discharged from the plasma nozzle 142 by the air pressure injected into the body 314 through the air nozzle 132 is smoothly flowed. temperature can be controlled to an appropriate level.
일 실시예에서, 제어기(280)는, 습도 센서(220), 활성종 센서(240) 및/또는 온도 센서(260)로부터 전송되는 전기적인 신호를 입력 받아, 컨테이너(310) 내부 공기에 포함된 습도, 활성종의 농도 및/또는 온도가 기준치 이상 또는 미만인지를 결정할 수 있다. 이와 같이 결정되는 컨테이너(310) 내부의 습도, 활성종의 농도 또는 온도에 따라, 제어기(280)는, 공기 필터(120), 공기 압축기(130) 및 플라즈마 발생 장치(140) 중 하나 이상의 구동 시간 및 플라즈마 빔의 강도 등을 제어할 수 있다. 예를 들어, 제어기(280)는, 습도 센서(220)의 전기적인 신호에 기초하여, 컨테이너(310) 내부 공기의 습도가 기준치 이상에 해당한다고 결정하면, 공기 필터(120)를 가동시키거나 공기 필터(120)의 구동 시간 및/또는 강도를 상향 조정할 수 있다. 또한, 제어기(280)는, 활성종 센서(240)의 전기적인 신호에 기초하여, 컨테이너(310) 내부 공기의 활성종 농도가 기준치 이하에 해당한다고 결정하면, 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)를 가동시키거나 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 구동 시간 및/또는 강도를 상향 조정할 수 있다. 또한, 제어기(280)는, 온도 센서(260)의 전기적인 신호에 기초하여, 컨테이너(310) 내부 공기의 온도가 기준 범위를 벗어난다고 결정하면, 플라즈마 발생 장치(140) 및/또는 공기 압축기(130)를 가동시키거나 플라즈마 발생 장치(140) 및/또는 공기 압축기(130)의 구동 시간 및/또는 강도를 상향 또는 하향 조정할 수 있다.In one embodiment, the controller 280 receives an electrical signal transmitted from the humidity sensor 220, the active species sensor 240 and/or the temperature sensor 260, It can be determined whether humidity, concentration of active species and/or temperature are above or below a reference value. According to the humidity, the concentration or temperature of the active species inside the container 310 determined as described above, the controller 280, the air filter 120, the air compressor 130, and the operating time of one or more of the plasma generating device 140 and the intensity of the plasma beam may be controlled. For example, the controller 280, based on the electrical signal of the humidity sensor 220, when determining that the humidity of the air inside the container 310 is equal to or greater than a reference value, operates the air filter 120 or The driving time and/or intensity of the filter 120 may be adjusted upward. In addition, if the controller 280 determines that the concentration of the active species in the air inside the container 310 is equal to or less than the reference value based on the electrical signal of the active species sensor 240 , the air compressor 130 and/or the plasma The generator 140 may be operated, or the operating time and/or intensity of the air compressor 130 and/or the plasma generator 140 may be adjusted upward. In addition, when the controller 280 determines that the temperature of the air inside the container 310 is out of the reference range based on the electrical signal of the temperature sensor 260 , the plasma generating device 140 and/or the air compressor ( 130) or the operating time and/or intensity of the plasma generating device 140 and/or the air compressor 130 may be adjusted upward or downward.
일 실시예에서, 이상 설명한 바와 같은 제어기(280)에 의한 공기 필터(120)의 동작 제어, 공기 압축기(130)의 동작 제어 및/또는 플라즈마 발생 장치(140)의 동작 제어는, 순차적으로 실행될 수 있다. 예를 들어, 제어기(280)는 공기 필터(120)의 동작 제어를 실행한 후, 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어를 실행할 수 있으며, 이러한 2 단계의 동작 제어를 반복할 수 있다. 다른 실시예에서, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어는, 병렬적으로 동시에 실행될 수 있다. 또 다른 실시예에서, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어 중 어느 하나만 실행될 수도 있다.In an embodiment, the operation control of the air filter 120 , the operation control of the air compressor 130 and/or the operation control of the plasma generating device 140 by the controller 280 as described above may be sequentially executed. have. For example, after executing the operation control of the air filter 120 , the controller 280 may execute the operation control of the air compressor 130 and/or the plasma generating device 140 , and control the operation of these two steps can be repeated. In another embodiment, the control of the operation of the air filter 120 by the controller 280 and the control of the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280 are parallel and simultaneous. can be executed In another embodiment, only one of an operation control of the air filter 120 by the controller 280 and an operation control of the air compressor 130 and/or the plasma generating device 140 by the controller 280 may be executed have.
이상 설명한 바와 같은, 제어기(280)에 의한 공기 필터(120)의 동작 제어와, 제어기(280)에 의한 공기 압축기(130) 및/또는 플라즈마 발생 장치(140)의 동작 제어에 의해, 컨테이너(310) 내부의 공기 중에 포함된 수분, 활성종의 농도 및 온도가 적절한 범위 내로 유지되어 식품(190)의 신선도와 보관 기간이 증가할 수 있거나 식품(190)의 적절한 열처리가 실행될 수 있다. 또한, 공기 노즐부(132)를 통해 컨테이너(310) 내부로 압축 공기를 분사함으로써, 식품(190)이 적절히 교반되거나 내부 온도가 적정한 수준으로 제어되기 때문에, 식품(190) 전체적으로 균등한 정도로 열처리가 실행될 수 있다.As described above, by controlling the operation of the air filter 120 by the controller 280 and controlling the operation of the air compressor 130 and/or the plasma generating device 140 by the controller 280, the container 310 is ), the concentration and temperature of moisture, active species contained in the internal air are maintained within an appropriate range, so that the freshness and storage period of the food 190 can be increased, or an appropriate heat treatment of the food 190 can be performed. In addition, by injecting compressed air into the container 310 through the air nozzle unit 132, the food 190 is properly stirred or the internal temperature is controlled to an appropriate level, so that the heat treatment is performed to an even degree throughout the food 190. can be executed
도 4는 본 개시의 일 실시예에 따른 플라즈마 발생 장치(400)를 개략적으로 나타낸 개략도이다. 도 4에 도시된 플라즈마 발생 장치(400)는, 예를 들어, 도 1 내지 도 3에 도시된 시스템(100, 200, 300)의 플라즈마 발생 장치(140)로 사용될 수 있다.4 is a schematic diagram schematically illustrating a plasma generating apparatus 400 according to an embodiment of the present disclosure. The plasma generating apparatus 400 illustrated in FIG. 4 may be used as the plasma generating apparatus 140 of the systems 100 , 200 , and 300 illustrated in FIGS. 1 to 3 , for example.
일 실시예에서, 플라즈마 발생 장치(400)는 대기압 플라즈마 발생 장치일 수 있다. 이 경우, 플라즈마 발생 장치(400)는 통상 상온/상압 환경에서 구동될 수 있도록, 제네레이터, 고전압 변압기, 플라즈마 방전을 발생시키는 전극들 등을 포함할 수 있다. 구체적으로, 플라즈마 발생 장치(400)는, 플라즈마가 토출되는 노즐부(420), 일측에서 노즐부(420)가 탈착되고, 타측에서 작동 가스(또는 압축공기)가 공급되는 가스 공급관(미도시), 고전압 변압기(미도시)에 연결되는 케이블 등이 탈착되는 몸체부(440)를 포함할 수 있다.In an embodiment, the plasma generating apparatus 400 may be an atmospheric pressure plasma generating apparatus. In this case, the plasma generating apparatus 400 may include a generator, a high voltage transformer, electrodes generating plasma discharge, and the like so as to be driven in a normal room temperature/normal pressure environment. Specifically, in the plasma generating apparatus 400, the nozzle part 420 from which plasma is discharged, the nozzle part 420 is detached from one side, and a gas supply pipe (not shown) to which the working gas (or compressed air) is supplied from the other side. , a cable connected to a high voltage transformer (not shown) may include a body portion 440 to which the detachable body portion 440 is detached.
일 실시예에서, 고전압 변압기에 의해 발생된 고주파 고전압은 몸체부(440) 내부에 설치된 전극들에 인가되며, 인가된 전압에 의해 전극들 사이에 전기 아크 형태의 고주파 방전이 발생된다. 이와 같이 몸체부(440) 내부에 전기 아크가 발생된 상태에서 작동 가스가 전기 아크와 접촉하여 플라즈마 상태로 변환된다. 몸체부(440)에서 생성된 플라즈마 빔은 노즐부(420)의 개구를 통해 토출된다.In one embodiment, the high frequency high voltage generated by the high voltage transformer is applied to the electrodes installed inside the body portion 440, and a high frequency discharge in the form of an electric arc is generated between the electrodes by the applied voltage. In this way, in a state in which an electric arc is generated inside the body portion 440, the working gas comes into contact with the electric arc and is converted into a plasma state. The plasma beam generated by the body part 440 is discharged through the opening of the nozzle part 420 .
도 5는 본 개시의 일 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법의 흐름도이다.5 is a flowchart of a food processing method using an atmospheric pressure plasma generating apparatus according to an embodiment of the present disclosure.
도 5에 도시된 식품 가공 방법(500)은, 도 1에 도시된 식품 가공 시스템(100)을 이용하는 것으로, 식품 가공 방법(500)의 구성요소들은, 도 1에 도시된 식품 가공 시스템(100)의 구성요소들에 대응될 수 있다. 또한, 구성요소들 중에서, 앞서 상술한 도 1에서 설명된 것과 동일 또는 유사한 부재번호 또는 명칭을 갖는 구성요소들에 대해서는, 반복을 피하기 위해 상세한 설명을 생략할 수 있으며, 변경 또는 추가적인 부분만 설명할 수 있다.The food processing method 500 shown in FIG. 5 uses the food processing system 100 shown in FIG. 1 , and the components of the food processing method 500 are the food processing system 100 shown in FIG. 1 . may correspond to the components of In addition, among the components, for components having the same or similar reference numbers or names as those described in FIG. 1 described above, detailed descriptions may be omitted to avoid repetition, and only changes or additional parts will be described. can
식품 가공 방법(500)은, 공기 필터에 의해, 분말 또는 입자 형태의 식품이 수용되는 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 단계(S520)로 개시될 수 있다. 이는 컨테이너 내 기준치를 초과하는 수분량을 줄여 컨테이너 내의 공기가 일정한 습도를 유지하도록 하기 위함이다.The food processing method 500 may be initiated by extracting and discharging at least a portion of the moisture contained in the air in the container in which the food in powder or particle form is accommodated by an air filter ( S520 ). This is to reduce the amount of moisture exceeding the standard value in the container so that the air in the container maintains a constant humidity.
단계(S540)에서, 공기 압축기에 의해, 공기 필터에 의해 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하며, 이는 플라즈마 발생 장치가 요구하는 일정한 압력의 공기를 제공하기 위함이다.In step S540, compressed air is generated from the air from which at least a portion of moisture has been removed by the air filter by the air compressor, which is to provide air at a constant pressure required by the plasma generating device.
단계(S560)에서, 플라즈마 발생 장치에 의해, 공기 압축기로부터 생성되는 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 플라즈마 빔과 함께 오존(O 3)을 포함하는 활성종을 생성한다.In step S560, the plasma generating device generates active species including ozone (O 3 ) together with a plasma beam through plasma discharge using compressed air generated from an air compressor as a plasma discharge gas.
단계(S560) 이후, 플라즈마 빔 또는 가스는 컨테이너 내부로 토출되어, 컨테이너 내부의 식품에 대한 열처리를 실행하고, 컨테이너 내부의 공기 중에 포함된 유해균 또는 유해물질을 제거하므로, 컨테이너 내에 수용된 식품의 신선도나 보관 기간을 증가시키고, 식품에 대한 열처리 가공을 실행할 수 있다.After step (S560), the plasma beam or gas is discharged into the container, heat treatment is performed on the food inside the container, and harmful bacteria or harmful substances contained in the air inside the container are removed, so that the freshness of the food contained in the container or the The storage period can be increased, and heat treatment processing for food can be carried out.
도 6은 본 개시의 다른 실시예에 따른 대기압 플라즈마 발생 장치를 이용한 식품 파우더 가공 방법의 흐름도이다.6 is a flowchart of a food powder processing method using an atmospheric pressure plasma generating apparatus according to another embodiment of the present disclosure.
도 6에 도시된 식품 가공 방법(600)은, 도 5에 도시된 식품 파우더 가공 방법(500)의 단계들의 적어도 일부에 대응될 수 있다. 구체적으로, 도 6에 도시된 식품 가공 방법(600)의 단계들(S630, S660)은, 도 5에 도시된 식품 가공 방법(500)의 단계들(S520, S540, S560)과 일부 실질적으로 대응될 수 있다. 따라서, 이하에서는 설명의 편의상 반복을 피하기 위해, 단계들(S630, S660)에 대한 상세한 설명을 생략할 수 있으며, 변경 또는 추가적인 부분만 설명할 수 있다.The food processing method 600 illustrated in FIG. 6 may correspond to at least some of the steps of the food powder processing method 500 illustrated in FIG. 5 . Specifically, the steps S630 and S660 of the food processing method 600 shown in FIG. 6 substantially correspond to the steps S520, S540 and S560 of the food processing method 500 shown in FIG. 5 . can be Therefore, in order to avoid repetition for convenience of description, detailed descriptions of steps S630 and S660 may be omitted below, and only changes or additions may be described.
식품 가공 방법(600)은, 습도 센서에 의해, 컨테이너 내의 공기에 포함된 수분량을 검출하는 단계(S610)로 개시될 수 있다.The food processing method 600 may start with a step ( S610 ) of detecting the amount of moisture contained in the air in the container by a humidity sensor.
단계(S620)에서, 제어기에 의해, 습도 센서가 검출한 수분량에 기초하여 공기 필터의 구동 여부를 제어한다. 예를 들어, 습도 센서가 검출한 수분량이 사전에 설정한 기준치 이상인지 여부를 제어기가 판별하며, 습도 센서가 검출한 수분량이 기준치 이상이면 공기 필터가 구동되도록 하고, 습도 센서가 검출한 수분량이 기준치 미만이면 공기 필터가 구동되지 않도록 할 수 있다.In step S620, the controller controls whether the air filter is driven or not based on the amount of moisture detected by the humidity sensor. For example, the controller determines whether the amount of moisture detected by the humidity sensor is greater than or equal to a preset reference value, and if the amount of moisture detected by the humidity sensor is greater than or equal to the reference value, the air filter is driven, and the amount of moisture detected by the humidity sensor is greater than the reference value If it is less than, the air filter may not be driven.
단계(S620)에서 수분량이 기준치 이상으로 판별되면, 단계(S630)에서, 제어기가 공기 필터를 가동시켜, 공기 필터에 의해 식품이 수용되는 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출한다.If it is determined in step S620 that the moisture content is greater than or equal to the reference value, in step S630, the controller operates the air filter to extract and discharge at least a portion of the moisture contained in the air in the container in which the food is accommodated by the air filter. .
단계(S620)에서 수분량이 기준치 미만으로 판별되거나, 단계(S630)에서 공기 필터의 가동을 통해 컨테이너 내 공기에 포함된 수분의 적어도 일부가 추출되어 배출된 이후, 단계(S640)에서, 활성종 센서가 컨테이너 내의 공기에 포함된 활성종(예를 들어, O 3, N x 등) 농도를 검출한다.After the moisture content is determined to be less than the reference value in step S620, or at least a portion of the moisture contained in the air in the container is extracted and discharged through the operation of the air filter in step S630, in step S640, the active species sensor Detects the concentration of active species (eg, O 3 , N x , etc.) contained in the air in the container.
단계(S650)에서, 제어기가 검출된 활성종 농도가 기준치 이하인지를 판별하며, 활성종 센서가 검출한 활성종 농도에 기초하여 공기 압축기 및 플라즈마 발생 장치 중 적어도 하나의 구동 여부를 제어한다. 예를 들어, 단계(S650)에서 활성종 농도가 기준치 이하로 판별되면, 단계(S660)에서 제어기가 공기 압축기 및 플라즈마 발생 장치 중 적어도 하나를 가동하여 컨테이너 내에 활성종을 생성한다. 반면, 단계(S650)에서 활성종 농도가 기준치 초과로 판별되면 제어기에 의해 단계(S660)가 수행되지 않는다.In step S650 , the controller determines whether the detected active species concentration is equal to or less than a reference value, and controls whether at least one of the air compressor and the plasma generating device is driven based on the active species concentration detected by the active species sensor. For example, if the concentration of the active species is determined to be less than or equal to the reference value in step S650 , the controller operates at least one of the air compressor and the plasma generating device in step S660 to generate the active species in the container. On the other hand, if it is determined that the concentration of the active species exceeds the reference value in step S650, step S660 is not performed by the controller.
단계(S650)에서 활성종 센서에서 검출된 활성종 농도가 기준치를 초과하거나, 단계(S660)에서 공기 압축기 및 플라즈마 발생 장치 중 적어도 하나가 가동되어 컨테이너 내에 활성종을 생성한 이후, 단계(S670)에서, 온도 센서가 컨테이너 내의 온도를 검출한다.After the active species concentration detected by the active species sensor exceeds the reference value in step S650 or at least one of the air compressor and the plasma generating device is operated in step S660 to generate active species in the container, step S670 , a temperature sensor detects the temperature in the container.
단계(S680)에서, 제어기가 검출된 컨테이너 내의 온도가 기준 범위 내인지를 판별하며, 온도 센서가 검출된 온도에 기초하여 플라즈마 발생 장치 및/또는 공기 압축기의 구동 여부 또는 플라즈마 발생 장치로부터 토출되는 플라즈마 빔의 강도를 제어한다. 예를 들어, 단계(S680)에서 온도가 기준 범위에 미치지 못하는 것으로 판별되면, 단계(S690)에서 제어기가 플라즈마 발생 장치를 가동하여 플라즈마 빔의 강도를 증가시키거나 가동 시간을 증가시켜서 컨테이너 내의 온도를 증가시킨다. 반면, 단계(S680)에서 온도가 기준 범위를 초과하는 것으로 판별되면, 단계(S690)에서 제어기가 플라즈마 발생 장치를 가동하여 플라즈마 빔의 강도를 감소시키거나 가동 시간을 감소시켜서 컨테이너 내의 온도를 감소시킨다. 대안적으로 또는 추가적으로, 단계(S690)에서 제어기가 공기 압축기를 가동하여 압축 공기를 컨테이너 내부에 분사하는 강도 또는 시간을 증가시켜서 컨테이너 내의 온도를 감소시킨다.In step S680, the controller determines whether the detected temperature in the container is within a reference range, and based on the detected temperature by the temperature sensor, whether the plasma generating device and/or the air compressor are driven or plasma discharged from the plasma generating device Controls the intensity of the beam. For example, if it is determined in step S680 that the temperature does not reach the reference range, in step S690, the controller operates the plasma generating device to increase the intensity of the plasma beam or increase the operating time to increase the temperature in the container. increase On the other hand, if it is determined in step S680 that the temperature exceeds the reference range, in step S690, the controller operates the plasma generating device to reduce the intensity of the plasma beam or reduce the operating time to reduce the temperature in the container. . Alternatively or additionally, in step S690 , the controller operates the air compressor to increase the intensity or time for injecting compressed air into the container to decrease the temperature in the container.
일 실시예에서, 이상 설명한 바와 같은 제어기에 의한 공기 필터의 동작 제어 단계들(S610 내지 S630), 제어기에 의한 공기 압축기 및/또는 플라즈마 발생 장치의 동작 제어 단계들(S640 내지 S660)과, 제어기에 의한 공기 압축기 및/또는 플라즈마 발생 장치의 추가적인 동작 제어 단계들(S670 내지 S690)는, 순차적으로 실행될 수 있다. 예를 들어, 단계(S610 내지 S630)를 실행한 후, 단계(S640 내지 S660)를 실행한 후, 단계(S670 내지 S690)를 실행할 수 있으며, 이러한 단계들을 반복 실행할 수 있다. 다른 실시예에서, 제어기에 의한 공기 필터의 동작 제어 단계들(S610 내지 S630)와, 제어기에 의한 공기 압축기 및/또는 플라즈마 발생 장치의 동작 제어 단계들(S640 내지 S660) 및 단계들(S670 내지 S690)는, 병렬적으로 동시에 실행될 수 있다. 또 다른 실시예에서, 제어기에 의한 공기 필터의 동작 제어 단계들(S610 내지 S630)와, 제어기에 의한 공기 압축기 및/또는 플라즈마 발생 장치의 동작 제어 단계들(S640 내지 S660) 및 단계들(S670 내지 S690) 중 어느 하나만 실행될 수도 있다.In one embodiment, the operation control steps (S610 to S630) of the air filter by the controller as described above, the operation control steps (S640 to S660) of the air compressor and/or plasma generating device by the controller, and to the controller The additional operation control steps ( S670 to S690 ) of the air compressor and/or the plasma generating device by the method may be sequentially executed. For example, after executing the steps S610 to S630, after executing the steps S640 to S660, the steps S670 to S690 may be executed, and these steps may be repeatedly executed. In another embodiment, the operation control steps (S610 to S630) of the air filter by the controller, and the operation control steps (S640 to S660) and steps (S670 to S690) of the air compressor and/or the plasma generating device by the controller ) can be executed simultaneously in parallel. In another embodiment, the operation control steps (S610 to S630) of the air filter by the controller, and the operation control steps (S640 to S660) and steps (S670 to S670) of the air compressor and/or plasma generating device by the controller S690), any one of them may be executed.
상기한 본 발명의 바람직한 실시예는 예시의 목적으로 개시된 것이고, 본 발명에 대해 통상의 지식을 가진 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경 및 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 특허청구 범위에 속하는 것으로 보아야 할 것이다.The above-described preferred embodiments of the present invention have been disclosed for purposes of illustration, and various modifications, changes and additions will be possible within the spirit and scope of the present invention by those skilled in the art having ordinary knowledge of the present invention, and such modifications, changes and additions should be considered to be within the scope of the claims.
본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서, 여러 가지 치환, 변형 및 변경이 가능하므로, 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.Those of ordinary skill in the art to which the present invention pertains, within the scope of not departing from the technical spirit of the present invention, various substitutions, modifications and changes are possible, so the present invention is described in the above-described embodiments and the accompanying drawings. not limited by

Claims (10)

  1. 대기압 플라즈마 발생 장치를 이용한 식품 가공 시스템에 있어서,In the food processing system using the atmospheric pressure plasma generator,
    식품이 수용되는 컨테이너; a container in which food is contained;
    상기 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 공기 필터;an air filter for extracting and discharging at least a portion of the moisture contained in the air in the container;
    상기 공기 필터에 의해 상기 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하는 공기 압축기; 및an air compressor for generating compressed air from the air from which at least a portion of the moisture has been removed by the air filter; and
    상기 공기 압축기로부터 생성되는 상기 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 활성종을 포함하는 플라즈마 빔을 생성하는 플라즈마 발생 장치를 포함하는, 식품 가공 시스템.and a plasma generating device for generating a plasma beam including active species through plasma discharge using the compressed air generated from the air compressor as a plasma discharge gas.
  2. 제1항에 있어서,According to claim 1,
    상기 플라즈마 발생 장치는,The plasma generating device,
    상기 압축 공기가 공급되는 가스 공급관; 및 a gas supply pipe to which the compressed air is supplied; and
    상기 활성종을 포함하는 플라즈마 빔이 토출되는 노즐부를 포함하는, 식품 가공 시스템.A food processing system comprising a nozzle unit through which a plasma beam containing the active species is discharged.
  3. 제1항에 있어서,According to claim 1,
    상기 컨테이너 내의 공기에 포함된 수분량을 검출하는 습도 센서; 및a humidity sensor for detecting the amount of moisture contained in the air in the container; and
    상기 습도 센서가 검출한 수분량에 기초하여 상기 공기 필터의 구동 여부를 제어하는 제어기를 더 포함하는, 식품 가공 시스템.Further comprising a controller for controlling whether the air filter is driven based on the amount of moisture detected by the humidity sensor, the food processing system.
  4. 제1항에 있어서,According to claim 1,
    상기 컨테이너 내의 활성종의 농도를 검출하는 활성종 센서; 및an active species sensor for detecting the concentration of active species in the container; and
    상기 활성종 센서가 검출한 활성종의 농도에 기초하여 상기 공기 압축기 및 상기 플라즈마 발생 장치 중 적어도 하나의 구동 여부를 제어하는 제어기를 더 포함하는, 식품 가공 시스템.The food processing system further comprising a controller for controlling whether at least one of the air compressor and the plasma generating device is driven based on the concentration of the active species detected by the active species sensor.
  5. 제1항에 있어서,According to claim 1,
    상기 컨테이너 내의 온도를 검출하는 온도 센서; 및a temperature sensor for detecting a temperature in the container; and
    상기 온도 센서가 검출한 온도에 기초하여 상기 플라즈마 발생 장치 및 상기 공기 압축기 중 적어도 하나의 구동 여부 또는 상기 플라즈마 발생 장치로부터 토출되는 플라즈마 빔의 강도를 제어하는 제어기를 더 포함하는, 식품 가공 시스템.The food processing system further comprising a controller for controlling whether at least one of the plasma generating device and the air compressor is driven or the intensity of the plasma beam discharged from the plasma generating device based on the temperature detected by the temperature sensor.
  6. 대기압 플라즈마 발생 장치를 이용한 식품 가공 방법에 있어서,In the food processing method using the atmospheric pressure plasma generator,
    공기 필터에 의해, 식품이 수용되는 컨테이너 내의 공기에 포함된 수분 중 적어도 일부를 추출하여 배출하는 단계;extracting and discharging at least a portion of the moisture contained in the air in the container in which the food is accommodated by the air filter;
    공기 압축기에 의해, 상기 공기 필터에 의해 상기 수분 중 적어도 일부가 제거된 공기로부터 압축 공기를 생성하는 단계; 및generating, by an air compressor, compressed air from the air from which at least a portion of the moisture has been removed by the air filter; and
    플라즈마 발생 장치에 의해, 상기 공기 압축기로부터 생성되는 상기 압축 공기를 플라즈마 방전 가스로 사용하여 플라즈마 방전을 통해 활성종을 포함하는 플라즈마 빔을 생성하는 단계를 포함하는, 식품 가공 방법.and generating, by a plasma generating device, a plasma beam containing active species through plasma discharge using the compressed air generated from the air compressor as a plasma discharge gas.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 플라즈마 발생 장치에 의해, 상기 활성종이 포함된 플라즈마 빔을 상기 컨테이너 내부로 토출하는 단계를 더 포함하는, 식품 가공 방법.Further comprising the step of discharging, by the plasma generating device, the plasma beam containing the active species into the container, food processing method.
  8. 제6항에 있어서,7. The method of claim 6,
    습도 센서에 의해, 상기 컨테이너 내의 공기에 포함된 수분량을 검출하는 단계; 및detecting, by a humidity sensor, an amount of moisture contained in the air in the container; and
    제어기에 의해, 상기 습도 센서가 검출한 수분량에 기초하여 상기 공기 필터의 구동 여부를 제어하는 단계를 더 포함하는, 식품 가공 방법.The method further comprising, by a controller, controlling whether the air filter is driven or not based on the amount of moisture detected by the humidity sensor.
  9. 제6항에 있어서,7. The method of claim 6,
    활성종 센서에 의해, 상기 컨테이너 내의 활성종의 농도를 검출하는 단계; 및detecting, by an active species sensor, the concentration of the active species in the container; and
    제어기에 의해, 상기 활성종 센서가 검출한 활성종의 농도에 기초하여 상기 공기 압축기 및 상기 플라즈마 발생 장치 중 적어도 하나의 구동 여부를 제어하는 단계를 더 포함하는, 식품 가공 방법.The method further comprising, by a controller, controlling whether at least one of the air compressor and the plasma generating device is driven based on the concentration of the active species detected by the active species sensor.
  10. 제6항에 있어서,7. The method of claim 6,
    온도 센서에 의해, 상기 컨테이너 내의 온도를 검출하는 단계; 및detecting, by means of a temperature sensor, a temperature in the container; and
    제어기에 의해, 상기 온도 센서가 검출한 온도에 기초하여 상기 플라즈마 발생 장치 및 상기 공기 압축기 중 적어도 하나의 구동 여부 또는 상기 플라즈마 발생 장치로부터 토출되는 플라즈마 빔의 강도를 제어하는 단계를 더 포함하는, 식품 가공 방법.Food, further comprising, by a controller, controlling whether at least one of the plasma generating device and the air compressor is driven or the intensity of the plasma beam discharged from the plasma generating device based on the temperature detected by the temperature sensor processing method.
PCT/KR2020/016703 2020-11-24 2020-11-24 Food processing system and method using atmospheric-pressure plasma generator WO2022114246A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0158412 2020-11-24
KR1020200158412A KR102581488B1 (en) 2020-11-24 2020-11-24 System and method for treating food using atmospheric-pressure plasma generator

Publications (2)

Publication Number Publication Date
WO2022114246A2 true WO2022114246A2 (en) 2022-06-02
WO2022114246A3 WO2022114246A3 (en) 2022-07-21

Family

ID=81755730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016703 WO2022114246A2 (en) 2020-11-24 2020-11-24 Food processing system and method using atmospheric-pressure plasma generator

Country Status (2)

Country Link
KR (1) KR102581488B1 (en)
WO (1) WO2022114246A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198602A (en) * 1995-01-20 1996-08-06 Gold Syst Kk Ozonizer provided with oxygen extractor
KR101944267B1 (en) * 2017-09-25 2019-01-30 주식회사 셀로닉스 Deodorizing device of granular food using atmospheric pressure plasma
KR200490974Y1 (en) * 2018-03-21 2020-01-30 대한민국 low temperature plasma sterilizer
KR102007900B1 (en) * 2018-12-05 2019-08-06 재단법인 철원플라즈마 산업기술연구원 Atmospheric pressure plasma system for sterilization of agricultural products
KR102047811B1 (en) * 2018-12-18 2019-11-22 이창훈 Apparatus for roasting food powder by plasma

Also Published As

Publication number Publication date
WO2022114246A3 (en) 2022-07-21
KR102581488B1 (en) 2023-09-20
KR20220071382A (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP2609249B2 (en) Method and apparatus for corona discharge treatment of material surface
WO2021235610A1 (en) System and method for storing cut flowers
WO2022114246A2 (en) Food processing system and method using atmospheric-pressure plasma generator
WO2019103444A1 (en) Home plasma sterilizer
WO2022173094A1 (en) Rotary bulk plasma generator
AU2017314768B9 (en) A gas purifying apparatus
WO2020101337A1 (en) Nitrogen oxide gas generating apparatus and controlling method therefor
CN109994951A (en) A kind of dedicated dehumidification device of high-tension switch cabinet
KR102396912B1 (en) Plasma sterilizer
JP2006114326A (en) Ion generating device and destaticizing and removal method of organic substance using this
RU2124299C1 (en) Bulk product radiation treatment apparatus
CA2502382A1 (en) Apparatus and method for the treatment of odor and volatile organic compound contaminants in air emissions
WO2019022496A1 (en) Hpae having control device of hydrogen peroxide decomposition positive catalyst filter attachment scrubber
KR102527748B1 (en) System and method for preserving cut-flowers
KR100195470B1 (en) A negative ion making microwave oven
WO2021235912A1 (en) Surface processing system and method for cylindrical and annular objects to be processed, using atmospheric plasma generation device
CN218340256U (en) Coating drying device for baking tray processing
WO2015127621A1 (en) Multi-functional fresh-keeping device and control method therefor and refrigeration device
CN220122386U (en) Switch cabinet with dehumidifying function
WO2019088329A1 (en) Mycobacterium tuberculosis sterilization device
JP7072791B2 (en) Processing equipment and processing method
WO2014101885A2 (en) Device and method for acting on biomaterials by using plasma
CN106140764A (en) Normal atmosphere differential output drive low temperature plasma glass washing device
WO2020042438A1 (en) Air regulating apparatus based on micro-electrolytic sterilization, control method, humidifier, and cooling fan
KR100624656B1 (en) Refrigerator and control method therrof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963642

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963642

Country of ref document: EP

Kind code of ref document: A2