WO2020100684A1 - 陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法 - Google Patents

陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法 Download PDF

Info

Publication number
WO2020100684A1
WO2020100684A1 PCT/JP2019/043477 JP2019043477W WO2020100684A1 WO 2020100684 A1 WO2020100684 A1 WO 2020100684A1 JP 2019043477 W JP2019043477 W JP 2019043477W WO 2020100684 A1 WO2020100684 A1 WO 2020100684A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
repeating unit
exchange membrane
cation exchange
mass
Prior art date
Application number
PCT/JP2019/043477
Other languages
English (en)
French (fr)
Inventor
兼次 中川
雅嗣 森下
英徹 栗田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201980058776.XA priority Critical patent/CN112672881B/zh
Priority to EP19885473.9A priority patent/EP3882025B1/en
Priority to JP2020516489A priority patent/JP6777833B1/ja
Priority to US17/275,440 priority patent/US20220040684A1/en
Publication of WO2020100684A1 publication Critical patent/WO2020100684A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/127Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes in the form of filaments or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • C08J5/2293After-treatment of fluorine-containing membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/18Fuel cells

Definitions

  • the present invention relates to a cation exchange membrane, an electrolytic cell, and a method for producing a cation exchange membrane.
  • an alkali metal salt electrolytic cell As various electrochemical devices using an ion exchange membrane as an electrolyte, there are an alkali metal salt electrolytic cell, a water electrolytic cell, a hydrochloric acid electrolytic cell, or a fuel cell. Among them, one that has matured as an industrial process and is widely used is electrolysis using an alkali metal salt electrolytic cell.
  • BACKGROUND ART Conventionally, industrial methods for producing a halogen gas such as chlorine, caustic alkali, and hydrogen by electrolyzing an aqueous solution of an alkali metal salt, particularly sodium chloride, potassium chloride and the like are well known.
  • the ion-exchange membrane electrolysis technique using an ion-exchange membrane as a diaphragm is industrialized worldwide as the most advantageous process for minimizing power consumption and saving energy.
  • the ion exchange membrane generally has a structure in which a layer having sulfonic acid (sulfonic acid layer) and a layer having carboxylic acid (carboxylic acid layer) are laminated.
  • the power consumption in the ion exchange membrane method is determined from the electrolysis voltage and the current efficiency, the electrolysis voltage is affected by both the sulfonic acid layer and the carboxylic acid layer, and the current efficiency is mainly affected by the carboxylic acid layer.
  • Patent Document 1 proposes a solid electrolyte membrane in which a fluoropolymer having a functional group is compatible with the fluoropolymer. Further, Patent Document 2 proposes to control the cluster diameter and the number of clusters of each layer in an ion exchange membrane composed of at least two layers of a layer having a carboxylic acid and a layer having a sulfonic acid.
  • the film is easily curled.
  • the film after hydrolysis cannot be rolled up, the handling during handling is poor, and the film cannot be set during electrolysis, which causes serious problems.
  • a core material may be embedded in the sulfonic acid layer to reinforce the membrane.
  • the core material changes in size due to swelling of the sulfonic acid layer.
  • the TFE ratio in the polymer forming the sulfonic acid layer is reduced, the rigidity is lost, and the film is easily curled.
  • Patent Documents 1 and 2 there is no mention of reducing the electrolysis voltage and suppressing curling.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a cation exchange membrane, an electrolytic cell, and a method for producing a cation exchange membrane that can suppress curling even at a low electrolysis voltage. To do.
  • the present inventors have found that the above problems can be solved when the cation exchange membrane has a predetermined configuration, and have completed the present invention.
  • the mass ratio of the repeating unit (A) to the total mass ratio of the repeating units (A), the repeating units (C) and the repeating units (D) in the layer (I) is 100% by mass or more, and is 53% by mass or more. 70 mass% or less, the mass ratio of the repeating unit (C) is 3 mass% or more and 44 mass% or less, and the mass ratio of the repeating unit (D) is 3 mass% or more and 44 mass% or less.
  • the cation exchange membrane according to [3].
  • m independently represents an integer of 1 to 12, and M represents an alkali metal.
  • m independently represents an integer of 1 to 12, and M represents an alkali metal.
  • the layer (I) comprises a copolymer containing the repeating unit (A) and the repeating unit (C), and a copolymer containing the repeating unit (A) and the repeating unit (D).
  • the layer (I) comprises a layer (I-1) having a copolymer containing the repeating unit (A) and the repeating unit (D), and a layer different from the layer (I-1).
  • the cation exchange membrane according to any one of [3] to [16] which has the following laminated structure.
  • the layer (I) comprises a layer (I-2) having a copolymer containing the repeating unit (A) and the repeating unit (C), and a layer different from the layer (I-2).
  • the cation exchange membrane according to any one of [3] to [16], which has the following laminated structure.
  • the layer (I) has a laminated structure including an outermost layer of the cation exchange membrane, the layer (I-3) containing the core material, and a layer different from the layer (I-3).
  • the cation exchange membrane according to any one of [6] to [16].
  • the layer (I) has a layer (I-1) having a copolymer containing the repeating unit (A) and the repeating unit (D), the repeating unit (A) and the repeating unit (C).
  • [3] to [16] having a layered structure containing a layer (I-2) having a copolymer containing a (1) and a layer different from the layer (I-1) and the layer (I-2).
  • the cation exchange membrane according to any one of claims.
  • Any of [1] to [21], wherein the fluorinated polymer containing a carboxylic acid type ion exchange group contains the repeating unit (A) and a repeating unit (E) represented by the following formula (5).
  • the cation exchange membrane according to 1.
  • n represents an integer of 0 or 1
  • m ′ represents an integer of 1 to 12
  • M ′ represents an alkali metal.
  • a cation-exchange membrane an electrolytic cell, and a method for producing a cation-exchange membrane, which can suppress curling at a low electrolysis voltage.
  • the present embodiment modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the present embodiment described below, and various modifications can be carried out within the scope of the gist.
  • the cation exchange membrane according to one aspect of the present embodiment (hereinafter, also referred to as “first cation exchange membrane”) is a repeating unit (A) represented by the following formula (1) and a sulfonic acid ion exchange membrane.
  • a repeating unit (S) having a group, and a mass ratio of the repeating unit (A) to the total 100 mass% of the repeating unit (A) and the repeating unit (S) is 53% by mass or more.
  • the layer (I) 70% by mass or less of the layer (I), and a layer (II) having a fluorinated polymer containing a carboxylic acid type ion exchange group, and arranged on the layer (I),
  • the water content of the layer (I) is 26% or more and 35% or less. Since the first cation exchange membrane is configured as described above, curling can be suppressed even at a low electrolysis voltage. By using such a cation exchange membrane in the electrolytic cell, improper mounting of the membrane or membrane handling It is possible to reduce power consumption during electrolysis while suppressing the occurrence of pinholes due to troubles.
  • the cation exchange membrane according to another aspect of the present embodiment is a repeating unit (A) represented by the following formula (1) and a sulfonic acid.
  • a layer (I) containing a repeating unit (S) having a type ion exchange group, and a layer (I) having a fluorinated polymer containing a carboxylic acid type ion exchange group and arranged on the layer (I) ( II) and the repeating unit (S) includes a repeating unit (C) represented by the following formula (3) and a repeating unit (D) represented by the following formula (4), and the layer
  • the water content of (I) is 25% or more and 35% or less.
  • m independently represents an integer of 1 to 12
  • M represents an alkali metal.
  • both the first cation exchange membrane and the second cation exchange membrane can suppress curling while having a low electrolysis voltage. Therefore, these are applied as members of the electrolytic cell. As a result, it is possible to provide an electrolytic cell capable of contributing to energy saving as compared with the conventional case.
  • the present embodiment will be described as including the "first cation exchange membrane” and the "second cation exchange membrane”.
  • a salt electrolytic membrane using an ion exchange membrane method is a laminated membrane (cation exchange membrane) in which a layer mainly containing a carboxylic acid (carboxylic acid layer) and a layer containing a sulfonic acid (sulfonic acid layer) are laminated.
  • a layer mainly containing a carboxylic acid carboxylic acid
  • sulfonic acid layer a layer containing a sulfonic acid
  • the sulfonic acid layer in this laminated film mainly plays the role of a support layer, and the carboxylic acid layer contributes to the expression of high current efficiency.
  • the carboxylic acid layer is characterized in that the clusters that are the paths of the ions are thin, and only the desired ions pass through due to the interaction between the ions and the ion exchange groups existing on the cluster wall surface. Thereby, selectivity, that is, current efficiency is exhibited. Since the cluster is formed by ion-exchange groups and water, the water content tends to be low in the carboxylic acid layer having a thin cluster.
  • the sulfonic acid layer is made of a polymer having a water content as high as possible so as to increase the cluster diameter in order to have a low resistance. As a method of increasing the water content, a method of increasing the number of ion exchange groups, that is, lowering EW can be considered.
  • the fluorinated polymer forming the sulfonic acid layer contains at least two specific repeating units, and the TFE ratio and the water content of the sulfonic acid layer are the same.
  • the cation exchange membrane of the present embodiment has a predetermined layer (I) and a layer (II), and each layer can be said to be a layer containing a predetermined fluoropolymer.
  • the “fluorine-containing polymer” in the present embodiment means a fluorine-containing polymer having an ion exchange group or an ion exchange group precursor capable of becoming an ion exchange group by hydrolysis.
  • the “ion exchange group” refers to a sulfonic acid type ion exchange group / carboxylic acid type ion exchange group.
  • the fluoropolymer has an ion-exchange group precursor that can be converted into an ion-exchange group by hydrolysis (for example, a carboxylic acid group precursor and a sulfonic acid group precursor), the carboxylic acid group is formed after the film formation by the method described below.
  • the precursor is converted into a carboxylic acid type ion exchange group, and the sulfonic acid group precursor is converted into a sulfonic acid type ion exchange group.
  • a polymer or the like that is composed of a main chain of a fluorinated hydrocarbon and has a functional group that can be converted into an ion-exchange group as a pendant side chain by hydrolysis or the like and is melt-processable, Can be converted to an exchange group. Since the fluoropolymer in the cation exchange membrane of the present embodiment has undergone hydrolysis, it contains sulfonic acid type ion exchange groups / carboxylic acid type ion exchange groups.
  • the fluoropolymer containing a sulfonic acid type ion exchange group / carboxylic acid type ion exchange group as the ion exchange group is, for example, a hydrophobic polymer main chain portion and a hydrophilic carboxylic acid group or sulfonic acid group portion. And have a microscopically separated structure. As a result, the fluoropolymer has, for example, an ionic cluster in which sulfonic acid groups or carboxylic acid groups are gathered.
  • the repeating unit (S) in the first cation exchange membrane preferably has a perfluoro structure from the viewpoint of developing chemical resistance, and is flexible from the viewpoint of forming a cluster that is an ion pass line by phase separation. It is preferable to include a repeating unit (B) represented by the following formula (2) having an exchange group in its side chain. (In the formula (2), n represents an integer of 0 to 3, m represents an integer of 1 to 12, and M represents an alkali metal.)
  • the repeating unit (B) in the first cation exchange membrane is represented by the following formula (3) in order to adjust the TFE ratio and the water content within a predetermined range from the viewpoint of lowering the voltage and further suppressing curling. It is preferable that the repeating unit (C) and the repeating unit (D) represented by the following formula (4) are included. (In the above formulas (3) and (4), m and M have the same meanings as in the formula (2).)
  • the layer (I) in the first cation exchange membrane may include the repeating units (A) and (S) as a whole layer. That is, the layer (I) may contain a mixture of a fluoropolymer containing the repeating unit (A) and a fluoropolymer containing the repeating unit (S), and the repeating units (A) and (S ) May be included.
  • the layer (I) in the first cation exchange membrane contains the repeating unit (A) and the repeating unit (B)
  • the layer (I) is a fluoropolymer containing the repeating unit (A) and a repeating unit. It may contain a mixture of fluoropolymers containing (B) or may contain a fluoropolymer containing repeating units (A) and (B).
  • the layer (I) in the first cation exchange membrane contains the repeating unit (A) and the repeating units (C) and (D)
  • the layer (I) is a fluoropolymer containing the repeating unit (A).
  • the layer (I) in the second cation exchange membrane may be any layer containing the repeating units (A), (C) and (D) as a whole. That is, the layer (I) contains a mixture of a fluoropolymer containing the repeating unit (A), a fluoropolymer containing the repeating unit (C) and a fluoropolymer containing the repeating unit (D). It may also contain a fluoropolymer containing the repeating units (A), (C) and (D).
  • the layer (I) in the cation exchange membrane of the present embodiment may contain one kind alone as a repeating unit corresponding to the repeating units (S), (B), (C) and (D). It may include two or more kinds. For example, when the repeating unit (B) is taken as an example, it may have two or more kinds of repeating units having a structure that differs only in the value of n and / or m in the above formula (2).
  • the layer (I) in the cation exchange membrane of this embodiment may contain units other than the repeating units (A), (S), (B), (C) and (D).
  • M in the above repeating units (S), (B), (C) and (D) is Na when assuming the use of salt electrolysis. Is preferred.
  • M is Na
  • m of the repeating units (S), (B), (C) and (D) is preferably 4 or less.
  • m is 4 or less, for example, the TFE ratio in the fluoropolymer tends to be increased, and sufficient rigidity tends to be maintained to prevent curling of the film.
  • the layer (II) in the cation exchange membrane of the present embodiment has a fluorinated polymer containing a carboxylic acid type ion exchange group.
  • the fluorine-containing polymer forming the layer (II) is not particularly limited, but contains the repeating unit (A) and the repeating unit (E) represented by the following formula (5) from the viewpoint of ion selectivity. It is preferable to have a fluoropolymer.
  • n represents an integer of 0 or 1
  • m ′ represents an integer of 1 to 12
  • M ′ represents an alkali metal.
  • M ′ of the repeating unit (E) when used in salt electrolysis, it is preferable that M ′ of the repeating unit (E) is Na.
  • M'is Na for example, the water content tends to increase significantly as compared with the case where M'is H, and the electrolysis voltage of the membrane due to the electrolysis operation tends to be significantly reduced.
  • m ′ of the repeating unit (E) when used in salt electrolysis, it is preferable that m ′ of the repeating unit (E) is 4 or less. When m ′ is 4 or less, for example, the TFE ratio in the fluoropolymer tends to be increased, and sufficient strength can be maintained to prevent the membrane from breaking due to electrolytic operation.
  • the layer (II) in the cation exchange membrane of the present embodiment may contain one kind alone as a repeating unit corresponding to the repeating unit (E), or may contain a plurality of two or more kinds. Good. That is, you may have 2 or more types of repeating units of a structure which differs only in the value of n and / or m'in the above formula (4).
  • the layer (II) in the cation exchange membrane of this embodiment may contain units other than the repeating units (A) and (E).
  • the fluoropolymer forming the layer (I) can be produced, for example, by any of the following methods.
  • Method 1 A copolymer according to the following general formula (A1) and the following general formula (C1) and a copolymer according to the following general formula (A1) and the following general formula (D1) are prepared and blended with each other. A method of producing a polymer mixture by doing so.
  • Method 2 A method of producing a copolymer according to the following general formula (A1), the following general formula (C1) and the following general formula (D1).
  • CF 2 CF 2 (A1)
  • CF 2 CF-O- (CF 2 ) m -W (C1)
  • m is an integer of 1 to 12
  • W is a precursor moiety which is hydrolyzed into a sulfonic acid group in an alkaline medium, and is a halogenated sulfonyl group —SO 2 X ( X is selected from —F, —Cl and —Br) or an alkyl sulfone group —SO 2 R (R is a lower alkyl group having 1 to 4 carbon atoms).
  • CF 2 CF-O-CF 2 CF (CF 3 ) O- (CF 2 ) m- W (D1)
  • m is an integer of 1 to 12
  • W is a precursor moiety which is hydrolyzed in an alkaline medium to be a sulfonic acid group, and is a halogenated sulfonyl group —SO 2 X ( X is selected from —F, —Cl, and —Br) or an alkylsulfone group —SO 2 R (R is a lower alkyl group having 1 to 4 carbon atoms).
  • the general formula (A1) is a monomer corresponding to the repeating unit (A)
  • the general formula (C1) is a monomer corresponding to the repeating unit (C)
  • the general formula (D1) is Is a monomer corresponding to the repeating unit (D).
  • the fluoropolymer obtained by the above method 1 comprises a copolymer (AC) containing repeating units (A) and (C), and a copolymer (AD) containing repeating units (A) and (D).
  • the layer (I) in the cation exchange membrane of the present embodiment comprises a copolymer (AC) containing a repeating unit (A) and a repeating unit (C), the repeating unit (A) and the repeating unit ( And a copolymer (D) containing D).
  • the fluoropolymer obtained by the above method 2 is a copolymer containing the repeating units (A), (C) and (D).
  • the layer (I) in the cation exchange membrane of the present embodiment may have a copolymer containing the repeating unit (A), the repeating unit (C) and the repeating unit (D).
  • the above-mentioned polymer blend is a copolymer containing repeating units (A), (C) and (D). It is simpler and technically simpler than coalescence, and tends to have excellent supply stability of the fluoropolymer.
  • a monomer other than the above-mentioned monomers may be used as a copolymerization component.
  • the layer (I) can also be formed by using the copolymer obtained by the above method 2 in combination with the polymer (AC) and / or the polymer (AD) in the above method 1.
  • a vinyl fluoride compound represented by the following general formula (A2) is preferably used as the copolymerization component of the fluoropolymer forming the layer (I).
  • the vinyl fluoride compound represented by the general formula (A2) is not particularly limited, but examples thereof include vinyl fluoride, hexafluoropropylene, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether). Etc.
  • the vinyl fluoride compound is preferably a perfluoromonomer, hexafluoropropylene, perfluoro (alkyl vinyl ether).
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) O-CF 2 CF 2 CF 2 SO 2 F
  • Polymers or copolymers obtained from the above-mentioned monomers are produced by the polymerization method developed for homopolymerization and copolymerization of fluorinated ethylene, in particular, the general polymerization method used for tetrafluoroethylene. It can be manufactured.
  • an inert solvent such as perfluorohydrocarbon or chlorofluorocarbon is used, and the temperature is 0 to 200 ° C. and the pressure is 0.
  • the polymerization reaction can be carried out under the condition of 1 to 20 MPa.
  • the copolymer may be a block polymer or a random polymer.
  • the method of blending the fluorine-containing polymer can be carried out according to various known techniques relating to blending and kneading, and is not particularly limited. Techniques such as a shaft kneading extruder, a Labo Plastomill and a mixer can be applied.
  • the blending temperature is preferably equal to or higher than the temperature at which the fluoropolymer melts, and preferably equal to or lower than the temperature at which thermal decomposition does not occur. Specifically, the blending temperature is preferably 230 ° C. or higher and 270 ° C. or lower.
  • the blending time is preferably 1 minute or more and 60 minutes or less when using a batch-type kneading machine such as Labo Plastomill or a mixer. It is preferably 1 minute or longer from the viewpoint of the time required to sufficiently transfer heat after the polymer is put into a device, and preferably 60 minutes or shorter from the viewpoint of preventing thermal deterioration due to blending for a long time.
  • the following first group monomer and second group monomer are copolymerized: Or by homopolymerizing the second group of monomers.
  • the first group of monomers include the vinyl fluoride compounds described above.
  • the vinyl fluoride compound is preferably a perfluoro monomer, and tetrafluoroethylene, hexafluoropropylene, perfluoro ( A perfluoromonomer selected from the group consisting of alkyl vinyl ethers) is more preferable.
  • the second group of monomers include vinyl compounds having a functional group that can be converted into a carboxylic acid type ion exchange group.
  • vinyl compound having a functional group that can be converted into a carboxylic acid type ion exchange group those represented by the following general formula (E1) are preferable.
  • CF 2 CF-O- (CF 2 CF (CF 3) O) n - (CZF) m '-X ⁇ (E1)
  • n represents an integer of 0 or 1
  • m ′ represents an integer of 1 to 12
  • Z represents F or CF 3
  • X represents a carboxyl group which is hydrolyzed in an alkaline medium.
  • a precursor to be an acid group which is selected from a carboxylic acid ester group-COOR (R: a lower alkyl group having 1 to 4 carbon atoms), a cyano group-CN, and an acid halide-COQ (Q: a halogen atom).
  • n represents an integer of 0 or 1
  • m ′ represents an integer of 1 to 4
  • R represents CH 3 , C 2 H 5 or C 3 H 7.
  • R is CH 3 .
  • the cation exchange membrane of the present embodiment when used as a cation exchange membrane for alkaline electrolysis, it is preferable to use at least a perfluoromonomer as the monomer of the second group.
  • the alkyl group (R) does not have to be a perfluoroalkyl group in which all hydrogen atoms are replaced by fluorine atoms, since R) is lost from the polymer at the time of hydrolysis.
  • the monomers shown below are more preferable.
  • the total ion exchange capacity measured for the layer (I) in the cation exchange membrane of the present embodiment is preferably 1.0 mg equivalent / g or more and 1.5 mg equivalent / g or less, and 1.1 mg equivalent / g. More preferably, it is not less than g and not more than 1.4 mg equivalent / g. If the total ion exchange capacity is 1.0 mg equivalent / g or more, the cation exchange membrane tends to be flexible and the handling property tends to be improved. When the total ion exchange capacity is 1.5 mg equivalent / g or less, the water content of the polymer does not become excessively high, and curl tends to be easily suppressed.
  • the total ion exchange capacity means the equivalent weight of the exchange group per unit weight of the dry resin, and the “total ion exchange capacity” is measured by neutralization titration or IR. You can Specifically, it can be measured by the method described in Examples described later. Further, the total ion exchange capacity can be adjusted within the above range by appropriately changing the kind and the ratio of repeating units of the fluoropolymer.
  • the EW measured for the layer (I) in the cation exchange membrane of the present embodiment is 667 g / eq. 1000 g / eq.
  • EW is 667 g / eq. If it is above, the water content of the polymer does not become excessively high, and the curl tends to be easily suppressed. EW is 1000 g / eq. When it is below, the cation exchange membrane tends to have flexibility and handleability. EW is 714 g / eq. If it is above, the strength is sufficient and the handling property tends to be excellent. EW is 909 g / eq. If it is below, the AC resistance of the cation exchange membrane can be lowered, that is, electrolysis tends to be performed at a lower voltage.
  • the “TFE ratio” is the mass ratio of the repeating unit (A) to the total 100 mass% of the mass ratios of the repeating unit (A) and the repeating unit (S), and will be described later. Calculated by the method.
  • the TFE ratio is the ratio of the repeating unit (A) :-( CF 2 CF 2 )-in the above fluoropolymer.
  • the repeating unit (A) is a component that easily crystallizes, and the crystallized repeating unit (A) tends to affect the development of strength and curl suppression.
  • the repeating unit (A) is a component that easily crystallizes, and the crystallized repeating unit (A) tends to affect the development of strength and curl suppression.
  • the repeating unit (A) is a component that easily crystallizes, and the crystallized repeating unit (A) tends to affect the development of strength and curl suppression.
  • the TFE ratio measured for the layer (I) in the first cation exchange membrane is in the range of 53% by mass or more and 70% by mass or less, and preferably in the range of 54% by mass or more and 60% by mass or less. ..
  • the TFE ratio is 53% by mass or more, sufficient strength capable of withstanding the breakage of the film can be maintained.
  • the TFE ratio is 70% or less, the AC resistance value of the cation exchange membrane can be lowered, that is, electrolysis can be performed at a low voltage.
  • the TFE ratio is 54% by mass or more, curling of the cation exchange membrane tends to be more effectively suppressed, and when the TFE ratio is 60% by mass or less, the cation exchange membrane is more flexible and more easily handled.
  • the TFE ratio measured for the layer (I) in the second cation exchange membrane is not particularly limited, but is preferably in the range of 53% by mass or more and 70% by mass or less, and 54% by mass. More preferably, it is in the range of 60 mass% or less. When the TFE ratio is 53% by mass or more, there is a tendency that sufficient strength capable of withstanding the breakage of the film can be maintained. If the TFE ratio is 70% or less, the AC resistance of the cation exchange membrane can be lowered, that is, electrolysis tends to be performed at a low voltage.
  • the TFE ratio measured for the layer (II) in the cation exchange membrane of the present embodiment is not particularly limited, but may be in the range of 61.5% by mass or more and 65% by mass or less. It is more preferably in the range of 62.5% by mass or more and 64.5% by mass or less. When the TFE ratio is 61.5% by mass or more, there is a tendency that sufficient strength that can withstand the breakage of the film can be maintained.
  • the cation exchange membrane tends to have flexibility and excellent handleability.
  • the TFE ratio is 62.5 mass% or more, sufficient current efficiency can be exhibited, and when the TFE ratio is 64.5 mass% or less, the AC resistance value of the cation exchange membrane can be lowered. That is, there is a tendency for electrolysis at a low voltage.
  • the TFE ratio with respect to the layer (I) and the layer (II) can be measured based on the method described in Examples below.
  • the mass ratio of the repeating unit (A) to the total mass ratio of the repeating unit (A) and the repeating unit (S) is 100% by mass and 53% by mass or more and 70% by mass or more.
  • the repeating unit (S) includes the repeating unit (C) and the repeating unit (D) represented by the formula (4), the repeating unit is The mass ratios of (A), (C) and (D) are preferably in the following ranges.
  • composition ratios are ratios when the total of the mass ratios of (A), (C) and (D) is 100 mass%.
  • the composition ratio A1 of the repeating unit (A) is preferably 53% by mass or more and 70% by mass or less, and more preferably 54% by mass or more and 60% by mass or less.
  • the composition ratio C1 of the repeating unit (C) is preferably 3% by mass or more and 44% by mass or less, and more preferably 5% by mass or more and 41% by mass or less.
  • composition ratio D1 of the repeating unit (D) is preferably 3% by mass or more and 44% by mass or less, and more preferably 5% by mass or more and 41% by mass or less.
  • the mass ratio of the repeating units (A), (C) and (D) is preferably in the following range.
  • the composition ratio A2 of the repeating unit (A) is preferably 53% by mass or more and 70% by mass or less, and more preferably 54% by mass or more and 60% by mass or less.
  • the composition ratio C2 of the repeating unit (C) is preferably 3% by mass or more and 44% by mass or less, and more preferably 5% by mass or more and 41% by mass or less.
  • the composition ratio D2 of the repeating unit (D) is preferably 3% by mass or more and 44% by mass or less, more preferably 5% by mass or more and 41% by mass or less.
  • the composition ratios A1 and A2 of the repeating unit (A) are 53% by mass or more, sufficient strength that can withstand breakage of the membrane tends to be maintained.
  • the composition ratios A1 and A2 of the repeating unit (A) are 70% by mass or less, the AC resistance value of the cation exchange membrane can be lowered, that is, electrolysis can be performed at a low voltage.
  • the composition ratios A1 and A2 of the repeating unit (A) are 54% by mass or more, curling of the cation exchange membrane tends to be suppressed, and the composition ratios A1 and A2 of the repeating unit (A) are 60% by mass.
  • the cation exchange membrane tends to have flexibility and excellent handling property. If the composition ratio C1 and C2 of the repeating unit (C) is 3% by mass or more, curling tends to be suppressed, and if it is 44% by mass or less, the AC resistance value of the cation exchange membrane is lowered. That is, that is, electrolysis can be performed at a low voltage. Further, if the composition ratios C1 and C2 are 5% by mass or more, it tends to be possible to maintain sufficient strength to withstand the rupture of the film, and if it is 41% by mass or less, delamination between layers is unlikely to occur. Tends to be a film.
  • composition ratio D1 and D2 of the repeating unit (D) When the composition ratio D1 and D2 of the repeating unit (D) is 3% by mass or more, the AC resistance value of the cation exchange membrane can be lowered, that is, electrolysis can be performed at a low voltage. If it is at most% by mass, curl tends to be suppressed. Further, when the composition ratios D1 and D2 are 5% by mass or more, the cation exchange membrane tends to have flexibility and excellent handling properties, and when it is 41% by mass or less, it is sufficient to withstand the breakage of the membrane. The strength tends to be maintained.
  • the plurality of repeating units contained in the fluoropolymer having a sulfonic acid group and the mass ratio of each repeating unit can be adjusted by the method 1 or the method 2 described above.
  • a sulfonic acid repeating unit having a low resistance but a low TFE ratio, a long side difference, and a high resistance but a TFE ratio are used. Since the polymer tends to have a well-balanced sulfonic acid repeating unit having a high side difference and short side difference, as a result, the balance between low electrolysis voltage and curl suppression tends to be improved.
  • the cation exchange membrane of this embodiment when the layer (I) includes units other than the repeating units (A) to (D) (other units a), the cation exchange membrane of the present embodiment is not limited to the following. From the viewpoint of ensuring the above effect, when the total of the units constituting the layer (I) is 100% by mass, the content of the other unit a is preferably 30% by mass or less. When it is 30% by mass or less, it becomes easy to adjust the TFE ratio and the water content within a desired range.
  • the cation exchange membrane of this embodiment when the layer (II) contains units other than the repeating units (A) and (E) (other units b), the cation exchange membrane of the present embodiment is not limited to the following. From the viewpoint of ensuring the above effect, when the total of the units constituting the layer (II) is 100% by mass, the content of the other unit b is preferably 30% by mass or less. When it is 30% by mass or less, it becomes easy to adjust the TFE ratio and the water content within a desired range.
  • Ratio of repeating unit (D) represented by repeating unit (E) / (repeating unit (A) + repeating unit (E)) measured with respect to layer (II) in the cation exchange membrane of the present embodiment Is not particularly limited, but is preferably in the range of 35% by mass or more and 38.5% by mass or less, and more preferably in the range of 35.5% by mass or more and 37.5% by mass or less.
  • the cation exchange membrane tends to have flexibility and excellent handleability.
  • the above ratio is 38.5 mass% or less, there is a tendency that sufficient strength that can withstand the breakage of the film can be maintained.
  • the ratio is 35.5 mass% or more, the AC resistance value of the cation exchange membrane can be reduced, that is, electrolysis tends to be performed at a low voltage.
  • the ratio is 37.5% by mass or less, sufficient current efficiency can be exhibited.
  • the fluorine-containing polymer constituting the layer (I) in the cation exchange membrane of the present embodiment is the copolymer of the repeating units (A) and (C) as in the above method 1, and the repeating unit (A).
  • the copolymer of repeating units (A) and (C) and the copolymer of repeating units (A) and (D) are not particularly limited.
  • the weight ratio is preferably 10/90 or more and 80/20 or less as (copolymer of repeating units (A) and (C)) / (copolymer of repeating units (A) and (D)).
  • the monomer corresponding to the repeating unit (D) is easier to synthesize than the repeating unit (C), it is technically preferable that the weight ratio of the copolymer of the repeating units (A) and (D) is large. Is generally simple, and the stability of supply of the fluoropolymer tends to be excellent.
  • the “water content” is a parameter that correlates with the cluster that is the path of ions, and affects the electrolysis voltage and the curl of the membrane.
  • the water content of the layer (I) in the first cation exchange membrane is 26% or more and 35% or less, preferably 26% or more and 34% or less. If the water content is 26% or more, even if the repeating unit (S) does not contain the repeating unit (C) and the repeating unit (D) represented by the following formula (4), the cation The AC resistance of the exchange membrane can be lowered, that is, electrolysis can be performed at a low voltage. When the water content is 35% or less, sufficient strength capable of withstanding the breakage of the film can be maintained.
  • the water content measured for the layer (I) in the second cation exchange membrane is in the range of 25% or more and 35% or less, and preferably in the range of 26% or more and 34% or less.
  • the AC resistance value of the cation exchange membrane can be reduced, that is, electrolysis can be performed at a low voltage.
  • the water content is 35% or less, sufficient strength capable of withstanding the breakage of the film can be maintained. If the water content is 26% or more, electrolysis tends to be performed at a more suitable low voltage.
  • the water content is 34% or less, sufficient strength capable of withstanding the breakage of the film can be maintained.
  • the above range is assumed to be a value measured with respect to the cation exchange membrane before electrolysis, and in the cation exchange membrane after electrolysis, it may be reduced by about 1 to 2% from the above range. .. Therefore, a cation exchange membrane having a reduction of 1 to 2% from the above range after electrolysis can be regarded as a cation exchange membrane satisfying the above range.
  • An example of the method for measuring the water content is shown below. For the water content, a membrane having a thickness of 500 ⁇ m or less and a weight of 0.5 g or more is immersed in pure water at 85 ° C. for 4 hours, and then the weight of the membrane is measured. Let this weight be W (wet) .
  • the weight of the film is measured by drying with a ccc air dryer at -0.1 MPa and 90 ° C. for 3 hours. This weight is designated as W (dry) .
  • the same treatment is performed on 10 membranes to obtain the water content, and the average value thereof is calculated.
  • the above-mentioned method of measuring the water content is applied in Examples described later. Since the cation exchange membrane of this embodiment is a multi-layered membrane, the water content is measured after separating the cation exchange membrane of this embodiment into a single layer membrane.
  • the control method for adjusting the water content measured for the layer (I) to the above range is not limited to the following, but for example, the number of ion exchange groups in the polymer and TFE Adjusting the ratio to the desired value may be mentioned.
  • the water content is determined by the balance between the elastic energy and hydrophilicity of the polymer, it can be controlled by adjusting the TFE ratio that affects the expression of elastic energy and the number of ion-exchange groups that affect the expression of hydrophilicity.
  • the difference in water content between the layer (I) and the layer (II) is preferably 25% or less, more preferably 21% or less, More preferably, it is 18% or less.
  • the water content of the layer (II) is not particularly limited, but is preferably 9 to 21%, more preferably 12 to 18%.
  • the “water content / TFE ratio” is a parameter that correlates with the easiness of curling of the cation exchange membrane. Whether or not the cation exchange membrane is curled is determined by the easiness of curling of the membrane in addition to the external force. The external force is generated due to, for example, a difference in water content between layers in the film or a degree of swelling of the film with respect to the core material embedded in the film.
  • the easiness of curling of the cation exchange membrane is greatly influenced by the hardness of the membrane, and is determined by the balance between the water content that affects the flexibility and the TFE ratio that affects the rigidity.
  • the “water content / TFE ratio” measured for the layer (I) in the cation exchange membrane of the present embodiment is not particularly limited, but is in the range of 0.48 or more and 0.64 or less. Is preferable, and the range of 0.48 or more and 0.56 or less is more preferable.
  • the water content / TFE ratio is 0.48 or more, the AC resistance value of the cation exchange membrane can be lowered, that is, electrolysis tends to be performed at a low voltage.
  • the water content / TFE ratio When the water content / TFE ratio is 0.64 or less, the hardness of the cation exchange membrane tends to be adjusted and curling of the cation exchange membrane tends to be suppressed. If the water content / TFE ratio is 0.56 or less, the desired effect of this embodiment tends to be more prominent.
  • the water content / TFE ratio can be calculated using the above-mentioned "water content” and "TFE ratio". The method of measuring the water content / TFE ratio described above is applied in the examples described later.
  • the EW of the layer (I) / the EW of the layer (II) is a parameter that correlates with the curl of the cation exchange membrane. Whether or not the cation exchange membrane is curled is determined by external force in addition to the ease of curling of the membrane. The ease of curling is affected by the hardness of the film. On the other hand, the external force is affected by the difference in the swelling ratio between the layers in the film. The swelling ratio is determined by the balance of water content and swelling property, and EW can be used as an index thereof.
  • EW of layer (I) / layer (II) is not particularly limited, but is preferably in the range of 0.6 or more and 0.8 or less, and more preferably in the range of 0.65 or more and 0.77 or less.
  • EW of layer (I) / EW of layer (II) is 0.6 or more, curling tends to be suppressed more effectively, and “EW of layer (I) / EW of layer (II)” tends to be achieved.
  • the AC resistance value of the cation exchange membrane can be lowered, that is, electrolysis can be performed at a low voltage.
  • the EW of “the EW of the layer (I) / the EW of the layer (II)” is 0.65 or more and 0.77 or less, the desired effect of the present embodiment tends to be more remarkable.
  • the cation exchange membrane of this embodiment preferably contains a core material.
  • the core material tends to increase the strength and dimensional stability of the cation exchange membrane, and the position inside the membrane body is not particularly limited, and may be inside the layer (I), inside the layer (II), or inside the layer (I). It may be disposed between the layer (II) and the layer (II), but is preferably disposed inside the layer (I) or between the layer (I) and the layer (II).
  • a part of one core material is arranged inside the layer (I) and the other part is arranged inside the layer (II). Good.
  • the core material is preferably a woven cloth woven with reinforcing threads. From the viewpoint of long-term heat resistance and chemical resistance, the core material is preferably a woven fabric of fibers containing a fluoropolymer.
  • the material for the core material is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), tetra Examples thereof include fluoroethylene-hexafluoropropylene copolymer, trifluorochloroethylene-ethylene copolymer and vinylidene fluoride polymer (PVDF).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • PVDF vinylidene flu
  • a woven fabric of fibers containing polytetrafluoroethylene as the core material.
  • a fluoropolymer different from the fluoropolymers constituting the layers (I) and (II) described above may be applied as the core material, or a fluoropolymer having the same composition as these may be applied as the core material. You may.
  • the layer (I) or the layer (II) and the core material are distinguished by their respective shapes, that is, whether they are layered or not. can do.
  • the core diameter is preferably 20 to 300 denier, more preferably 50 to 250 denier, and the weaving density (the number of threads per unit length) is preferably 5 to 50 threads / inch.
  • the shape of the core material include a woven cloth, a non-woven cloth, and a knitted cloth, and the woven cloth is preferable.
  • the thickness of the woven fabric is preferably 30 to 250 ⁇ m, more preferably 30 to 150 ⁇ m.
  • the woven fabric or knitted fabric is not particularly limited, and for example, monofilament, multifilament, or yarns or slit yarns thereof are used. Used.
  • the opening ratio of the core material is not particularly limited, but is preferably 30% or more, more preferably 50% or more and 90% or less.
  • the aperture ratio is preferably 30% or more from the viewpoint of electrochemical properties as an ion exchange membrane, and 90% or less from the viewpoint of mechanical strength of the membrane.
  • the open area ratio is the ratio of the total area (S2) through which substances such as ions can pass to the total surface area (S1) of the ion exchange membrane, and is represented by (S2) / (S1).
  • (S2) is the total area of the region in the ion exchange membrane where the ions, the electrolytic solution and the like are not blocked by the core material contained in the ion exchange membrane.
  • the measuring method of the aperture ratio is as follows.
  • a transmission image is taken from the direction of the membrane surface of the ion-exchange membrane (coatings that obstruct the acquisition of the transmission image are removed before measurement), and the core material (sacrificial core material and communication holes are not included) is taken.
  • the above (S2) can be obtained from the area of the portion where no is present. Then, the above (S1) is obtained from the area of the transmission image of the ion exchange membrane, and the above (S2) is divided by the above (S1) to obtain the aperture ratio.
  • a particularly preferable form is, for example, a tape yarn in which a high-strength porous sheet made of PTFE is slit into a tape shape.
  • a highly-oriented monofilament made of PTFE of 50 to 300 denier is used, and the weave density is 10 to 50 filaments / inch. It is preferable that the aperture ratio is 60% or more.
  • the woven fabric may contain auxiliary fibers, which are usually called sacrificial yarns, for the purpose of preventing misalignment of the core material in the process of manufacturing the membrane.
  • auxiliary fibers which are usually called sacrificial yarns, for the purpose of preventing misalignment of the core material in the process of manufacturing the membrane.
  • the sacrificial yarn has solubility in the membrane manufacturing process or in an electrolytic environment, and is not particularly limited, and for example, rayon, polyethylene terephthalate (PET), cellulose, polyamide and the like are used.
  • the mixed weaving amount is preferably 10% by mass or more and 80% by mass or less, more preferably 30% by mass or more and 70% by mass or less of the entire woven or knitted fabric.
  • the MD material has an elongation of 10 GL% or less at 30 N and / or the TD material has an elongation of 10 GL% or less at 30 N in the TD direction. .
  • the core elongation at a load of 30 N is 10 GL% or less, the dimensional stability of the film tends to be maintained. Further, if it is 1 GL% or more, the problem that the core material is cut off when bent is less likely to occur, and if it is 3 GL% or more, the cation exchange membrane tends to exhibit flexibility and good handling, and 9 GL% or less.
  • the MD direction is a direction (“flow direction”) in which a membrane body and various members (for example, core material) are conveyed in the production of a cation exchange membrane described later.
  • the TD direction (transverse direction) refers to a direction substantially perpendicular to the MD direction. The strength and elongation of the core material were measured by cutting the core material in MD and TD directions to a sample width of 1 cm and a length of 14 cm, chucking both ends so that the chuck distance of the length 14 cm was 5 cm, and 23 ° C., 100 mm / min.
  • the elongation at a load of 30 N can be measured by stretching at a speed of 1 and performing a tensile test.
  • the preferable numerical value of the strength elongation of the core material described above is a value measured with respect to the core material before electrolysis.
  • the core material that can be included in the cation exchange membrane of the present embodiment is, for example, when a tape yarn is applied, the twisted portion is insufficiently stretched like a spring with a simple twisted yarn, but the twisted yarn is By stretching while heating, a core material having excellent dimensional stability is obtained, and as a result, the core material elongation at a load of 30 N can be 10 GL% or less.
  • the elongation of the core material tends to increase as the draw ratio decreases, and the elongation of the core material tends to decrease as the draw ratio increases. Further, when the heating temperature is high, the core material elongation tends to increase, and when the heating temperature is low, the core material elongation tends to decrease.
  • the cation exchange membrane of this embodiment may have a communication hole in the membrane.
  • the communication hole means a hole that can serve as a flow path for cations generated during electrolysis or an electrolytic solution.
  • the formation of the communication holes tends to further improve the mobility of alkali ions generated during electrolysis and the electrolytic solution.
  • the shape of the communication hole is not particularly limited, but the shape of the sacrificial yarn used for forming the communication hole can be obtained by the manufacturing method described later.
  • the communication holes are preferably formed so as to alternately pass through the anode side and the cathode side of the core material.
  • the cations for example, sodium ions transported through the electrolytic solution filled in the communication hole are It can also flow to the cathode side of. As a result, the flow of cations is not blocked, and the electric resistance of the ion exchange membrane tends to be further reduced.
  • FIG. 1 shows a schematic cross-sectional view of an example of the configuration of the cation exchange membrane of this embodiment.
  • the cation exchange membrane of this embodiment has a layer 4 (layer I) and a layer 5 (layer II) stacked, and has a core material 3 and communication holes 2a and 2b inside the membrane.
  • the core material 3 is, for example, a woven cloth of PTFE monofilaments, and PET fibers, for example, are knitted between the monofilaments in the same manner as the monofilaments. The same applies to warp and weft.
  • the layer 4 containing the fluoropolymer having a sulfonic acid group is placed on the anode side ⁇ of the electrolytic cell, and the layer 5 containing the fluoropolymer having a carboxylic acid group is the cathode side ⁇ of the electrolytic cell.
  • coating layers 6 and 7 are provided on the film surface.
  • the communication hole 2a and the core material 3 are formed in a direction perpendicular to the paper surface, and the communication hole 2b is formed in the vertical direction of the paper surface. That is, the communication hole 2b formed in the vertical direction of the paper surface is formed along the direction substantially perpendicular to the core material 3.
  • the communication holes 2a and 2b may have a portion 8 facing the surface of the layer 4 on the anode side.
  • the cation exchange membrane of this embodiment is preferably laminated so that the surface of the layer 4 and the surface of the layer 5 are in contact with each other.
  • the layer 4 and the layer 5 (further, the core material 3 if necessary) are collectively referred to as a film body.
  • an opening is formed on at least one surface of the membrane body.
  • the open part means a part that is open on one surface of the membrane main body because a part of the communication hole is located on that surface.
  • the cation exchange membrane of the present embodiment can have a coating layer disposed on at least one surface of the membrane body, and the coating layer prevents gas from adhering to the cathode side surface and the anode side surface during electrolysis. Can be prevented.
  • the material forming the coating layer is not particularly limited, but preferably contains an inorganic material from the viewpoint of preventing gas adhesion. Examples of the inorganic material include zirconium oxide and titanium oxide.
  • the method for forming the coating layer on the film body is not particularly limited, and a known method can be used. For example, a method of applying a liquid in which fine particles of an inorganic oxide are dispersed in a binder polymer solution by spraying or the like can be mentioned.
  • binder polymer examples include vinyl compounds having a functional group that can be converted into a sulfone type ion exchange group.
  • the coating conditions are not particularly limited, and for example, spraying can be used at 30 to 90 ° C. Examples of methods other than the spray method include roll coating and the like.
  • the average thickness of the coating layer is preferably 1 to 10 ⁇ m from the viewpoint of preventing gas adhesion and increasing electrical resistance due to the thickness.
  • the structure of the membrane body in the cation exchange membrane of the present embodiment is not particularly limited as long as it has at least one layer (I) and (II) described above. That is, the layer (I) may be a single layer or a plurality of layers. Further, the layer (II) may be a single layer or plural layers. In addition to the layer (I) and the layer (II), it may have any layer.
  • the cation exchange membrane of the present embodiment can be configured by appropriately combining the above configurations. Hereinafter, an aspect that can be particularly preferably adopted will be described.
  • the cation exchange membrane of this embodiment can be configured as follows. That is, it is possible to have a laminated structure composed of the layer (I) and the layer (II), and the core material is arranged inside the layer (I). In the above laminated structure, both the layer (I) and the layer (II) are outermost layers, and the core material is more preferably located near the surface of the layer (I) on the side of FIG. 1 ( ⁇ ). preferable.
  • the cation exchange membrane of this embodiment can be configured as follows. That is, the layer (I) comprises a layer (I-1) having a copolymer containing a repeating unit (A) and a repeating unit (D), and a layer different from the layer (I-1). It may have a laminated structure.
  • the layer different from the layer (I-1) is not particularly limited as long as it is composed of a polymer different from that of the layer (I-1).
  • the repeating unit (A ) And a repeating unit (C) are included in the layer, or a layer containing a repeating unit (A), a repeating unit (C) and a repeating unit (D). It may be.
  • the repeating units included in each layer are common, if the two are different in “another unit that does not correspond to any of the repeating units (A), (C), and (D)”, It can be considered that the polymer is composed of another kind of polymer (hereinafter the same).
  • the cation exchange membrane of this embodiment can be configured as follows. That is, the layer (I) comprises a layer (I-2) having a copolymer containing a repeating unit (A) and a repeating unit (C), and a layer different from the layer (I-2). It may have a laminated structure.
  • the layer different from the layer (I-2) is not particularly limited as long as it is composed of a polymer different from that of the layer (I-2).
  • the repeating unit (A ) And a repeating unit (D) may be included in the layer having a copolymer containing the repeating unit (A), the repeating unit (C) and the repeating unit (D). It may be.
  • the cation exchange membrane of this embodiment can be configured as follows. That is, the layer (I) has a laminated structure including the outermost layer of the cation exchange membrane and containing the core material (I-3) and a layer different from the layer (I-3). Can be In the above laminated structure, the “layer different from the layer (I-3)” is not particularly limited as long as it does not contain a core material.
  • the layer different from the layer (I-3) may be, for example, a layer having a copolymer containing the repeating unit (A) and the repeating unit (C), or the repeating unit (A) and the repeating unit ( It may be a layer having a copolymer containing D) or a layer having a copolymer containing a repeating unit (A), a repeating unit (C) and a repeating unit (D). Alternatively, a plurality of layers may be formed of the above combination.
  • the cation exchange membrane of this embodiment can be configured as follows. That is, the layer (I) contains a layer (I-1) having a copolymer containing a repeating unit (A) and a repeating unit (D), and a layer (I-1) containing a repeating unit (A) and a repeating unit (C).
  • the layered structure may include a layer (I-2) containing a polymer and a layer different from the layer (I-1) and the layer (I-2).
  • the “layer different from the layer (I-1) and the layer (I-2)” is particularly a layer different from the layer (I-1) and the layer (I-2).
  • the composition is not limited and may be the same as that of the layer (I-1) and the layer (I-2).
  • it may be a layer having a copolymer (AC) containing the repeating unit (A) and the repeating unit (C), and may be a copolymer (AD) containing the repeating unit (A) and the repeating unit (D).
  • it may be a layer having a copolymer containing the repeating unit (A), the repeating unit (C) and the repeating unit (Dd).
  • the thickness of the layer (I) is not particularly limited, but is preferably 5 ⁇ m or more and 150 ⁇ m or less. When the thickness of the layer (I) is within the above range, the effect of reducing the voltage tends to be sufficiently exhibited. In the cation exchange membrane of this embodiment, the thickness of the layer (II) is not particularly limited, but is preferably 5 ⁇ m or more and 50 ⁇ m or less. When the layer (II) is in the above range, a sufficiently high current efficiency tends to be exhibited.
  • the total thickness of the layers (I) and (II) is not particularly limited, but is preferably 35 ⁇ m or more and 200 ⁇ m or less, more preferably 55 ⁇ m or more and 150 ⁇ m or less.
  • the cation exchange membrane tends to have strength and suitable electrolytic performance.
  • the layer (I) is composed of a plurality of layers, it is preferable that the thickness of the entire layer (I) satisfies the above numerical range. The same applies to the layer (II).
  • the layer (I) comprises a plurality of layers
  • the physical property value relating to the ratio / TFE ratio it is preferable to satisfy each numerical range as an average value of each layer. The same applies to the layer (II).
  • the cation exchange membrane of this embodiment can be applied as a diaphragm for various electrolysis, but it is particularly preferably used for salt electrolysis.
  • the cation exchange membrane according to the present embodiment having the above-mentioned configuration can effectively prevent the occurrence of curling.
  • the curl of the cation exchange membrane can be evaluated by the following method. As a sample for evaluation, a 40 cm ⁇ 30 cm film is prepared, and how much the film curls in the 40 cm direction is evaluated. As shown in FIG.
  • the method for producing the cation exchange membrane of the present embodiment is not particularly limited, but preferably has the following steps 1) to 5). 1) a step of producing a fluoropolymer having an ion exchange group, or an ion exchange group precursor capable of becoming an ion exchange group by hydrolysis (polymer production step), 2) a step of obtaining a core material in which a sacrificial thread is woven (manufacturing step of the core material), 3) a step of forming a film of a fluoropolymer having an ion exchange group or an ion exchange group precursor capable of becoming an ion exchange group by hydrolysis (film forming step), 4) a step of embedding the core material and the film to form a composite film (embedding step), 5) A production method including a step of hydrolyzing the composite film with an acid or an alkali (hydrolysis
  • the cation exchange membrane of the present embodiment controls the composition of the fluorinated polymer in the polymer production step of 1) among the above steps.
  • each step will be described in detail.
  • Step (polymer manufacturing step) The fluoropolymer in this embodiment can be produced by the method described in the above section (Fluorine-containing polymer).
  • the cation exchange membrane of the present embodiment preferably has a core material embedded in the membrane from the viewpoint of further improving the strength of the membrane.
  • the sacrificial yarn is also woven into the core material.
  • the mixed weaving amount of the sacrificial yarn is preferably 10 to 80% by mass, and more preferably 30 to 70% by mass of the whole core material.
  • the sacrificial yarn is preferably polyvinyl alcohol having a thickness of 20 to 50 denier and made of monofilament or multifilament.
  • the method for forming a film from the fluoropolymer obtained in the step 1) is not particularly limited, but it is preferable to use an extruder.
  • the following methods are mentioned as a method of forming a film.
  • the cation exchange membrane (sulfonic acid layer) forming the layer (I) and the layer (II) are formed.
  • a method in which the cation exchange membrane (carboxylic acid layer) is separately formed into a film can be used.
  • the fluoropolymer layer (I-1) and the fluoropolymer layer (I-2) is used.
  • the fluoropolymer layer (I-1) and the layer (II) are coextruded to form a composite film.
  • the fluoropolymer layer (I-2) can be formed into a film and laminated to the composite film of the layer (I-1) and the layer (II).
  • the fluoropolymer layer (I-1) and the fluoropolymer layer (I-2) are coextruded to form a layer (I) 'as a composite film, and then the layer (II) is separately prepared. Can be formed into a film with and laminated with the layer (I) '.
  • co-extrusion of the fluoropolymer layer (I-1) and the layer (II) is preferable because the adhesive strength at the interface can be increased.
  • the embedding step it is preferable to embed the core material obtained in the step 2) and the film obtained in the step 3) on a drum which has been heated.
  • the pressure is reduced through a heat-resistant release paper having air permeability at a temperature at which the fluoropolymer constituting each layer is melted, and the air between the layers is removed and integrated.
  • the drum is not particularly limited, and examples thereof include those having a heating source and a vacuum source and having a large number of pores on the surface thereof.
  • the order of laminating the core material and the film includes the following methods in accordance with the above step 3).
  • the layer (I) and the layer (II) each form a single layer, a method in which a release paper, a film of the layer (I), a core material, and a film of the layer (II) are laminated on the drum in this order. Is mentioned. Further, when the layer (I) has an arbitrary two-layer structure, that is, three layers including the layer (II), the fluoropolymer layer (I-1) and the fluoropolymer layer (I-2) In the case of having a structure, a release paper, a film of the fluoropolymer layer (I-2), a core material, and a composite film of the fluoropolymer layer (I-1) and the layer (II) are formed on the drum.
  • the release paper, the composite film of the fluoropolymer layer (I-2) and the fluoropolymer layer (I-1), the core material, and the layer (II) are laminated on the drum in this order.
  • the composite film obtained in step 4) is hydrolyzed with an acid or an alkali.
  • the hydrolysis is carried out, for example, in an aqueous solution of 2.5 to 4.0 N (N) potassium hydroxide (KOH) and 20 to 40% by mass of DMSO (Dimethyl sulfoxide) at 40 to 90 ° C. for 10 minutes to 24 minutes. It is preferable to carry out for an hour.
  • DMSO Dimethyl sulfoxide
  • the treatment time of the salt exchange treatment is preferably less than 2 hours from the viewpoint of preventing an increase in electrolysis voltage.
  • the electrolytic cell of this embodiment includes the cation exchange membrane of this embodiment. More specifically, the electrolytic cell of the present embodiment can be provided with an anode, a cathode, and the cation exchange membrane of the present embodiment, which is arranged between the anode and the cathode.
  • FIG. 2 shows a schematic view of an example of the electrolytic cell of this embodiment.
  • the electrolytic cell 13 shown in FIG. 2 includes an anode 11, a cathode 12, and a two-layer structure cation exchange membrane 1 (hereinafter referred to as a two-layer structure membrane 1) arranged between the anode and the cathode.
  • the two-layer structure membrane 1 corresponds to the cation exchange membrane of this embodiment and is composed of the layer (II) (carboxylic acid layer) and the layer (I) (sulfonic acid layer).
  • Layer (II) can be arranged towards the cathode side.
  • Na + ions can pass from the anode chamber side to the cathode chamber side, while OH ⁇ ions move from the anode chamber side to the cathode chamber side. Can be inhibited.
  • the two-layer structure film 1 by disposing the layer (I) and the layer (II), curling can be suppressed and a low electrolysis voltage can be further achieved. As a result, it is possible to reduce power consumption during electrolysis. Therefore, according to the electrolytic cell of the present embodiment, it is possible to contribute to energy saving as compared with the conventional case.
  • the electrolysis conditions are not particularly limited, and known conditions can be used.
  • the anode chamber is supplied with an aqueous solution of alkali chloride of 2.5 to 5.5 N (N)
  • the cathode chamber is supplied with water or a diluted aqueous solution of alkali hydroxide
  • the electrolysis temperature is 50 to 120 ° C.
  • the current density is Electrolysis can be performed under the condition of 0.5 to 10 kA / m 2 .
  • the configuration of the electrolytic cell of the present embodiment is not particularly limited, and may be, for example, a monopolar type or a bipolar type.
  • the material constituting the electrolytic cell is not particularly limited, but for example, the material for the anode chamber is preferably titanium, which is resistant to alkali chloride and chlorine, and the material for the cathode chamber is resistant to alkali hydroxide and hydrogen. Preferred are nickel and the like.
  • the electrodes may be arranged with an appropriate gap provided between the ion exchange membrane and the anode, or the anode and the ion exchange membrane may be arranged in contact with each other.
  • the cathode is generally arranged with an appropriate distance from the ion exchange membrane, but it may be a contact type electrolytic cell (zero gap type electrolytic cell) without this distance.
  • the salt water concentration in the anode chamber is set to 180 to 215 g / L, preferably 185 to 205 g / L.
  • the concentration of the catholyte is 28 to 35%, preferably 30 to 33%.
  • the current density is set to 1 to 6 kA / m 2 and the temperature is set to 70 to 90 ° C.
  • the type of the electrolytic cell, the power feeding system, or the type of the electrode can be applied to all known types and systems, but in particular, the cation exchange membrane of the present embodiment is widely used from the finite gap to the zero gap electrode arrangement. Can be applied.
  • Electrolytic performance evaluation The electrolysis performance of the cation exchange membrane was evaluated by using the electrolytic cell shown in FIG. 2 (the layer (II) of the cation exchange membrane is facing the cathode side) under the following conditions for electrolysis voltage and current efficiency. Based on, the electrolysis performance can be evaluated with the power consumption required to produce 1 t NaOH.
  • the electrolysis cell used for electrolysis has a structure in which a cation exchange membrane is arranged between an anode and a cathode, and uses four natural circulation type zero gap electrolysis cells arranged in series.
  • a woven mesh in which fine wires of nickel having a diameter of 0.15 mm coated with cerium oxide and ruthenium oxide as a catalyst are woven with openings of 50 mesh.
  • a mat woven with nickel thin wires is arranged between the current collector made of expanded metal made of nickel and the cathode.
  • an expanded metal made of titanium coated with ruthenium oxide, iridium oxide and titanium oxide as a catalyst is used as the anode.
  • salt water is supplied while adjusting the concentration to 205 g / L on the anode side, and water is supplied while maintaining the caustic soda concentration on the cathode side at 32% by mass.
  • the temperature of the electrolytic cell is set to 85 ° C., and the electrolysis is performed at a current density of 6 kA / m 2 under the condition that the liquid pressure on the cathode side of the electrolytic cell is higher than that on the anode side by 5.3 kPa.
  • the pairwise voltage between the positive and negative electrodes of the electrolytic cell is measured daily with a voltmeter TR-V1000 manufactured by KEYENCE, and an average value for 7 days can be obtained as the electrolytic voltage.
  • the current efficiency can be determined by measuring the mass and concentration of the generated caustic soda, and dividing the number of moles of caustic soda produced in a certain period of time by the number of moles of electrons of the current flowing during the period.
  • EW total ion exchange capacity
  • water content water content
  • TFE ratio electrolysis voltage
  • current efficiency current efficiency and curl angle
  • Total ion exchange capacity and EW examples include fluoropolymers A1 to A3, fluoropolymers B1 to B6, blend polymers BA1 to BA6, blend polymers BB1 to BB3, and fluoropolymer D1 to About 1 g of each D3 was used, and press molding was performed at 290 ° C. and a pressure of 15 kgf / cm 2 for 4 minutes to obtain a film corresponding to each polymer.
  • fluoropolymer having an ion exchange group examples include fluoropolymers A1 to A3, fluoropolymers B1 to B6, blend polymers BA1 to BA6, blend polymers BB1 to BB3, and fluoropolymer D1 to About 1 g of each D3 was used, and press molding was performed at 290 ° C. and a pressure of 15 kgf / cm 2 for 4 minutes to obtain a film corresponding to each polymer.
  • N-methylacetamide as a swelling agent was added to the obtained film with a nuclear magnetic resonance apparatus (Avance 500 manufactured by Bruker BioSpin), and the resulting film was heated to 200 ° C. for sufficient swelling, and solid-state 19 F-NMR measurement was performed.
  • the measurement temperature was 200 ° C.
  • the rotation number of magic angle spinning was 5 kHz
  • the irradiation pulse width was 30 ° pulse.
  • the CF 2 signal which is the main signal was set to ⁇ 119 ppm.
  • the attribution of each signal was according to FIG. 1 of JP-A-2004-279112.
  • the area value of signal a of about ⁇ 140 ppm as side chain CF, the area value of signal b of ⁇ 130 to ⁇ 136 ppm as main chain CF, and The area value of the signal c in the region -110 to -123 ppm in which the CF 2 adjacent to the chain CF 2 and the side chain terminal SO 3 M is detected is determined, and which of the repeating units (C) and (D) is obtained from each signal.
  • the TFE ratio was calculated by the following formula ( ⁇ ).
  • TFE ratio ((EW ⁇ molecular weight of repeating unit (C) and / or molecular weight of repeating unit (D)) / EW) ⁇ 100 ( ⁇ )
  • the repeating units (A) and ( The ratio of C) and (D) was calculated.
  • the cation exchange membrane was separated into a single-layer membrane, a membrane having a thickness of 500 ⁇ m or less and a weight of 0.5 g or more was used as a sample, and the membrane was immersed in pure water at 85 ° C. for 4 hours, and then the weight of the membrane was measured. The weight was W (wet) . Next, it was dried at ⁇ 0.1 MPa and 90 ° C. for 3 hours with a vacuum dryer, and the weight of the film was measured, and this weight was defined as W (dry) . Based on these values, the water content was calculated from the following formula.
  • Moisture content 100 ⁇ (W (wet) ⁇ W (dry) ) / W (dry)
  • W (dry) and W (wet) are calculated by the total of the membranes to determine the water content.
  • Curling is performed after the hydrolysis step of each example described below, that is, after taking out the ion exchange membrane from an aqueous solution containing 0.5 N of sodium hydroxide (NaOH) at 50 ° C. The measurement was performed after standing still for a minute.
  • Electrolysis was performed under the following conditions using the electrolytic cell shown in FIG. 2 (the cation exchange membrane layer (II) was arranged so as to face the cathode side). In the measurement system described below, it was evaluated that the electrolysis voltage is preferably about 2.945 V / 6 kA or less.
  • the electrolysis cell used for electrolysis had a structure in which a cation exchange membrane was arranged between an anode and a cathode, and four natural circulation type zero gap electrolysis cells were arranged in series.
  • As the cathode there was used a woven mesh in which fine wires of nickel having a diameter of 0.15 mm and coated with cerium oxide and ruthenium oxide as a catalyst were woven with openings of 50 mesh.
  • a mat woven with nickel fine wires was arranged between the current collector made of expanded metal made of nickel and the cathode.
  • an expanded metal made of titanium coated with ruthenium oxide, iridium oxide and titanium oxide as a catalyst was used as the anode.
  • salt water was supplied to the anode side while adjusting the concentration to 205 g / L, and water was supplied while maintaining the caustic soda concentration on the cathode side at 32% by mass.
  • the temperature of the electrolytic cell was set to 85 ° C., and the electrolysis was carried out at a current density of 6 kA / m 2 under the condition that the liquid pressure on the cathode side of the electrolytic cell was higher than that on the anode side by 5.3 kPa.
  • the voltage across the positive and negative electrodes of the electrolytic cell was measured daily with a voltmeter TR-V1000 manufactured by KEYENCE, and the average value for 7 days was determined as the electrolytic voltage.
  • the current efficiency was determined by measuring the mass and concentration of the produced caustic soda and dividing the number of moles of caustic soda produced in a given time by the number of moles of electrons of the current flowing during that time.
  • the number of moles of caustic soda was obtained by collecting caustic soda produced by electrolysis in a poly tank and measuring the mass thereof.
  • the fluoropolymers A1 to A3, the fluoropolymers B1 to B6, and the fluoropolymer C1 were prepared by solution polymerization shown below. However, in the case of the fluoropolymers A1 to A3, the general formula (1 ′) and the general formula (3 ′) are used. In the case of the fluoropolymers B1 to B6, the general formula (1 ′) and the general formula (4) are used. ') And the fluorine-containing polymer C1 used general formula (1'), general formula (3 '), and general formula (4'), respectively.
  • the fluoropolymers A1 to A3, the fluoropolymers B1 to B6, and the fluoropolymer C1 were produced in more detail by solution polymerization shown below.
  • TFE trifluoroethylene
  • the obtained polymerization liquid was dried under reduced pressure to distill off the unreacted monomer and HFC43-10mee to obtain fluoropolymers A1 to A3 and fluoropolymers B1 to B6. Obtained.
  • the obtained fluoropolymer was pelletized with a twin-screw devolatilizing extruder. By adjusting the conditions at this time, fluoropolymers A1 to A3 and fluoropolymers B1 to B6 having different EWs were prepared as shown in Table 1.
  • Fluorine-containing polymers D1 to D3 were prepared by solution polymerization shown below.
  • the general formula (1 ') and the general formula (5') were used, respectively.
  • the fluoropolymers D1 to D3 were produced in more detail by the solution polymerization shown below.
  • a 5% HFC43-10mee solution of (CF 3 CF 2 CF 2 COO) 2 as a polymerization initiator was added to start the reaction.
  • methanol was added as a chain transfer agent.
  • Example 1 As the layer (II), a fluoropolymer D1, a layer (I-1) and a blend polymer BA1 were prepared as a layer (I-2), and two extruders, two coextrusion T dies for two layers, Then, co-extrusion was carried out by an apparatus equipped with a take-up machine to obtain a two-layer film (a) having a thickness of 67 ⁇ m. As a result of observing the cross section of the film with an optical microscope, the thickness of the layer (I-1) was 55 ⁇ m and the thickness of the layer (II) was 12 ⁇ m.
  • a single layer film (b) of layer (I-2) having a thickness of 20 ⁇ m was obtained with a single layer T die.
  • 100 denier tape yarn made of polytetrafluoroethylene (PTFE) is twisted at a twist of 900 times / m to form a thread, and as a warp of the auxiliary fiber (sacrificial thread), 30 denier and 6 filaments of polyethylene terephthalate ( PET) twisted 200 times / m, weft yarn 35 denier, 8 filament PET yarn twisted 10 times / m are prepared, and these threads have 24 PTFE threads.
  • PTFE polytetrafluoroethylene
  • the sacrificial yarn was plain woven in an alternating arrangement so that the number of sacrificial threads was 4 times that of PTFE, 64 threads / inch.
  • the woven fabric thus obtained was pressed with a heated metal roll to adjust the thickness of the woven fabric to 70 ⁇ m. At this time, the opening ratio of only the PTFE yarn was 75%.
  • both were 7.5 GL%.
  • the strength elongation of the core material was measured by cutting the core material into test pieces each having a sample width of 1 cm and a length of 14 cm in the MD and TD directions and using Tensilon (RTC-1250A manufactured by Orientec). That is, both ends were chucked so that the distance between chucks having a length of 14 cm was 5 cm, extended at 23 ° C. and a speed of 100 mm / min, and a tensile test was performed to measure the elongation at a load of 30 N.
  • Example 2 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA2 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 50 ° and there was no curl, and the electrolytic voltage was 2.941 V, which was good.
  • Example 3 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA3 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 50 ° and there was no curl, and the electrolytic voltage was 2.945V, which was excellent.
  • Example 4 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA4 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 86 ° and there was no curl, and the electrolysis voltage was 2.935V, which was excellent.
  • Example 5 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA5 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 87 ° and there was no curl, and the electrolytic voltage was 2.902V, which was excellent.
  • Example 6 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA6 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 57 ° and there was no curl, and the electrolytic voltage was 2.931V, which was excellent.
  • Example 7 Example 1 was repeated except that the fluoropolymer D2 was prepared as the layer (II). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 85 ° and there was no curl, and the electrolytic voltage was 2.941 V, which was good.
  • Example 8 Example 1 was repeated except that the fluoropolymer D3 was prepared as the layer (II). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 45 ° and there was no curl, and the electrolysis voltage was good at 2.915V.
  • Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA1 was prepared as the layer (I-1) and the blend polymer BA2 was prepared as the layer (I-2).
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 54 ° and there was no curl, and the electrolysis voltage was good at 2.930V.
  • Example 10 Example 1 was performed in the same manner as in Example 1 except that the blend polymer BA1 was prepared as the layer (I-1) and the fluoropolymer B4 was prepared as the layer (I-2).
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 51 ° and there was no curl, and the electrolysis voltage was 2.940 V, which was excellent.
  • Example 11 Example 1 was carried out in the same manner as in Example 1 except that the fluoropolymer B4 was prepared as the layer (I-1) and the blend polymer BA1 was prepared as the layer (I-2).
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 53 ° and there was no curl, and the electrolytic voltage was 2.945V, which was excellent.
  • Example 12 Embossed air-permeable heat-resistant release paper, a single-layer film (b), and a two-layer film (a) were sequentially laminated on the drum, and a drum surface temperature of 230 ° C was used without using a core material. And the same procedure as in Example 1 except that a composite film was obtained by integrating the materials under a reduced pressure of ⁇ 650 mmHg while eliminating air between the materials.
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 83 ° with no curl, and the electrolysis voltage was 2.873 V, which was good.
  • Example 13 Example 1 was repeated except that the fluoropolymer C1 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 49 ° and there was no curl, and the electrolytic voltage was 2.941 V, which was good.
  • Example 1 was performed in the same manner as in Example 1 except that the blend polymer BB1 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 230 °, and the curl occurred. The electrolysis voltage was 2.901V, which was good.
  • Example 1 was performed in the same manner as in Example 1 except that the blend polymer BB2 was prepared as the layer (I-1) and the layer (I-2).
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured.
  • Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 110 °, and the curl occurred.
  • the electrolysis voltage was good at 2.920V.
  • Example 1 was performed in the same manner as in Example 1 except that the blend polymer BB3 was prepared as the layer (I-1) and the layer (I-2).
  • the ion exchange membrane obtained as described above the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured.
  • Table 4 shows the results of the evaluation.
  • the curl angle ⁇ was 45 ° and there was no curl, but the electrolytic voltage was 2.955 V, which was poor.
  • Example 4 Example 1 was repeated except that the fluoropolymer B3 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 160 °, and the curl occurred. The electrolysis voltage was as good as 2.925V.
  • Example 1 Example 1 was repeated except that the fluoropolymer B4 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 47 ° and there was no curl, but the electrolytic voltage was 2.950 V, which was poor.
  • Example 6 Example 1 was repeated except that the fluoropolymer B6 was prepared as the layer (I-1) and the layer (I-2). Regarding the ion exchange membrane obtained as described above, the water content, water content / TFE ratio, layer (I) EW / layer (II) EW, curl angle ⁇ , and electrolysis voltage were measured as described above, and each physical property was measured. Table 4 shows the results of the evaluation. The curl angle ⁇ was 115 °, and the curl occurred. The electrolysis voltage was good at 2.935V.
  • the cation exchange membrane of the present invention can be used, for example, for fuel cells, water electrolysis, steam electrolysis, or salt electrolysis. Particularly, it can be preferably applied to salt electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含み、かつ、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が53質量%以上70質量%以下である、層(I)と、 カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、 を備え、 前記層(I)の含水率が26%以上35%以下である、陽イオン交換膜。

Description

陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法
 本発明は、陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法に関する。
 イオン交換膜を電解質とする各種電気化学装置としては、アルカリ金属塩電解槽、水電解槽、塩酸電解槽、或いは、燃料電池などがある。そのうち工業プロセスとして成熟し、幅広く利用されているものとしてアルカリ金属塩電解槽を用いた電解が挙げられる。従来からアルカリ金属塩、特に、塩化ナトリウム、塩化カリウム等の水溶液を電解して、塩素等のハロゲンガスと苛性アルカリ及び水素を製造する工業的方法はよく知られている。そのうちでイオン交換膜を隔膜として使用するイオン交換膜法電解技術が、電力消費量を最も少なくし、省エネルギー化のために最も有利なプロセスとして、世界的に工業化がなされている。
 しかしながら、上記のイオン交換膜法電解技術においても尚、現在更なる電力消費量の低減が要求されている。イオン交換膜法において電力消費量の大きな部分を占めるのは隔膜であるイオン交換膜であり、イオン交換膜の電力消費量の低減が重要となる。
 イオン交換膜は、スルホン酸を有する層(スルホン酸層)と、カルボン酸を有する層(カルボン酸層)を積層した構造をとるのが一般的である。イオン交換膜法における電力消費量は、電解電圧と電流効率から決定され、電解電圧はスルホン酸層、カルボン酸層の両層から影響を受け、電流効率はカルボン酸層から主に影響を受ける。電力消費量の低減は、高電流効率、低電解電圧により達成される。かかる観点から、特許文献1では、官能基を有する含フッ素重合体に含フッ素重合体を相溶させた固体電解質膜が提案されている。また、特許文献2では、カルボン酸を有する層とスルホン酸を有する層の少なくとも二層からなるイオン交換膜において、各層のクラスター径、クラスター数を制御することが提案されている。
特開2000-243135号公報 特開2001-323084号公報
 高電流効率を発現するには、カルボン酸層の含水量が低い(含水率が低い)ことが重要である。一方、低電解電圧を発現するには、スルホン酸層のイオン交換基を増加させる手法が考えられるが、単純にイオン交換基を増加させる、即ち等価質量(EW)を下げると、含水率が高まり、カルボン酸層とスルホン酸層の含水率差が大きくなることに加え、スルホン酸層を構成するポリマー中のテトラフルオロエチレン(TFE)単位の比率(TFE比率)が低下し、剛直性が失われる結果、カールし易い膜となる。膜生産時、特に加水分解の工程で膜のカールが生じると、加水分解後の膜を巻き取れなくなったり、ハンドリング時の取り扱い性不良や電解時に膜をセットできない等の深刻な問題へと繋がる。また、スルホン酸層には、膜補強の為に芯材が埋め込まれることがあるが、この場合も同様に、EWを下げて含水率を高めると、芯材がスルホン酸層の膨潤によるサイズ変化に追従できないことに加え、スルホン酸層を構成するポリマー中のTFE比率が低下し剛直性が失われ、カールし易い膜となる。
 特許文献1,2においては、特に、電解電圧を低減させると共に、カールを抑制することに関して言及されていない。
 本発明は、上記課題を解決するためになされたものであり、低電解電圧でありながらカールを抑制できる、陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意研究を行った結果、陽イオン交換膜が所定の構成を有する場合に上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の態様を包含する。
[1]
 下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含み、かつ、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が53質量%以上70質量%以下である、層(I)と、
 カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、
 を備え、
 前記層(I)の含水率が26%以上35%以下である、陽イオン交換膜。
Figure JPOXMLDOC01-appb-C000006
[2]
 前記繰り返し単位(S)が下記式(2)で表される繰り返し単位(B)を含む、[1]に記載の陽イオン交換膜。
Figure JPOXMLDOC01-appb-C000007
(上記式(2)中、nは0~3の整数を表し、mは1~12の整数を表し、Mはアルカリ金属を表す。)
[3]
 前記繰り返し単位(B)が下記式(3)で表される繰り返し単位(C)及び下記式(4)で表される繰り返し単位(D)を含む、[2]に記載の陽イオン交換膜。
Figure JPOXMLDOC01-appb-C000008
(上記式(3)、(4)中、m及びMは式(2)と同義である。)
[4]
 前記層(I)における前記繰り返し単位(A)と前記繰り返し単位(C)と前記繰り返し単位(D)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が、53質量%以上70質量%以下であり、前記繰り返し単位(C)の質量比率が、3質量%以上44質量%以下であり、前記繰り返し単位(D)の質量比率が、3質量%以上44質量%以下である、[3]に記載の陽イオン交換膜。
[5]
 前記層(I)と前記層(II)の含水率の差が25%以下である、[1]~[4]のいずれかに記載の陽イオン交換膜。
[6]
 前記層(I)の内部、又は前記層(I)と前記層(II)との間に配される芯材をさらに備える、[1]~[5]のいずれかに記載の陽イオン交換膜。
[7]
 下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含む層(I)と、
 カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、
 を備え、
 前記繰り返し単位(S)が、下記式(3)で表される繰り返し単位(C)と下記式(4)で表される繰り返し単位(D)とを含み、
 前記層(I)の含水率が25%以上35%以下である、陽イオン交換膜。
Figure JPOXMLDOC01-appb-C000009
(上記式(3)、(4)中、mは各々独立して1~12の整数を表し、Mはアルカリ金属を表す。)
[8]
 前記層(I)の内部、又は前記層(I)と前記層(II)との間に配される芯材を更に備える、[7]に記載の陽イオン交換膜。
[9]
 前記芯材のMD方向の伸びが荷重30N時、10%GL以下である、[6]又は[8]に記載の陽イオン交換膜。
[10]
 前記芯材のTD方向の伸びが荷重30N時、10GL%以下である、[6],[8],[9]に記載の陽イオン交換膜。
[11]
 前記芯材がフッ素重合体を含む繊維の織布である、[6],[8]~[10]のいずれかに記載の陽イオン交換膜。
[12]
 前記層(I)の総イオン交換容量が、1.0mg当量/g以上1.5mg当量/g以下である、[1]~[11]のいずれかに記載の陽イオン交換膜。
[13]
 前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体と、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体と、の混合物を有する、[3]~[12]のいずれかに記載の陽イオン交換膜。
[14]
 前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)と前記繰り返し単位(D)とを含む共重合体を有する、[3]~[13]のいずれかに記載の陽イオン交換膜。
[15]
 前記層(I)の等価質量を前記層(II)の等価質量で除した値が0.6以上0.8以下である、[1]~[14]のいずれかに記載の陽イオン交換膜。
[16]
 前記層(I)において、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率により前記含水率を除した値が、0.48以上0.64以下である、[1]~[15]のいずれかに記載の陽イオン交換膜。
[17]
 前記層(I)と前記層(II)とからなる積層構造を有し、
 前記芯材が前記層(I)の内部に配される、[6]~[16]のいずれかに記載の陽イオン交換膜。
[18]
 前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体を有する層(I-1)と、当該層(I-1)とは異なる層と、からなる積層構造を有する、[3]~[16]のいずれかに記載の陽イオン交換膜。
[19]
 前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-2)とは異なる層と、からなる積層構造を有する、[3]~[16]のいずれかに記載の陽イオン交換膜。
[20]
 前記層(I)が、前記陽イオン交換膜の最外層であって前記芯材を含む層(I-3)と、当該層(I-3)とは異なる層と、を含む積層構造を有する、[6]~[16]のいずれかに記載の陽イオン交換膜。
[21]
 前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体を有する層(I-1)と、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-1)及び層(I-2)とは異なる層と、を含む積層構造を有する、[3]~[16]のいずれかに記載の陽イオン交換膜。
[22]
 前記カルボン酸型イオン交換基を含む含フッ素重合体が、前記繰り返し単位(A)と下記式(5)で表される繰り返し単位(E)とを含む、[1]~[21]のいずれかに記載の陽イオン交換膜。
Figure JPOXMLDOC01-appb-C000010
(上記式(5)中、nは0又は1の整数を表し、m’は1~12の整数を表し、M’はアルカリ金属を表す。)
[23]
 食塩電解用として用いられる、[1]~[22]のいずれかに記載の陽イオン交換膜。
[24]
 陽極と、
 陰極と、
 前記陽極と前記陰極との間に配置される、[1]~[23]のいずれかに記載の陽イオン交換膜を備える、電解槽。
[25]
 前記層(II)が前記陰極側に向けて配置される、[24]に記載の電解槽。
[26]
 [7]~[23]のいずれかに記載の陽イオン交換膜を製造するための方法であって、
 含フッ素重合体を製造する工程と、
 芯材を得る工程と、
 前記含フッ素重合体をフィルム化する工程と、
 前記芯材と、前記フィルムとを埋め込んで複合膜を形成する工程と、
 酸又はアルカリで、前記複合膜を加水分解する工程と、
 を含む、陽イオン交換膜の製造方法。
 本発明によれば、低電解電圧でありながらカールを抑制できる、陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法を提供することができる。
本実施形態の陽イオン交換膜の一例の概略断面図である。 本実施形態の電解槽の一例の模式図である。 陽イオン交換膜のカールを評価する方法を例示する説明図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
[陽イオン交換膜]
 本実施形態の一態様に係る陽イオン交換膜(以下、「第1の陽イオン交換膜」ともいう。)は、下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含み、かつ、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が53質量%以上70質量%以下である、層(I)と、カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、を備え、前記層(I)の含水率が26%以上35%以下である。
Figure JPOXMLDOC01-appb-C000011
 上記のように構成されているため、第1の陽イオン交換膜は、低電解電圧でありながらカールを抑制でき、かかる陽イオン交換膜を電解槽に用いることで、膜の装着不良や膜ハンドリングトラブルによるピンホール発生を抑制しつつ、電解時における消費電力の低減を図ることが可能である。
 また、本実施形態の他の態様に係る陽イオン交換膜(以下、「第2の陽イオン交換膜」ともいう。)は、下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含む層(I)と、カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、を備え、前記繰り返し単位(S)が、下記式(3)で表される繰り返し単位(C)と下記式(4)で表される繰り返し単位(D)とを含み、前記層(I)の含水率が25%以上35%以下である。
Figure JPOXMLDOC01-appb-C000012
(上記式(3)、(4)中、mは各々独立して1~12の整数を表し、Mはアルカリ金属を表す。)
 上記のように構成されているため、第2の陽イオン交換膜も、低電解電圧でありながらカールを抑制でき、かかる陽イオン交換膜を電解槽に用いることで、膜の装着不良や膜ハンドリングトラブルによるピンホール発生を抑制しつつ、電解時における消費電力の低減を図ることが可能である。
 上記のとおり、本実施形態によれば、第1の陽イオン交換膜及び第2の陽イオン交換膜の双方が低電解電圧でありながらカールを抑制できるため、これらを電解槽の部材として適用することにより、従来に比べて、省エネルギー化に寄与可能な電解槽を提供することができる。以下、「本実施形態の陽イオン交換膜」と称するときは、「第1の陽イオン交換膜」と「第2の陽イオン交換膜」を包含するものとして本実施形態を説明する。
 以下、本実施形態において推測される作用機序について説明するが、以下の作用機序に限定する趣旨ではない。
 まず、イオン交換膜法を用いた食塩電解隔膜としては、主にカルボン酸を有する層(カルボン酸層)とスルホン酸を有する層(スルホン酸層)とを積層した積層膜(陽イオン交換膜)を用いることができる。この積層膜におけるスルホン酸層は、主に支持層の役割を担い、カルボン酸層は高電流効率の発現に寄与している。カルボン酸層はイオンの通り道であるクラスターが細いという特徴を有しており、イオンとクラスター壁面に存在するイオン交換基の相互作用により、所望のイオンのみを通過させる。これにより、選択性、すなわち電流効率を発現している。クラスターはイオン交換基と水により形成されている為、クラスターの細いカルボン酸層では含水率が低い傾向を示す。
 一方、スルホン酸層は低抵抗とする為に、クラスター径を大きくするよう可能な限り含水率の高いポリマーから構成される。含水率を高くする方法としてはイオン交換基の数を増やす、すなわちEWを下げる手法が考えられる。しかし、単純にEWを下げて含水率を高めると、カルボン酸層とスルホン酸層の含水率差が大きくなることに加え、スルホン酸層を構成するポリマー中のTFE比率が低下し、剛直性が失われる結果、カールし易い膜となる。ゆえに従来、低い電解電圧とカールの抑制を両立するイオン交換膜は得られていない。
 そこで、本実施形態では、陽イオン交換膜を設計するに際して、スルホン酸層を構成する含フッ素重合体が、少なくとも特定の2種の繰り返し単位を含み、かつ、当該スルホン酸層のTFE比率と含水率とが各々所定の範囲となるように調整することにより(第1の陽イオン交換膜)、また、スルホン酸層の含水率をより広い範囲に設定する場合にあっては、当該スルホン酸層を構成する含フッ素重合体が少なくとも特定の3種の繰り返し単位を含むことにより(第2の陽イオン交換膜)、各々、低電解電圧及びカール抑制の両立を実現した。
[含フッ素重合体]
 本実施形態の陽イオン交換膜は、所定の層(I)及び層(II)を備えるものであり、各層は、所定の含フッ素重合体を含む層ということができる。
 本実施形態における「含フッ素重合体」は、イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体、を有する含フッ素重合体を意味する。また、本実施形態において、「イオン交換基」とは、スルホン酸型イオン交換基/カルボン酸型イオン交換基をいう。含フッ素重合体が、加水分解によりイオン交換基となり得るイオン交換基前駆体(例えば、カルボン酸基前駆体及びスルホン酸基前駆体)を有する場合は、後述の方法で成膜後に、カルボン酸基前駆体はカルボン酸型イオン交換基に変換され、スルホン酸基前駆体はスルホン酸型イオン交換基に変換される。例えば、フッ素化炭化水素の主鎖からなり、加水分解等によりイオン交換基に変換可能な官能基をペンダント側鎖として有し、かつ溶融加工が可能な重合体等を加水分解することにより、イオン交換基に変換できる。
 本実施形態の陽イオン交換膜における含フッ素重合体は、加水分解を経ているため、スルホン酸型イオン交換基/カルボン酸型イオン交換基を含むものである。
 イオン交換基として、スルホン酸型イオン交換基/カルボン酸型イオン交換基を含む含フッ素重合体は、例えば、疎水性であるポリマー主鎖部分と親水性であるカルボン酸基又はスルホン酸基の部分とがミクロに分離した構造を有する。その結果として、上記含フッ素重合体は、例えば、スルホン酸基又はカルボン酸基が集まったイオンクラスターを有する。
 第1の陽イオン交換膜における繰り返し単位(S)は、化学耐性を発現する観点から、パーフルオロ構造であることが好ましく、また相分離によりイオンのパスラインであるクラスターを形成する観点から、フレキシブルな側鎖に交換基をもつ、下記式(2)で表される繰り返し単位(B)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
(上記式(2)中、nは0~3の整数を表し、mは1~12の整数を表し、Mはアルカリ金属を表す。)
 第1の陽イオン交換膜における繰り返し単位(B)は、より低電圧とし、かつ、カールをより抑制する観点から、TFE比率と含水率を所定範囲に調整するべく、下記式(3)で表される繰り返し単位(C)及び下記式(4)で表される繰り返し単位(D)を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000014
(上記式(3)、(4)中、m及びMは式(2)と同義である。)
 第1の陽イオン交換膜における層(I)は、層全体として繰り返し単位(A)及び(S)を含むものであればよい。すなわち、層(I)は、繰り返し単位(A)を含む含フッ素重合体及び繰り返し単位(S)を含む含フッ素重合体の混合物を含むものであってもよく、繰り返し単位(A)及び(S)を含む含フッ素重合体を含むものであってもよい。
 例えば、第1の陽イオン交換膜における層(I)が繰り返し単位(A)と繰り返し単位(B)を含む場合、層(I)は、繰り返し単位(A)を含む含フッ素重合体及び繰り返し単位(B)を含む含フッ素重合体の混合物を含むものであってもよく、繰り返し単位(A)及び(B)を含む含フッ素重合体を含むものであってもよい。
 第1の陽イオン交換膜における層(I)が繰り返し単位(A)と繰り返し単位(C)及び(D)とを含む場合、層(I)は、繰り返し単位(A)を含む含フッ素重合体、繰り返し単位(C)を含む含フッ素重合体及び繰り返し単位(D)を含む含フッ素重合体の混合物を含むものであってもよく、繰り返し単位(A)、(C)及び(D)を含む含フッ素重合体を含むものであってもよい。
 第2の陽イオン交換膜における層(I)は、層全体として繰り返し単位(A)、(C)及び(D)を含むものであればよい。すなわち、層(I)は、繰り返し単位(A)を含む含フッ素重合体、繰り返し単位(C)を含む含フッ素重合体及び繰り返し単位(D)を含む含フッ素重合体の混合物を含むものであってもよく、繰り返し単位(A)、(C)及び(D)を含む含フッ素重合体を含むものであってもよい。
 本実施形態の陽イオン交換膜における層(I)は、繰り返し単位(S)、(B)、(C)、(D)に該当する繰り返し単位として1種を単独で含むものであってもよく、2種以上を複数含むものであってもよい。例えば、繰り返し単位(B)を例にすると、上記式(2)におけるn及び/又はmの値においてのみ相違する構造の繰り返し単位を2種以上有していてもよい。なお、本実施形態の陽イオン交換膜における層(I)は、上記繰り返し単位(A)、(S)、(B)、(C)及び(D)以外の単位を含んでいてもよい。
 本実施形態の陽イオン交換膜における層(I)は、以下に限定されないが、食塩電解用途を想定すると、上記繰り返し単位(S)、(B)、(C)及び(D)におけるMはNaであることが好ましい。MがNaである場合、例えばMがHの場合に比べて含水率が大幅に低減する傾向にあり、電解運転による膜の破断を防止する上で十分な強度を維持できる傾向にある。また、同様の用途を想定すると、上記繰り返し単位(S)、(B)、(C)及び(D)のmは4以下であることが好ましい。mが4以下である場合、例えば含フッ素重合体におけるTFE比率を高められる傾向にあり、膜のカールを防止する上で十分な剛直性を維持できる傾向にある。
 本実施形態の陽イオン交換膜における層(II)は、カルボン酸型イオン交換基を含む含フッ素重合体を有する。層(II)を構成する含フッ素重合体は、特に限定されないが、イオン選択性の観点から、上記繰り返し単位(A)と下記式(5)で表される繰り返し単位(E)とを含む含フッ素重合体を有することが好ましい。
Figure JPOXMLDOC01-appb-C000015
(上記式(5)中、nは0又は1の整数を表し、m’は1~12の整数を表し、M’はアルカリ金属を表す。)
 本実施形態においては、以下に限定されないが、食塩電解で使用する場合、上記繰り返し単位(E)のM’はNaであることが好ましい。M’がNaである場合、例えばM’がHの場合に比べて含水率が大幅に増加する傾向にあり、電解運転による膜の電解電圧を大幅に低減できる傾向にある。
 本実施形態においては、以下に限定されないが、食塩電解で使用する場合、上記繰り返し単位(E)のm’は4以下であることが好ましい。m’が4以下である場合、例えば含フッ素重合体におけるTFE比率を高められる傾向にあり、電解運転による膜の破断を防止する上で十分な強度を維持できる傾向にある。
 本実施形態の陽イオン交換膜における層(II)は、繰り返し単位(E)に該当する繰り返し単位として1種を単独で含むものであってもよく、2種以上を複数含むものであってもよい。すなわち、上記式(4)におけるn及び/又はm’の値においてのみ相違する構造の繰り返し単位を2種以上有していてもよい。なお、本実施形態の陽イオン交換膜における層(II)は、上記繰り返し単位(A)及び(E)以外の単位を含んでいてもよい。
 層(I)を構成する含フッ素重合体については、例えば、次のいずれかの手法で製造することができる。
 手法1:下記一般式(A1)と下記一般式(C1)による共重合体と、下記一般式(A1)と下記一般式(D1)による共重合体とを、それぞれ作製し、それぞれをブレンドすることによりポリマー混合物を製造する手法。
 手法2:下記一般式(A1)と下記一般式(C1)と下記一般式(D1)による共重合体を製造する手法。
  CF=CF     (A1)
  CF=CF-O-(CF-W     (C1)
(上記一般式(C1)において、mは1~12の整数であり、Wはアルカリ性媒体中にて加水分解されスルホン酸基となる前駆体部分であって、ハロゲン化スルフォニル基-SOX(Xは-F、-Cl、-Brから選ばれる。)、或いはアルキルスルフォン基-SOR(Rは炭素数1~4の低級アルキル基)から選ばれる。)
  CF=CF-O-CFCF(CF)O-(CF-W     (D1)
(上記一般式(D1)において、mは1~12の整数であり、Wはアルカリ性媒体中にて加水分解されスルホン酸基となる前駆体部分であって、ハロゲン化スルフォニル基-SOX(Xは-F、-Cl、-Brから選ばれる。)、或いはアルキルスルフォン基-SOR(Rは炭素数1~4の低級アルキル基)から選ばれる。)
 ここで、一般式(A1)は、繰り返し単位(A)に対応する単量体であり、一般式(C1)は、繰り返し単位(C)に対応する単量体であり、一般式(D1)は、繰り返し単位(D)に対応する単量体である。
 上記手法1により得られた含フッ素重合体は、繰り返し単位(A)及び(C)を含む共重合体(AC)と、繰り返し単位(A)と(D)を含む共重合体(AD)との混合物(ポリマーブレンド)である。すなわち、本実施形態の陽イオン交換膜における層(I)は、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体(AC)と、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体(AD)と、の混合物を有するものとすることができる。また、上記手法2により得られた含フッ素重合体は、繰り返し単位(A)、(C)及び(D)を含む共重合体である。すなわち、本実施形態の陽イオン交換膜における層(I)は、繰り返し単位(A)と繰り返し単位(C)と繰り返し単位(D)とを含む共重合体を有するものであってもよい。本実施形態においては、以下に限定されないが、所望の組成の含フッ素重合体に調節する場合、上述のポリマーブレンドの方が、繰り返し単位(A)、(C)及び(D)を含む共重合体より簡便かつ技術的に平易であり、含フッ素重合体の供給安定性にも優れる傾向にある。
 なお、上記手法1及び手法2のいずれの場合であっても、上記した単量体以外の単量体を共重合成分としてもちいてもよい。
 また、上記手法2により得られた共重合体に上記手法1における重合体(AC)及び/又は重合体(AD)を併用して層(I)を形成することもできる。
 層(I)を構成する含フッ素重合体の共重合成分として、例えば、下記一般式(A2)で表されるフッ化ビニル化合物を用いることが好ましい。
 CF=CX・・・(A2)
(ここで、X、X=-F、-Cl、-H、又は-CFである。)
 上記一般式(A2)で表わされるフッ化ビニル化合物としては、特に限定されないが、例えば、フッ化ビニル、ヘキサフルオロプロピレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)等が挙げられる。本実施形態に係る陽イオン交換膜を、食塩電解用等の強アルカリ電解液に用いる場合、フッ化ビニル化合物は、パーフルオロ単量体であることが好ましく、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)からなる群より選ばれるパーフルオロ単量体がより好ましい。
 一般式(C1)の具体例としては、下記に表す単量体等が好ましい。
  CF=CFOCFCFSO
  CF=CFOCFCFCFSO
  CF=CFOCFCFCFCFSO
 また、一般式(D1)の具体例としては、下記に表す単量体等が好ましい。
  CF=CFOCFCF(CF)O-CFCFSO
  CF=CFOCFCF(CF)O-CFCFCFSO
  CF=CFOCFCF(CF)O-CFCFCFCFSO
 上記した単量体から得られる重合体又は共重合体は、フッ化エチレンの単独重合及び共重合に対して開発された重合法、特に、テトラフルオロエチレンに対して用いられる一般的な重合方法によって製造することができる。
 例えば、非水性法においては、パーフルオロ炭化水素、クロロフルオロカーボン等の不活性溶媒を用い、パーフルオロカーボンパーオキサイドやアゾ化合物等のラジカル重合開始剤の存在下で、温度0~200℃、圧力0.1~20MPaの条件下で、重合反応を行うことができる。また共重合体はブロック重合体であってもランダム重合体であってもよい。
[ブレンド]
 含フッ素系重合体をブレンドする手法としては、ブレンドや混練に関する種々公知の技術に従って行うことができ、特に限定されないが、例えば、それぞれの含フッ素重合体のペレットを用い、一軸混練押出機や二軸混練押出機、ラボプラストミルやミキサーなどの手法が適用できる。ブレンドする温度は、含フッ素重合体が溶融する温度以上が好ましく、熱分解しない温度以下が好ましい。具体的には、ブレンドする温度は、230℃以上270℃以下が好ましい。ブレンド時間は、ラボプラストミルやミキサーなどのバッチ式の混練機器を使用する場合は1分以上60分以下が好ましい。ポリマーを機器に投入してから熱が十分伝わるのに必要な時間という観点で1分以上が好ましく、長時間ブレンドすることによる熱劣化を防ぐ観点で60分以下が好ましい。
 本実施形態の陽イオン交換膜における層(II)を構成するカルボン酸基を有する含フッ素系重合体については、以下の第1群の単量体、及び第2群の単量体を共重合する、又は第2群の単量体を単独重合することによって、製造することができる。
 第1群の単量体としては、例えば、上述したフッ化ビニル化合物が挙げられる。本実施形態の陽イオン交換膜を食塩電解用等の強アルカリ電解液に用いる場合、フッ化ビニル化合物は、パーフルオロ単量体であることが好ましく、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)からなる群より選ばれるパーフルオロ単量体がより好ましい。さらに好ましくは、テトラフルオロエチレン(TFE)である。
 第2群の単量体としては、例えば、カルボン酸型イオン交換基に変換し得る官能基を有するビニル化合物が挙げられる。
 カルボン酸型イオン交換基に変換し得る官能基を有するビニル化合物としては、下記一般式(E1)で表されるものが好ましい。
  CF=CF-O-(CFCF(CF)O)-(CZF)m’-X・・・(E1)
(上記一般式(E1)中、nは0又は1の整数を表し、m’は1~12の整数を表し、ZはF又はCFを表し、Xはアルカリ性媒体中にて加水分解されカルボン酸基となる前駆体であって、カルボン酸エステル基-COOR(R:炭素数1~4の低級アルキル基)、シアノ基-CN、酸ハライド-COQ(Q:ハロゲン原子)の中から選ばれる。)
 より好ましくは、下記一般式(E2)で表わされる、カルボン酸型イオン交換基に変換し得る官能基を有するビニル化合物である。
  CF=CF-O-(CFCF(CF)O)-(CFm’-COOR・・・(E2)
(上記一般式(E2)中、nは0又は1の整数を表し、m’は1~4の整数を表し、RはCH、C又はCを表す。)
 上記一般式(D2)において、RがCHであることが好ましい。特に、本実施形態の陽イオン交換膜をアルカリ電解用陽イオン交換膜として用いる場合、第2群の単量体としてパーフルオロ単量体を少なくとも用いることが好ましいが、エステル基のアルキル基(上記R参照)は加水分解される時点で重合体から失われるため、アルキル基(R)は全ての水素原子がフッ素原子に置換されているパーフルオロアルキル基でなくてもよい。これらの中でも、例えば、下記に表す単量体がより好ましい。
  CF=CFOCFCF(CF)OCFCOOCH
  CF=CFOCFCF(CF)O(CFCOOCH
  CF=CFOCFCF(CF)O(CFCOOCH
  CF=CFO(CFCOOCH
  CF=CFO(CFCOOCH
[総イオン交換容量]
 本実施形態の陽イオン交換膜における層(I)に対して測定される総イオン交換容量は、1.0mg当量/g以上1.5mg当量/g以下であることが好ましく、1.1mg当量/g以上1.4mg当量/g以下であることがより好ましい。総イオン交換容量が1.0mg当量/g以上であれば、陽イオン交換膜が柔軟性を伴い、ハンドリング性が向上する傾向にある。総イオン交換容量が1.5mg当量/g以下であれば、ポリマーの含水率が過度に高くなり過ぎず、カールを抑制し易くなる傾向がある。総イオン交換容量が1.1mg当量/g以上であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわちより低い電圧で電解できる傾向にある。総イオン交換容量が1.4mg当量/g以下であれば、強度が十分でありハンドリング性に優れる傾向にある。
 なお、本実施形態において、「総イオン交換容量」とは、乾燥樹脂の単位重量あたりの交換基の当量のことをいい、「総イオン交換容量」は、中和滴定やIR等によって測定することができる。具体的には、後述する実施例に記載の方法により測定することができる。また、総イオン交換容量は、含フッ素重合体の繰り返し単位の種類やその比率を適宜変更することにより、上記した範囲内に調整することができる。
[EW]
 本実施形態の陽イオン交換膜における層(I)に対して測定されるEWは、含フッ素系重合体の等価質量[g-共重合体組成物/eq.-官能基](単位:g/eq.)であり、イオン交換基1molあたりの乾燥樹脂の単位重量当量(g)のことをいい、中和滴定等によって測定された「総イオン交換容量」から次の式によって示される。
  EW=1/「総イオン交換容量」×1000
 本実施形態の陽イオン交換膜における層(I)に対して測定されるEWは、667g/eq.以上1000g/eq.以下であることが好ましく、714g/eq.以上909g/eq.以下であることがより好ましい。EWが667g/eq.以上であれば、ポリマーの含水率が過度に高くなり過ぎず、カールを抑制し易くなる傾向がある。EWが1000g/eq.以下であれば、陽イオン交換膜が柔軟性を伴い、ハンドリング性が向上する傾向にある。EWが714g/eq.以上であれば、強度が十分でありハンドリング性に優れる傾向にある。EWが909g/eq.以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち、より低い電圧で電解できる傾向にある。
[TFE比率]
 本実施形態の陽イオン交換膜において、「TFE比率」は、繰り返し単位(A)と繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率であり、後述する方法により算出される。換言すると、TFE比率は、上記の含フッ素重合体における繰り返し単位(A):-(CFCF)-の割合である。含フッ素重合体において、繰り返し単位(A)は結晶化しやすい成分となっており、結晶化した繰り返し単位(A)は強度の発現やカールの抑制に影響する傾向にあるため、適切な範囲に調整することが好ましい。
 第1の陽イオン交換膜における層(I)に対して測定されるTFE比率は、53質量%以上70質量%以下の範囲であり、54質量%以上60質量%以下の範囲であることが好ましい。TFE比率が53質量%以上であれば、膜の破断に耐えうる十分な強度を維持できる。TFE比率が70%以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解できる。TFE比率が54質量%以上であれば、陽イオン交換膜のカールをより効果的に抑制できる傾向にあり、TFE比率が60質量%以下であれば、陽イオン交換膜が柔軟性を伴いよりハンドリング性に優れる傾向にある。
 第2の陽イオン交換膜における層(I)に対して測定されるTFE比率は、特に限定されるものではないが、53質量%以上70質量%以下の範囲であることが好ましく、54質量%以上60質量%以下の範囲であることがより好ましい。TFE比率が53質量%以上であれば、膜の破断に耐えうる十分な強度を維持できる傾向にある。TFE比率が70%以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解できる傾向にある。TFE比率が54質量%以上であれば、陽イオン交換膜のカールを抑制できる傾向にあり、TFE比率が60質量%以下であれば、陽イオン交換膜が柔軟性を伴いハンドリング性に優れる傾向にある。
 一方、本実施形態の陽イオン交換膜における層(II)に対して測定されるTFE比率は、特に限定されるものではないが、61.5質量%以上65質量%以下の範囲であることが好ましく、62.5質量%以上64.5質量%以下の範囲であることがより好ましい。TFE比率が61.5質量%以上であれば、膜の破断に耐えうる十分な強度を維持できる傾向にある。TFE比率が65質量%以下であれば、陽イオン交換膜が柔軟性を伴いハンドリング性に優れる傾向にある。TFE比率が62.5質量%以上であれば、十分な電流効率を発現することができ、TFE比率が64.5質量%以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解できる傾向にある。
 層(I)及び層(II)に対するTFE比率は、後述する実施例に記載の方法に基づいて測定することができる。
[ポリマー組成比]
(第1の陽イオン交換膜におけるポリマー組成比)
 第1の陽イオン交換膜における層(I)において、繰り返し単位(A)と繰り返し単位(S)の質量比率の合計100質量%に対する繰り返し単位(A)の質量比率は53質量%以上70質量%以下であるが、第1の陽イオン交換膜における層(I)において、繰り返し単位(S)が繰り返し単位(C)及び式(4)で表される繰り返し単位(D)を含むとき、繰り返し単位(A)、(C)及び(D)の各質量比は、以下の範囲であることが好ましい。なお、以下の組成比は、(A)、(C)及び(D)の各質量比の合計を100質量%とした際の比率である。
 上記繰り返し単位(A)の組成比A1は、53質量%以上70質量%以下の範囲であることが好ましく、54質量%以上60質量%以下の範囲であることがより好ましい。
 上記繰り返し単位(C)の組成比C1は、3質量%以上44質量%以下の範囲であることが好ましく、5質量%以上41質量%以下の範囲であることがより好ましい。
 上記繰り返し単位(D)の組成比D1は、3質量%以上44質量%以下の範囲であることが好ましく、5質量%以上41質量%以下の範囲であることがより好ましい。
(第2の陽イオン交換膜におけるポリマー組成比)
 第2の陽イオン交換膜における層(I)において、上記繰り返し単位(A)、(C)及び(D)の各質量比は、以下の範囲であることが好ましい。なお、以下の組成比は、(A)、(C)及び(D)の各質量比の合計を100質量%とした際の比率である。
 上記繰り返し単位(A)の組成比A2は、53質量%以上70質量%以下の範囲であることが好ましく、54質量%以上60質量%以下の範囲であることがより好ましい。
 上記繰り返し単位(C)の組成比C2は、3質量%以上44質量%以下の範囲であることが好ましく、5質量%以上41質量%以下の範囲であることがより好ましい。
 上記繰り返し単位(D)の組成比D2は、3質量%以上44質量%以下の範囲であることが好ましく、5質量%以上41質量%以下の範囲であることがより好ましい。
 本実施形態の陽イオン交換膜において、例えば、上記繰り返し単位(A)の組成比A1及びA2が53質量%以上であれば、膜の破断に耐えうる十分な強度を維持できる傾向にある。上記繰り返し単位(A)の組成比A1及びA2が70質量%以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解できる傾向にある。上記繰り返し単位(A)の組成比A1及びA2が54質量%以上であれば、陽イオン交換膜のカールを抑制できる傾向にあり、上記繰り返し単位(A)の組成比A1及びA2が60質量%以下であれば、陽イオン交換膜が柔軟性を伴いハンドリング性に優れる傾向にある。
 また、上記繰り返し単位(C)の組成比C1及びC2が3質量%以上であれば、カールを抑制できる傾向にあり、44質量%以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる傾向となる。また、組成比C1及びC2が、5質量%以上であれば、膜の破断に耐えうる十分な強度を維持することが出来る傾向となり、41質量%以下であれば、層間におけるデラミなどが起こりにくい膜となる傾向がある。
 また、上記繰り返し単位(D)の組成比D1及びD2が3質量%以上であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる傾向となり、44質量%以下であれば、カールを抑制できる傾向にある。また、組成比D1及びD2が、5質量%以上であれば、陽イオン交換膜が柔軟性を伴いハンドリング性に優れる傾向があり、41質量%以下であれば、膜の破断に耐えうる十分な強度を維持することが出来る傾向となる。
 スルホン酸基を有する含フッ素重合体に含まれる複数の繰り返し単位と、各繰り返し単位の質量比の調節は、上記に挙げた手法1または手法2によって行うことができる。
 本実施形態において、上記のように各繰り返し単位の質量比を調整することにより、低抵抗であるがTFE比率の低い、側差の長いスルホン酸の繰り返し単位と、高抵抗であるがTFE比率の高い、側差の短いスルホン酸の繰り返し単位をバランス良く有するポリマーとなる傾向にあるため、結果として低電解電圧とカール抑制のバランスが向上する傾向にある。
 本実施形態の陽イオン交換膜においては、以下に限定されないが、層(I)に繰り返し単位(A)~(D)以外の単位(他の単位a)が含まれる場合、本実施形態の所望の効果を担保する観点より、層(I)を構成する単位の合計を100質量%とした場合、当該他の単位aの含有量は30質量%以下であることが好ましい。30質量%以下であることにより、TFE比率や含水率を所望の範囲内に調節しやすくなる。
 本実施形態の陽イオン交換膜においては、以下に限定されないが、層(II)に繰り返し単位(A)、(E)以外の単位(他の単位b)が含まれる場合、本実施形態の所望の効果を担保する観点より、層(II)を構成する単位の合計を100質量%とした場合、当該他の単位bの含有量は30質量%以下であることが好ましい。30質量%以下であることにより、TFE比率や含水率を所望の範囲内に調節しやすくなる。
 本実施形態の陽イオン交換膜における層(II)に対して測定される、繰り返し単位(E)/(繰り返し単位(A)+繰り返し単位(E))で表される繰り返し単位(D)の比率は、特に限定されるものではないが、35質量%以上38.5質量%以下の範囲であることが好ましく、35.5質量%以上37.5質量%以下の範囲であることがより好ましい。上記比率が35質量%以上であれば、陽イオン交換膜が柔軟性を伴いハンドリング性に優れる傾向にある。上記比率が38.5質量%以下であれば、膜の破断に耐えうる十分な強度を維持できる傾向にある。上記比率が35.5質量%以上であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解できる傾向にある。上記比率が37.5質量%以下であれば、十分な電流効率を発現することができる。
[ブレンド比]
 本実施形態の陽イオン交換膜における層(I)を構成する含フッ素重合体が上記手法1のような、上記繰り返し単位(A)と(C)の共重合体と、上記繰り返し単位(A)と(D)の共重合体とのブレンドポリマーである場合、特に限定されないが、繰り返し単位(A)と(C)の共重合体と、繰り返し単位(A)と(D)の共重合体の重量比率は、(繰り返し単位(A)と(C)の共重合体)/(繰り返し単位(A)と(D)の共重合体)として、10/90以上80/20以下であることが好ましく、25/75以上70/30以下であることがより好ましく、50/50以下であることが更に好ましい。上記繰り返し単位(D)に対応する単量体は、上記繰り返し単位(C)に比べ合成が容易である為、繰り返し単位(A)と(D)の共重合体の重量比率が多いほうが、技術的に平易であり、含フッ素重合体の供給安定性にも優れる傾向にある。
[含水率]
 本実施形態において、「含水率」とは、イオンの通り道であるクラスターと相関するパラメーターであり、電解電圧や膜のカールに影響を与えるものである。
 第1の陽イオン交換膜における層(I)に対して測定される含水率は、26%以上35%以下の範囲であり、26%以上34%以下の範囲であることが好ましい。
 上記含水率が26%以上であれば、繰り返し単位(S)が、繰り返し単位(C)と下記式(4)で表される繰り返し単位(D)とを含まない場合であっても、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる。含水率が35%以下であれば、膜の破断に耐えうる十分な強度を維持することができる。含水率が34%以下であれば、膜の破断に耐えうる十分な強度を維持することができる。
 第2の陽イオン交換膜における層(I)に対して測定される含水率は、25%以上35%以下の範囲であり、26%以上34%以下の範囲であることが好ましい。含水率が25%以上であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる。含水率が35%以下であれば、膜の破断に耐えうる十分な強度を維持することができる。含水率が26%以上であれば、更に好適な低い電圧で電解することができる傾向にある。含水率が34%以下であれば、膜の破断に耐えうる十分な強度を維持することができる。
 ただし上記範囲は電解を実施する前の陽イオン交換膜に対して測定される値を想定しており、電解後の陽イオン交換膜においては、上記範囲から1~2%程度低減することもある。よって、電解後に上記範囲から1~2%低減している陽イオン交換膜は上記範囲を満たす陽イオン交換膜とみなすことができる。
 含水率の測定方法の一例を以下に示す。含水率は、厚み500μm以下、重さ0.5g以上の膜を純水中に、85℃に4時間浸漬させた後、膜の重量を測定する。この重量をW(wet)とする。次に、ccc空乾燥機により、-0.1MPa、90℃で3時間乾燥させ、膜の重量を測定する。この重量をW(dry)とする。含水率は次の式で示される。
  含水率=100×(W(wet)―(dry))/W(dry)
 この測定方法において、10枚の膜について同様の処理を行って含水率を求め、その平均値を算出する。
 なお、上記の含水率の測定方法は、後述する実施例にて適用される。
 本実施形態の陽イオン交換膜は多層構造膜であるため、本実施形態の陽イオン交換膜を単層膜に分離した後に含水率を測定する。分離した後の陽イオン交換膜が重さ0.5gに満たない場合は、0.5gを満たすよう複数枚の陽イオン交換膜を集め、それらの計でW(dry)、(wet)をもとめ、含水率を算出する。
 本実施形態の陽イオン交換膜において、層(I)に対して測定される含水率を上記範囲に調整する為の制御方法は、以下に限定されないが、例えば、ポリマー内のイオン交換基数とTFE比率を所望の値に調節することが挙げられる。すなわち、含水率はポリマーの弾性エネルギーと親水性のバランスで決定される為、弾性エネルギーの発現に影響するTFE比率と、親水性の発現に影響するイオン交換基数の調節で可能となる。
[含水率差]
 本実施形態の陽イオン交換膜において、カール抑制の観点から、層(I)と層(II)の含水率の差は、25%以下であることが好ましく、より好ましくは21%以下であり、さらに好ましくは18%以下である。
 本実施形態の陽イオン交換膜において、層(II)の含水率は、特に限定されないが、9~21%が好ましく、12~18%がより好ましい。
[含水率/TFE比率]
 本実施形態において、「含水率/TFE比率」とは、陽イオン交換膜のカールのし易さと相関するパラメーターである。陽イオン交換膜のカールの有無は外力に加え、その膜のカールのし易さによって決定される。
 外力とは、例えば、膜内の層間における含水率の差や、膜内に埋め込まれた芯材に対する、膜の膨潤度合いにより、発生するものである。一方、陽イオン交換膜のカールのし易さとは、膜の硬さに大きく影響され、柔軟性に影響する含水率と、剛直性に影響するTFE比率のバランスにより決まる。よって、含水率/TFE比率を適正な範囲に制御することにより、陽イオン交換膜のカールをより効果的に抑制することが可能となる。
 本実施形態の陽イオン交換膜における層(I)に対して測定される「含水率/TFE比率」は、特に限定されるものではないが、0.48以上0.64以下の範囲であることが好ましく、0.48以上0.56以下の範囲であることがより好ましい。
 含水率/TFE比率が0.48以上であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる傾向にある。含水率/TFE比率が0.64以下であれば、陽イオン交換膜の硬さを調節し、陽イオン交換膜のカールを抑制できる傾向にある。含水率/TFE比率が0.56以下であれば、本実施形態の所望の効果が更に顕著に表れる傾向にある。
 含水率/TFE比率は、上述した、「含水率」、「TFE比率」を用い算出することができる。
 なお、上記の含水率/TFE比率の測定方法は、後述する実施例にて適用される。
[層(I)のEW/層(II)のEW]
 本実施形態の陽イオン交換膜において、「層(I)のEW/層(II)のEW」とは、陽イオン交換膜のカールのし易さと相関するパラメーターである。陽イオン交換膜のカールの有無は、膜のカールのし易さに加え、外力によって決定される。
 カールのし易さは、その膜の硬さに影響を受ける。一方、外力とは膜内の層間における膨潤率の差に影響をうける。膨潤率は含水性や膨張性のバランスにより決定され、その指標としてEWを用いることができる。一般的な陽イオン交換膜内において膨潤率の差が大きく、主にカールに繋がるのは、スルホン酸基を有する含フッ素重合体の層とカルボン酸基を有する含フッ素重合体の層間である。つまり、これらのEWの関係を適正に制御できれば、カールをより効果的に抑制することが可能となる。
 本実施形態の陽イオン交換膜において、スルホン酸層である層(I)のEWと、カルボン酸層である層(II)のEWの関係、「層(I)のEW/層(II)のEW」は、特に限定されるものではないが、0.6以上0.8以下の範囲が好ましく、0.65以上0.77以下の範囲がより好ましい。
 「層(I)のEW/層(II)のEW」が0.6以上であれば、より効果的にカールを抑制できる傾向にあり、「層(I)のEW/層(II)のEW」が0.8以下であれば、陽イオン交換膜の交流抵抗値を下げることができ、すなわち低い電圧で電解することができる傾向にある。「層(I)のEW/層(II)のEW」のEWが0.65以上0.77以下であれば、本実施形態の所望の効果が更に顕著に表れる傾向にある。
[芯材]
 本実施形態の陽イオン交換膜は、芯材を含むことが好ましい。芯材により、陽イオン交換膜の強度及び寸法安定性が高まる傾向にあり、膜本体の内部における位置は特に限定されず、層(I)の内部、層(II)の内部、層(I)と層(II)との間のいずれに配されるものであってもよいが、層(I)の内部、又は層(I)と層(II)との間に配されることが好ましい。層(I)と層(II)との間に配される場合、1つの芯材の一部分が層(I)の内部に配されると共に他の部分が層(II)の内部に配されてもよい。本実施形態において、芯材は、強化糸を織った織布などであることが好ましい。芯材の材料は、長期にわたる耐熱性、耐薬品性の観点から、フッ素重合体を含む繊維の織布であることが好ましい。芯材の材料としては、特に限定されないが、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、トリフルオロクロルエチレン-エチレン共重合体及びフッ化ビニリデン重合体(PVDF)などが挙げられる。特にポリテトラフルオロエチレンを含む繊維の織布を芯材として用いることが好ましい。なお、上述した層(I)及び層(II)を構成する含フッ素重合体とは異なるフッ素重合体を芯材として適用することもできるし、これらと同組成のフッ素重合体を芯材として適用してもよい。層(I)又は層(II)と同組成のフッ素重合体を芯材として適用する場合、層(I)又は層(II)と芯材とは、各々の形状、すなわち層状か否かにより区別することができる。
 芯材の糸径としては、好ましくは20~300デニール、より好ましくは50~250デニール、織り密度(単位長さあたりの打ち込み本数)としては、好ましくは5~50本/インチである。芯材の形状としては、織布、不織布又は編布などが挙げられるが、織布の形態であることが好ましい。また、織布の厚みは、30~250μmであることが好ましく、30~150μmであることがより好ましい。
 織布または編布は、特に限定されないが、例えば、モノフィラメント、マルチフィラメントまたは、これらのヤーン、スリットヤーンなどが使用され、織り方は平織り、絡み織り、編織り、コード織り、シャーサッカなど種々の織り方が使用される。
 また、芯材の開口率は、特に限定されないが、好ましくは30%以上、より好ましくは50%以上、90%以下である。開口率は、イオン交換膜としての電気化学的性質の観点から30%以上、また、膜の機械的強度の観点から90%以下が好ましい。開口率とは、イオン交換膜の表面積の合計(S1)に対し、イオン等の物質が通過できる面積の合計(S2)の割合であり、(S2)/(S1)で表される。(S2)は、イオン交換膜において、イオンや電解液等が、イオン交換膜に含まれる芯材によって遮断されない領域の面積の合計である。開口率の測定方法は、下記のとおりである。すなわち、イオン交換膜(透過画像を取得するのを妨害するコーティング等は測定前に除去する)の膜表面方向からの透過画像を撮影し、芯材(犠牲芯材、および連通孔は含まない)が存在しない部分の面積から、上記(S2)を求めることができる。そして、イオン交換膜の透過画像の面積から上記(S1)を求め、上記(S2)を上記(S1)で除することによって、開口率を求める。
 これら種々の芯材の中でも、特に好ましい形態としては、例えば、PTFEから成る高強度多孔質シートをテープ状にスリットしたテープヤーンである。又は、芯材としては、PTFEから成る高度に配向したモノフィラメントの50~300デニールを使用し、織り密度が10~50本/インチの平織り構成からなり、更に、その厚みが50~100μmの範囲で、且つその開口率が60%以上であることが好ましい。
 更に、織布には膜の製造工程において、芯材の目ズレを防止する目的で、通常、犠牲糸と呼ばれる補助繊維を含んでもよい。この犠牲糸を含むことで、陽イオン交換膜内に連通孔を形成することができる。
 犠牲糸は、膜の製造工程もしくは電解環境下において溶解性を有するものであり、特に限定されないが、例えば、レーヨン、ポリエチレンテレフタレート(PET)、セルロース及びポリアミドなどが用いられる。この場合の混織量は、好ましくは織布または編布全体の10質量%以上80質量%以下、より好ましくは30質量%以上70質量%以下である。
[芯材の強度伸度]
 本実施形態の陽イオン交換膜において、芯材のMD方向の伸びが30N時、10GL%以下である、及び/又は、芯材のTD方向の伸びが30N時、10GL%以下であることが好ましい。
 加重30N時の芯材伸度が10GL%以下であれば膜の寸法安定性を維持できる傾向にある。また1GL%以上であれば、折り曲げた際に芯材が切れる問題が生じにくく、3GL%以上であれば陽イオン交換膜に可撓性が発現しハンドリングが良好となる傾向にあり、9GL%以下であれば膜の破断に耐えうる十分な強度を維持することが出来る傾向となる。
 ここで、MD方向(machine direction)とは、後述する陽イオン交換膜の製造において、膜本体や各種部材(例えば、芯材等)が搬送される方向(「流れ方向」)である。TD方向(transverse direction)とは、MD方向と略垂直の方向をいう。
 芯材の強度伸度は、芯材をMD、TD方向に各サンプル幅1cm、長さ14cmに切り出し、長さ14cmのチャック間距離が5cmとなるよう両端をチャックし、23℃、100mm/分の速度で伸張し、引張試験を実施することによって、加重30N時の伸度を測定することができる。なお、上記した芯材の強度伸度の好ましい数値は、電解前の芯材に対して測定される値である。
 本実施形態の陽イオン交換膜において含まれ得る芯材は、例えば、テープヤーンを適用する場合、単なる撚糸では捻った部分がばねの様に伸び寸歩安定性が不十分であるが、撚糸を加熱しながら延伸することで、寸法安定性の優れた芯材となり、結果として加重30N時の芯材伸度を10GL%以下とすることができる。このとき、延伸倍率を小さくすれば上記芯材伸度は大きくなる傾向にあり、延伸倍率を大きくすれば、上記芯材伸度は小さくなる傾向にある。また、加熱温度を高温にすれば、上記芯材伸度は大きくなる傾向にあり、加熱温度を低温にすれば、上記芯材伸度は小さくなる傾向にある。
[連通孔]
 本実施形態の陽イオン交換膜は、膜内に連通孔を有していてもよい。本実施形態において、連通孔とは、電解の際に発生する陽イオンや電解液の流路となり得る孔をいう。連通孔を形成することで、電解の際に発生するアルカリイオンや電解液の移動性がより向上する傾向にある。連通孔の形状は特に限定されないが、後述する製法によれば、連通孔の形成に用いられる犠牲糸の形状とすることができる。
 本実施形態において、連通孔は、芯材の陽極側と陰極側を交互に通過するように形成されることが好ましい。このような構造とすることで、芯材の陰極側に連通孔が形成されている部分では、連通孔に満たされている電解液を通して輸送された陽イオン(例えば、ナトリウムイオン)が、芯材の陰極側にも流れることができる。その結果、陽イオンの流れが遮蔽されることがないため、イオン交換膜の電気抵抗を更に低減できる傾向にある。
 図1に本実施形態の陽イオン交換膜の構成の一例の概略断面図を示す。本実施形態の陽イオン交換膜は、層4(層I)と、層5(層II)とが積層され、膜内部に芯材3と連通孔2a及び2bを有している。芯材3は、例えば、PTFEモノフィラメントの織布であり、そのモノフィラメント間に、例えば、PETの繊維がモノフィラメントと同様に編まれている。縦糸も横糸も同様である。通常、スルホン酸基を有する含フッ素重合体を含む層4が電解槽の陽極側αに、カルボン酸基を有する含フッ素重合体を含む層5が電解槽の陰極側βになるように設置される。また、図1の例において、膜表面には、コーティング層6及び7を有している。
 なお、図1において、連通孔2a及び芯材3は、紙面に対して垂直方向に形成され、連通孔2bは、紙面の上下方向に形成されている。即ち、紙面の上下方向に形成された連通孔2bは、芯材3に対して略垂直方向に沿って形成されている。また、連通孔2a及び2bは、層4の陽極側表面に面している箇所8を有していても構わない。図1に示すように、本実施形態の陽イオン交換膜は、層4の表面と層5の表面とが接するように積層されていることが好ましい。本明細書では、層4と層5(必要に応じてさらに芯材3)を合わせて膜本体とも称する。
 本実施形態において、膜本体の少なくとも一方の表面に開孔部が形成されていることが好ましい。ここで、開孔部とは、連通孔の一部が膜本体の一方の表面に位置することにより、当該表面で開孔している部分を意味する。膜表面に開孔部が形成され、膜内で開孔部同士を連通する連通孔が形成されることにより、電解の際、イオン交換膜の内部まで電解液が供給されやすくなり、結果として電解性能が向上する傾向にある。
[コーティング]
 本実施形態の陽イオン交換膜は、膜本体の少なくとも一表面上に配されるコーティング層を有することができ、当該コーティング層により、電解時に陰極側表面、及び陽極側表面へのガスの付着を防止することができる。
 コーティング層を構成する材料としては、特に限定されるものではないが、ガスの付着防止の観点から、無機物を含むことが好ましい。無機物としては、例えば、酸化ジルコニウム、酸化チタン等が挙げられる。コーティング層を膜本体に形成する方法としては、特に限定されず、公知の方法を用いることができる。例えば、無機酸化物の微細粒子をバインダーポリマー溶液に分散した液を、スプレー等により塗布する方法が挙げられる。
 バインダーポリマーとしては、例えば、スルホン型イオン交換基に変換し得る官能基を有するビニル化合物等が挙げられる。塗布条件については、特に限定されず、例えば、30~90℃にてスプレーを用いることができる。スプレー法以外の方法としては、例えば、ロールコート等が挙げられる。
 コーティング層の平均厚みは、ガス付着防止と厚みによる電気抵抗増加の観点から、1~10μmであることが好ましい。
[膜本体の構成]
 本実施形態の陽イオン交換膜における膜本体の構成は、上述した層(I)及び(II)を少なくとも1層有するものであれば特に限定されない。すなわち、層(I)は単層であってもよく複数層でもよい。また、層(II)も単層であってもよく複数層であってもよい。また、層(I)及び層(II)の他、任意の層を有していてもよい。上記した構成を適宜組み合わせて本実施形態の陽イオン交換膜を構成することができる。以下、とりわけ好適に採用できる態様について説明する。
 本実施形態の陽イオン交換膜は、次のように構成することができる。すなわち、層(I)と層(II)とからなる積層構造を有し、芯材が層(I)の内部に配されるものとすることができる。上記の積層構造において、層(I)と層(II)の双方が最外層となり、芯材は、層(I)の表面のうち、図1(α)側の表面近傍に位置することがより好ましい。
 本実施形態の陽イオン交換膜は、次のように構成することができる。すなわち、層(I)が、繰り返し単位(A)と繰り返し単位(D)とを含む共重合体を有する層(I-1)と、当該層(I-1)とは異なる層と、からなる積層構造を有するものとすることができる。上記の積層構造において、層(I-1)とは異なる層とは、層(I-1)とは別種のポリマーで構成されているものであれば特に限定されず、例えば、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体を有する層であってもよいし、繰り返し単位(A)と繰り返し単位(C)と繰り返し単位(D)とを含む共重合体を有する層であってもよい。なお、各層において、含まれる繰り返し単位が共通するものであったとしても、「繰り返し単位(A)、(C)及び(D)のいずれにも該当しない他の単位」において両者が相違すれば、別種のポリマーで構成されているものとみなすことができる(以下も同様)。
 本実施形態の陽イオン交換膜は、次のように構成することができる。すなわち、層(I)が、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-2)とは異なる層と、からなる積層構造を有するものとすることができる。上記の積層構造において、層(I-2)とは異なる層とは、層(I-2)とは別種のポリマーで構成されているものであれば特に限定されず、例えば、繰り返し単位(A)と繰り返し単位(D)とを含む共重合体を有する層であってもよいし、繰り返し単位(A)と繰り返し単位(C)と繰り返し単位(D)とを含む共重合体を有する層であってもよい。
 本実施形態の陽イオン交換膜は、次のように構成することができる。すなわち、層(I)が、陽イオン交換膜の最外層であって芯材を含む層(I-3)と、当該層(I-3)とは異なる層と、を含む積層構造を有するものとすることができる。上記の積層構造において、「層(I-3)とは異なる層」とは、芯材を含まないものであれば特に限定されない。層(I-3)とは異なる層は、例えば、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体を有する層であってもよいし、繰り返し単位(A)と繰り返し単位(D)とを含む共重合体を有する層であってもよいし、繰り返し単位(A)と繰り返し単位(C)と繰り返し単位(D)とを含む共重合体を有する層であってもよいし、上記の組み合わせからなる複数層であってもよい。
 本実施形態の陽イオン交換膜は、次のように構成することができる。すなわち、層(I)が、繰り返し単位(A)と繰り返し単位(D)とを含む共重合体を有する層(I-1)と、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-1)及び層(I-2)とは異なる層と、を含む積層構造を有するものとすることができる。上記の積層構造において、「層(I-1)及び層(I-2)とは異なる層」とは、層(I-1)及び層(I-2)とは別の層であれば特に限定されず、組成として層(I-1)及び層(I-2)と同様であってもよい。例えば、繰り返し単位(A)と繰り返し単位(C)とを含む共重合体(AC)を有する層であってもよく、繰り返し単位(A)と繰り返し単位(D)とを含む共重合体(AD)を有する層であってもよく、共重合体(AC)と共重合体(AD)との混合物を有する層であってもよい。また、繰り返し単位(A)と繰り返し単位(C)と繰り返し単位(Dd)とを含む共重合体を有する層であってもよい。
 本実施形態の陽イオン交換膜において、層(I)の厚みは、特に限定されないが、5μm以上150μm以下が好ましい。層(I)の厚みが上記範囲内にあると、電圧を低減する効果を十分に発現できる傾向にある。
 本実施形態の陽イオン交換膜において、層(II)の厚みは、特に限定されないが、5μm以上50μm以下が好ましい。層(II)が上記範囲内にあると、十分に高い電流効率を発現できる傾向にある。
 また、層(I)と層(II)の厚みの合計は、特に限定されないが、35μm以上200μm以下が好ましく、55μm以上150μm以下がより好ましい。層(I)と層(II)の厚みの合計が上記範囲にあると、強度と好適な電解性能を有した陽イオン交換膜となる傾向にある。
 なお、層(I)が複数層からなる場合、層(I)全体の厚みとして上記数値範囲を満たすことが好ましい。層(II)についても同様である。
 本実施形態の陽イオン交換膜において、層(I)が複数層からなる場合の前述した層(I)の総イオン交換容量、EW、TFE比率、ポリマー組成比、含水率、含水率差及び含水率/TFE比率に係る物性値としては、各層の平均値として各数値範囲を満たすことが好ましい。層(II)についても同様である。
 本実施形態の陽イオン交換膜は、種々の電気分解用の隔膜として適用し得るが、とりわけ食塩電解用として用いられることが好ましい。
[カール評価]
 上述したように膜にカールが生じると、膜生産時、特に加水分解の工程で膜が折れ曲がり、加水分解後の膜を巻き取れなくなったり、ハンドリング時の取り扱い性不良や電解時に膜をセットできない等の深刻な問題へと繋がるが、本実施形態の陽イオン交換膜は、上述した構成を備えることでカールの発生を効果的に防止することができる。陽イオン交換膜のカールについては次に示す方法により評価できる。
 評価用サンプルとして、40cm×30cmの膜を用意し、40cm方向に対して膜がどの程度カールするか、評価する。図3に示すように、陽イオン交換膜1の端部を水平に固定し、X-X’断面方向から観察した際に、もう一方の端部が、水平方向に対し、どの程度カールしたかを角度φで数値化する。φが大きいほど重度なカールとなり、本実施形態の陽イオン交換膜は、例えば後述する実施例に記載の方法にて測定した場合のφが90°以下となることが好ましい。
[陽イオン交換膜の製造方法]
 続いて、本実施形態の陽イオン交換膜の製造方法について説明する。
 本実施形態の陽イオン交換膜の製造方法は、特に限定されないが、以下の1)から5)の工程を有することが好ましい。
1)イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素重合体を製造する工程(重合体の製造工程)と、
2)犠牲糸を織り込んだ芯材を得る工程(芯材の製造工程)と、
3)イオン交換基、又は、加水分解によりイオン交換基となり得るイオン交換基前駆体を有する含フッ素重合体をフィルム化する工程(フィルム化工程)と、
4)前記芯材と、前記フィルムとを埋め込んで複合膜を形成する工程(埋め込み工程)と、
5)酸又はアルカリで、複合膜を加水分解する工程(加水分解工程)と、を含む製造方法が好ましい。
 本実施形態の陽イオン交換膜は、上記の工程のうち、例えば、1)の重合体の製造工程で含フッ素重合体の組成を制御する。以下、各工程について詳細に説明する。
1)工程(重合体の製造工程)
 本実施形態における含フッ素重合体は、前述の(含フッ素系重合体)の項に記載の方法で製造することができる。
2)工程(芯材の製造工程)
 本実施形態の陽イオン交換膜は、膜の強度をより向上させる観点から、芯材が膜内に埋め込まれていることが好ましい。連通孔を有するイオン交換膜とするときには、犠牲糸も一緒に芯材へ織り込む。この場合の犠牲糸の混織量は、好ましくは芯材全体の10~80質量%、より好ましくは30~70質量%である。犠牲糸としては、20~50デニールの太さを有し、モノフィラメント又はマルチフィラメントからなるポリビニルアルコール等であることが好ましい。
3)工程(フィルム化工程)
 前記1)工程で得られた含フッ素重合体を、フィルム化する方法は、特に限定されないが、押出機を用いるのが好ましい。フィルム化する方法としては以下の方法が挙げられる。
 本実施形態において、例えば、層(I)と層(II)との2層構造である場合、層(I)を構成する陽イオン交換膜(スルホン酸層)と、層(II)を構成する陽イオン交換膜(カルボン酸層)を、それぞれ別々にフィルム化する方法が挙げられる。
 層(I)が任意の2層構造である場合、すなわち、層(II)と、含フッ素重合体層(I-1)と、含フッ素重合体層(I-2)からなる3層構造を有する場合、例えば、含フッ素重合体層(I-1)と層(II)とを共押出しにより複合フィルムとする。そして、別途、含フッ素重合体層(I-2)単独でフィルム化して、層(I-1)と層(II)の複合フィルムに張り合わせることができる。或いは、含フッ素重合体層(I-1)と含フッ素重合体層(I-2)とを共押出しにより複合フィルムとして層(I)’を形成し、そして、別途、層(II)を単独でフィルム化して、層(I)’と張り合わせることができる。これらのうち、含フッ素重合体層(I-1)と層(II)とを共押出しすると、界面の接着強度を高めることができ好ましい。
4)工程(埋め込み工程)
 埋め込み工程においては、前記2)工程で得られた芯材、及び、前記3)工程で得られたフィルムを、昇温したドラムの上で埋め込むのが好ましい。ドラム上では、透気性を有する耐熱性の離型紙を介して、各層を構成する含フッ素重合体が溶融する温度下にて減圧し、各層間の空気を除去しながら埋め込み一体化する。これにより、複合膜を得ることができる。ドラムとしては、特に限定されないが、例えば、加熱源及び真空源を有し、その表面に多数の細孔を有するものが挙げられる。
 芯材及びフィルムを積層する際の順番としては、前記3)工程に合わせて以下の方法が挙げられる。
 層(I)と層(II)がそれぞれ単層を構成する場合は、ドラムの上に、離型紙、層(I)のフィルム、芯材、及び、層(II)のフィルムの順に積層する方法が挙げられる。
 また、層(I)が任意の2層構造である場合、すなわち、層(II)と、含フッ素重合体層(I-1)と、含フッ素重合体層(I-2)からなる3層構造を有する場合は、ドラムの上に、離型紙、含フッ素重合体層(I-2)のフィルム、芯材、含フッ素重合体層(I-1)と層(II)との複合フィルムの順に積層する。或いは、ドラムの上に、離型紙、含フッ素重合体層(I-2)と含フッ素重合体層(I-1)の複合フィルム、芯材、層(II)の順に積層する。
 また、本実施形態のイオン交換膜の膜表面に凸部を設けるには、予めエンボス加工した離型紙を用いることによって、埋め込みの際に、溶融したポリマーからなる凸部を形成することもできる。
5)工程(加水分解工程)
 前記4)工程で得られた複合膜を、酸又はアルカリによって加水分解を行う。加水分解は、例えば、2.5~4.0規定(N)の水酸化カリウム(KOH)と20~40質量%のDMSO(Dimethyl sulfoxide)の水溶液中、40~90℃で、10分~24時間行うことが好ましい。その後、80~95℃の条件下、0.5~0.7規定(N)苛性ソーダ(NaOH)溶液を用いて塩交換処理を行うことが好ましい。上記塩交換処理の処理時間としては、電解電圧の上昇を防止する観点から、2時間未満であることが好ましい。
[電解槽]
 続いて、本実施形態の陽イオン交換膜を備えた電解槽について説明する。
 本実施形態の電解槽は、本実施形態の陽イオン交換膜を備える。より詳細には、本実施形態の電解槽は、陽極と、陰極と、前記陽極と前記陰極との間に配置される、本実施形態の陽イオン交換膜を備えるものとすることができる。図2に、本実施形態の電解槽の一例の模式図を示す。図2に示す電解槽13は、陽極11と、陰極12と、陽極と陰極との間に配置された2層構造の陽イオン交換膜1(以下、2層構造膜1という)を備える。
 2層構造膜1は、本実施形態の陽イオン交換膜に対応しており、層(II)(カルボン酸層)と、層(I)(スルホン酸層)で構成される。層(II)は、陰極側に向けて配置することができる。
 図2に示す電解槽を用いた食塩電解にあっては、陽極室側から陰極室側にNaイオンを通過させることができ、一方、陽極室側から陰極室側にOHイオンが移動するのを阻害することができる。また、2層構造膜1では、層(I)と層(II)を配置することで、カール抑制と共に低電解電圧をより一層図ることができる。その結果、電解時における消費電力の低減を図ることが可能である。したがって、本実施形態の電解槽によれば、従来に比べて、省エネルギー化に寄与することができる。
 電解条件は、特に限定されず、公知の条件で行うことができる。例えば、陽極室に2.5~5.5規定(N)の塩化アルカリ水溶液を供給し、陰極室は水又は希釈した水酸化アルカリ水溶液を供給し、電解温度が50~120℃、電流密度が0.5~10kA/mの条件で電解することができる。
 本実施形態の電解槽の構成は、特に限定されず、例えば、単極式でも複極式でもよい。電解槽を構成する材料としては、特に限定されないが、例えば、陽極室の材料としては、塩化アルカリ及び塩素に耐性があるチタン等が好ましく、陰極室の材料としては、水酸化アルカリ及び水素に耐性があるニッケル等が好ましい。電極の配置は、イオン交換膜と陽極との間に適当な間隔を設けて配置してもよいが、陽極とイオン交換膜が接触して配置されていてもよい。また、陰極は、一般的にはイオン交換膜と適当な間隔を設けて配置されているが、この間隔がない接触型の電解槽(ゼロギャップ式電解槽)であってもよい。
 また、食塩電解プロセス条件としては、特に限定されるものではないが、陽極室の塩水濃度を180~215g/L、好ましくは185~205g/Lとする。また、陰極液の濃度を28~35%、好ましくは30~33%とする。更に、電流密度を、1~6kA/mとし、温度を、70~90℃の条件とする。電解槽の型式、給電方式、或いは電極の型式は、公知の型式及び方式全てに適用することができるが、特に本実施形態の陽イオン交換膜は、ファイナイトギャップからゼロギャップの電極配置まで幅広く適用することができる。
[電解性能評価]
 陽イオン交換膜の電解性能評価は、図2に示す電解槽(陽イオン交換膜の層(II)が陰極側を向いている)を用い、下記の条件で電解を行い、電解電圧、電流効率に基づいて、1tのNaOHを作製するのに必要な電力消費量で電解性能を評価することができる。
[電解電圧の測定]
 電解に用いる電解槽としては、陽極と陰極との間に陽イオン交換膜を配置した構造であり、自然循環型のゼロギャップ電解セルを4個直列に並べたものを用いる。陰極としては、触媒として酸化セリウム、酸化ルテニウムが塗布された直径0.15mmのニッケルの細線を50メッシュの目開きで編んだウーブンメッシュを用いる。陰極と陽イオン交換膜を密着させるため、ニッケル製のエキスパンドメタルからなる集電体と陰極との間に、ニッケル細線で編んだマットを配置する。陽極としては、触媒としてルテニウム酸化物、イリジウム酸化物及びチタン酸化物が塗布されたチタン製のエキスパンドメタルを用いる。上記電解槽を用いて、陽極側に205g/Lの濃度になるように調整しつつ塩水を供給し、陰極側の苛性ソーダ濃度を32質量%に保ちつつ水を供給する。電解槽の温度を85℃に設定して、6kA/mの電流密度で、電解槽の陰極側の液圧が陽極側の液圧よりも5.3kPa高い条件で電解を行う。電解槽の陽陰極間の対間電圧を、KEYENCE社製電圧計TR-V1000で毎日測定し、7日間の平均値を電解電圧として求めることができる。
[電流効率の測定]
 また、電流効率は、生成された苛性ソーダの質量、濃度を測定し、一定時間に生成された苛性ソーダのモル数を、その間に流れた電流の電子のモル数で除することで求めることができる。
 以下、実施例により本実施形態を詳細に説明する。なお、本実施形態は以下の実施例に限定されるものではない。
 実施例及び比較例において、次の方法に従って、EW、総イオン交換容量、含水率、TFE比率、電解電圧、電流効率及びカール角度を測定した。
 層(I)が複数層からなる場合の前述した層(I)の総イオン交換容量、EW、TFE比率、ポリマー組成比、含水率、含水率差及び含水率/TFE比率に係る物性値としては、各層の平均値として算出した。
[総イオン交換容量及びEW]
 イオン交換基を有する含フッ素重合体として、後述する各例の含フッ素重合体A1~A3、含フッ素重合体B1~B6、ブレンドポリマーBA1~BA6、ブレンドポリマーBB1~BB3、含フッ素重合体D1~D3を、それぞれ約1g用い、290℃、15kgf/cmの圧力で4分間プレス成型して各重合体に対応するフィルムを得た。
 得られたフィルムを中和滴定することで総イオン交換容量を測定し、下記式に代入することでEWを算出した。
  EW=1/「総イオン交換容量」×1000
[TFE比率]
 イオン交換基を有する含フッ素重合体として、後述する各例の含フッ素重合体A1~A3、含フッ素重合体B1~B6、ブレンドポリマーBA1~BA6、ブレンドポリマーBB1~BB3、含フッ素重合体D1~D3を、それぞれ約1g用い、290℃、15kgf/cmの圧力で4分間プレス成型して各重合体に対応するフィルムを得た。
 核磁気共鳴装置(Bruker BioSpin社製 Avance500)にて、得られたフィルムに膨潤剤としてN-メチルアセトアミドを添加し、200℃に加熱して充分膨潤させ、固体19F-NMR測定を行った。測定温度は200℃であり、マジックアングルスピニングの回転数を5kHzとし、照射パルス幅を30°パルスとして、シングルパルス法にて測定した。シフト基準はメインシグナルであるCFシグナルを-119ppmとした。各シグナルの帰属は特開2004-279112号公報の図1に従った。
 上記の条件によって得られたフィルムの固体19F-NMRスペクトルで、側鎖CFとして約-140ppmのシグナルaの面積値と、主鎖CFとして-130~-136ppmのシグナルbの面積値と、主鎖CFと側鎖末端SOMに隣接するCFの検出される領域-110~-123ppmのシグナルcの面積値をそれぞれ求め、各シグナルより、繰り返し単位(C)及び(D)のどちらかと繰り返し単位(A)しか含まれないと認められたフィルムについては、以下の式(α)によりTFE比率を算出した。
  TFE比率=((EW-繰り返し単位(C)の分子量及び/又は繰り返し単位(D)の分子量)/EW)×100   (α)
 一方、各シグナルより、繰り返し単位(C)及び(D)の両方と繰り返し単位(A)が含まれていると認められたフィルムについては、各シグナルより、次のとおり繰り返し単位(A)、(C)、(D)の比率を算出した。
  繰り返し単位(A)の比率:(シグナルc面積値-2×シグナルa面積値-2×シグナルb面積値)/4
  繰り返し単位(C)の比率:シグナルb面積値-シグナルa面積値
  繰り返し単位(D)の比率:シグナルa面積値
 上記のようにして得られた繰り返し単位(C)と(D)の比率から、交換基含有モノマーの平均分子量を算出し、上記式(α)に導入することでTFE比率を算出した。
 上述した測定方法において、10枚の膜について同様の処理を行ってTFE比率を求め、その平均値をTFE比率とした。
[含水率]
 陽イオン交換膜を単層膜に分離し、厚み500μm以下、重さ0.5g以上の膜をサンプルとし、純水中に85℃に4時間浸漬させた後、膜の重量を測定し、この重量をW(wet)とした。次に、真空乾燥機により、-0.1MPa、90℃で3時間乾燥させ、膜の重量を測定し、この重量をW(dry)とした。これらの値に基づいて、次の式より含水率を算出した。
  含水率=100×(W(wet)―(dry))/W(dry)
 なお、分離した後の膜が重さ0.5gに満たない場合は、0.5gを満たすよう複数枚の膜を集め、それらの計でW(dry)、(wet)を求め、含水率を算出した。
 上記測定において、10枚の膜について同様の処理を行って含水率を求め、その平均値を含水率とした。
[カール評価]
 評価用サンプルとして、40cm×30cmの膜を用意し、40cm方向に対して膜がどの程度カールするかを評価した。すなわち、図3に示すように、陽イオン交換膜1の端部を水平に固定し、X-X’断面方向から観察した際に、もう一方の端部が、水平方向に対し、どの程度カールしたかを角度φで数値化した。φが大きいほど重度なカールであるとして、φが90°以下の場合はカールが抑制されているものと評価し、90°を超える場合はカールが抑制できていないものと評価した。カールは、後述する各例の加水分解工程後、すなわち、水酸化ナトリウム(NaOH)0.5Nを含む50℃の水溶液からイオン交換膜を取り出した後、さらに25℃、60%RH条件下で1分静置した後に測定を行った。
[電解性能評価]
 図2に示す電解槽(陽イオン交換膜の層(II)が陰極側を向くように配置した。)を用い、下記の条件で電解を行った。下記の測定系においては、電解電圧が、約2.945V/6kA以下であることが好ましいものと評価した。
[電解電圧の測定]
 電解に用いる電解槽としては、陽極と陰極との間に陽イオン交換膜を配置した構造であり、自然循環型のゼロギャップ電解セルを4個直列に並べたものを用いた。陰極としては、触媒として酸化セリウム、酸化ルテニウムが塗布された直径0.15mmのニッケルの細線を50メッシュの目開きで編んだウーブンメッシュを用いた。陰極とイオン交換膜を密着させるため、ニッケル製のエキスパンドメタルからなる集電体と陰極との間に、ニッケル細線で編んだマットを配置した。陽極としては、触媒としてルテニウム酸化物、イリジウム酸化物及びチタン酸化物が塗布されたチタン製のエキスパンドメタルを用いた。上記電解槽を用いて、陽極側に205g/Lの濃度になるように調整しつつ塩水を供給し、陰極側の苛性ソーダ濃度を32質量%に保ちつつ水を供給した。電解槽の温度を85℃に設定して、6kA/mの電流密度で、電解槽の陰極側の液圧が陽極側の液圧よりも5.3kPa高い条件で電解を行った。電解槽の陽陰極間の対間電圧を、KEYENCE社製電圧計TR-V1000で毎日測定し、7日間の平均値を電解電圧として求めた。
 電流効率は、生成された苛性ソーダの質量、濃度を測定し、一定時間に生成された苛性ソーダのモル数を、その間に流れた電流の電子のモル数で除することで求めた。苛性ソーダのモル数は、電解により生成した苛性ソーダをポリタンクに回収して、その質量を測定することにより、求めた。
[重合例1~10]
 層(I-1)、層(I-2)を形成する含フッ素重合体を作製する為に、下記一般式(1’)、及びスルホン酸基含有モノマーとして、下記一般式(3’)、(4’)で表される単量体を用いて、重合を行った。
  CF=CF (1’)
  CF=CFO(CFSOF (3’)
  CF=CFOCFCF(CF)O(CFSOF (4’)
 含フッ素重合体A1~A3、含フッ素重合体B1~B6、含フッ素重合体C1は、以下に示す溶液重合により作製した。但し、含フッ素重合体A1~A3の場合は、一般式(1’)と一般式(3’)を、含フッ素重合体B1~B6の場合は、一般式(1’)と一般式(4’)を、含フッ素重合体C1は一般式(1’)と一般式(3’)と一般式(4’)を、それぞれ使用した。
 なお、含フッ素重合体A1~A3、含フッ素重合体B1~B6、含フッ素重合体C1は、より詳細には、以下に示す溶液重合により作製した。
 まず、ステンレス製20Lオートクレーブにスルホン酸基含有モノマーとCFCHFCHFCFCF(HFC43-10mee)溶液を仕込み、容器内を充分に窒素置換した。その後、さらにTFE(トリフロロエチレン、CF=CF)で置換し、容器内の温度が35℃で安定になるまで加温してTFEで加圧した。含フッ素重合体C1のみ一般式(2’)と(3’)を1:2の比率になるように予混合したものを用いた。
 次いで、重合開始剤として(CFCFCFCOO)の5%HFC43-10mee溶液を入れて、反応を開始した。35℃で攪拌しながらTFEを断続的にフィードしつつ、途中で、(CFCFCFCOO)の5%HFC43-10mee溶液を入れ、TFE圧力を降下させた。TFEを所定量供給したところで、メタノールを入れて重合を停止した。未反応TFEを系外に放出した後、得られた重合液を減圧乾燥して未反応モノマーとHFC43-10meeを留去して含フッ素重合体A1~A3、含フッ素重合体B1~B6、を得た。得られた含フッ素重合体は2軸脱揮押出し機にてペレット化した。
 この時の条件を調整することで、表1に示すようにEWの異なる含フッ素重合体A1~A3、含フッ素重合体B1~B6を作成した。
Figure JPOXMLDOC01-appb-T000016
[BA1~BA6、BB1~BB3ブレンド]
 以下の表2に示す割合で、2つの含フッ素重合体Aと含フッ素重合体Bとを同方向回転二軸押出機HK-25D((株)パーカーコーポレーション製、スクリュー径:φ25mm、L/D=41)で240℃、回転数20rpmで混練して、ブレンドポリマーBA1~6、及びブレンドポリマーBB1~3を得た。
 得られたブレンドポリマーのEW、含水率、TFE比率、含水率/TFE比率を表2に示す。
Figure JPOXMLDOC01-appb-T000017
[重合例11~13]
 層(II)を形成する含フッ素重合体を作製する為に、上記一般式(1’)、及びカルボ
ン酸基含有モノマーとして、下記一般式(5’)で表される単量体を用いて、重合を行った。
  CF=CFOCFCF(CF)O(CFCOOCH (5’)
 含フッ素重合体D1~D3は、以下に示す溶液重合により作製した。含フッ素重合体D1~D3は、一般式(1’)と一般式(5’)を、それぞれ使用した。
 なお、含フッ素重合体D1~D3は、より詳細には、以下に示す溶液重合により作製した。
 まず、ステンレス製20LオートクレーブにCF=CFOCFCF(CF)O(CFCOOCHと、HFC-43-10mee溶液を仕込み、容器内を充分に窒素置換した後、さらにCF=CF(TFE)で置換し、容器内の温度が35℃で安定になるまで加温してTFEで加圧した。
 次いで、重合開始剤として(CFCFCFCOO)の5%HFC43-10mee溶液を入れて、反応を開始した。この際、連鎖移動剤としてメタノールを加えた。35℃で攪拌しながらTFEを断続的にフィードしつつ、途中でメタノールを入れ、TFE圧力を降下させて、TFEを所定量供給したところで重合を停止した。未反応TFEを系外に放出した後、得られた重合液にメタノールを加えて含フッ素重合体を凝集、及び分離した。さらに、乾燥した後、含フッ素重合体D1~D3を得た。得られた含フッ素重合体は2軸押出し機にてペレット化した。
 上記の条件を調整することで、表3に示すようにEWの異なる含フッ素重合体D1~D3、を作成した。
Figure JPOXMLDOC01-appb-T000018
[製膜]
 上記で得られた、ブレンドポリマーBA1~BA6、BB1~BB3、含フッ素重合体B3、B4、C1及び含フッ素重合体D1~D3を、表4に示す組み合わせにて用いて製膜を行い、実施例1~12のサンプル、及び比較例1~5のサンプルを作製した
[実施例1~11]
(実施例1)
 層(II)として、含フッ素重合体D1、層(I-1)、層(I-2)として、ブレンドポリマーBA1を準備し、2台の押し出し機、2層用の共押し出し用Tダイ、及び引き取り機を備えた装置により、共押しを行い、厚み67μmの2層フィルム(a)を得た。該フィルムの断面を光学顕微鏡で観察した結果、層(I-1)の厚みが55μm、層(II)の厚みが12μmであった。また、単層Tダイにて厚み20μmの層(I-2)の単層フィルム(b)を得た。
 芯材として、ポリテトラフルオロエチレン(PTFE)製100デニールのテープヤーンに900回/mの撚りをかけ糸状としたものと、補助繊維(犠牲糸)の経糸として30デニール、6フィラメントのポリエチレンテレフタレート(PET)を200回/mの撚りをかけたもの、緯糸として35デニール、8フィラメントのPET製の糸に10回/mの撚りをかけたものを準備し、これらの糸をPTFE糸が24本/インチ、犠牲糸がPTFEに対して4倍の64本/インチとなるよう交互配列で平織りして厚み100μmの織布を得た。得られた織布を加熱された金属ロールで圧着し織布の厚みを70μmに調製した。このとき、PTFE糸のみの開口率は75%であった。
 準備した芯材のMD、TD方向における30N時の伸度を測定(通電前)した結果、共に7.5GL%となった。芯材の強度伸度は、芯材をMD、TD方向に各サンプル幅1cm、長さ14cmの試験片に切り出し、テンシロン(オリエンテック製RTC-1250A)を用いて測定した。すなわち、長さ14cmのチャック間距離が5cmとなるよう両端をチャックし、23℃、100mm/分の速度で伸張し、引張試験を実施することによって、加重30N時の伸度を測定した。
 内部に加熱源及び真空源を有し、表面に多数の微細孔を有するドラム上に、エンボス加工を施した通気性のある耐熱離型紙、単層フィルム(b)、芯材、2層フィルム(a)を順番に積層し、230℃のドラム表面温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た。
 この複合膜を、ジメチルスルホキシド(DMSO)30質量%、水酸化カリウム(KOH)15質量%を含む80℃の水溶液に1時間浸漬することでケン化した。その後、水酸化ナトリウム(NaOH)0.5N含む50℃の水溶液に1時間浸漬して、イオン交換基の対イオンをNaに置換し、続いて水洗した。さらに60℃で乾燥した。その後、走行張力20kg/cm、研磨ロールと膜の相対速度が100m/分、研磨ロールのプレス量を2mmとして膜表面を研磨し、開孔部を形成した。
 水とエタノールの50/50質量部の混合溶液に、総イオン交換容量が1.0m当量/gのCF=CFと、CF=CFOCFCF(CF)O(CFSOFの共重合体を加水分解してなるスルホン酸基を有するフッ素系重合体を20質量%溶解させた。その溶液に平均一次粒子径1μmの酸化ジルコニウム40質量%加え、ボールミルにて均一に分散させた懸濁液を得た。この懸濁液を前記加水分解および塩交換処理後のイオン交換膜の両面にスプレー法により塗布し乾燥させる事により、コーティング層を形成させた。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは55°とカールはなく、電解電圧は2.925Vと良好であった。
(実施例2)
 層(I-1)、層(I-2)として、ブレンドポリマーBA2を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは50°とカールはなく、電解電圧は2.941Vと良好であった。
(実施例3)
 層(I-1)、層(I-2)として、ブレンドポリマーBA3を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは50°とカールはなく、電解電圧は2.945Vと良好であった。
(実施例4)
 層(I-1)、層(I-2)として、ブレンドポリマーBA4を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは86°とカールはなく、電解電圧は2.935Vと良好であった。
(実施例5)
 層(I-1)、層(I-2)として、ブレンドポリマーBA5を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは87°とカールはなく、電解電圧は2.902Vと良好であった。
(実施例6)
 層(I-1)、層(I-2)として、ブレンドポリマーBA6を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは57°とカールはなく、電解電圧は2.931Vと良好であった。
(実施例7)
 層(II)として、含フッ素重合体D2を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは85°とカールはなく、電解電圧は2.941Vと良好であった。
(実施例8)
 層(II)として、含フッ素重合体D3を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは45°とカールはなく、電解電圧は2.915Vと良好であった。
(実施例9)
 層(I-1)として、ブレンドポリマーBA1、層(I-2)として、ブレンドポリマーBA2を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは54°とカールはなく、電解電圧は2.930Vと良好であった。
(実施例10)
 層(I-1)として、ブレンドポリマーBA1、層(I-2)として、含フッ素重合体B4を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは51°とカールはなく、電解電圧は2.940Vと良好であった。
(実施例11)
 層(I-1)として、含フッ素重合体B4、層(I-2)として、ブレンドポリマーBA1を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは53°とカールはなく、電解電圧は2.945Vと良好であった。
(実施例12)
 ドラム上に、エンボス加工を施した通気性のある耐熱離型紙、単層フィルム(b)、2層フィルム(a)を順番に積層し、芯材を使用せずに、230℃のドラム表面温度及び-650mmHgの減圧下で各材料間の空気を排除しながら一体化し、複合膜を得た以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは83°とカールはなく、電解電圧は2.873Vと良好であった。
(実施例13)
 層(I-1)、層(I-2)として、含フッ素重合体C1を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは49°とカールはなく、電解電圧は2.941Vと良好であった。
[比較例1~5]
(比較例1)
 層(I-1)、層(I-2)として、ブレンドポリマーBB1を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは230°とカールが発生した。電解電圧は2.901Vと良好であった。
(比較例2)
 層(I-1)、層(I-2)として、ブレンドポリマーBB2を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは110°とカールが発生した。電解電圧は2.920Vと良好であった。
(比較例3)
 層(I-1)、層(I-2)として、ブレンドポリマーBB3を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは45°とカールはなかったが、電解電圧は2.955Vと不良であった。
 (比較例4)
 層(I-1)、層(I-2)として、含フッ素重合体B3を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは160°とカールが発生した。電解電圧は2.925Vと良好であった。
(比較例5)
 層(I-1)、層(I-2)として、含フッ素重合体B4を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは47°とカールはなかったが、電解電圧は2.950Vと不良であった。
(比較例6)
 層(I-1)、層(I-2)として、含フッ素重合体B6を準備した以外は、実施例1と同様にした。
 上記のようにして得られたイオン交換膜について、上述のとおり含水率、含水率/TFE比率、層(I)EW/層(II)EW、カール角度φ、電解電圧の測定を行い、各物性を評価した結果を表4に示す。カール角度φは115°とカールが発生した。電解電圧は2.935Vと良好であった。
Figure JPOXMLDOC01-appb-T000019
 本出願は、2018年11月12日出願の日本特許出願(特願2018-212504号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明における陽イオン交換膜は、例えば、燃料電池、水電解、水蒸気電解、或いは食塩電解に対し利用できる。特に、食塩電解に好ましく適用できる。
 1  イオン交換膜
 2a  連通孔
 2b  連通孔
 3  強化芯材
 4  層A
 5  層B
 6  コーティング層
 7  コーティング層
 8  層Aの陽極側表面に面している箇所
 α  電解層の陽極側
 β  電解層の陰極側
 11  陽極
 12  陰極
 13  電解槽

Claims (26)

  1.  下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含み、かつ、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が53質量%以上70質量%以下である、層(I)と、
     カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、
     を備え、
     前記層(I)の含水率が26%以上35%以下である、陽イオン交換膜。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記繰り返し単位(S)が下記式(2)で表される繰り返し単位(B)を含む、請求項1に記載の陽イオン交換膜。
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、nは0~3の整数を表し、mは1~12の整数を表し、Mはアルカリ金属を表す。)
  3.  前記繰り返し単位(B)が下記式(3)で表される繰り返し単位(C)及び下記式(4)で表される繰り返し単位(D)を含む、請求項2に記載の陽イオン交換膜。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3)、(4)中、m及びMは式(2)と同義である。)
  4.  前記層(I)における前記繰り返し単位(A)と前記繰り返し単位(C)と前記繰り返し単位(D)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率が、53質量%以上70質量%以下であり、前記繰り返し単位(C)の質量比率が、3質量%以上44質量%以下であり、前記繰り返し単位(D)の質量比率が、3質量%以上44質量%以下である、請求項3に記載の陽イオン交換膜。
  5.  前記層(I)と前記層(II)の含水率の差が25%以下である、請求項1~4のいずれか1項に記載の陽イオン交換膜。
  6.  前記層(I)の内部、又は前記層(I)と前記層(II)との間に配される芯材をさらに備える、請求項1~5のいずれか1項に記載の陽イオン交換膜。
  7.  下記式(1)で表される繰り返し単位(A)とスルホン酸型イオン交換基を有する繰り返し単位(S)とを含む層(I)と、
     カルボン酸型イオン交換基を含む含フッ素重合体を有し、かつ、前記層(I)上に配される層(II)と、
     を備え、
     前記繰り返し単位(S)が、下記式(3)で表される繰り返し単位(C)と下記式(4)で表される繰り返し単位(D)とを含み、
     前記層(I)の含水率が25%以上35%以下である、陽イオン交換膜。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(3)、(4)中、mは各々独立して1~12の整数を表し、Mはアルカリ金属を表す。)
  8.  前記層(I)の内部、又は前記層(I)と前記層(II)との間に配される芯材を更に備える、請求項7に記載の陽イオン交換膜。
  9.  前記芯材のMD方向の伸びが荷重30N時、10%GL以下である、請求項6又は8に記載の陽イオン交換膜。
  10.  前記芯材のTD方向の伸びが荷重30N時、10GL%以下である、請求項6,8,9のいずれか1項に記載の陽イオン交換膜。
  11.  前記芯材がフッ素重合体を含む繊維の織布である、請求項6,8~10のいずれか1項に記載の陽イオン交換膜。
  12.  前記層(I)の総イオン交換容量が、1.0mg当量/g以上1.5mg当量/g以下である、請求項1~11のいずれか1項に記載の陽イオン交換膜。
  13.  前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体と、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体と、の混合物を有する、請求項3~12のいずれか1項に記載の陽イオン交換膜。
  14.  前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)と前記繰り返し単位(D)とを含む共重合体を有する、請求項3~13のいずれか1項に記載の陽イオン交換膜。
  15.  前記層(I)の等価質量を前記層(II)の等価質量で除した値が0.6以上0.8以下である、請求項1~14のいずれか1項に記載の陽イオン交換膜。
  16.  前記層(I)において、前記繰り返し単位(A)と前記繰り返し単位(S)の質量比率の合計100質量%に対する前記繰り返し単位(A)の質量比率により前記含水率を除した値が、0.48以上0.64以下である、請求項1~15のいずれか1項に記載の陽イオン交換膜。
  17.  前記層(I)と前記層(II)とからなる積層構造を有し、
     前記芯材が前記層(I)の内部に配される、請求項6~16のいずれか1項に記載の陽イオン交換膜。
  18.  前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体を有する層(I-1)と、当該層(I-1)とは異なる層と、からなる積層構造を有する、請求項3~16のいずれか1項に記載の陽イオン交換膜。
  19.  前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-2)とは異なる層と、からなる積層構造を有する、請求項3~16のいずれか1項に記載の陽イオン交換膜。
  20.  前記層(I)が、前記陽イオン交換膜の最外層であって前記芯材を含む層(I-3)と、当該層(I-3)とは異なる層と、を含む積層構造を有する、請求項6~16のいずれか1項に記載の陽イオン交換膜。
  21.  前記層(I)が、前記繰り返し単位(A)と前記繰り返し単位(D)とを含む共重合体を有する層(I-1)と、前記繰り返し単位(A)と前記繰り返し単位(C)とを含む共重合体を有する層(I-2)と、当該層(I-1)及び層(I-2)とは異なる層と、を含む積層構造を有する、請求項3~16のいずれか1項に記載の陽イオン交換膜。
  22.  前記カルボン酸型イオン交換基を含む含フッ素重合体が、前記繰り返し単位(A)と下記式(5)で表される繰り返し単位(E)とを含む、請求項1~21のいずれか1項に記載の陽イオン交換膜。
    Figure JPOXMLDOC01-appb-C000005
    (上記式(5)中、nは0又は1の整数を表し、m’は1~12の整数を表し、M’はアルカリ金属を表す。)
  23.  食塩電解用として用いられる、請求項1~22のいずれか1項に記載の陽イオン交換膜。
  24.  陽極と、
     陰極と、
     前記陽極と前記陰極との間に配置される、請求項1~23のいずれか1項に記載の陽イオン交換膜を備える、電解槽。
  25.  前記層(II)が前記陰極側に向けて配置される、請求項24に記載の電解槽。
  26.  請求項7~23のいずれか1項に記載の陽イオン交換膜を製造するための方法であって、
     含フッ素重合体を製造する工程と、
     芯材を得る工程と、
     前記含フッ素重合体をフィルム化する工程と、
     前記芯材と、前記フィルムとを埋め込んで複合膜を形成する工程と、
     酸又はアルカリで、前記複合膜を加水分解する工程と、
     を含む、陽イオン交換膜の製造方法。
PCT/JP2019/043477 2018-11-12 2019-11-06 陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法 WO2020100684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980058776.XA CN112672881B (zh) 2018-11-12 2019-11-06 阳离子交换膜、电解槽和阳离子交换膜的制造方法
EP19885473.9A EP3882025B1 (en) 2018-11-12 2019-11-06 Cation-exchange membrane, electrolyzer, and method for producing cation-exchange membrane
JP2020516489A JP6777833B1 (ja) 2018-11-12 2019-11-06 陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法
US17/275,440 US20220040684A1 (en) 2018-11-12 2019-11-06 Cation-exchange membrane, electrolyzer, and method for producing cation-exchange membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018212504 2018-11-12
JP2018-212504 2018-11-12

Publications (1)

Publication Number Publication Date
WO2020100684A1 true WO2020100684A1 (ja) 2020-05-22

Family

ID=70731361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043477 WO2020100684A1 (ja) 2018-11-12 2019-11-06 陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法

Country Status (6)

Country Link
US (1) US20220040684A1 (ja)
EP (1) EP3882025B1 (ja)
JP (1) JP6777833B1 (ja)
CN (1) CN112672881B (ja)
TW (1) TW202023685A (ja)
WO (1) WO2020100684A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034444A1 (ja) * 2022-08-10 2024-02-15 Eneos株式会社 有機ハイドライド製造装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598486A (ja) * 1991-10-02 1993-04-20 Asahi Chem Ind Co Ltd フツ素系イオン交換膜
JP2000243135A (ja) 1998-12-24 2000-09-08 Asahi Chem Ind Co Ltd 固体電解質膜
JP2001323084A (ja) 2000-05-18 2001-11-20 Asahi Kasei Corp イオン交換膜
WO2002103083A1 (en) * 2001-06-15 2002-12-27 Asahi Glass Company, Limited Fluorine-containing cation-exchange membrane and electroytic soda process
JP2004279112A (ja) 2003-03-13 2004-10-07 Asahi Kasei Corp イオン交換膜樹脂の19f固体核磁気共鳴測定方法
CN102336043A (zh) * 2011-05-27 2012-02-01 山东东岳高分子材料有限公司 具有高电流效率的离子交换膜及其制备方法和应用
JP2013163860A (ja) * 2012-02-13 2013-08-22 Asahi Kasei Chemicals Corp 陽イオン交換膜及びこれを用いた電解槽
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
WO2016186085A1 (ja) * 2015-05-18 2016-11-24 旭化成株式会社 イオン交換膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768758B (zh) * 2009-12-07 2012-05-09 山东华夏神舟新材料有限公司 一种电解用阳离子透过复合膜
WO2012157715A1 (ja) * 2011-05-18 2012-11-22 旭硝子株式会社 含フッ素共重合体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598486A (ja) * 1991-10-02 1993-04-20 Asahi Chem Ind Co Ltd フツ素系イオン交換膜
JP2000243135A (ja) 1998-12-24 2000-09-08 Asahi Chem Ind Co Ltd 固体電解質膜
JP2001323084A (ja) 2000-05-18 2001-11-20 Asahi Kasei Corp イオン交換膜
WO2002103083A1 (en) * 2001-06-15 2002-12-27 Asahi Glass Company, Limited Fluorine-containing cation-exchange membrane and electroytic soda process
JP2004279112A (ja) 2003-03-13 2004-10-07 Asahi Kasei Corp イオン交換膜樹脂の19f固体核磁気共鳴測定方法
CN102336043A (zh) * 2011-05-27 2012-02-01 山东东岳高分子材料有限公司 具有高电流效率的离子交换膜及其制备方法和应用
JP2013163860A (ja) * 2012-02-13 2013-08-22 Asahi Kasei Chemicals Corp 陽イオン交換膜及びこれを用いた電解槽
WO2016072506A1 (ja) * 2014-11-07 2016-05-12 旭硝子株式会社 塩化アルカリ電解用イオン交換膜及び塩化アルカリ電解装置
WO2016186085A1 (ja) * 2015-05-18 2016-11-24 旭化成株式会社 イオン交換膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3882025A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034444A1 (ja) * 2022-08-10 2024-02-15 Eneos株式会社 有機ハイドライド製造装置

Also Published As

Publication number Publication date
EP3882025A4 (en) 2021-12-29
CN112672881A (zh) 2021-04-16
EP3882025A1 (en) 2021-09-22
JP6777833B1 (ja) 2020-10-28
TW202023685A (zh) 2020-07-01
CN112672881B (zh) 2023-03-10
US20220040684A1 (en) 2022-02-10
EP3882025B1 (en) 2022-08-24
JPWO2020100684A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6612410B2 (ja) イオン交換膜
JP2021107581A (ja) 塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置の製造方法
KR101967087B1 (ko) 이온 교환막
JP6577644B2 (ja) イオン交換膜
JP6766814B2 (ja) 塩化アルカリ電解用イオン交換膜の製造方法および塩化アルカリ電解装置の製造方法
JP6777833B1 (ja) 陽イオン交換膜、電解槽及び陽イオン交換膜の製造方法
US20230349058A1 (en) Ion exchange membrane and electrolyzer
JP6928716B2 (ja) 陽イオン交換膜及び多層構造膜、並びに、電解槽
JP7421898B2 (ja) イオン交換膜及び電解槽
CN111139498B (zh) 离子交换膜和电解槽
JP2022145529A (ja) 陽イオン交換膜及び電解槽
CN115110116A (zh) 阳离子交换膜和电解槽

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020516489

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885473

Country of ref document: EP

Effective date: 20210614