WO2020099699A1 - USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE TRANSPORTE IÓNICO - Google Patents

USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE TRANSPORTE IÓNICO Download PDF

Info

Publication number
WO2020099699A1
WO2020099699A1 PCT/ES2019/070751 ES2019070751W WO2020099699A1 WO 2020099699 A1 WO2020099699 A1 WO 2020099699A1 ES 2019070751 W ES2019070751 W ES 2019070751W WO 2020099699 A1 WO2020099699 A1 WO 2020099699A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
dry
polish
titanium
alloy surfaces
Prior art date
Application number
PCT/ES2019/070751
Other languages
English (en)
French (fr)
Inventor
Pau Sarsanedas Millet
Original Assignee
Drylyte, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drylyte, S.L. filed Critical Drylyte, S.L.
Priority to CN201980083852.2A priority Critical patent/CN113195799A/zh
Priority to EP19884027.4A priority patent/EP3882379B1/en
Publication of WO2020099699A1 publication Critical patent/WO2020099699A1/es
Priority to US17/318,532 priority patent/US20210262112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the field of the present invention is the industry sector focused on the smoothing, burnishing and polishing of metal surfaces, with applications in fields such as, for example, dentistry, medicine, laser sintering, automotive and aeronautics among much others.
  • the object of the present invention refers to a method of smoothing and polishing surfaces of titanium and other metals characterized by the use of ion transport using a dry electrolyte containing hydrochloric acid as an electrolyte and, also, to the mentioned dry electrolyte containing acid hydrochloric to perform this method.
  • the use of said system has distinguished advantages and characteristics that represent a remarkable novelty compared to the known state of the art.
  • Titanium and derived alloys are materials that have low weight and good resistance to corrosion. Therefore, they play a key role in numerous applications such as components in the chemical industry, medical implants, automobiles and aeronautics, among many others. Today there is an increasing demand for polished titanium surfaces.
  • 3D metal printing Furthermore, there is a growing market for selective laser sintering and selective laser melting, commonly referred to as 3D metal printing. These are additive manufacturing techniques capable of producing complex shapes using various types of materials. Using these processes with titanium and other metals results in very rough surfaces. This is a major disadvantage in many application fields because rough surfaces increase friction and corrosion, facilitate colonization of bacteria and fungi, and hide imperfections and stress fractures. So a method is needed efficient and cost-effective for polishing complex shapes.
  • patent ES2604830A1 refers to a "method for smoothing and polishing metals through ionic transport by means of free solid bodies
  • Said free solid bodies capable of ionic transport consist of a set of porous particles that retain a certain amount of liquid and a conductive liquid electrolyte to be retained in the particles, preferably aqueous hydrogen fluoride between 1 and 10%.
  • said electrolyte does not provide satisfactory results in many metals, such as titanium.
  • the aim of the present invention is a method of smoothing and polishing titanium and other metals using an HCI-based dry electrolyte via ion transport.
  • hydrochloric acid in dry electrolytes to polish metal surfaces through ion transport is a novelty in the field of metal polishing that has advantages and characteristics that are explained in the text below.
  • a dry electrolyte comprises a set of porous particles with the ability to retain a certain amount of liquid and a certain amount of electrically conductive liquid retained in the particles.
  • the present invention specifically relates to dry electrolytes comprising porous particles with the ability to retain certain amount of liquid and a certain amount of electrically conductive liquid containing hydrochloric acid.
  • the particles can be of any material, such as polymer or ceramic, provided they have the capacity to retain a certain amount of liquid and are chemically resistant to hydrochloric acid.
  • the particles are based on polymeric materials.
  • Porous particles based on a sulfonated polymer meaning the polymer has active sulfonic acid groups attached
  • the sulfonated polymer of the porous particles is based on a copolymer of styrene and divinylbenzene.
  • the size and shape of the particles can be selected depending on the roughness to be treated.
  • the porous particles may be ion exchange resin spheres, such as, for example, but not limited to, AMBERLITE 252RFH with an ion exchange capacity of 1.7 eq L 1 , a density of 1.24 g ml 1 , a diameter size of between 0.6 and 0.8 mm and a water retention capacity of between 52 and I58%.
  • the main feature of the present invention is that the electrically conductive liquid contains HCI.
  • the concentration of HCI in the dry electrolyte depends, among other parameters, on the metal or alloy to be polished, on the total surface and on the shape. Among all possible solvents, water is the preferred solvent.
  • the electropolishing process can be performed using a dry electrolyte containing an equivalent electrically conductive liquid (when the total amount of solvent in the resin is taken into account) to a solution of HCI in water in a range between 1 and 38%. A concentration higher than 38% would cause corrosive hydrogen chloride gas to emanate, making it necessary to work in a sealed pressurized system. Better results are obtained in a range of 3 to 20%, preferably 5 to 15%. Concentrations of approximately 15% obtain a fast processing speed that adapts to large surface areas. Lower concentrations close to 5% yield are better for smaller surface areas and more complex shapes.
  • a common problem in electropolishing systems is the formation of passivated layers on the metal surface that block the process. This problem is extreme in the case of titanium, which forms a homogeneous layer T1O2, which is non-conductive and not easy to drive.
  • hydrochloric acid in an obvious way, favors the vehiculization of metal ions from the surface to the particles.
  • Hydrochloric acid has several effects. It is a strong acid, which means that it contributes protons or hydronium ions (H + H30 + ) to the solution. These ions have the highest ionic mobility in water, which increases electrical conductivity, speeding up the process. On the other hand, it contributes Cl chloride anions to the environment. In the presence of this anion, oxidation of titanium generates not only titanium oxide, but also a fraction of titanium chloride.
  • chloride anions have a relatively high metal complexing capacity, which favors the vehiculization of metal ions from the surface to the particle.
  • hydrochloric acid solution to electropolish can be cumbersome due to the fumes of hydrogen chloride gas, which are hazardous to health and cause corrosion in electrical equipment. Furthermore, prolonged immersion of the metal part in hydrochloric acid can cause attacks on the surface and can have a detrimental effect on the leveling process.
  • the effect of hydrochloric acid when it is part of a dry electrolyte is interesting. Due to the fact that it is confined to particles, the effect of the HCI would focus on the peaks of the surface roughness, thus having a stronger effect where it is needed. Furthermore, the relative movement of the particles with respect to the metal part makes the particle-metal contact time relatively short, which favors a localized action on the surface. Furthermore, the fact that hydrochloric acid is confined within the particles reduces the release of hydrogen chloride gas.
  • a dry HCI-containing electrolyte can be used to polish metal surfaces, even when the metal forms stable passivation layers. For this reason, a dry HCI-containing electrolyte can be used in a wide range of metals, however, it is especially indicated for those metals that form these passivation layers such as titanium.
  • an object of the present invention is the dry electrolyte containing hydrochloric acid.
  • a dry electrolyte made from AMBERLITE 252RFH containing 7% HCI in water was used as the conductive liquid to polish a titanium surface.
  • An 8 cm 2 surface titanium piece was moved into the dry electrolyte in an orbital cycle and the dry electrolyte container was vibrated.
  • An electric current of 18V, 20ps positive, 20ps negative and 10ps at 0V was applied to the titanium piece using an iridium-on-titanium mesh as the counter electrode. After 10 min, the surface had acquired specular properties.
  • a dry electrolyte, AMBERLITE 252RFH containing 14% HCI in water was used as the conductive liquid, for polishing.
  • a 55 cm 2 piece of titanium was moved into the dry electrolyte in an orbital cycle and the dry electrolyte container was vibrated.
  • An electric current of 40V, 20ps positive, 20ps negative and 10ps at 0V was applied to the titanium piece using an iridium-on-titanium mesh as the counter electrode. After 30 min, the surface had acquired specular properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Uso de electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico caracterizado porque el líquido conductor del electrólito seco comprende HCl. Preferentemente la concentración de HCl en relación con el disolvente está entre el 1 y el 38 % y más preferentemente está entre el 5 y el 15 %. Electrólito seco caracterizado porque comprende ácido clorhídrico como líquido conductor de acuerdo con cualquiera de las reivindicaciones anteriores.

Description

DESCRIPCIÓN
USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE
TRANSPORTE IÓNICO
Campo de la invención
El campo de la presente invención es el sector de la industria centrado en el alisamiento, bruñido y pulido de superficies metálicas, con aplicaciones en campos como, por ejemplo, la odontología, la medicina, la sinterización por láser, la automoción y la aeronáutica entre muchos otros.
Objeto de la invención
El objeto de la presente invención se refiere a un método de alisamiento y pulido de superficies de titanio y otros metales caracterizado por el uso de transporte iónico usando un electrolito seco que contiene ácido clorhídrico como electrolito y, también, al electrolito seco mencionado que contiene ácido clorhídrico para realizar este método. El uso de dicho sistema tiene ventajas y características distinguidas que suponen una notable novedad frente al estado de la técnica conocido.
Antecedentes de la invención
El titanio y las aleaciones derivadas son materiales que tienen bajo peso y buena resistencia a la corrosión. Por tanto, cumplen una función clave en numerosas aplicaciones tales como componentes en la industria química, implantes médicos, automóviles y aeronáutica, entre muchas otras. Hoy en día existe una demanda en aumento de superficies de titanio pulidas.
Además, existe un mercado en aumento en la sinterización selectiva por láser y la fusión selectiva por láser, habitualmente denominadas impresión 3D en metal. Estas son técnicas de fabricación aditivas capaces de producir formas complejas usando diversos tipos de materiales. El uso de estos procesos con titanio y otros metales da como resultado superficies muy rugosas. Ésta es una desventaja importante en muchos campos de aplicaciones debido a que las superficies rugosas aumentan la fricción y la corrosión, facilitan la colonización de bacterias y hongos y ocultan las imperfecciones y las fracturas por tensión. Por tanto, se necesita un método eficiente y rentable para pulir formas complejas.
Las técnicas de pulido por abrasión mecánica no son adecuadas para formas complejas. Además, estos métodos tienden a retirar una gran cantidad de metal, producen inclusiones y contaminación en la superficie metálica y redondean bordes y vértices afilados excesivamente.
Las técnicas actuales de electropulido provocan una reducción de hasta el 50 % de la rugosidad inicial. Esto implica que las piezas con una rugosidad inicial alta deben tratarse previamente con otro método de pulido para conseguir resultados aceptables, lo que aumenta el tiempo y los costes globales.
La irradiación de haz de área grande es capaz de pulir titanio para generar superficies con una rugosidad baja. Sin embargo, es una técnica muy compleja de manejar y tiene costes asociados elevados.
El mismo solicitante es el propietario de la patente ES2604830A1 que se refiere a un "método para alisar y pulir metales a través de transporte iónico por medio de cuerpos sólidos libres (...)". Dichos cuerpos sólidos libres capaces de realizar el transporte iónico consisten en un conjunto de partículas porosas que retienen cierta cantidad de líquido y un electrolito líquido conductor que se ha de retener en las partículas, preferentemente fluoruro de hidrógeno acuoso entre el 1 y el 10 %. Sin embargo, dicho electrolito no proporciona resultados satisfactorios en muchos metales, como, por ejemplo, el titanio.
El objetivo de la presente invención es un método para alisar y pulir titanio y otros metales usando un electrolito seco a base de HCI a través de transporte iónico.
Sumario de la invención
El uso de ácido clorhídrico en electrolitos secos para pulir superficies metálicas a través de transporte iónico es una novedad en el campo del pulido de metales que tiene ventajas y características que se explican en el texto a continuación.
Un electrolito seco comprende un conjunto de partículas porosas con la capacidad de retener cierta cantidad de líquido y una cierta cantidad de líquido eléctricamente conductor retenido en las partículas.
La presente invención se refiere específicamente a electrolitos secos que comprenden partículas porosas con la capacidad de retener cierta cantidad de líquido y una cierta cantidad de líquido eléctricamente conductor que contiene ácido clorhídrico.
Las partículas pueden ser de cualquier material, como polímero o cerámica, siempre que tengan capacidad para retener cierta cantidad de líquido y sean químicamente resistentes al ácido clorhídrico. Preferentemente, las partículas se basan en materiales poliméricos. Se ha demostrado que las partículas porosas basadas en un polímero sulfonado (lo que significa que el polímero tiene grupos de ácido sulfónico activos unidos) proporcionan buenos resultados. Preferentemente, el polímero sulfonado de las partículas porosas se basa en un copolímero de estireno y divinilbenceno.
El tamaño y la forma de las partículas pueden seleccionarse en función de la rugosidad que se ha de tratar. Específicamente, las partículas porosas pueden ser esferas de resina de intercambio iónico, tal como, por ejemplo, pero sin fines limitantes, AMBERLITE 252RFH con una capacidad de intercambio iónico de 1 ,7 eq L 1 , una densidad de 1 ,24 g mi 1, un tamaño de diámetro de entre 0,6 y 0,8 mm y una capacidad de retención de agua de entre el 52 y e I58 %.
La principal característica de la presente invención es que el líquido eléctricamente conductor contiene HCI. La concentración de HCI en el electrolito seco depende, entre otros parámetros, del metal o la aleación que se ha de pulir, de la superficie total y de la forma. Entre todos los disolventes posibles, el agua es el disolvente preferido. El proceso de electropulido puede realizarse usando un electrolito seco que contenga un líquido eléctricamente conductor equivalente (cuando se tiene en cuenta la cantidad total de disolvente en la resina) a una solución de HCI en agua en un intervalo entre el 1 y el 38 %. Una concentración superior al 38 % provocaría la emanación de gas cloruro de hidrógeno corrosivo, que haría necesario trabajar en un sistema presurizado sellado. Se obtienen mejores resultados en un intervalo del 3 al 20 %, preferentemente del 5 al 15 %. Concentraciones aproximadas al 15 % obtienen una velocidad de procesamiento rápida que se adapta a áreas superficiales grandes. Concentraciones más bajas aproximadas a un rendimiento del 5 % son mejores para áreas superficiales más pequeñas y formas más complejas.
Un problema habitual en los sistemas de electropulido es la formación de capas pasivadas en la superficie metálica que bloquean el proceso. Este problema es extremo en el caso del titanio, que forma una capa homogénea de T1O2, que no es conductora y no es fácil de vehiculizar.
Experimentalmente, se ha demostrado que, de forma no obvia, el ácido clorhídrico favorece la vehiculización de iones metálicos de la superficie a las partículas. El ácido clorhídrico tiene varios efectos. Es un ácido fuerte, lo que significa que aporta protones o iones hidronio (H+ H30+) a la solución. Estos iones tienen la mayor movilidad iónica en el agua, lo que aumenta la conductividad eléctrica, acelerando el proceso. Por otro lado, aporta al medio aniones cloruro Cl . En presencia de este anión, la oxidación del titanio genera no solo óxido de titanio, sino también una fracción de cloruro de titanio.
Ti0 + 2 H2O ® T1O2 + 4 H+ + 4 e- Ti° + 4 Cl ® TiCU + 4 e-
No es evidente que la formación de cloruro de titanio desestabilice la capa de pasivación formada en la superficie, haciéndola, por tanto, propensa a la retirada. Además, los aniones cloruro tienen una capacidad de complejación con metal relativamente alta, lo que favorece la vehiculización de iones metálicos de la superficie a la partícula.
El uso de la solución de ácido clorhídrico para electropulir puede ser engorroso debido a las emanaciones de cloruro de hidrógeno gaseoso, que son peligrosas para la salud y provocan corrosión en los equipos eléctricos. Además, la inmersión prolongada de la pieza metálica en ácido clorhídrico puede producir ataques sobre la superficie y puede tener un efecto perjudicial en el proceso de nivelación.
Por tanto, es interesante el efecto del ácido clorhídrico cuando forma parte de un electrolito seco. Debido al hecho de estar confinado en partículas, el efecto del HCI se centraría en los picos de la rugosidad de la superficie, teniendo de este modo un efecto más fuerte donde se necesita. Además, el movimiento relativo de las partículas con respecto a la pieza metálica hace que el tiempo de contacto partícula-metal sea relativamente corto, lo que favorece una acción localizada en la superficie. Más aún, el hecho de que el ácido clorhídrico esté confinado dentro de las partículas reduce la emanación del cloruro de hidrógeno gaseoso.
En resumen, puede usarse un electrolito seco que contenga HCI para pulir superficies metálicas, incluso cuando el metal forme capas de pasivación estables. Por esta razón, puede usarse un electrolito seco que contenga HCI en una amplia gama de metales, sin embargo, está especialmente indicado para aquellos metales que forman estas capas de pasivación tales como el titanio.
Por tanto, el uso de electrolitos secos que contienen ácido clorhídrico permite el electropulido de superficies de titanio y otros metales de una manera rápida y rentable.
También es un objeto de la presente invención el electrólito seco que contiene ácido clorhídrico.
Realizaciones de ejemplo
Estos son algunos casos de ejemplo sin fines limitantes.
Ejemplo 1
Se usó un electrolito seco hecho de AMBERLITE 252RFH que contenía HCI al 7 % en agua como líquido conductor para pulir una superficie de titanio. Se movió una pieza de titanio con 8 cm2 de superficie dentro del electrolito seco en un ciclo orbital y se hizo vibrar el recipiente del electrolito seco. Se aplicó una corriente eléctrica de 18 V, 20 ps positiva, 20 ps negativa y 10 ps a 0 V a la pieza de titanio usando una malla de iridio sobre titanio como contraelectrodo. Después de 10 min, la superficie había adquirido propiedades especulares.
Ejemplo 2
Se usó un electrolito seco, AMBERLITE 252RFH que contenía HCI al 14 % en agua como líquido conductor, para pulir. Se movió una pieza de titanio de 55 cm2 dentro del electrolito seco en un ciclo orbital y se hizo vibrar el recipiente del electrolito seco. Se aplicó una corriente eléctrica de 40 V, 20 ps positiva, 20 ps negativa y 10 ps a 0 V a la pieza de titanio usando una malla de iridio sobre titanio como contraelectrodo. Después de 30 min, la superficie había adquirido propiedades especulares.

Claims

REIVINDICACIONES
1. Uso de electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico caracterizado porque
el líquido conductor del electrólito seco comprende HCI.
2. Uso de electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico de acuerdo con la reivindicación 1 caracterizado porque
la concentración de HCI en relación con el disolvente está entre el 1 y el 38 %.
3. Uso de electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico de acuerdo con la reivindicación 2 caracterizado porque
la concentración de HCI en relación con el disolvente está entre el 5 y el 15 %.
4. Electrólito seco caracterizado porque comprende ácido clorhídrico como líquido conductor de acuerdo con cualquiera de las reivindicaciones anteriores.
PCT/ES2019/070751 2018-11-12 2019-11-06 USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE TRANSPORTE IÓNICO WO2020099699A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980083852.2A CN113195799A (zh) 2018-11-12 2019-11-06 使用干式电解质中的hcl通过离子传输来抛光钛以其他金属和合金表面
EP19884027.4A EP3882379B1 (en) 2018-11-12 2019-11-06 Use of hcl in dry electrolytes to polish ti and other metal and alloy surfaces by ion transport
US17/318,532 US20210262112A1 (en) 2018-11-12 2021-05-12 Use of hcl in dry electrolytes to polish ti and other metal and alloy surfaces by ion transport

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201831093 2018-11-12
ES201831093A ES2734500B2 (es) 2018-11-12 2018-11-12 Uso de un HCl en electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/318,532 Continuation US20210262112A1 (en) 2018-11-12 2021-05-12 Use of hcl in dry electrolytes to polish ti and other metal and alloy surfaces by ion transport

Publications (1)

Publication Number Publication Date
WO2020099699A1 true WO2020099699A1 (es) 2020-05-22

Family

ID=68763555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070751 WO2020099699A1 (es) 2018-11-12 2019-11-06 USO DE UN HCI EN ELECTROLITOS SECOS PARA PULIR Ti Y OTRAS SUPERFICIES DE METALES Y ALEACIONES A TRAVÉS DE TRANSPORTE IÓNICO

Country Status (5)

Country Link
US (1) US20210262112A1 (es)
EP (1) EP3882379B1 (es)
CN (1) CN113195799A (es)
ES (1) ES2734500B2 (es)
WO (1) WO2020099699A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710529A (zh) * 2020-12-18 2021-04-27 国电浙江北仑第三发电有限公司 同时用于服役后hr3c析出物观察和ebsd表征的试样的制备方法
DE102022123211A1 (de) 2022-09-12 2024-03-14 Otec Präzisionsfinish GmbH Elektrolytmedium und Verfahren zum elektrochemischen Polieren von metallischen Werkstücken unter Verwendung eines solchen Elektrolytmediums

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2756948B2 (es) * 2020-02-04 2022-12-19 Drylyte Sl Electrolito solido para el electropulido en seco de metales con moderador de actividad
JP2023553052A (ja) 2020-12-09 2023-12-20 ドライライテ エス.エル. 電解質媒体、該電解質媒体を用いた電解研磨プロセス、及び該電解研磨プロセスを実行する装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087874A (en) * 1961-02-13 1963-04-30 Don H Greisl Electropolishing of titanium base alloys
WO2001061080A1 (en) * 2000-02-14 2001-08-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing nitinol stents and method of using same
ES2604830A1 (es) 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1513532A (en) * 1977-08-11 1978-06-07 Kodak Ltd Method of electrolytically graining aluminium
WO1989006855A1 (en) * 1988-01-21 1989-07-27 Electro-Nucleonics, Inc. Dry ion-selective electrodes for the determination of ionic species in aqueous media
JP2003113500A (ja) * 2001-10-03 2003-04-18 Toshiba Corp 電解研磨方法
US7311862B2 (en) * 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
EP1685281A2 (en) * 2003-10-31 2006-08-02 E.I. Dupont de Nemours and Company, Inc. Membrane -mediated electropolishing
US7153411B2 (en) * 2003-12-30 2006-12-26 Boston Scientific Scimed, Inc. Method for cleaning and polishing metallic alloys and articles cleaned or polished thereby
KR20080005991A (ko) * 2005-04-29 2008-01-15 이 아이 듀폰 디 네모아 앤드 캄파니 지형적으로 패턴화된 막을 사용하는 막 매개 전해연마
US20170216993A1 (en) * 2014-08-07 2017-08-03 Fujimi Incorporated Composition for polishing titanium alloy material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087874A (en) * 1961-02-13 1963-04-30 Don H Greisl Electropolishing of titanium base alloys
WO2001061080A1 (en) * 2000-02-14 2001-08-23 Advanced Cardiovascular Systems, Inc. Electro-polishing fixture and electrolyte solution for polishing nitinol stents and method of using same
ES2604830A1 (es) 2016-04-28 2017-03-09 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3882379A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710529A (zh) * 2020-12-18 2021-04-27 国电浙江北仑第三发电有限公司 同时用于服役后hr3c析出物观察和ebsd表征的试样的制备方法
CN112710529B (zh) * 2020-12-18 2022-09-20 国电浙江北仑第三发电有限公司 同时用于服役后hr3c析出物观察和ebsd表征的试样的制备方法
DE102022123211A1 (de) 2022-09-12 2024-03-14 Otec Präzisionsfinish GmbH Elektrolytmedium und Verfahren zum elektrochemischen Polieren von metallischen Werkstücken unter Verwendung eines solchen Elektrolytmediums
WO2024056315A1 (de) 2022-09-12 2024-03-21 Otec Präzisionsfinish GmbH Elektrolytmedium und verfahren zum elektrochemischen polieren von metallischen werkstücken unter verwendung eines solchen elektrolytmediums

Also Published As

Publication number Publication date
EP3882379A1 (en) 2021-09-22
EP3882379A4 (en) 2022-01-12
EP3882379B1 (en) 2024-03-13
CN113195799A (zh) 2021-07-30
US20210262112A1 (en) 2021-08-26
ES2734500A1 (es) 2019-12-10
ES2734500B2 (es) 2020-06-03

Similar Documents

Publication Publication Date Title
ES2734500B2 (es) Uso de un HCl en electrolitos secos para pulir Ti y otras superficies de metales y aleaciones a través de transporte iónico
RU2750390C1 (ru) Применение h2so4 в качестве электролита в процессах сглаживания и полирования металлов путем переноса ионов с помощью свободных твердых тел
ES2734499B2 (es) Uso de ácidos sulfónicos en electrolitos secos para pulir superficies metálicas a través del transporte de iones
ES2604830B1 (es) Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso.
US7691250B2 (en) Membrane-mediated electropolishing with topographically patterned membranes
JP2007510065A (ja) 膜介在電解研磨
JP6143283B2 (ja) 陽極酸化を援用した形状創成エッチング方法及び高精度形状創成方法
ES2756948B2 (es) Electrolito solido para el electropulido en seco de metales con moderador de actividad
CN103510149B (zh) 一种带电解抛光液的湿式自动抛光方法及其设备
JP4536975B2 (ja) チタン電解研磨用浴組成物およびその使用方法
JP2003205428A (ja) 電解加工装置及び方法
JP5893066B2 (ja) ステンレス鋼用中性電解液及び電解方法
WO2020174112A1 (es) Método de fabricación de un electrolito seco y electrolito seco
WO2023238608A1 (ja) 表面加工方法
TWI404826B (zh) Stainless steel golf head supercritical fluid polishing method and stainless steel golf head
ES2749735T3 (es) Revestimiento funcional de superficie no corrosivo, que puede pulverizarse, al menos temporal
KANAZAWA et al. ELID grinding characteristics of Ti alloy using electrolyzed reduced water
TW200417629A (en) Plasma polishing method for titanium and titanium alloy products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019884027

Country of ref document: EP

Effective date: 20210614