WO2020100610A1 - ブレーキ制御装置およびブレーキシステム - Google Patents

ブレーキ制御装置およびブレーキシステム Download PDF

Info

Publication number
WO2020100610A1
WO2020100610A1 PCT/JP2019/042774 JP2019042774W WO2020100610A1 WO 2020100610 A1 WO2020100610 A1 WO 2020100610A1 JP 2019042774 W JP2019042774 W JP 2019042774W WO 2020100610 A1 WO2020100610 A1 WO 2020100610A1
Authority
WO
WIPO (PCT)
Prior art keywords
stroke
brake
hydraulic pressure
simulator
control device
Prior art date
Application number
PCT/JP2019/042774
Other languages
English (en)
French (fr)
Inventor
力 西浦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/293,780 priority Critical patent/US11958464B2/en
Priority to CN201980075064.9A priority patent/CN113039103A/zh
Priority to EP19885381.4A priority patent/EP3882092B1/en
Publication of WO2020100610A1 publication Critical patent/WO2020100610A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request

Definitions

  • the present invention relates to a brake control device and a brake system.
  • a shutoff valve provided in a fluid passage that connects a master cylinder and a wheel cylinder, a pump that supplies brake fluid to a fluid passage that connects the shutoff valve and a wheel cylinder, and a master cylinder are connected.
  • a brake control device including a stroke simulator is disclosed. The brake control device controls the hydraulic pressure of the wheel cylinder based on a detection signal from a stroke sensor that detects a pedal stroke as a brake pedal operation amount.
  • a brake control device controls a hydraulic pressure source so that a brake hydraulic pressure generated in a braking force applying section increases as a stroke of a brake pedal increases, and an operation reaction force of a brake pedal is generated.
  • the hydraulic pressure source is controlled so that the brake hydraulic pressure generated in the braking force applying section becomes large even after the stroke of the stroke simulator is restricted.
  • FIG. 1 is a configuration diagram of a brake system 1 of Embodiment 1.
  • FIG. 3 is a control block diagram of a control unit 9 of the first embodiment.
  • FIG. FIG. 3 is a pedal stroke characteristic diagram with respect to a pedal effort in the brake system 1 of the first embodiment.
  • 3 is a stroke target wheel cylinder hydraulic pressure characteristic diagram with respect to the pedal stroke of the first embodiment.
  • FIG. FIG. 3 is a master cylinder hydraulic pressure characteristic diagram with respect to a pedal effort in the brake system 1 of the first embodiment.
  • FIG. 3 is a master cylinder hydraulic pressure target wheel cylinder hydraulic pressure characteristic diagram for the master cylinder hydraulic pressure of the first embodiment.
  • 5 is a flowchart showing a flow of a target wheel cylinder hydraulic pressure calculation process executed by the control unit 9 of the first embodiment.
  • FIG. 3 is a wheel cylinder hydraulic pressure characteristic diagram with respect to the pedal effort of the first embodiment.
  • FIG. 5 is a wheel cylinder hydraulic pressure characteristic diagram with respect to a pedal stroke of the first embodiment.
  • 6 is a control block diagram of a control unit 9 of Embodiment 2.
  • FIG. 8 is a master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure characteristic diagram for the master cylinder hydraulic pressure of the second embodiment.
  • FIG. 8 is a wheel cylinder hydraulic pressure characteristic diagram with respect to a pedal effort of the second embodiment. It is a master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure characteristic view with respect to the master cylinder hydraulic pressure of Embodiment 3.
  • FIG. 11 is a wheel cylinder hydraulic pressure characteristic diagram with respect to a pedal effort of the third embodiment. It is a wheel cylinder hydraulic pressure characteristic figure with respect to the pedal stroke of Embodiment 3.
  • FIG. 1 is a configuration diagram of a brake system 1 according to the first embodiment.
  • the brake system 1 includes not only a general vehicle having only an internal combustion engine (engine) as a prime mover for driving the wheels (wheel portions) FL to RR, but also an electric motor (generator) in addition to the internal combustion engine. It is installed in hybrid vehicles and electric vehicles equipped with only electric motors.
  • the brake system 1 is installed on each wheel (left front wheel FL, right front wheel FR, left rear wheel RL, right rear wheel RR) as a wheel unit, and operates according to the hydraulic pressure of the wheel cylinder (braking force applying unit) 2. It has a disc brake.
  • the brake system 1 applies a braking force to the wheels FL to RR by adjusting the hydraulic pressure of the wheel cylinder 2.
  • the brake system 1 has two systems (primary P system and secondary S system) of brake piping.
  • the brake piping type is, for example, the X piping type.
  • P system primary system
  • S system secondary system
  • suffixes P and S are added to the end of the reference numerals.
  • suffixes a to d are added to the end of the reference numerals.
  • the brake pedal 3 is a brake operation member that receives a driver's brake operation input.
  • the push rod 4 makes a stroke according to the operation of the brake pedal 3.
  • the master cylinder 5 operates according to the stroke amount of the push rod 4 to generate brake hydraulic pressure (master cylinder hydraulic pressure).
  • the master cylinder 5 is replenished with brake fluid from a reservoir tank 6 that stores the brake fluid.
  • the master cylinder 5 is a tandem type, and has a primary piston 51P and a secondary piston 51S that stroke according to the stroke of the push rod 4. Both pistons 51P and 51S are arranged in series along the axial direction of the push rod 4.
  • the primary piston 51P is connected to the push rod 4.
  • the secondary piston 51S is a free piston type.
  • a stroke sensor 60 is attached to the master cylinder 5. The stroke sensor 60 detects the stroke amount of the primary piston 51P as the pedal stroke amount of the brake pedal 3.
  • Stroke simulator 7 operates according to the driver's brake operation.
  • the stroke simulator 7 generates a pedal stroke when the brake fluid flowing out of the master cylinder 5 flows in according to the driver's brake operation.
  • the piston 71 of the stroke simulator 7 is axially operated in the cylinder 72 against the biasing force of the spring 73 by the brake fluid supplied from the master cylinder 5. Accordingly, the stroke simulator 7 generates an operation reaction force according to the driver's brake operation.
  • the hydraulic unit 8 can apply braking force to each wheel FL-RR independently of the driver's braking operation.
  • the hydraulic unit 8 receives the supply of brake fluid from the master cylinder 5 and the reservoir tank 6.
  • the hydraulic unit 8 is installed between the master cylinder 5 and the wheel cylinder 2.
  • the hydraulic unit 8 has a motor 211 of a pump (hydraulic pressure source) 21 and a plurality of solenoid valves (cutoff valve 12 and the like) as an actuator for generating a control hydraulic pressure.
  • the pump 21 sucks the brake fluid from the reservoir tank 6 and discharges it toward the wheel cylinder 2.
  • the pump 21 is, for example, a plunger pump.
  • the motor 211 is, for example, a brush motor.
  • the cutoff valve 12 and the like open and close according to the control signal, and control the flow of the brake fluid by switching the communication state of the fluid passage 11 and the like.
  • the hydraulic unit 8 pressurizes the wheel cylinder 2 by the brake hydraulic pressure generated by the pump in a state where the communication between the master cylinder 5 and the wheel cylinder 2 is cut off.
  • the hydraulic unit 8 also has hydraulic pressure sensors 35 to 37 for detecting the hydraulic pressure at various places.
  • the control unit 9 controls the operation of the hydraulic unit 8.
  • information (wheel speed etc.) sent from the vehicle side regarding the traveling state is input to the control unit 9.
  • the control unit 9 performs information processing according to a built-in program based on the input various information, and calculates the target wheel cylinder hydraulic pressure of the wheel cylinder 2.
  • the control unit 9 outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure of the wheel cylinder 2 becomes the target wheel cylinder hydraulic pressure.
  • various brake controls boost control, antilock control (ABS), brake control for vehicle motion control, automatic brake control, regenerative cooperative brake control, etc.
  • the boost control assists the brake operation by generating a brake fluid pressure that is insufficient with the driver's brake pedal force.
  • the anti-lock control suppresses braking slip (lock tendency) of each wheel FL to RR.
  • the vehicle motion control is vehicle behavior stabilization control that prevents skidding and the like.
  • the automatic brake control is the following vehicle follow-up control, automatic emergency braking, or the like.
  • the regenerative cooperative brake control controls the wheel cylinder hydraulic pressure so as to achieve the target deceleration in cooperation with the regenerative brake.
  • Both pistons 51P and 51S of the master cylinder 5 are housed in the cylinder 54.
  • a primary hydraulic chamber 52P is defined between the pistons 51P and 51S of the master cylinder 5.
  • a compression coil spring 53P is installed in the primary hydraulic chamber 52P.
  • a secondary hydraulic chamber 52S is defined between the secondary piston 51S and the bottom portion 541 of the cylinder 54.
  • a compression coil spring 53S is installed in the secondary hydraulic chamber 52S.
  • a liquid passage (connection liquid passage) 11 opens in each of the liquid pressure chambers 52P and 52S.
  • Each of the hydraulic chambers 52P and 52S is connected to the hydraulic unit 8 via the liquid passage 11 and can communicate with the wheel cylinder 2.
  • the piston 51 strokes when the driver depresses the brake pedal 3, and master cylinder hydraulic pressure is generated as the volume of the hydraulic chamber 52 decreases. Almost the same master cylinder hydraulic pressure is generated in both hydraulic chambers 52P and 52S.
  • the brake fluid is supplied from the fluid pressure chamber 52 to the wheel cylinder 2 via the fluid passage 11.
  • the master cylinder 5 pressurizes the wheel cylinders 2a, 2d of the P system by the master cylinder hydraulic pressure generated in the primary hydraulic chamber 52P through the liquid passage of the P system (liquid passage 11P). Further, the master cylinder 5 pressurizes the wheel cylinders 2b, 2c of the S system via the liquid path of the S system (liquid path 11S) by the master cylinder hydraulic pressure generated in the secondary hydraulic chamber 52S.
  • the stroke simulator 7 has a cylinder 72, a piston 71, a spring 73 and a damper 74.
  • the cylinder 72 has a cylindrical inner peripheral surface.
  • the cylinder 72 has a piston housing 721 and a spring housing 722.
  • the piston housing 721 has a smaller diameter than the spring housing 722.
  • a liquid passage 27, which will be described later, is always open on the inner peripheral surface of the spring accommodating portion 722.
  • the piston 71 is movable in the piston housing portion 721 in the axial direction.
  • the piston 71 separates the inside of the cylinder 72 into a positive pressure chamber (first chamber) 711 and a back pressure chamber (second chamber) 712.
  • the liquid passage 26 is always open to the positive pressure chamber 711.
  • the liquid path 27 is always open to the back pressure chamber 712.
  • a piston seal 75 is installed on the outer circumference of the piston 71.
  • the piston seal 75 is in sliding contact with the inner peripheral surface of the piston housing portion 721, and seals between the inner peripheral surface of the piston housing portion 721 and the outer peripheral surface of the piston 71.
  • the piston seal 75 is a separation seal member that liquid-tightly separates the positive pressure chamber 711 and the back pressure chamber 712, and complements the function of the piston 71.
  • the spring 73 is a compression coil spring installed in the back pressure chamber 712, and biases the piston 71 from the back pressure chamber 712 side toward the positive pressure chamber 711 side.
  • the spring 73 generates a reaction force according to the amount of compression.
  • the spring 73 has a first spring 731 and a second spring 732.
  • the first spring 731 is smaller in diameter and shorter than the second spring 732, and has a smaller wire diameter.
  • the first spring 731 and the second spring 732 are arranged in series between the piston 71 and the spring accommodating portion 722 via the retainer member 78.
  • the damper 74 has a first damper 741 and a second damper 742.
  • the first damper 741 is an elastic member such as rubber and has a cylindrical shape.
  • the second damper 742 is an elastic member such as rubber and has a columnar shape with a constricted central portion in the axial direction.
  • the first damper 741 is installed at the tip of the piston 71 on the back pressure chamber 712 side.
  • the second damper 742 is installed on the plug member 76 that closes the spring accommodating chamber 722 so as to face the retainer member 78.
  • a stopper member 77 is fixed to the retainer member 78.
  • FIG. 1 when the piston 71 is at the initial position where it is displaced to the side of the positive pressure chamber 711 to the maximum, there is a first gap between the first damper 741 and the stopper member 77, and the second damper 742.
  • the stroke simulator 7 operates when the brake fluid flows into the positive pressure chamber 711 in response to a driver's braking operation, and when a fluid pressure (master cylinder fluid pressure) above a predetermined level acts on the pressure receiving surface of the piston 71 in the positive pressure chamber 711, the piston 71 moves toward the back pressure chamber 712 side while compressing the first spring 731 and the like. At this time, the volume of the positive pressure chamber 711 increases and at the same time, the volume of the back pressure chamber 712 decreases. As a result, the brake fluid flowing out of the secondary hydraulic chamber 52S flows into the positive pressure chamber 711, and at the same time, the brake fluid flows out of the back pressure chamber 712 and is discharged from the back pressure chamber 712.
  • a fluid pressure master cylinder fluid pressure
  • the first damper 741 is sandwiched between the piston 71 and the stopper member 77 and elastically deformed.
  • the second damper 742 is sandwiched between the retainer member 78 and the plug member 76 and elastically deformed.
  • the hydraulic unit 8 has a housing 8a.
  • the housing 8a has a plurality of liquid passages (such as the liquid passage 11).
  • the pump 21, the motor 211, and the plurality of solenoid valves (the shutoff valve 12 and the like) are fixed to the housing 8a.
  • the liquid passage 11 connects between the hydraulic chamber 52 of the master cylinder 5 and the wheel cylinder 2.
  • the liquid passage 11P branches into a liquid passage 11a and a liquid passage 11d.
  • the liquid passage 11S branches into a liquid passage 11b and a liquid passage 11d.
  • the shutoff valve 12 is a normally open (propagated in the non-energized state) electromagnetic proportional valve provided in the liquid passage 11.
  • the solenoid proportional valve can realize an arbitrary opening degree according to the current supplied to the solenoid.
  • the liquid passage 11 is separated by a shutoff valve 12 into a liquid passage 11A on the master cylinder 5 side and a liquid passage 11B on the wheel cylinder 2 side.
  • the solenoid-in valve 13 is a normally open solenoid proportional valve provided on the wheel cylinder 2 side (fluid paths 11a to 11d) of the liquid passage 11 with respect to the shutoff valve 12 and corresponding to each wheel FL to RR.
  • the liquid passage 11 is provided with a bypass liquid passage 14 that bypasses the solenoid-in valve 13.
  • the bypass fluid passage 14 is provided with a check valve 15 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 5 side.
  • the suction pipe 16 connects the reservoir tank 6 and the internal reservoir 17 formed in the housing 8a.
  • the liquid passage 18 connects the internal reservoir 17 and the suction side of the pump 21.
  • the liquid passage 19 connects the discharge side of the pump 21 and the shutoff valve 12 and the solenoid-in valve 13 in the liquid passage 11B.
  • the liquid passage 19 branches into a P-system liquid passage 19P and an S-system liquid passage 19S. Both liquid paths 19P and 19S are connected to the liquid paths 11P and 11S. Both liquid passages 19P and 19S function as a communication passage that connects the liquid passages 11P and 11S to each other.
  • the communication valve 20 is a normally closed (closed in a non-energized state) on / off valve provided in the liquid passage 19. The opening / closing of the on / off valve is binary-switched according to the current supplied to the solenoid.
  • the pump 21 generates a hydraulic pressure in the liquid passage 11 by the brake fluid supplied from the reservoir tank 6 to generate a wheel cylinder hydraulic pressure.
  • the pump 21 is connected to the wheel cylinders 2a to 2d via the liquid passage 19 and the liquid passages 11P and 11S, and pressurizes the wheel cylinder 2 by discharging the brake fluid to the liquid passage 19.
  • the liquid passage 22 connects the branch point of both the liquid passages 19P and 19S and the liquid passage 23.
  • a pressure regulating valve 24 is provided in the liquid passage 22.
  • the pressure regulating valve 24 is a normally open solenoid proportional valve.
  • the fluid passage 23 connects the wheel cylinder 2 side of the fluid passage 11B with respect to the solenoid-in valve 13 and the internal reservoir 17.
  • the solenoid out valve 25 is a normally closed on / off valve provided in the liquid passage 23.
  • the liquid passage 26 branches from the liquid passage 11A of the P system and is connected to the positive pressure chamber 711 of the stroke simulator 7.
  • the liquid passage 26 may directly connect the primary hydraulic chamber 52P and the positive pressure chamber 711 without the liquid passage 11P (11A).
  • the liquid passage 27 connects the back pressure chamber 712 of the stroke simulator 7 and the liquid passage 11P (11A). Specifically, the liquid passage 27 branches from between the shutoff valve 12P and the solenoid-in valve 13 in the liquid passage 11P (11B) to connect to the back pressure chamber 712.
  • the stroke simulator-in valve 28 is a normally closed on / off valve provided in the liquid passage 27.
  • the liquid passage 27 is separated by a stroke simulator-in valve 28 into a liquid passage 27A on the back pressure chamber 712 side and a liquid passage 27B on the liquid passage 11 side.
  • a bypass liquid passage 29 is provided in parallel with the liquid passage 27.
  • the bypass liquid passage 29 connects between the liquid passage 27A and the liquid passage 27B.
  • a check valve 30 is provided in the bypass liquid passage 29.
  • the check valve 30 allows the flow of the brake fluid from the fluid passage 27A toward the fluid passage 11 (27B) side and suppresses the flow of the brake fluid in the opposite direction.
  • the liquid passage 31 connects the back pressure chamber 712 of the stroke simulator 7 and the liquid passage 23.
  • the stroke simulator out valve 32 is a normally closed on / off valve provided in the liquid passage 31. Bypassing the stroke simulator out valve 32, a bypass liquid passage 33 is provided in parallel with the liquid passage 31.
  • the bypass fluid passage 33 is provided with a check valve 34 that allows the flow of the brake fluid from the fluid passage 23 side toward the back pressure chamber 712 side and suppresses the brake fluid flow in the opposite direction.
  • a master cylinder hydraulic pressure sensor 35 for detecting the hydraulic pressure at this location is provided between the shutoff valve 12P and the master cylinder 5 in the hydraulic passage 11P (fluid path 11A).
  • a wheel cylinder fluid pressure sensor (P system pressure sensor, S system pressure sensor) 36 for detecting the fluid pressure (wheel cylinder fluid pressure) at this location is provided between the shutoff valve 12 and the solenoid-in valve 13 in the fluid path 11. It is provided.
  • a discharge pressure sensor 37 that detects the liquid pressure at this location (pump discharge pressure) is provided.
  • the brake system (fluid path 11) connecting between the hydraulic chamber 52 of the master cylinder 5 and the wheel cylinder 2 constitutes the first system.
  • This first system can realize a pedal force brake (non-boosting control) by generating a wheel cylinder hydraulic pressure by a master cylinder hydraulic pressure generated by using a pedal force.
  • the brake system (the liquid passage 19, the liquid passage 22, the liquid passage 23, etc.) including the pump 21 and connecting the reservoir tank 6 and the wheel cylinder 2 with the shutoff valve 12 closed is the second system. Make up.
  • the second system constitutes a so-called brake-by-wire device that generates a wheel cylinder hydraulic pressure by a hydraulic pressure generated by using the pump 21, and can realize boost control and the like as brake-by-wire control.
  • the stroke simulator 7 generates an operation reaction force associated with the driver's brake operation.
  • FIG. 2 is a control block diagram of the control unit 9 of the first embodiment.
  • the stroke-wheel cylinder hydraulic pressure characteristic setting unit 9a sets the stroke target wheel cylinder hydraulic pressure characteristic for the pedal stroke.
  • FIG. 3 is a pedal stroke characteristic diagram (FS characteristic diagram) with respect to a pedal effort in the brake system 1 of the first embodiment.
  • the stroke simulator 7 has characteristics similar to the negative pressure booster characteristics. Therefore, in the region where the pedal stroke is from zero to the stroke A as shown in FIG. 3, the FS characteristic has a steep slope (gradient 1) in order to represent an invalid stroke, a blur, and the like.
  • the pedal stroke limit point B is a pedal stroke corresponding to the stroke limit point (simulator stroke limit point) of the piston 71 in the stroke simulator 7.
  • the simulator stroke limit point is, for example, the maximum stroke position of the piston 71 due to the retainer member 78 contacting the plug member 76 or the second damper 742 reaching the compression limit.
  • FIG. 4 is a stroke target wheel cylinder hydraulic pressure characteristic diagram for a pedal stroke set by the stroke-wheel cylinder hydraulic pressure characteristic setting unit 9a of the first embodiment.
  • a positive increasing function is set while performing sensory evaluation on the pressure increasing start point and pressure increasing gradient in consideration of the invalid stroke and boo To do.
  • the function is generally not a linear function in many cases.
  • a good pedal feel can be obtained by making the target wheel cylinder hydraulic pressure characteristic with respect to the pedal stroke a linear function.
  • the stroke target wheel cylinder hydraulic pressure calculation unit 9b calculates the stroke target wheel cylinder hydraulic pressure characteristic for the pedal stroke set by the stroke-wheel cylinder hydraulic pressure characteristic setting unit 9a from the pedal stroke detected by the stroke sensor 60 (FIG. 4).
  • the stroke target wheel cylinder hydraulic pressure (first pressure value) Pstr is calculated with reference to.
  • the stroke target wheel cylinder hydraulic pressure Pstr has a maximum value Pstr_max when the pedal stroke is at the pedal stroke limit point B.
  • FIG. 5 is a master cylinder hydraulic pressure characteristic diagram with respect to the pedal effort in the brake system 1 of the first embodiment.
  • the pedal effort and the master cylinder hydraulic pressure are in a proportional relationship, the master cylinder hydraulic pressure is replaced by the pedal effort. Therefore, the simulator stroke limit point is determined by the pedal effort, and the pedal effort is converted into the master cylinder hydraulic pressure for determination.
  • the pedal stroke 60 [mm] is set as the pedal stroke limit point, and the pedal depression force at the pedal stroke limit point is set as 160 [N]. If the master cylinder hydraulic pressure equivalent to 160 [N] is 2.0 [MPa], the master cylinder hydraulic pressure at the pedal stroke limit point and the simulator stroke limit point will be 2.0 [MPa].
  • FIG. 6 is a master cylinder hydraulic pressure target wheel cylinder hydraulic pressure characteristic diagram with respect to the master cylinder hydraulic pressure set by the master cylinder hydraulic pressure-wheel cylinder hydraulic pressure characteristic setting unit 9c of the first embodiment.
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc_min at the pedal stroke limit point B is set. After that, by setting the wheel cylinder hydraulic pressure Ppmc_max at which the wheels are to be locked and performing linear interpolation between the two points, a good pedal feel can be obtained.
  • the pedal stroke force at the pedal stroke limit point (60 [mm]) is 160 [N]
  • the master cylinder fluid pressure is 2.0 [MPa]
  • the master cylinder fluid pressure target wheel cylinder fluid pressure is 10 [MPa]
  • the pedal depression force is To obtain a wheel cylinder fluid pressure of 15 [MPa] that can securely lock the wheels at 300 [N] and master cylinder fluid pressure of 4.0 [MPa]
  • Master cylinder fluid pressure target wheel cylinder fluid pressure 15.0 [MPa] at pressure 10.0 [MPa] and master cylinder fluid pressure 4.0 [MPa] is set, and 10 [MPa] and 15 [MPa] are linearly interpolated Set the target cylinder hydraulic pressure for the master cylinder hydraulic pressure of 2.0 to 4.0 [MPa].
  • a master cylinder hydraulic pressure Pd smaller than the master cylinder hydraulic pressure Pb corresponding to the pedal depression force Ppf_b at the pedal stroke limit point B is set as the master cylinder hydraulic pressure corresponding to the simulator stroke limit.
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc may be set to zero, and a characteristic obtained by linearly interpolating between Ppmc_min and the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc may be set.
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure calculation unit 9d uses the master cylinder hydraulic pressure detected by the master cylinder hydraulic pressure sensor 35 to determine the master cylinder hydraulic pressure-wheel cylinder hydraulic pressure characteristic setting unit 9c.
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure (second pressure value) Ppmc is calculated with reference to the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure characteristic with respect to the pressure.
  • the stroke simulator stroke limit determination unit 9e determines from the pedal stroke detected by the stroke sensor 60 whether or not the simulator stroke position has reached the stroke limit (predetermined position). Since the simulator stroke for the pedal stroke is uniquely determined, the simulator stroke can be grasped from the acquired pedal stroke.
  • the stroke limit may be the simulator stroke limit point or the simulator stroke position before the simulator stroke limit point.
  • the final target wheel cylinder hydraulic pressure calculation unit 9f uses the stroke target wheel cylinder hydraulic pressure Pstr and the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc to determine the final target wheel based on the stroke limit determination result of the stroke simulator stroke limit determination unit 9e. Calculate the cylinder fluid pressure Pfin. Specifically, when the stroke simulator stroke limit determination unit 9e determines that the stroke limit has not been reached, the stroke target wheel cylinder hydraulic pressure Pstr is set as the final target wheel cylinder hydraulic pressure Pfin, and the stroke limit is reached. If it is determined that the target wheel cylinder hydraulic pressure Pfinc is the final target wheel cylinder hydraulic pressure Pfin. The wheel cylinder hydraulic pressure control unit 9g outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure becomes the final target wheel cylinder hydraulic pressure Pfin.
  • FIG. 7 is a flowchart showing the flow of the target wheel cylinder hydraulic pressure calculation process executed by the control unit 9 of the first embodiment.
  • the stroke target wheel cylinder hydraulic pressure calculation unit 9b calculates the stroke target wheel cylinder hydraulic pressure Pstr.
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure calculation unit 9d calculates the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc.
  • the stroke simulator stroke limit determination unit 9e determines whether or not the simulator stroke position has reached the stroke limit. If YES, the process proceeds to step S4, and if NO, the process proceeds to step S5.
  • step S4 the final target wheel cylinder hydraulic pressure calculation unit 9f outputs the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc as the final target wheel cylinder hydraulic pressure Pfin.
  • step S5 the final target wheel cylinder hydraulic pressure calculation unit 9f outputs the stroke target wheel cylinder hydraulic pressure Pstr as the final target wheel cylinder hydraulic pressure Pfin.
  • step S6 the wheel cylinder hydraulic pressure control unit 9g outputs a command signal to each actuator of the hydraulic unit 8 so that the wheel cylinder hydraulic pressure becomes the final target wheel cylinder hydraulic pressure Pfin.
  • the control unit 9 determines the final target wheel cylinder of the wheel cylinder 2 based on the stroke target wheel cylinder hydraulic pressure Pstr. If the obtained simulator stroke position is above the stroke limit and the hydraulic pressure Pfin is found, the final target of the wheel cylinder 2 is calculated based on the stroke target wheel cylinder hydraulic pressure Pstr and the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc. Find the wheel cylinder fluid pressure Pfin.
  • the stroke target wheel cylinder hydraulic pressure Pstr is set as the final target wheel cylinder hydraulic pressure Pfin
  • the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc is set as the final target wheel cylinder hydraulic pressure Pfin.
  • the wheel cylinder fluid increases in accordance with the increase in the master cylinder fluid pressure due to the driver's brake operation.
  • the pressure can be increased. That is, the by-wire control can be continued even after the simulator stroke position reaches the stroke limit. Therefore, even when the stroke setting of the stroke simulator is made relatively short, it is possible to suppress the occurrence of insufficient braking force due to overboost or changes in the braking environment. Further, since the stroke setting of the stroke simulator can be made relatively short, the feeling of stepping through during antilock control can be suppressed.
  • the stroke limit of the stroke simulator 7 is the stroke limit point of the stroke simulator 7.
  • the control unit 9 acquires the simulator stroke position based on the pedal stroke detected by the stroke sensor 60. Since the pedal stroke and the simulator stroke position are in a proportional relationship, the simulator stroke position can be grasped without separately providing a sensor for detecting the simulator stroke position.
  • FIG. 12 is a control block diagram of the control unit 9 of the second embodiment.
  • the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure calculation unit 9h calculates the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure (second pressure value) Ppmcadj from the master cylinder hydraulic pressure detected by the master cylinder hydraulic pressure sensor 35. ..
  • FIG. 13 is a master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure characteristic diagram for the master cylinder hydraulic pressure of the second embodiment.
  • the value obtained by subtracting the stroke target wheel cylinder hydraulic pressure Pstr_max at the pedal stroke limit point B from the wheel cylinder hydraulic pressure Ppmc_max at which the wheels should be locked is set as the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure Ppmcadj_max, and linear interpolation is performed between the two points. Gives a good pedal feel.
  • the final target wheel cylinder hydraulic pressure calculation unit 9f uses the stroke target wheel cylinder hydraulic pressure Pstr and the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure Ppmcadj to determine the final target wheel based on the stroke limit judgment result of the stroke simulator stroke limit judgment unit 9e. Calculate the cylinder fluid pressure Pfin. Specifically, when the stroke simulator stroke limit determination unit 9e determines that the stroke limit has not been reached, the stroke target wheel cylinder hydraulic pressure Pstr is set as the final target wheel cylinder hydraulic pressure Pfin, and the stroke limit is reached. If it is determined that the final target wheel cylinder hydraulic pressure Pfin is a value obtained by adding the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure Ppmcadj to the stroke target wheel cylinder hydraulic pressure Pstr.
  • the final target wheel cylinder hydraulic pressure Pfin is switched from the stroke target wheel cylinder hydraulic pressure Pstr to the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc.
  • the stroke target wheel cylinder hydraulic pressure Pstr_max and the master cylinder hydraulic pressure target wheel cylinder hydraulic pressure Ppmc_min at the pedal stroke limit point B theoretically match, but for example, due to a detection error of the stroke sensor 60, the stroke target wheel cylinder hydraulic pressure is When Pstr is smaller than the hydraulic pressure corresponding to the actual pedal stroke, Pstr_max> Ppmc_min.
  • FIG. 15 is a master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure characteristic diagram for the master cylinder hydraulic pressure of the third embodiment.
  • the master cylinder hydraulic pressure Pd smaller than the master cylinder hydraulic pressure Pb corresponding to the pedal depression force Ppf_b at the pedal stroke limit point B is set as the master cylinder hydraulic pressure corresponding to the simulator stroke limit as the master cylinder hydraulic pressure correction wheel cylinder.
  • the hydraulic pressure Ppmcadj is set to zero, and the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure Ppmcadj is set by linearly interpolating with the wheel cylinder hydraulic pressure Ppmc_max at which the wheels are to be locked.
  • the gradient of the wheel cylinder hydraulic pressure corrected by the master cylinder hydraulic pressure correction wheel cylinder hydraulic pressure Ppmcadj becomes gentler as compared with the case of the second embodiment, so that a more uncomfortable feeling is obtained. It is possible to realize a pedal feel without.
  • the method of acquiring the stroke position of the stroke simulator is not limited to the stroke sensor of the brake pedal, and the stroke position may be directly detected by, for example, attaching a sensor that detects the position of the piston to the stroke simulator.
  • the position regarding the stroke limit of the stroke simulator is not limited to the stroke limit point, and may be a stroke position near the stroke limit point and smaller than the stroke limit point.
  • the structure of the stroke simulator can be set arbitrarily.
  • the brake control device is provided in a connection fluid passage that connects the master cylinder and a braking force application portion that applies a braking force to the wheel portion according to the brake fluid pressure, and the connection fluid passage.
  • a shutoff valve a hydraulic pressure source that supplies brake fluid to a fluid path between the shutoff valve and the braking force applying portion of the connection fluid path, and a pressure sensor that detects the hydraulic pressure of the master cylinder.
  • a first pressure value which is a physical quantity related to the brake fluid pressure, which is a control unit and which detects a physical quantity related to the stroke of the brake pedal, and which calculates the first pressure value based on the detection value of the pressure sensor.
  • a second pressure value which is a physical quantity related to pressure
  • a simulator stroke position which is a physical quantity related to a stroke position of a stroke simulator that generates an operation reaction force of the brake pedal
  • the acquired simulator stroke position is preset.
  • a physical quantity relating to the brake fluid pressure generated in the braking force applying unit is obtained based on the first pressure value, and when the acquired simulator stroke position is equal to or more than the predetermined position,
  • a control unit that obtains a physical quantity relating to the brake fluid pressure generated in the braking force applying section based on the first pressure value and the second pressure value.
  • the predetermined position is a position related to a stroke limit of the stroke simulator.
  • the control unit causes the braking force applying section to generate the first physical quantity when the acquired simulator stroke position is less than the predetermined position.
  • the second physical amount is set as a physical amount related to the brake hydraulic pressure generated in the braking force applying unit.
  • the predetermined position is a stroke limit point of the stroke simulator.
  • the control unit causes the braking force imparting unit to generate the first physical quantity when the acquired simulator stroke position is less than the predetermined position.
  • a physical quantity is a physical quantity related to the brake fluid pressure generated in the braking force applying section.
  • the predetermined position is a stroke limit point of the stroke simulator. In yet another preferred aspect, in any one of the above aspects, the predetermined position is a position before a stroke limit point of the stroke simulator. In yet another preferred aspect, in any one of the above aspects, the predetermined position is a stroke limit point of the stroke simulator. In yet another preferred aspect, in any one of the above aspects, the predetermined position is a position before a stroke limit point of the stroke simulator. In still another preferred aspect, in any one of the above aspects, the control unit acquires the simulator stroke position based on a detection value of the stroke sensor.
  • the brake control device includes a connection fluid passage that connects a master cylinder and a braking force application unit that applies a braking force to a wheel unit according to brake fluid pressure, and the connection.
  • a shutoff valve provided in a fluid passage, a hydraulic pressure source for supplying brake fluid to a fluid passage between the shutoff valve and the braking force applying portion of the connection fluid passage, a control unit, and a brake.
  • the stroke of the stroke simulator that controls the hydraulic pressure source so as to increase the brake hydraulic pressure generated in the braking force applying section as the pedal stroke becomes longer and generates the operation reaction force of the brake pedal is restricted.
  • a control unit for controlling the hydraulic pressure source so that the brake hydraulic pressure generated in the braking force applying section is increased.
  • the brake system includes a stroke simulator and a hydraulic unit
  • the stroke simulator includes a first chamber connected to a master cylinder, the first chamber and a piston.
  • a second chamber that is partitioned, and the hydraulic unit includes a connection fluid passage that connects the master cylinder and a braking force imparting portion that imparts a braking force to the wheel portion according to the brake fluid pressure;
  • a shutoff valve provided in the connection fluid passage, a fluid pressure source for supplying brake fluid to a fluid passage between the shutoff valve and the braking force applying portion of the connection fluid passage, and a fluid pressure of the master cylinder.
  • a control unit which is a pressure sensor for detecting a pressure, detects a first pressure value that is a physical quantity related to the brake fluid pressure based on a detection value of a stroke sensor that detects a physical quantity related to a stroke of a brake pedal, and detects the pressure sensor.
  • a second pressure value that is a physical quantity related to the brake fluid pressure is obtained based on the value, a piston stroke position that is a physical quantity related to the stroke position of the piston is acquired, and the acquired piston stroke position is less than a preset predetermined position.
  • a physical quantity related to the brake fluid pressure generated in the braking force applying section is obtained based on the first pressure value, and when the obtained piston stroke position is equal to or greater than the predetermined position, the first The control unit is configured to obtain a physical quantity related to the brake fluid pressure generated in the braking force applying section based on a pressure value and the second pressure value.
  • the predetermined position is a position related to a stroke limit of the stroke simulator.
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those including all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

コントロールユニットは、取得したシミュレータストローク位置がストローク限界未満である場合は、ストローク目標ホイルシリンダ液圧に基づいてホイルシリンダの最終目標ホイルシリンダ液圧を求め、取得したシミュレータストローク位置がストローク限界以上である場合は、ストローク目標ホイルシリンダ液圧と、マスタシリンダ液圧目標ホイルシリンダ液圧と、に基づいてホイルシリンダの最終目標ホイルシリンダ液圧を求める。

Description

ブレーキ制御装置およびブレーキシステム
 本発明は、ブレーキ制御装置およびブレーキシステムに関する。
 特許文献1には、マスタシリンダとホイルシリンダとを接続する液路に設けられた遮断弁と、遮断弁とホイルシリンダとを接続する液路にブレーキ液を供給するポンプと、マスタシリンダと接続するストロークシミュレータと、を備えるブレーキ制御装置が開示されている。ブレーキ制御装置は、ブレーキペダルの操作量としてのペダルストロークを検出するストロークセンサからの検出信号に基づいて、ホイルシリンダの液圧を制御する。
特開2010-83411号公報
 しかしながら、上記特許文献1に記載されたブレーキ制御装置では、ブレーキ環境の変化に対し、良好なペダルフィールの確保と制動力確保の双方を実現する点について何ら考慮されておらず、ブレーキ環境が変化した場合にペダルフィールの悪化または制動力不足が生じるおそれがあった。
  本発明の目的の一つは、ブレーキ環境の変化によらず良好なペダルフィールの確保と制動力確保の双方を実現できるブレーキ制御装置およびブレーキシステムを提供することにある。
 本発明の一実施形態におけるブレーキ制御装置は、ブレーキペダルのストロークが長くなるに従って制動力付与部に発生させるブレーキ液圧が大きくなるように液圧源を制御し、ブレーキペダルの操作反力を生成するストロークシミュレータのストロークが規制された後も制動力付与部に発生させるブレーキ液圧が大きくなるように液圧源を制御する。
 よって、本発明の一実施形態によれば、ブレーキ環境の変化によらず良好なペダルフィールの確保と制動力確保の双方を実現できる。
実施形態1のブレーキシステム1の構成図である。 実施形態1のコントロールユニット9の制御ブロック図である。 実施形態1のブレーキシステム1におけるペダル踏力に対するペダルストローク特性図である。 実施形態1のペダルストロークに対するストローク目標ホイルシリンダ液圧特性図である。 実施形態1のブレーキシステム1におけるペダル踏力に対するマスタシリンダ液圧特性図である。 実施形態1のマスタシリンダ液圧に対するマスタシリンダ液圧目標ホイルシリンダ液圧特性図である。 実施形態1のコントロールユニット9が実行する目標ホイルシリンダ液圧算出処理の流れを示すフローチャートである。 従来技術の課題(オーバーブースト)を示すペダルストロークに対するホイルシリンダ液圧特性図である。 従来技術の課題(制動力不足)を示すペダルストロークに対するホイルシリンダ液圧特性図である。 実施形態1のペダル踏力に対するホイルシリンダ液圧特性図である。 実施形態1のペダルストロークに対するホイルシリンダ液圧特性図である。 実施形態2のコントロールユニット9の制御ブロック図である。 実施形態2のマスタシリンダ液圧に対するマスタシリンダ液圧補正ホイルシリンダ液圧特性図である。 実施形態2のペダル踏力に対するホイルシリンダ液圧特性図である。 実施形態3のマスタシリンダ液圧に対するマスタシリンダ液圧補正ホイルシリンダ液圧特性図である。 実施形態3のペダル踏力に対するホイルシリンダ液圧特性図である。 実施形態3のペダルストロークに対するホイルシリンダ液圧特性図である。
 〔実施形態1〕
  図1は、実施形態1のブレーキシステム1の構成図である。
  ブレーキシステム1は、各車輪(車輪部)FL~RRを駆動する原動機として内燃機関(エンジン)のみを備えた一般的な車両のほか、内燃機関に加えて電動式のモータ(ジェネレータ)を備えたハイブリッド車や、電動式のモータのみを備えた電気自動車等に搭載されている。ブレーキシステム1は、車輪部としての各車輪(左前輪FL、右前輪FR、左後輪RL、右後輪RR)に設置され、ホイルシリンダ(制動力付与部)2の液圧に応じて作動するディスクブレーキを有する。ブレーキシステム1は、ホイルシリンダ2の液圧を調整することにより、各車輪FL~RRに制動力を付与する。ブレーキシステム1は、2系統(プライマリP系統およびセカンダリS系統)のブレーキ配管を有する。ブレーキ配管形式は、例えばX配管形式である。以下、プライマリ系統(以下P系統)に対応する部材とセカンダリ系統(以下、S系統)に対応する部材を区別する場合には、符号の末尾に添字P,Sを付す。また、各車輪FL~RRに対応する部材を区別する場合には、その符号の末尾に添字a~dを付す。
 ブレーキペダル3は、ドライバのブレーキ操作の入力を受けるブレーキ操作部材である。プッシュロッド4は、ブレーキペダル3の操作に応じてストロークする。マスタシリンダ5は、プッシュロッド4のストローク量により作動し、ブレーキ液圧(マスタシリンダ液圧)を発生する。
  マスタシリンダ5は、ブレーキ液を貯留するリザーバタンク6からブレーキ液が補給される。マスタシリンダ5は、タンデム型であり、プッシュロッド4のストロークに応じてストロークするプライマリピストン51Pおよびセカンダリピストン51Sを有する。両ピストン51P,51Sは、プッシュロッド4の軸方向に沿って直列に並ぶ。プライマリピストン51Pはプッシュロッド4に接続されている。セカンダリピストン51Sはフリーピストン型である。マスタシリンダ5には、ストロークセンサ60が取り付けられている。ストロークセンサ60は、ブレーキペダル3のペダルストローク量として、プライマリピストン51Pのストローク量を検出する。
 ストロークシミュレータ7は、ドライバのブレーキ操作に応じて作動する。ストロークシミュレータ7は、ドライバのブレーキ操作に応じてマスタシリンダ5の内部から流出したブレーキ液が流入することで、ペダルストロークを発生させる。ストロークシミュレータ7のピストン71は、マスタシリンダ5から供給されたブレーキ液により、シリンダ72内をスプリング73の付勢力に抗して軸方向に作動する。これにより、ストロークシミュレータ7は、ドライバのブレーキ操作に応じた操作反力を生成する。
 液圧ユニット8は、ドライバのブレーキ操作とは独立して各車輪FL~RRに制動力を付与可能である。液圧ユニット8は、マスタシリンダ5およびリザーバタンク6からブレーキ液の供給を受ける。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間に設置されている。液圧ユニット8は、制御液圧を発生するためのアクチュエータとして、ポンプ(液圧源)21のモータ211および複数の電磁弁(遮断弁12等)を有している。ポンプ21は、リザーバタンク6からブレーキ液を吸入し、ホイルシリンダ2へ向けて吐出する。ポンプ21は、例えばプランジャポンプである。モータ211は、例えばブラシ付きモータである。遮断弁12等は、制御信号に応じて開閉動作し、液路11等の連通状態を切り替えることにより、ブレーキ液の流れを制御する。液圧ユニット8は、マスタシリンダ5およびホイルシリンダ2間の連通を遮断した状態で、ポンプが発生するブレーキ液圧によりホイルシリンダ2を加圧する。また、液圧ユニット8は、各所の液圧を検出する液圧センサ35~37を有する。
 コントロールユニット9は、液圧ユニット8の作動を制御する。コントロールユニット9には、ストロークセンサ60および液圧センサ35~37から送られる検出値に加え、車両側から送られる走行状態に関する情報(車輪速等)が入力される。コントロールユニット9は、入力された各種情報に基づき、内蔵されるプログラムに従って情報処理を行い、ホイルシリンダ2の目標ホイルシリンダ液圧を演算する。コントロールユニット9は、ホイルシリンダ2のホイルシリンダ液圧が目標ホイルシリンダ液圧となるように液圧ユニット8の各アクチュエータに指令信号を出力する。これにより、各種ブレーキ制御(倍力制御、アンチロック制御(ABS)、車両運動制御のためのブレーキ制御、自動ブレーキ制御および回生協調ブレーキ制御等)を実現できる。倍力制御は、ドライバのブレーキ踏力では不足するブレーキ液圧を発生してブレーキ操作を補助する。アンチロック制御は、各車輪FL~RRの制動スリップ(ロック傾向)を抑制する。車両運動制御は、横滑り等を防止する車両挙動安定化制御である。自動ブレーキ制御は、先行車追従制御や自動緊急ブレーキ等である。回生協調ブレーキ制御は、回生ブレーキと協調して目標減速度を達成するようにホイルシリンダ液圧を制御する。
 マスタシリンダ5の両ピストン51P,51Sは、シリンダ54に収容されている。マスタシリンダ5の両ピストン51P,51S間には、プライマリ液圧室52Pが画成されている。プライマリ液圧室52Pには、圧縮コイルスプリング53Pが設置されている。セカンダリピストン51Sおよびシリンダ54の底部541間には、セカンダリ液圧室52Sが画成されている。セカンダリ液圧室52Sには、圧縮コイルスプリング53Sが設置されている。各液圧室52P,52Sには、液路(接続液路)11が開口する。各液圧室52P,52Sは、液路11を介して液圧ユニット8に接続すると共に、ホイルシリンダ2と連通可能である。
 ドライバによるブレーキペダル3の踏み込み操作によってピストン51がストロークし、液圧室52の容積の減少に応じてマスタシリンダ液圧が発生する。両液圧室52P,52Sにはほぼ同じマスタシリンダ液圧が発生する。これにより、液圧室52から液路11を介してホイルシリンダ2へ向けてブレーキ液が供給される。マスタシリンダ5は、プライマリ液圧室52Pに発生したマスタシリンダ液圧によりP系統の液路(液路11P)を介してP系統のホイルシリンダ2a,2dを加圧する。また、マスタシリンダ5は、セカンダリ液圧室52Sに発生したマスタシリンダ液圧によりS系統の液路(液路11S)を介してS系統のホイルシリンダ2b,2cを加圧する。
 ストロークシミュレータ7は、シリンダ72、ピストン71、スプリング73およびダンパ74を有する。シリンダ72は円筒状の内周面を有する。シリンダ72は、ピストン収容部721およびスプリング収容部722を有する。ピストン収容部721はスプリング収容部722よりも小径である。スプリング収容部722の内周面には、後述する液路27が常時開口する。ピストン71は、ピストン収容部721内を軸方向に移動可能である。ピストン71は、シリンダ72内を正圧室(第1室)711と背圧室(第2室)712とに分離する。正圧室711には、液路26が常時開口する。背圧室712には、液路27が常時開口する。ピストン71の外周には、ピストンシール75が設置されている。ピストンシール75は、ピストン収容部721の内周面に摺接し、ピストン収容部721の内周面およびピストン71の外周面間をシールする。ピストンシール75は、正圧室711および背圧室712間をシールすることでこれらを液密に分離する分離シール部材であり、ピストン71の機能を補完する。
 スプリング73は、背圧室712内に設置された圧縮コイルスプリングであり、ピストン71を背圧室712側から正圧室711側へ向かって付勢する。スプリング73は、圧縮量に応じて反力を発生する。スプリング73は、第1スプリング731および第2スプリング732を有する。第1スプリング731は、第2スプリング732よりも小径かつ短尺であり、線径が小さい。第1スプリング731および第2スプリング732は、ピストン71およびスプリング収容部722間に、リテーナ部材78を介して直列に配置されている。ダンパ74は、第1ダンパ741および第2ダンパ742を有する。第1ダンパ741はゴム等の弾性部材であり、円柱状である。第2ダンパ742はゴム等の弾性部材であり、軸方向中央部がくびれた円柱状である。第1ダンパ741は、ピストン71の背圧室712側の先端に設置されている。第2ダンパ742は、スプリング収容室722を塞ぐプラグ部材76に、リテーナ部材78と対向して設置されている。リテーナ部材78には、ストッパ部材77が固定されている。図1に示すように、ピストン71が正圧室711側に最大変位した初期位置にあるとき、第1ダンパ741とストッパ部材77との間には第1の隙間があり、および第2ダンパ742とリテーナ部材78との間には第2の隙間がある。
 ストロークシミュレータ7は、ドライバのブレーキ操作に応じて正圧室711にブレーキ液が流入し、正圧室711におけるピストン71の受圧面に所定以上の液圧(マスタシリンダ液圧)が作用すると、ピストン71が第1スプリング731等を押し縮めつつ背圧室712の側に向かって移動する。このとき正圧室711の容積が拡大すると同時に、背圧室712の容積が縮小する。これにより、セカンダリ液圧室52Sから流れ出たブレーキ液が正圧室711の内部に流入すると同時に、背圧室712からブレーキ液が流出し、背圧室712のブレーキ液が排出される。このとき、第1スプリング731が第1の隙間以上圧縮されると、第1ダンパ741がピストン71とストッパ部材77との間に挟まれて弾性変形する。第2スプリング732が第2の隙間以上圧縮されると、第2ダンパ742がリテーナ部材78とプラグ部材76との間に挟まれて弾性変形する。これらにより衝撃が緩和されると共に、ペダル踏力(ペダル反力)とペダルストロークとの関係(特性)を調整可能である。よって、ブレーキ操作のフィールが向上する。なお、正圧室711内の圧力が所定未満に減少すると、スプリング731等の付勢力(弾性力)によりピストン71が初期位置に復帰する。
 液圧ユニット8は、ハウジング8aを有する。ハウジング8aは、複数の液路(液路11等)を有する。ポンプ21、モータ211および複数の電磁弁(遮断弁12等)は、ハウジング8aに固定されている。液路11は、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続する。液路11Pは液路11aと液路11dに分岐する。液路11Sは液路11bと液路11dに分岐する。遮断弁12は、液路11に設けられた常開型の(非通電状態で開弁する)電磁比例弁である。電磁比例弁は、ソレノイドに供給される電流に応じて任意の開度を実現できる。液路11は、遮断弁12によって、マスタシリンダ5側の液路11Aとホイルシリンダ2側の液路11Bとに分離されている。
  ソレノイドイン弁13は、液路11における遮断弁12よりもホイルシリンダ2側(液路11a~11d)に、各車輪FL~RRに対応して設けられた常開型の電磁比例弁である。液路11には、ソレノイドイン弁13をバイパスするバイパス液路14が設けられている。バイパス液路14には、ホイルシリンダ2側からマスタシリンダ5側へのブレーキ液の流れのみを許容するチェック弁15が設けられている。
 吸入配管16は、リザーバタンク6とハウジング8aに形成された内部リザーバ17とを接続する。液路18は、内部リザーバ17とポンプ21の吸入側とを接続する。液路19は、ポンプ21の吐出側と、液路11Bにおける遮断弁12とソレノイドイン弁13との間とを接続する。液路19は、P系統の液路19PとS系統の液路19Sとに分岐する。両液路19P,19Sは液路11P,11Sに接続する。両液路19P,19Sは、液路11P,11Sを互いに接続する連通路として機能する。連通弁20は、液路19に設けられた常閉型の(非通電状態で閉弁する)オンオフ弁である。オンオフ弁は、ソレノイドに供給される電流に応じて開閉が2値的に切り替えられる。
 ポンプ21は、リザーバタンク6から供給されるブレーキ液により液路11に液圧を発生させてホイルシリンダ液圧を発生させる。ポンプ21は、液路19および液路11P,11Sを介してホイルシリンダ2a~2dと接続しており、液路19にブレーキ液を吐出することでホイルシリンダ2を加圧する。
  液路22は、両液路19P,19Sの分岐点と液路23とを接続する。液路22には、調圧弁24が設けられている。調圧弁24は、常開型の電磁比例弁である。液路23は、液路11Bにおけるソレノイドイン弁13よりもホイルシリンダ2側と、内部リザーバ17とを接続する。ソレノイドアウト弁25は、液路23に設けられた常閉型のオンオフ弁である。
  液路26は、P系統の液路11Aから分岐してストロークシミュレータ7の正圧室711に接続する。なお、液路26が、液路11P(11A)を介さずにプライマリ液圧室52Pと正圧室711とを直接的に接続するようにしてもよい。
 液路27は、ストロークシミュレータ7の背圧室712および液路11P(11A)間を接続する。具体的には、液路27は、液路11P(11B)における遮断弁12Pとソレノイドイン弁13との間から分岐して背圧室712に接続する。ストロークシミュレータイン弁28は、液路27に設けられた常閉型のオンオフ弁である。液路27は、ストロークシミュレータイン弁28によって、背圧室712側の液路27Aと液路11側の液路27Bとに分離されている。ストロークシミュレータイン弁28をバイパスして液路27と並列にバイパス液路29が設けられている。バイパス液路29は、液路27Aおよび液路27B間を接続する。バイパス液路29にはチェック弁30が設けられている。チェック弁30は、液路27Aから液路11(27B)側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制する。
  液路31は、ストロークシミュレータ7の背圧室712および液路23間を接続する。ストロークシミュレータアウト弁32は、液路31に設けられた常閉型のオンオフ弁である。ストロークシミュレータアウト弁32をバイパスして、液路31と並列にバイパス液路33が設けられている。バイパス液路33には、液路23側から背圧室712側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制するチェック弁34が設けられている。
 液路11Pにおける遮断弁12Pとマスタシリンダ5との間(液路11A)には、この箇所の液圧(マスタシリンダ液圧)を検出するマスタシリンダ液圧センサ35が設けられている。液路11における遮断弁12とソレノイドイン弁13との間には、この箇所の液圧(ホイルシリンダ液圧)を検出するホイルシリンダ液圧センサ(P系統圧センサ、S系統圧センサ)36が設けられている。液路19におけるポンプ21の吐出側と連通弁20との間には、この箇所の液圧(ポンプ吐出圧)を検出する吐出圧センサ37が設けられている。
 遮断弁12が開弁した状態で、マスタシリンダ5の液圧室52およびホイルシリンダ2間を接続するブレーキ系統(液路11)は、第1の系統を構成する。この第1の系統は、踏力を用いて発生させたマスタシリンダ液圧によりホイルシリンダ液圧を発生させることで、踏力ブレーキ(非倍力制御)を実現可能である。一方、遮断弁12が閉弁した状態で、ポンプ21を含み、リザーバタンク6およびホイルシリンダ2間を接続するブレーキ系統(液路19、液路22、液路23等)は、第2の系統を構成する。この第2の系統は、ポンプ21を用いて発生させた液圧によりホイルシリンダ液圧を発生させる、いわゆるブレーキバイワイヤ装置を構成し、ブレーキバイワイヤ制御として倍力制御等を実現可能である。ブレーキバイワイヤ制御時、ストロークシミュレータ7は、ドライバのブレーキ操作に伴う操作反力を生成する。
 図2は、実施形態1のコントロールユニット9の制御ブロック図である。
  ストローク-ホイルシリンダ液圧特性設定部9aは、ペダルストロークに対するストローク目標ホイルシリンダ液圧特性を設定する。図3は、実施形態1のブレーキシステム1におけるペダル踏力に対するペダルストローク特性図(F-S特性図)である。基本的に、ストロークシミュレータ7は負圧ブースタ特性と似た特性とする。このため、図3のようにペダルストロークがゼロからストロークAまでの領域では、無効ストローク、ブカ等を表現するために、F-S特性は急勾配(勾配1)となる。ペダルストロークがストロークAを超える領域では、ペダルストローク限界点Bまでは無効ストロークやブカが取り除かれた状態となるため、F-S特性は、勾配1よりも緩勾配(勾配2)となる。ペダルストローク限界点Bは、ストロークシミュレータ7におけるピストン71のストローク限界点(シミュレータストローク限界点)に対応するペダルストロークである。シミュレータストローク限界点は、例えば、リテーナ部材78がプラグ部材76と当接する、または第2ダンパ742が圧縮限度に達することによる、ピストン71の最大ストローク位置である。
 図4は、実施形態1のストローク-ホイルシリンダ液圧特性設定部9aにより設定されたペダルストロークに対するストローク目標ホイルシリンダ液圧特性図である。ペダルストロークがゼロからストロークAまでの勾配1領域における目標ホイルシリンダ液圧特性は、無効ストローク、ブカを考慮して増圧開始ポイントと増圧勾配については官能評価を行いながら正の増加関数を設定する。このとき、関数は一般的に1次の関数とはしないことが多い。一方、ペダルストロークがストロークAからペダルストローク限界点Bまでの勾配2領域では、ペダルストロークに対する目標ホイルシリンダ液圧特性を1次の関数とすることにより、良好なペダルフィールが得られる。好ましくは、勾配2領域における目標ホイルシリンダ液圧の勾配と、勾配1領域におけるストロークA付近の目標ホイルシリンダ液圧の勾配と、を一致させると、より良好なペダルフィールが得られる。
  ストローク目標ホイルシリンダ液圧算出部9bは、ストロークセンサ60により検出されたペダルストロークから、ストローク-ホイルシリンダ液圧特性設定部9aにより設定されたペダルストロークに対するストローク目標ホイルシリンダ液圧特性(図4)を参照してストローク目標ホイルシリンダ液圧(第1の圧力値)Pstrを算出する。ストローク目標ホイルシリンダ液圧Pstrは、ペダルストロークがペダルストローク限界点Bのとき最大値Pstr_maxとなる。
 マスタシリンダ液圧-ホイルシリンダ液圧特性設定部9cは、マスタシリンダ液圧に対するマスタシリンダ液圧目標ホイルシリンダ液圧特性を設定する。図5は、実施形態1のブレーキシステム1におけるペダル踏力に対するマスタシリンダ液圧特性図である。図5に示すように、ブレーキシステム1では、ペダル踏力とマスタシリンダ液圧とが比例関係にあるため、マスタシリンダ液圧はペダル踏力に置き換えられる。このため、シミュレータストローク限界点をペダル踏力で判断し、ペダル踏力をマスタシリンダ液圧に変換して判断する。例えば、ペダルストローク60[mm]をペダルストローク限界点とし、ペダルストローク限界点のペダル踏力を160[N]とする。160[N]相当のマスタシリンダ液圧を2.0[MPa]とすれば、ペダルストローク限界点およびシミュレータストローク限界点のマスタシリンダ液圧は2.0[MPa]となる。
 図6は、実施形態1のマスタシリンダ液圧-ホイルシリンダ液圧特性設定部9cにより設定されたマスタシリンダ液圧に対するマスタシリンダ液圧目標ホイルシリンダ液圧特性図である。マスタシリンダ液圧がペダルストローク限界点Bのペダル踏力Ppf_bに相当する液圧Pbに達するところで、ペダルストローク限界点Bにおけるマスタシリンダ液圧目標ホイルシリンダ液圧Ppmc_minを設定する。その後は車輪ロックさせたいホイルシリンダ液圧Ppmc_maxを設定し、2点間を線形補間することにより良好なペダルフィールが得られる。例えば、ペダルストローク限界点(60[mm])のペダル踏力が160[N]、マスタシリンダ液圧が2.0[MPa]、マスタシリンダ液圧目標ホイルシリンダ液圧10[MPa]としたとき、ペダル踏力300[N]、マスタシリンダ液圧4.0[MPa]で確実に車輪ロックできるホイルシリンダ液圧15[MPa]を得たい場合は、マスタシリンダ液圧2.0[MPa]におけるマスタシリンダ液圧目標ホイルシリンダ液圧10.0[MPa]、マスタシリンダ液圧4.0[MPa]におけるマスタシリンダ液圧目標ホイルシリンダ液圧15.0[MPa]と設定し、10[MPa]と15[MPa]とを線形補間してマスタシリンダ液圧2.0~4.0[MPa]のマスタシリンダ液圧目標ホイルシリンダ液圧を設定する。なお、図6に一点鎖線で示すように、ペダルストローク限界点Bのペダル踏力Ppf_bに相当するマスタシリンダ液圧Pbよりも小さなマスタシリンダ液圧Pdを、シミュレータストローク限界に対応するマスタシリンダ液圧としてマスタシリンダ液圧目標ホイルシリンダ液圧Ppmcをゼロに設定し、Ppmc_minとの間を線形補間した特性を加えてマスタシリンダ液圧目標ホイルシリンダ液圧Ppmcを設定してもよい。
 マスタシリンダ液圧目標ホイルシリンダ液圧算出部9dは、マスタシリンダ液圧センサ35により検出されたマスタシリンダ液圧から、マスタシリンダ液圧-ホイルシリンダ液圧特性設定部9cにより設定されたマスタシリンダ液圧に対するマスタシリンダ液圧目標ホイルシリンダ液圧特性を参照してマスタシリンダ液圧目標ホイルシリンダ液圧(第2の圧力値)Ppmcを算出する。
  ストロークシミュレータストローク限界判断部9eは、ストロークセンサ60により検出されたペダルストロークから、シミュレータストローク位置がストローク限界(所定位置)に達したか否かを判断する。ペダルストロークに対するシミュレータストロークは一意に定まるため、取得したペダルストロークからシミュレータストロークを把握できる。なお、ストローク限界はシミュレータストローク限界点でもよいし、シミュレータストローク限界点よりも手前のシミュレータストローク位置でもよい。
 最終目標ホイルシリンダ液圧算出部9fは、ストロークシミュレータストローク限界判断部9eによるストローク限界の判断結果に基づき、ストローク目標ホイルシリンダ液圧Pstrとマスタシリンダ液圧目標ホイルシリンダ液圧Ppmcとから最終目標ホイルシリンダ液圧Pfinを算出する。具体的には、ストロークシミュレータストローク限界判断部9eにおいて、ストローク限界に達していないと判断された場合は、ストローク目標ホイルシリンダ液圧Pstrを最終目標ホイルシリンダ液圧Pfinとし、ストローク限界に達していると判断された場合は、マスタシリンダ液圧目標ホイルシリンダ液圧Ppmcを最終目標ホイルシリンダ液圧Pfinとする。
  ホイルシリンダ液圧制御部9gは、ホイルシリンダ液圧が最終目標ホイルシリンダ液圧Pfinとなるように液圧ユニット8の各アクチュエータに対し指令信号を出力する。
 図7は、実施形態1のコントロールユニット9が実行する目標ホイルシリンダ液圧算出処理の流れを示すフローチャートである。
  ステップS1では、ストローク目標ホイルシリンダ液圧算出部9bにおいて、ストローク目標ホイルシリンダ液圧Pstrを算出する。
  ステップS2では、マスタシリンダ液圧目標ホイルシリンダ液圧算出部9dにおいて、マスタシリンダ液圧目標ホイルシリンダ液圧Ppmcを算出する。
  ステップS3では、ストロークシミュレータストローク限界判断部9eにおいて、シミュレータストローク位置がストローク限界に達したか否かを判定する。YESの場合はステップS4へ進み、NOの場合はステップS5へ進む。
  ステップS4では、最終目標ホイルシリンダ液圧算出部9fにおいて、マスタシリンダ液圧目標ホイルシリンダ液圧Ppmcを最終目標ホイルシリンダ液圧Pfinとして出力する。
  ステップS5では、最終目標ホイルシリンダ液圧算出部9fにおいて、ストローク目標ホイルシリンダ液圧Pstrを最終目標ホイルシリンダ液圧Pfinとして出力する。
  ステップS6では、ホイルシリンダ液圧制御部9gにおいて、ホイルシリンダ液圧が最終目標ホイルシリンダ液圧Pfinとなるように液圧ユニット8の各アクチュエータに対し指令信号を出力する。
 次に、実施形態1の作用効果を説明する。
  ブレーキバイワイヤ装置において、ストロークシミュレータのストローク設定を比較的長くした場合(ピストンのストローク可能範囲を比較的広くした場合)、アンチロック制御時のペダルストロークが長くなるため、通常の車両と異なるペダルフィールとなり、ドライバに違和感(踏み抜け感)を与える。この対策として、ストロークシミュレータのストローク設定を比較的短くした場合(ピストンのストローク可能範囲を比較的狭くした場合)、制動力確保のためのペダルストローク-ホイルシリンダ液圧特性の設定を行うと、図8に示すように、ペダルストロークに対してホイルシリンダ液圧が高くなり過ぎる、いわゆるオーバーブーストとなり、コントロール性の悪いペダルフィールとなるおそれがある。
  また、図9のようにブレーキ環境の変化(例えば、ブレーキパッド温度の上昇、キャリパやパッドの変更等)に伴いロック液圧が上昇した場合には、車輪をロックさせる充分な制動力が得られなくなるおそれがある。
 これに対し、実施形態1のブレーキシステム1では、コントロールユニット9は、取得したシミュレータストローク位置がストローク限界未満である場合は、ストローク目標ホイルシリンダ液圧Pstrに基づいてホイルシリンダ2の最終目標ホイルシリンダ液圧Pfinを求め、取得したシミュレータストローク位置がストローク限界以上である場合は、ストローク目標ホイルシリンダ液圧Pstrと、マスタシリンダ液圧目標ホイルシリンダ液圧Ppmcと、に基づいてホイルシリンダ2の最終目標ホイルシリンダ液圧Pfinを求める。具体的には、取得したシミュレータストローク位置がストローク限界未満である場合は、ストローク目標ホイルシリンダ液圧Pstrを最終目標ホイルシリンダ液圧Pfinとし、取得したシミュレータストローク位置がストローク限界以上である場合は、マスタシリンダ液圧目標ホイルシリンダ液圧Ppmcを最終目標ホイルシリンダ液圧Pfinとする。
 よって、実施形態1のブレーキシステム1では、図10および図11に示すように、シミュレータストローク位置がストローク限界に達した後もドライバのブレーキ操作に伴うマスタシリンダ液圧の増加に応じてホイルシリンダ液圧を加圧できる。つまり、シミュレータストローク位置がストローク限界に達した後もバイワイヤ制御を継続できる。よって、ストロークシミュレータのストローク設定を比較的短くした場合であっても、オーバーブーストやブレーキ環境の変化による制動力不足が生じるのを抑制できる。また、ストロークシミュレータのストローク設定を比較的短くできるため、アンチロック制御時の踏み抜け感が抑えられる。この結果、ブレーキ環境の変化によらず良好なペダルフィールの確保と制動力確保との双方を実現できる。
  ストロークシミュレータ7のストローク限界は、ストロークシミュレータ7のストローク限界点である。これにより、シミュレータストローク位置がストローク限界点に達した後もドライバのブレーキ操作に応じてホイルシリンダ液圧を加圧できる。
  コントロールユニット9は、ストロークセンサ60により検出されたペダルストロークに基づきシミュレータストローク位置を取得する。ペダルストロークとシミュレータストローク位置とは比例関係にあるため、シミュレータストローク位置を検出するセンサを別途設けることなく、シミュレータストローク位置を把握できる。
 〔実施形態2〕
  実施形態2の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図12は、実施形態2のコントロールユニット9の制御ブロック図である。
  マスタシリンダ液圧補正ホイルシリンダ液圧算出部9hは、マスタシリンダ液圧センサ35により検出されたマスタシリンダ液圧から、マスタシリンダ液圧補正ホイルシリンダ液圧(第2の圧力値)Ppmcadjを算出する。図13は、実施形態2のマスタシリンダ液圧に対するマスタシリンダ液圧補正ホイルシリンダ液圧特性図である。マスタシリンダ液圧がペダルストローク限界点Bのペダル踏力Ppf_bに相当する液圧Pbに達するところで、シミュレータストローク限界におけるマスタシリンダ液圧補正ホイルシリンダ液圧(=0)を設定する。その後は車輪ロックさせたいホイルシリンダ液圧Ppmc_maxからペダルストローク限界点Bにおけるストローク目標ホイルシリンダ液圧Pstr_maxを減じた値をマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadj_maxとし、2点間を線形補間することにより良好なペダルフィールが得られる。
 最終目標ホイルシリンダ液圧算出部9fは、ストロークシミュレータストローク限界判断部9eによるストローク限界の判断結果に基づき、ストローク目標ホイルシリンダ液圧Pstrとマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjとから最終目標ホイルシリンダ液圧Pfinを算出する。具体的には、ストロークシミュレータストローク限界判断部9eにおいて、ストローク限界に達していないと判断された場合は、ストローク目標ホイルシリンダ液圧Pstrを最終目標ホイルシリンダ液圧Pfinとし、ストローク限界に達していると判断された場合は、ストローク目標ホイルシリンダ液圧Pstrにマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjを加算した値を最終目標ホイルシリンダ液圧Pfinとする。
 実施形態1では、ストロークシミュレータ7がストローク限界に達したとき、最終目標ホイルシリンダ液圧Pfinをストローク目標ホイルシリンダ液圧Pstrからマスタシリンダ液圧目標ホイルシリンダ液圧Ppmcに切り替えている。ここで、ペダルストローク限界点Bにおけるストローク目標ホイルシリンダ液圧Pstr_maxとマスタシリンダ液圧目標ホイルシリンダ液圧Ppmc_minとは理論上一致するが、例えば、ストロークセンサ60の検出誤差によってストローク目標ホイルシリンダ液圧Pstrが実際のペダルストロークに応じた液圧よりも小さい場合、Pstr_max>Ppmc_minとなる。これにより、ストローク目標ホイルシリンダ液圧Pstrからマスタシリンダ液圧目標ホイルシリンダ液圧Ppmcへの切り替え時に最終目標ホイルシリンダ液圧Pfinに不連続点(段差)が発生し、ドライバに違和感を与えるおそれがある。そこで、実施形態2では、図14に示すように、ストロークシミュレータ7がストローク限界に達したとき、ストローク目標ホイルシリンダ液圧Pstrをマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjで補正して最終目標ホイルシリンダ液圧Pfinとする。これにより、ストロークセンサ60の検出誤差等が生じた場合には、勾配変化は生じるものの、上述した不連続点の発生を抑制でき、ドライバに与える違和感を軽減できる。
 〔実施形態3〕
  実施形態3の基本的な構成は実施形態2と同じであるため、実施形態2と相違する部分のみ説明する。
  図15は、実施形態3のマスタシリンダ液圧に対するマスタシリンダ液圧補正ホイルシリンダ液圧特性図である。
  実施形態3では、ペダルストローク限界点Bのペダル踏力Ppf_bに相当するマスタシリンダ液圧Pbよりも小さなマスタシリンダ液圧Pdを、シミュレータストローク限界に対応するマスタシリンダ液圧としてマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjをゼロに設定し、車輪ロックさせたいホイルシリンダ液圧Ppmc_maxとの間を線形補間してマスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjを設定する。これにより、図16および図17に示すように、マスタシリンダ液圧補正ホイルシリンダ液圧Ppmcadjによる補正後のホイルシリンダ液圧の勾配は、実施形態2の場合と比べて緩やかになるため、より違和感のないペダルフィールを実現できる。
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  例えば、ストロークシミュレータのストローク位置の取得方法は、ブレーキペダルのストロークセンサに限らず、例えば、ストロークシミュレータにピストンの位置を検出するセンサを取り付けることにより、ストローク位置を直接検出してもよい。
  ストロークシミュレータのストローク限界に関する位置は、ストローク限界点に限定されず、ストローク限界点付近であって、ストローク限界点よりも小さなストローク位置であってもよい。
  ストロークシミュレータの構造は任意に設定できる。
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
  ブレーキ制御装置は、その一つの態様において、マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、前記接続液路に設けられた遮断弁と、前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、前記マスタシリンダの液圧を検出する圧力センサと、コントロールユニットであって、ブレーキペダルのストロークに関する物理量を検出するストロークセンサの検出値に基づき前記ブレーキ液圧に関する物理量である第1の圧力値を求め、前記圧力センサの検出値に基づき前記ブレーキ液圧に関する物理量である第2の圧力値を求め、前記ブレーキペダルの操作反力を生成するストロークシミュレータのストローク位置に関する物理量であるシミュレータストローク位置を取得し、取得した前記シミュレータストローク位置が予め設定された所定位置未満である場合は、前記第1の圧力値に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求め、取得した前記シミュレータストローク位置が前記所定位置以上である場合は、前記第1の圧力値と、前記第2の圧力値と、に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求める、前記コントロールユニットと、を備える。
 より好ましい態様では、上記態様において、前記所定位置は、前記ストロークシミュレータのストローク限界に関する位置である。
  別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、取得した前記シミュレータストローク位置が前記所定位置未満の場合は、前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とし、取得した前記シミュレータストローク位置が前記所定位置以上の場合は、前記第2の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とする。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記所定位置は、前記ストロークシミュレータのストローク限界点である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、取得した前記シミュレータストローク位置が前記所定位置未満の場合は、前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とし、取得した前記シミュレータストローク位置が前記所定位置以上の場合は、前記第1の物理量を前記第2の物理量で補正し、前記第2の物理量で補正された前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とする。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記所定位置は、前記ストロークシミュレータのストローク限界点である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記所定位置は、前記ストロークシミュレータのストローク限界点よりも手前の位置である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記所定位置は、前記ストロークシミュレータのストローク限界点である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記所定位置は、前記ストロークシミュレータのストローク限界点よりも手前の位置である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記コントロールユニットは、前記ストロークセンサの検出値に基づき前記シミュレータストローク位置を取得する。
 また、他の観点から、ブレーキ制御装置は、ある態様において、マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、前記接続液路に設けられた遮断弁と、前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、コントロールユニットであって、ブレーキペダルのストロークが長くなるに従って前記制動力付与部に発生させる前記ブレーキ液圧が大きくなるように前記液圧源を制御し、前記ブレーキペダルの操作反力を生成するストロークシミュレータのストロークが規制された後も前記制動力付与部に発生させる前記ブレーキ液圧が大きくなるように前記液圧源を制御する、前記コントロールユニットと、を備える。
  さらに、他の観点から、ブレーキシステムは、ある態様において、ストロークシミュレータと、液圧ユニットと、を備え、前記ストロークシミュレータは、マスタシリンダと接続される第1室と、前記第1室とピストンにより仕切られる第2室と、を備え、前記液圧ユニットは、前記マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、前記接続液路に設けられた遮断弁と、前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、前記マスタシリンダの液圧を検出する圧力センサと、コントロールユニットであって、ブレーキペダルのストロークに関する物理量を検出するストロークセンサの検出値に基づき前記ブレーキ液圧に関する物理量である第1の圧力値を求め、記圧力センサの検出値に基づき前記ブレーキ液圧に関する物理量である第2の圧力値を求め、前記ピストンのストローク位置に関する物理量であるピストンストローク位置を取得し、取得した前記ピストンストローク位置が予め設定された所定位置未満である場合は、前記第1の圧力値に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求め、取得した前記ピストンストローク位置が前記所定位置以上である場合は、前記第1の圧力値と、前記第2の圧力値と、に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求める、前記コントロールユニットと、を備える。
  好ましくは、上記態様において、前記所定位置は、前記ストロークシミュレータのストローク限界に関する位置である。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2018年11月16日付出願の日本国特許出願第2018-215123号に基づく優先権を主張する。2018年11月16日付出願の日本国特許出願第2018-215123号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
FL~RR 車輪(車輪部)1 ブレーキシステム2 ホイルシリンダ(制動力付与部)3 ブレーキペダル5 マスタシリンダ7 ストロークシミュレータ8 液圧ユニット9 コントロールユニット11 液路(接続液路)12 遮断弁21 ポンプ(液圧源)35 マスタシリンダ液圧センサ(圧力センサ)60 ストロークセンサ71 ピストン711 正圧室(第1室)712 背圧室(第2室)

Claims (13)

  1.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、
     前記接続液路に設けられた遮断弁と、
     前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、
     前記マスタシリンダの液圧を検出する圧力センサと、
     コントロールユニットとを備え、
     前記コントロールユニットは、
     ブレーキペダルのストロークに関する物理量を検出するストロークセンサの検出値に基づき前記ブレーキ液圧に関する物理量である第1の圧力値を求め、
     前記圧力センサの検出値に基づき前記ブレーキ液圧に関する物理量である第2の圧力値を求め、
     前記ブレーキペダルの操作反力を生成するストロークシミュレータのストローク位置に関する物理量であるシミュレータストローク位置を取得し、
     取得した前記シミュレータストローク位置が予め設定された所定位置未満である場合は、前記第1の圧力値に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求め、
     取得した前記シミュレータストローク位置が前記所定位置以上である場合は、前記第1の圧力値と、前記第2の圧力値と、に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求める、
     ブレーキ制御装置。
  2.  請求項1に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界に関する位置であるブレーキ制御装置。
  3.  請求項2に記載のブレーキ制御装置であって、
     前記コントロールユニットは、
     取得した前記シミュレータストローク位置が前記所定位置未満の場合は、前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とし、
     取得した前記シミュレータストローク位置が前記所定位置以上の場合は、前記第2の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とするブレーキ制御装置。
  4.  請求項3に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界点であるブレーキ制御装置。
  5.  請求項2に記載のブレーキ制御装置であって、
     前記コントロールユニットは、
     取得した前記シミュレータストローク位置が前記所定位置未満の場合は、前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とし、
     取得した前記シミュレータストローク位置が前記所定位置以上の場合は、前記第1の物理量を前記第2の物理量で補正し、前記第2の物理量で補正された前記第1の物理量を、前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量とするブレーキ制御装置。
  6.  請求項5に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界点であるブレーキ制御装置。
  7.  請求項5に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界点よりも手前の位置であるブレーキ制御装置。
  8.  請求項2に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界点であるブレーキ制御装置。
  9.  請求項2に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界点よりも手前の位置であるブレーキ制御装置。
  10.  請求項1に記載のブレーキ制御装置であって、
     前記コントロールユニットは、前記ストロークセンサの検出値に基づき前記シミュレータストローク位置を取得するブレーキ制御装置。
  11.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、
     前記接続液路に設けられた遮断弁と、
     前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、
     コントロールユニットとを備え、該コントロールユニットは、
     ブレーキペダルのストロークが長くなるに従って、前記制動力付与部に発生させる前記ブレーキ液圧が大きくなるように前記液圧源を制御し、
     前記ブレーキペダルの操作反力を生成するストロークシミュレータのストロークが規制された後も、前記制動力付与部に発生させる前記ブレーキ液圧が大きくなるように前記液圧源を制御する、
     ブレーキ制御装置。
  12.  ブレーキシステムであって、
     ストロークシミュレータと、液圧ユニットと、を備え、
     前記ストロークシミュレータは、
     マスタシリンダと接続される第1室と、
     前記第1室とピストンにより仕切られる第2室と、
     を備え、
     前記液圧ユニットは、
     前記マスタシリンダと、ブレーキ液圧に応じて車輪部に制動力を付与する制動力付与部と、を接続する接続液路と、
     前記接続液路に設けられた遮断弁と、
     前記接続液路のうちの前記遮断弁と前記制動力付与部との間の液路にブレーキ液を供給する液圧源と、
     前記マスタシリンダの液圧を検出する圧力センサと、
     コントロールユニットとを備え、該コントロールユニットは、
     ブレーキペダルのストロークに関する物理量を検出するストロークセンサの検出値に基づき前記ブレーキ液圧に関する物理量である第1の圧力値を求め、前記圧力センサの検出値に基づき前記ブレーキ液圧に関する物理量である第2の圧力値を求め、
     前記ピストンのストローク位置に関する物理量であるピストンストローク位置を取得し、
     取得した前記ピストンストローク位置が予め設定された所定位置未満である場合は、前記第1の圧力値に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求め、
     取得した前記ピストンストローク位置が前記所定位置以上である場合は、前記第1の圧力値と、前記第2の圧力値と、に基づいて前記制動力付与部に発生させる前記ブレーキ液圧に関する物理量を求める、
     ブレーキシステム。
  13.  請求項12に記載のブレーキ制御装置であって、
     前記所定位置は、前記ストロークシミュレータのストローク限界に関する位置であるブレーキシステム。
PCT/JP2019/042774 2018-11-16 2019-10-31 ブレーキ制御装置およびブレーキシステム WO2020100610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/293,780 US11958464B2 (en) 2018-11-16 2019-10-31 Brake control apparatus and brake system
CN201980075064.9A CN113039103A (zh) 2018-11-16 2019-10-31 制动控制装置以及制动系统
EP19885381.4A EP3882092B1 (en) 2018-11-16 2019-10-31 Brake control device, and brake system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-215123 2018-11-16
JP2018215123A JP7042202B2 (ja) 2018-11-16 2018-11-16 ブレーキ制御装置およびブレーキシステム

Publications (1)

Publication Number Publication Date
WO2020100610A1 true WO2020100610A1 (ja) 2020-05-22

Family

ID=70730509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042774 WO2020100610A1 (ja) 2018-11-16 2019-10-31 ブレーキ制御装置およびブレーキシステム

Country Status (5)

Country Link
US (1) US11958464B2 (ja)
EP (1) EP3882092B1 (ja)
JP (1) JP7042202B2 (ja)
CN (1) CN113039103A (ja)
WO (1) WO2020100610A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204502B2 (ja) * 2019-01-25 2023-01-16 株式会社アドヴィックス 制動制御装置
KR20200129789A (ko) * 2019-05-10 2020-11-18 현대자동차주식회사 브레이크 장치 및 그의 제어방법
DE102021114497A1 (de) * 2021-06-07 2022-12-08 Zf Cv Systems Global Gmbh Bremsanlage eines Kraftfahrzeugs und Verfahren zur Steuerung derselben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112034A (ja) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd ブレーキ装置の反力特性制御装置
JP2010083411A (ja) 2008-10-01 2010-04-15 Toyota Motor Corp ブレーキ制御装置
WO2012105526A1 (ja) * 2011-01-31 2012-08-09 本田技研工業株式会社 車両用ブレーキ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340467C2 (de) 1993-11-27 2002-03-14 Bosch Gmbh Robert Mit Fremdkraft arbeitende hydraulische Fahrzeugbremsanlage
DE4343314A1 (de) * 1993-12-18 1995-06-22 Bosch Gmbh Robert Fremdkraftbremsanlage
US6957870B2 (en) * 1999-12-24 2005-10-25 Toyota Jidosha Kabushiki Kaisha Braking pressure control apparatus capable of switching between two brake operating states using power-operated and manually operated pressure sources, respectively
JP2002293229A (ja) * 2001-03-29 2002-10-09 Aisin Seiki Co Ltd ストロークシミュレータ装置及び車両用液圧ブレーキ装置
US7159696B2 (en) * 2003-11-21 2007-01-09 Advics Co., Ltd. Hydraulic braking pressure generating apparatus for vehicles
JP5892980B2 (ja) * 2013-06-25 2016-03-23 株式会社アドヴィックス 車両用制動装置
JP7202824B2 (ja) * 2018-09-18 2023-01-12 日立Astemo株式会社 ストロークシミュレータおよびブレーキ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112034A (ja) * 2003-10-03 2005-04-28 Nissan Motor Co Ltd ブレーキ装置の反力特性制御装置
JP2010083411A (ja) 2008-10-01 2010-04-15 Toyota Motor Corp ブレーキ制御装置
WO2012105526A1 (ja) * 2011-01-31 2012-08-09 本田技研工業株式会社 車両用ブレーキ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3882092A4

Also Published As

Publication number Publication date
CN113039103A (zh) 2021-06-25
US20220009460A1 (en) 2022-01-13
US11958464B2 (en) 2024-04-16
JP2020082771A (ja) 2020-06-04
JP7042202B2 (ja) 2022-03-25
EP3882092A4 (en) 2021-12-15
EP3882092A1 (en) 2021-09-22
EP3882092B1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
KR101726143B1 (ko) 브레이크 제어 장치 및 브레이크 제어 방법
JP6063824B2 (ja) ブレーキ制御装置
WO2020100610A1 (ja) ブレーキ制御装置およびブレーキシステム
KR101878110B1 (ko) 브레이크 장치
JP5167954B2 (ja) 車両用ブレーキ制御装置
US20110006593A1 (en) Brake control apparatus
EP2090482B1 (en) Brake fluid pressure control device for bar handle vehicle
US9688151B2 (en) Vehicle brake device
US20180194332A1 (en) Brake Control Apparatus and Brake System
US20180290636A1 (en) Brake Control Device
KR20170103893A (ko) 브레이크 장치
JP5692202B2 (ja) マスタシリンダおよびマスタシリンダ装置
CN107531219B (zh) 车用制动装置
US20190061719A1 (en) Brake Apparatus and Brake Control Method
JP7093276B2 (ja) ブレーキ制御装置
KR20190035537A (ko) 제동 제어 장치
JP2019085028A (ja) ブレーキ制御装置、ブレーキ制御方法およびブレーキシステム
WO2017170596A1 (ja) 車両用制動装置
JP2019059409A (ja) 車両用制動装置
KR20150021629A (ko) 전자식 유압 제동장치 및 그 제어방법
JP6082949B2 (ja) 車両の制動装置
JP2017185983A (ja) 車両用制動装置
JP7141307B2 (ja) ブレーキ制御装置
JP7121677B2 (ja) ブレーキ制御装置
JP2019156147A (ja) ブレーキ制御装置、ブレーキ装置を制御する制御方法及びブレーキ制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885381

Country of ref document: EP

Effective date: 20210616