WO2020098295A1 - 一种高效模拟移动床设备以及高效模拟移动床工艺 - Google Patents

一种高效模拟移动床设备以及高效模拟移动床工艺 Download PDF

Info

Publication number
WO2020098295A1
WO2020098295A1 PCT/CN2019/094854 CN2019094854W WO2020098295A1 WO 2020098295 A1 WO2020098295 A1 WO 2020098295A1 CN 2019094854 W CN2019094854 W CN 2019094854W WO 2020098295 A1 WO2020098295 A1 WO 2020098295A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving bed
simulated moving
valve
adsorption
adsorption column
Prior art date
Application number
PCT/CN2019/094854
Other languages
English (en)
French (fr)
Inventor
钱震
武靖为
李俊诚
张晶泉
菅青娥
张晓龙
高源�
邬学霆
陈浩庭
Original Assignee
内蒙古伊泰煤基新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古伊泰煤基新材料研究院有限公司 filed Critical 内蒙古伊泰煤基新材料研究院有限公司
Priority to EP19883376.6A priority Critical patent/EP3881919A4/en
Priority to JP2021515458A priority patent/JP7195667B2/ja
Priority to US17/293,862 priority patent/US11980833B2/en
Publication of WO2020098295A1 publication Critical patent/WO2020098295A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1842Simulated moving beds characterized by apparatus features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • B01D15/1828Simulated moving beds characterized by process features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2215/00Separating processes involving the treatment of liquids with adsorbents
    • B01D2215/02Separating processes involving the treatment of liquids with adsorbents with moving adsorbents
    • B01D2215/023Simulated moving beds

Definitions

  • the invention belongs to the technical field of simulated moving bed separation, and in particular relates to an efficient simulated moving bed device and an efficient simulated moving bed process.
  • the simulated moving bed is a separation device that uses the adsorption principle for separation operations.
  • the simulated moving bed technology has the advantages of high production efficiency, low consumption of organic solvents, large mass transfer driving force, and convenient automatic continuous production. It is widely used in petrochemical, food industry and pharmaceutical fields.
  • a complex industrial process with many influencing factors is a nonlinear, non-equilibrium, non-ideal, multi-degree-of-freedom periodic process.
  • the simulated moving bed divides the fixed adsorption bed into many sections, with adsorbent in the sections, and the liquid between the sections cannot directly circulate.
  • Each section is equipped with an import and export pipeline, which is controlled by a multi-channel rotary valve.
  • 20 of the 24 inlets and outlets only serve as a link between the segments, and the other 4 are used for the entry or exit of four strands of material, the material inlet and outlet at a certain moment
  • the location divides the entire adsorption bed into four zones, the distances between the zones are not equal, and the mass transfer between each stage is also different.
  • the simulated moving bed uses a multi-channel rotary valve to move the inlet and outlet of four materials upward at a speed synchronized with the change in solid phase concentration.
  • a closed loop is formed, the overall result of which is to keep the inlet and outlet positions immobile, and the effect of the solid adsorbent moving from top to bottom in the adsorber is basically the same, thereby achieving the separation effect.
  • the core equipment to realize this process is the multi-channel rotary valve, which can realize the periodic switching of the process through the rotation of the multi-channel rotary valve, so as to achieve the purpose of separating products.
  • CN100453867C discloses a 36-way rotary valve for simulating a moving bed of high-performance liquid preparation chromatography.
  • the 36-way rotary valve is connected to a stepper motor equipped with a synchronous pulley through a belt.
  • the rotary valve mainly includes a static disk and a casing mounted on the static disk. There is a transmission shaft between the static disk and the casing.
  • the synchronous belt wheel, the circumference of the static disk and the casing are equipped with sealing rings and are evenly fixed; from the bottom to the top, there are also a moving disk, a driving disk, a disc spring, an adjustment pad and a thrust bearing.
  • the 36-way rotary valve has a compact structure and a small dead volume, which greatly reduces the failure rate of the simulated moving bed equipment; however, the 36-way rotary valve is expensive to manufacture and is not convenient for disassembly and maintenance.
  • a real simulated moving bed device is required when replacing the adsorbent Shutdown, which reduces the long-term operation capability of the device.
  • the object of the present invention is to disclose an efficient simulation moving bed device and an efficient simulation moving bed process.
  • the invention adopts a program-controlled valve group to replace the traditional multi-channel rotary valve to control the cycle conversion of the simulated moving bed, which reduces the equipment cost; the program-controlled valve group can be flexibly cut out according to the maintenance requirements, which is convenient for equipment maintenance; each adsorption column can be cut out , After replacing the adsorbent, cut into the system, the long-term operation capability of the device is greatly improved.
  • the volume of each pipeline connected to the adsorption column in the present invention is the same, and the relative position of the circulating pump in the area is unchanged, so the flow rate of the circulating pump is unchanged, the pressure fluctuation is small, and the control is simple.
  • the first aspect of the present invention discloses an efficient simulated moving bed device, and its technical solution is as follows.
  • a high-efficiency simulated moving bed equipment including an adsorption bed, a raw material feeding system, a desorbent feeding system, a circulation system, an extraction liquid system, a residual liquid extraction system, a program control valve group and an automatic control system; Including several adsorption columns, divided into adsorption zone, purification zone, desorption zone;
  • each adsorption column is provided with a raw material feed valve, a desorbent feed valve, and a circulating liquid feed valve;
  • each adsorption column is provided with a residual liquid discharge valve and a discharge liquid discharge valve;
  • One-way valve is installed between two adjacent adsorption columns
  • the raw material feeding system is connected to the raw material feeding valve of each adsorption column;
  • the desorbent feeding system is connected to the desorbent feeding valve of each adsorption column;
  • the circulating system includes a circulating pump, and the circulating system is connected to the circulating liquid feed valve of each adsorption column through the circulating pump;
  • the extraction liquid system is connected to the extraction liquid discharge valve of each adsorption column;
  • the residual liquid extraction system is connected to the residual liquid discharge valve of each adsorption column;
  • All valves form a program-controlled valve group.
  • the program-controlled valve group is connected to an automatic control system.
  • the automatic control system can control the opening and closing states of each valve in the program-controlled valve group.
  • the adsorption column is 8 * N, wherein N is an integer greater than or equal to 1.
  • the raw material feeding system includes a raw material pump and a raw material heater located downstream of the raw material pump, and an outlet line of the raw material heater is connected to the adsorption column.
  • the desorbent feeding system includes a desorbent pump and a desorbent heater located downstream of the desorbent pump, and the outlet line of the desorbent heater is connected to the adsorption column.
  • the extraction liquid system includes an extraction liquid pump, and the extraction liquid pump is connected to the extraction liquid line of the adsorption bed.
  • a cooler is provided on the extraction liquid line.
  • the residual liquid pumping system includes a residual liquid pump or a back pressure valve, and the residual liquid pump or the back pressure valve is connected to the residual liquid pipeline of the adsorption bed.
  • a cooler is provided on the raffinate line.
  • the feed port of the circulation pump of the circulation system is connected to the extraction liquid line of the adsorption bed.
  • a heater and / or a flow meter are provided downstream of the circulation pump of the circulation system.
  • valve types in the program-controlled valve group are independently selected as one of a ball valve, a needle valve, a globe valve, and a butterfly valve.
  • the actuator of the valve is pneumatic or electric.
  • the relative position of the circulation pump in the area is unchanged.
  • the volume of the connecting line between each adsorption column is the same.
  • the volume of the pipeline connecting each adsorption column to the circulation pump is the same.
  • the adsorption zone further includes a buffer zone, that is, the adsorption bed is divided into an adsorption zone, a purification zone, a desorption zone, and a buffer zone.
  • the second aspect of the present invention discloses an efficient simulated moving bed process using the above-mentioned highly efficient simulated moving bed equipment, and its technical solution is as follows.
  • An efficient simulated moving bed process using the highly efficient simulated moving bed equipment controls valve switching to change the position of each feed and discharge, and realizes simulated movement of the adsorption zone, purification zone, and desorption zone.
  • the valve is switched to change the position of each feed and discharge, and the simulated movement of the adsorption zone, the purification zone, the desorption zone, and the buffer zone is realized.
  • the high-efficiency simulated moving bed process is specifically:
  • the adsorption zone is the adsorption column 5 and the adsorption column 6, the raw materials enter the adsorption column 5 and the adsorption column 6, adsorb the target product components, and the non-target components flow out from the outlet;
  • the purification area is the adsorption column 3 and the adsorption column 4, the circulating liquid is driven into the adsorption column 3 and the adsorption column 4 by the circulating pump, and the target product components adsorbed in the previous cycle are purified;
  • the desorption zone is the adsorption column 1 and the adsorption column 2.
  • the desorbent pump drives the desorbent and part of the desorbent from the buffer into the adsorption column 1 and the adsorption column 2.
  • the purified target product components are washed in the last cycle Take off and pull out the system to achieve the purpose of adsorption separation;
  • the buffer zone is adsorption column 7 and adsorption column 8. Most of the target product components in the raw materials have been adsorbed in the adsorption zone, and a large amount of non-target components and a small amount of the mixture of target components enter the buffer zone, waiting for the next cycle get on;
  • the present invention has achieved the following beneficial effects:
  • the present invention is directed to the technical problems of existing multi-channel rotary valves that are costly, difficult to overhaul, have poor long-term operation capability of the device, and are difficult to control. They creatively propose a high-efficiency simulated moving bed equipment, which uses a program-controlled valve group to replace the traditional
  • the multi-channel rotary valve controls the cycle conversion of the simulated moving bed, which reduces the equipment cost; the program-controlled valve group can be flexibly cut out according to the maintenance requirements, which is convenient for equipment maintenance; each adsorption column can be cut out for maintenance.
  • the long-term operation capability has been greatly improved.
  • the pipelines connected to the adsorption column have the same volume, and the relative position of the circulating pump in the area is unchanged, so the flow rate of the circulating pump is unchanged, the pressure fluctuation is small, and the control is simple.
  • FIG. 1 is a schematic diagram of a simulated moving bed device using a multi-channel rotary valve in the prior art.
  • Fig. 2 is a schematic diagram of an efficient simulated moving bed device of the present invention.
  • FIG. 1 is a schematic diagram of a simulated moving bed device using a multi-channel rotary valve in the prior art.
  • the simulated moving bed divides the fixed adsorption bed into many sections, which are equipped with adsorbents.
  • the rotation of the multi-channel rotary valve realizes the periodic switching of the process.
  • the position of the material inlet and outlet at a certain moment divides the entire adsorption bed layer into four Zone, the simulated moving bed uses a multi-channel rotary valve to move the inlet and outlet of four materials upward at a speed synchronized with the change in solid phase concentration.
  • a closed loop is formed, the overall result of which is to keep the inlet and outlet positions immobile, and the effect of the solid adsorbent moving from top to bottom in the adsorber is basically the same, thereby achieving the separation effect of the A component and the B component.
  • the core equipment to realize this process is the multi-channel rotary valve, so as to achieve the purpose of separating products.
  • a simulated moving bed using a multi-channel rotary valve has technical problems of high cost, difficult maintenance, poor long-term operation capability of the device, and difficulty in control, which affects the separation effect of the simulated moving bed.
  • the present invention proposes a new type of high-efficiency simulated moving bed equipment.
  • the technical solutions of the present invention will be described in detail below in conjunction with specific embodiments and drawings.
  • an adsorption bed composed of 8 adsorption columns is taken as an example.
  • a high-efficiency simulated moving bed equipment including an adsorption bed, a raw material feeding system, a desorbent feeding system, a circulation system, an extraction liquid system, a residual liquid extraction system, a program control valve group and an automatic control system; wherein, the adsorption bed Several adsorption columns are divided into adsorption zone, purification zone, desorption zone and buffer zone (It should be noted that this embodiment uses an adsorption bed containing adsorption zone, purification zone, desorption zone and buffer zone, but the buffer zone is In the present invention, it is not necessary to choose, it is optional);
  • the upper ends of the adsorption columns 1-8 are provided with raw material feed valves A3, B3, C3, D3, E3, F3, G3, H3, and desorbent feed valves A2, B2, C2, D2, E2, F2, G2, H2 , Circulating liquid feed valves A4, B4, C4, D4, E4, F4, G4, H4;
  • the lower ends of the adsorption columns 1-8 are respectively equipped with residual liquid discharge valves A5, B5, C5, D5, E5, F5, G5, H5, and the extracted liquid discharge valves A6, B6, C6, D6, E6, F6, G6 , H6;
  • the raw material feeding system is connected to the raw material feeding valves A3, B3, C3, D3, E3, F3, G3, H3 of each adsorption column;
  • the desorbent feeding system is connected to the desorbent feeding valves A2, B2, C2, D2, E2, F2, G2, H2 of each adsorption column;
  • the circulating system includes a circulating pump, and the circulating liquid feeding system is connected to the circulating liquid feeding valves A4, B4, C4, D4, E4, F4, G4, and H4 of each adsorption column through the circulating pump;
  • the extraction liquid system is connected to the extraction liquid discharge valves A6, B6, C6, D6, E6, F6, G6 and H6 of each adsorption column
  • the raffinate system is connected to the raffinate discharge valves A5, B5, C5, D5, E5, F5, G5, H5 of each adsorption column;
  • the relative position of the circulation pump in the area is unchanged, so the flow rate of the circulation pump is unchanged, the volume of the connecting pipeline between each adsorption column is the same, and each adsorption column is connected to the The pipeline volume is the same. Therefore, the flow rate of the circulation pump in this embodiment is unchanged, the pressure fluctuation is small, and the control is simple.
  • all valves form a program-controlled valve group
  • the program-controlled valve group is connected to an automatic control system.
  • the automatic control system can control the opening and closing states of each valve in the program-controlled valve group.
  • the raw material feeding system includes a raw material pump and a raw material heater located downstream of the raw material pump, and the raw material heater outlet line is connected to the adsorption column; the raw material pump can provide feed for the raw material feed Power, and the raw material heater can heat the raw material to a suitable problem and improve the adsorption activity.
  • the specific pumping pressure and heating temperature are determined according to the characteristics of the material separation system.
  • the desorbent feeding system includes a desorbent pump and a desorbent heater located downstream of the desorbent pump.
  • the outlet line of the desorbent heater is connected to the adsorption column; the desorbent pump may be
  • the desorbent feed provides the feeding power, and the desorbent heater can heat the desorbent to a suitable temperature to improve the desorption capacity.
  • the specific pumping pressure and heating temperature are determined according to the characteristics of the material separation system.
  • the extraction liquid system includes an extraction liquid pump, and the extraction liquid pump is connected to the extraction liquid line of the adsorption bed.
  • the extraction liquid pump provides the extraction power of the extraction liquid.
  • the raffinate system includes a raffinate pump or back pressure valve, and the raffinate pump or back pressure valve is connected to the raffinate line of the adsorption bed.
  • the residual liquid pump provides the extraction power for the residual liquid.
  • the feed port of the circulation pump of the circulation system is connected to the extraction liquid line of the adsorption bed; the extraction liquid is circulated.
  • the valve types in the programmable valve group are independently selected as one of a ball valve, a needle valve, a globe valve, and a butterfly valve; that is, the 56 valves in this embodiment are independent It is one of ball valve, needle valve, globe valve and butterfly valve, and there is no interference with each other.
  • the valve actuator is pneumatic or electric.
  • the relative position of the circulation pump in the area is unchanged, so the flow rate of the circulation pump is unchanged, the volume of the connecting pipeline between each adsorption column is the same, and each adsorption The volume of the line connecting the column to the circulation pump is the same. Therefore, the flow rate of the circulation pump in this embodiment is unchanged, the pressure fluctuation is small, and the control is simple.
  • the simulated moving bed process of the simulated moving bed equipment of the eight adsorption columns of Example 1 is used to control the valve switching to change the position of each feed and discharge, and the simulated movement of the adsorption zone, purification zone, desorption zone, and buffer zone is realized.
  • the specific program control steps are:
  • the adsorption zone is the adsorption column 5 and the adsorption column 6, the raw materials enter the adsorption column 5 and the adsorption column 6, adsorb the target product components, and the non-target components flow out from the outlet;
  • the purification area is the adsorption column 3 and the adsorption column 4, the circulating liquid is driven into the adsorption column 3 and the adsorption column 4 by the circulating pump, and the target product components adsorbed in the previous cycle are purified;
  • the desorption zone is the adsorption column 1 and the adsorption column 2.
  • the desorbent pump drives the desorbent and part of the desorbent from the buffer into the adsorption column 1 and the adsorption column 2.
  • the purified target product components are washed in the last cycle Take off and pull out the system to achieve the purpose of adsorption separation;
  • the buffer zone is adsorption column 7 and adsorption column 8. Most of the target product components in the raw materials have been adsorbed in the adsorption zone, and a large amount of non-target components and a small amount of the mixture of target components enter the buffer zone, waiting for the next cycle get on;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明公开了一种高效模拟移动床设备以及高效模拟移动床工艺;所述的高效模拟移动床设备,包括吸附床、原料进料系统、解吸剂进料系统、循环系统、抽出液系统、抽余液系统、程控阀组以及自动控制系统;本发明采用程控阀组代替传统的多通道旋转阀控制模拟移动床的周期转换,降低了设备造价;本发明中与吸附柱相连的各管线体积相同,循环泵在区域中的相对位置不变,因此循环泵的流量不变,压力波动小,控制简单。

Description

一种高效模拟移动床设备以及高效模拟移动床工艺 技术领域
本发明属于模拟移动床分离技术领域,具体涉及一种高效模拟移动床设备以及高效模拟移动床工艺。
背景技术
模拟移动床是利用吸附原理进行分离操作的分离设备。模拟移动床技术作为连续色谱的主要代表,具有生产效率高、有机溶剂消耗少、传质推动力大、便于自动化连续生产等优点,被广泛应用于石油化工、食品工业和制药等领域,它是一个复杂的工业过程且影响因素众多的非线性、非平衡、非理想、多自由度的周期性过程。
模拟移动床把固定吸附床分为许多段,段内装有吸附剂,段间液体不能直接流通。每段均装有进出口管道,由多通道旋转阀控制其进出。典型地,在具有8个吸附柱的模拟移动床中,24个进出口中的20个只起段间联系的作用,另4个供四股物料的进入或离出,某一瞬间的物料进出口位置把整个吸附床层分成了四个区,各区距离不等长,每段相际传质也不同。
模拟移动床利用多通道旋转阀使四个物料的进出口以与固相浓度的变化同步的速度上移。这样,构成一闭合回路,其总的结果与保持进出口位置不动,而固体吸附剂在吸附器中自上而下移动的效果基本相同,从而达到分离效果。而实现此过程的核心设备就是多通道旋转阀,通过多通道旋转阀的旋转来实现流程的周期性切换,从而达到分离产品的目的。
现有技术中,CN100453867C公开了一种用于高效液相制备色谱模拟移动床的36通旋转阀,该36通旋转阀通过皮带与一个安装有同步带轮的步进电机相连,所述的36通旋转阀主要包括静盘和安装在静盘上的罩壳,静盘与罩壳之间有传动轴,传动轴的一端插入静盘的中心孔中, 另一端穿出罩壳并安装另一同步带轮,静盘和罩壳的圆周边装有密封圈并均匀固定;静盘与罩壳之间从下至上还依次有动盘、驱动盘、碟形弹簧、调整垫块和推力轴承。该36通旋转阀结构紧凑、死体积小,极大地减少了模拟移动床设备的故障率;但是该36通旋转阀造价较高,不便于拆卸检修,更换吸附剂时需要真个模拟移动床装置停工,这就降低了装置长周期运转能力。
将程控阀用于模拟移动床已经是现有技术,Axens Eluxyl模拟移动床工艺与Sorpx模拟移动床工艺也是通过n*24个程控阀组进行控制。但由于其与吸附柱相连的各管线体积不同,同时循环泵在区域中的相对位置周期性变化,因此,循环泵流量随所在区域大幅度变化,控制困难,压力波动大。
发明内容
针对现有技术中模拟移动床存在的上述技术问题,本发明的目的是公开一种高效模拟移动床设备以及高效模拟移动床工艺。本发明采用程控阀组代替传统的多通道旋转阀控制模拟移动床的周期转换,降低了设备造价;程控阀组可根据检修要求灵活切出,方便设备检修;每根吸附柱均可切出检修,更换吸附剂后切入系统,装置长周期运转能力大幅提高。同时,本发明中与吸附柱相连的各管线体积相同,循环泵在区域中的相对位置不变,因此循环泵的流量不变,压力波动小,控制简单。
本发明的第一个方面公开一种高效模拟移动床设备,其技术方案如下。
一种高效模拟移动床设备,包括吸附床、原料进料系统、解吸剂进料系统、循环系统、抽出液系统、抽余液系统、程控阀组以及自动控制系统;其中,所述的吸附床包括若干根吸附柱,分为吸附区、提纯区、脱附区;
每一根所述的吸附柱的上端设置有原料进料阀、解吸剂进料阀、循环液进料阀;
每一根所述的吸附柱的下端设置有抽余液出料阀、抽出液出料阀;
相邻两根吸附柱之间设置单向阀;
所述的原料进料系统连接每一根吸附柱的原料进料阀;
所述的解吸剂进料系统连接每一根吸附柱的解吸剂进料阀;
所述的循环系统的包括循环泵,所述的循环系统通过循环泵连接每一根吸附柱的循环液进料阀;
所述的抽出液系统连接每一根吸附柱的抽出液出料阀;
所述的抽余液系统连接每一根吸附柱的抽余液出料阀;
所有阀门组成程控阀组,程控阀组与自动控制系统相连,自动控制系统能够控制程控阀组中每一个阀门的开、闭状态。
优选的,所述的吸附柱为3~100根。
优选的,所述的吸附柱为8*N根,其中,N为大于等于1的整数。
优选的,所述的原料进料系统包括原料泵以及位于原料泵下游的原料加热器,原料加热器出口管线连接吸附柱。
优选的,所述的解吸剂进料系统包括解吸剂泵以及位于解吸剂泵下游的解吸剂加热器,解吸剂加热器出口管线连接吸附柱。
优选的,所述的抽出液系统包括抽出液泵,抽出液泵连接吸附床的抽出液管线。
优选的,所述的抽出液管线上设置有冷却器。
优选的,所述的抽余液系统包括抽余液泵或背压阀,抽余液泵或背压阀连接吸附床的抽余液管线。优选的,所述的抽余液管线上设置有冷却器。
优选的,所述的循环系统的循环泵的进料口连接吸附床的抽出液管线。
优选的,所述的循环系统的循环泵的下游设置有加热器和/或流量计。
优选的,所述的程控阀组中的阀门类型各自独立的选择为球阀、针阀、截止阀、蝶阀中的一种。
优选的,阀门的执行机构为气动或电动。
优选的,所述的循环泵在区域中的相对位置不变。
优选的,每一根吸附柱之间的连接管线体积相同。
优选的,每一根吸附柱连接到循环泵的管线体积相同。
优选的,所述吸附区还包括缓冲区,即,所述的吸附床分为吸附区、提纯区、脱附区以及缓冲区。
本发明的第二个方面公开了使用上述的高效模拟移动床设备的高效模拟移动床工艺,其技术方案如下。
一种使用所述的高效模拟移动床设备的高效模拟移动床工艺,控制阀门切换以改变每次进出料的位置,实现了吸附区、提纯区、脱附区的模拟移动。
优选的,控制阀门切换以改变每次进出料的位置,实现了吸附区、提纯区、脱附区、缓冲区的模拟移动。
优选的,所述的吸附柱为8根,所述的高效模拟移动床工艺具体是:
0-t时序,打开吸附柱1的单向阀A1、解吸剂进料阀A2、吸附柱2的解吸剂进料阀B2、抽出液出料阀B6、吸附柱3的循环液进料阀C4、吸附柱4的单向阀D1、吸附柱5的单向阀E1、原料进料阀E3、吸附柱6的单向阀F1、抽余液出料阀F5、吸附柱7的单向阀G1、吸附柱8的单向阀H1打开,其余阀关闭;
此时,吸附区为吸附柱5及吸附柱6,原料进入吸附柱5和吸附柱6,对目标产品组分进行吸附,非目标组分由出口流出;
提纯区为吸附柱3及吸附柱4,由循环泵带动循环液进入吸附柱3和吸附柱4,将上个周期中吸附的目标产品组分进行提纯;
脱附区为吸附柱1及吸附柱2,由解吸剂泵带动解吸剂以及部分来自于缓冲区的解吸剂进入吸附柱1和吸附柱2,上个周期中经过提纯的目标产品组分进行洗脱,抽出系统,达到吸附分离的目的;
缓冲区为吸附柱7及吸附柱8,原料中的目标产品组分大部分已在吸附区被吸附,剩余大量非目标组分及少量目标组分的混合液进入缓冲区,等待下一个周期的进行;
控制阀门切换以改变t-2t、2t-3t、3t-4t时序进出料的位置,实现了吸附区、提纯区、脱附区、缓冲区的模拟移动。
与现有技术相比,本发明取得了以下有益的效果:
本发明针对现有技术中存在的多通道旋转阀造价高、不易检修、装置长期运转能力差、难于控制的技术问题,创造性地提出了一种高效模拟移动床设备,采用程控阀组代替传统的多通道旋转阀控制模拟移动床的周期转换,降低了设备造价;程控阀组可根据检修要求灵活切出,方便设备检修;每根吸附柱均可切出检修,更换吸附剂后切入系统,装置长周期运转能力大幅提高。本发明中与吸附柱相连的各管线体积相同,循环泵在区域中的相对位置不变,因此循环泵的流量不变,压力波动小,控制简单。
附图说明
图1是现有技术中的采用多通道旋转阀的模拟移动床设备的示意图。
图2是本发明的一种高效模拟移动床设备的示意图。
具体实施方式
图1是现有技术中的采用多通道旋转阀的模拟移动床设备的示意图。模拟移动床把固定吸附床分为许多段,段内装有吸附剂,通过多通道旋转阀的旋转来实现流程的周期性切换,某一瞬间的物料进出口位置把整个吸附床层分成了四个区,模拟移动床利用多通道旋转阀使四个物料的进出口以与固相浓度的变化同步的速度上移。这样,构成一闭合回路,其总的结果与保持进出口位置不动,而固体吸附剂在吸附器中自上而下移动的效果基本相同,从而达到A组分和B组分的分离效果。而实现此过程的核心设备就是多通道旋转阀,从而达到分离产品的目的。现有技术采用多通道旋转阀的模拟移动床存在造价高、不易检修、装置长期运转能力差、难于控制的技术问题,影响了模拟移动床的分离效果。
为了解决上述技术问题,本发明提出了一种新型高效模拟移动床设备,下面结合具体实施例以及附图对本发明的技术方案进行详细阐述。
实施例1
参见图2,以8根吸附柱组成的吸附床为例。
一种高效模拟移动床设备,包括吸附床、原料进料系统、解吸剂进料系统、循环系统、抽出液系统、抽余液系统、程控阀组以及自动控制系统;其中,所述的吸附床若干根吸附柱,分为吸附区、提纯区、脱附区以及缓冲区(需要指出的是,本实施例采用包含吸附区、提纯区、脱附区以及缓冲区的吸附床,但是缓冲区对于本发明而言并不是必须要选的,属于可选的);
吸附柱1-8的上端分别设置有原料进料阀A3、B3、C3、D3、E3、F3、G3、H3,解吸剂进料阀A2、B2、C2、D2、E2、F2、G2、H2,循环液进料阀A4、B4、C4、D4、E4、F4、G4、H4;
吸附柱1-8的下端分别设置有抽余液出料阀A5、B5、C5、D5、E5、F5、G5、H5,抽出液出料阀A6、B6、C6、D6、E6、F6、G6、H6;
相邻两根吸附柱之间设置单向阀A1、B1、C1、D1、E1、F1、G1、H1;
所述的原料进料系统连接每一根吸附柱的原料进料阀A3、B3、C3、D3、E3、F3、G3、H3;
所述的解吸剂进料系统连接每一根吸附柱的解吸剂进料阀A2、B2、C2、D2、E2、F2、G2、H2;
所述的循环系统的包括循环泵,所述的循环液进料系统通过循环泵连接每一根吸附柱的循环液进料阀A4、B4、C4、D4、E4、F4、G4、H4;
所述的抽出液系统连接每一根吸附柱的抽出液出料阀A6、B6、C6、D6、E6、F6、G6、H6;
所述的抽余液系统连接每一根吸附柱的抽余液出料阀A5、B5、C5、D5、E5、F5、G5、H5;
本实施例中,所述的循环泵在区域中的相对位置不变,因此循环泵的流量不变,每一根吸附柱之间的连接管线体积相同,每一根吸附柱连接到循环泵的管线体积相同。因此,本实施例的循环泵的流量不变,压力波动小,控制简单。
本实施例中,所有阀门组成程控阀组,程控阀组与自动控制系统相 连,自动控制系统能够控制程控阀组中每一个阀门的开、闭状态。
作为本实施例的改进,可选择的,所述的原料进料系统包括原料泵以及位于原料泵下游的原料加热器,原料加热器出口管线连接吸附柱;原料泵可以为原料进料提供进料动力,而原料加热器可以将原料加热至合适问题,提高吸附活性,具体的泵送压力和加热温度根据物分离体系的特点决定。
作为本实施例的改进,可选择的,所述的解吸剂进料系统包括解吸剂泵以及位于解吸剂泵下游的解吸剂加热器,解吸剂加热器出口管线连接吸附柱;解吸剂泵可以为解吸剂进料提供进料动力,而解吸剂加热器可以将解吸剂加热至合适温度,提高解吸能力,具体的泵送压力和加热温度根据物分离体系的特点决定。
作为本实施例的改进,可选择的,所述的抽出液系统包括抽出液泵,抽出液泵连接吸附床的抽出液管线。抽出液泵提供抽出液的抽出动力。
作为本实施例的改进,可选择的,所述的抽余液系统包括抽余液泵或背压阀,抽余液泵或背压阀连接吸附床的抽余液管线。抽余液泵提供抽余液的抽出动力。
作为本实施例的改进,可选择的,所述的循环系统的循环泵的进料口连接吸附床的抽出液管线;将抽出液进行循环。
作为本实施例的改进,可选择的,所述的程控阀组中的阀门类型各自独立的选择为球阀、针阀、截止阀、蝶阀中的一种;即本实施例的56个阀门各自独立的为球阀、针阀、截止阀、蝶阀中的一种,相互之间没有干扰。阀门执行机构为气动或电动。
作为本实施例的改进,可选择的,所述的循环泵在区域中的相对位置不变,因此循环泵的流量不变,每一根吸附柱之间的连接管线体积相同,每一根吸附柱连接到循环泵的管线体积相同。因此,本实施例的循环泵的流量不变,压力波动小,控制简单。
实施例2
采用实施例1的8根吸附柱的模拟移动床设备的模拟移动床工艺, 控制阀门切换以改变每次进出料的位置,实现了吸附区、提纯区、脱附区、缓冲区的模拟移动。具体程序控制步序是:
0-t时序,打开吸附柱1的单向阀A1、解吸剂进料阀A2、吸附柱2的解吸剂进料阀B2、抽出液出料阀B6、吸附柱3的循环液进料阀C4、吸附柱4的单向阀D1、吸附柱5的单向阀E1、原料进料阀E3、吸附柱6的单向阀F1、抽余液出料阀F5、吸附柱7的单向阀G1、吸附柱8的单向阀H1打开,其余阀关闭;
此时,吸附区为吸附柱5及吸附柱6,原料进入吸附柱5和吸附柱6,对目标产品组分进行吸附,非目标组分由出口流出;
提纯区为吸附柱3及吸附柱4,由循环泵带动循环液进入吸附柱3和吸附柱4,将上个周期中吸附的目标产品组分进行提纯;
脱附区为吸附柱1及吸附柱2,由解吸剂泵带动解吸剂以及部分来自于缓冲区的解吸剂进入吸附柱1和吸附柱2,上个周期中经过提纯的目标产品组分进行洗脱,抽出系统,达到吸附分离的目的;
缓冲区为吸附柱7及吸附柱8,原料中的目标产品组分大部分已在吸附区被吸附,剩余大量非目标组分及少量目标组分的混合液进入缓冲区,等待下一个周期的进行;
控制阀门切换以改变t-2t、2t-3t、3t-4t时序进出料的位置,实现了吸附区、提纯区、脱附区、缓冲区的模拟移动。
0-1t、t-2t、2t-3t、3t-4t时序的阀门控制参见表1-表4。
表1 0-1t时序的阀门控制
Figure PCTCN2019094854-appb-000001
表2 t-2t时序的阀门控制
Figure PCTCN2019094854-appb-000002
表3 2t-3t时序的阀门控制
Figure PCTCN2019094854-appb-000003
表4 3t-4t时序的阀门控制
Figure PCTCN2019094854-appb-000004

Claims (18)

  1. 一种高效模拟移动床设备,其特征在于,包括吸附床、原料进料系统、解吸剂进料系统、循环系统、抽出液系统、抽余液系统、程控阀组以及自动控制系统;其中,所述的吸附床包括若干根吸附柱,分为吸附区、提纯区、脱附区;
    每一根所述的吸附柱的上端设置有原料进料阀、解吸剂进料阀、循环液进料阀;
    每一根所述的吸附柱的下端设置有抽余液出料阀、抽出液出料阀;
    相邻两根吸附柱之间设置单向阀;
    所述的原料进料系统连接每一根吸附柱的原料进料阀;
    所述的解吸剂进料系统连接每一根吸附柱的解吸剂进料阀;
    所述的循环系统的包括循环泵,所述的循环系统通过循环泵连接每一根吸附柱的循环液进料阀;
    所述的抽出液系统连接每一根吸附柱的抽出液出料阀;
    所述的抽余液系统连接每一根吸附柱的抽余液出料阀;
    所有阀门组成程控阀组,程控阀组与自动控制系统相连,自动控制系统能够控制程控阀组中每一个阀门的开、闭状态。
  2. 根据权利要求1所述的一种高效模拟移动床设备,其特征在于,所述的吸附柱为3~100根。
  3. 根据权利要求1或2所述的一种高效模拟移动床设备,其特征在于,所述的吸附柱为8*N根,其中,N为大于等于1的整数。
  4. 根据权利要求1-3中任一项所述的一种高效模拟移动床设备,其特征在于,所述的原料进料系统包括原料泵以及位于原料泵下游的原料加热器,原料加热器出口管线连接吸附柱。
  5. 根据权利要求1-4中任一项所述的一种高效模拟移动床设备,其特征在于,所述的解吸剂进料系统包括解吸剂泵以及位于解吸剂泵下游的解吸剂加热器,解吸剂加热器出口管线连接吸附柱。
  6. 根据权利要求1-5中任一项所述的一种高效模拟移动床设备,其特征在于,所述的抽出液系统包括抽出液泵,抽出液泵连接吸附床的抽出液管线。
  7. 根据权利要求6所述的一种高效模拟移动床设备,其特征在于,所述的抽出液管线上设置有冷却器。
  8. 根据权利要求1-7中任一项所述的一种高效模拟移动床设备,其特征在于所述的抽余液系统包括抽余液泵或背压阀,抽余液泵或背压阀连接吸附床的抽余液管线。
  9. 根据权利要求8所述的一种高效模拟移动床设备,其特征在于,所述的抽余液管线上设置有冷却器。
  10. 根据权利要求1-9中任一项所述的一种高效模拟移动床设备,其特征在于,所述的循环系统的循环泵的进料口连接吸附床的抽出液管线。
  11. 根据权利要求1-10中任一项所述的一种高效模拟移动床设备,其特征在于,所述的循环系统的循环泵的下游设置有加热器和/或流量计。
  12. 根据权利要求1-11中任一项所述的一种高效模拟移动床设备,其特征在于,所述的程控阀组中的阀门类型各自独立的选择为球阀、针阀、截止阀、蝶阀中的一种;执行机构为气动或电动。
  13. 根据权利要求1-12中任一项所述的一种高效模拟移动床设备,其特征在于,所述的循环泵在区域中的相对位置不变。
  14. 根据权利要求1-13中任一项所述的一种高效模拟移动床设备,其特征在于,每一根吸附柱之间的连接管线体积相同。
  15. 根据权利要求1-14中任一项所述的一种高效模拟移动床设备,其特征在于,每一根吸附柱连接到循环泵的管线体积相同。
  16. 根据权利要求1-15中任一项任意一项所述的一种高效模拟移动床设备,其特征在于,所述吸附区还包括缓冲区。
  17. 一种使用权利要求1-15任意一项所述的高效模拟移动床设备的高效模拟移动床工艺,其特征在于,控制阀门切换以改变每次进出料的位置,实现吸附区、提纯区、脱附区的模拟移动。
  18. 一种使用权利要求16所述的高效模拟移动床设备的高效模拟移动床工艺,其特征在于,控制阀门切换以改变每次进出料的位置,实现吸附区、提纯区、脱附区、缓冲区的模拟移动。
PCT/CN2019/094854 2018-11-14 2019-07-05 一种高效模拟移动床设备以及高效模拟移动床工艺 WO2020098295A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19883376.6A EP3881919A4 (en) 2018-11-14 2019-07-05 HIGH EFFICIENCY SIMULATED MOVING BED DEVICE AND TECHNIQUE
JP2021515458A JP7195667B2 (ja) 2018-11-14 2019-07-05 高効率擬似移動床装置及び高効率擬似移動床プロセス
US17/293,862 US11980833B2 (en) 2018-11-14 2019-07-05 Efficient simulated moving bed device and efficient simulated moving bed process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811362623.8 2018-11-14
CN201811362623.8A CN109432822B (zh) 2018-11-14 2018-11-14 一种高效模拟移动床设备以及高效模拟移动床工艺

Publications (1)

Publication Number Publication Date
WO2020098295A1 true WO2020098295A1 (zh) 2020-05-22

Family

ID=65554385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094854 WO2020098295A1 (zh) 2018-11-14 2019-07-05 一种高效模拟移动床设备以及高效模拟移动床工艺

Country Status (5)

Country Link
US (1) US11980833B2 (zh)
EP (1) EP3881919A4 (zh)
JP (1) JP7195667B2 (zh)
CN (1) CN109432822B (zh)
WO (1) WO2020098295A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109432822B (zh) 2018-11-14 2023-09-29 内蒙古伊泰煤基新材料研究院有限公司 一种高效模拟移动床设备以及高效模拟移动床工艺
CN113980701B (zh) * 2021-11-19 2023-08-04 内蒙古伊泰煤基新材料研究院有限公司 利用模拟移动床分离正构烃和异构烃的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127670A (zh) * 1994-06-22 1996-07-31 法国石油公司 以减小长度校正死体积的色谱法模拟移动床分离方法
US6004518A (en) * 1997-12-12 1999-12-21 Uop Llc High-purity simulated moving bed adsorptive separation apparatus
CN100453867C (zh) 2007-01-19 2009-01-21 西安交通大学 一种用于高效液相制备色谱模拟移动床的36通旋转阀
CN202315413U (zh) * 2011-11-18 2012-07-11 上海兆光色谱分离技术有限公司 多级循环模拟移动床
CN203220780U (zh) * 2013-05-21 2013-10-02 吕获柱 变频控压控量顺序模拟移动床
CN105521622A (zh) * 2014-09-30 2016-04-27 中国石油化工股份有限公司 模拟移动床吸附塔外管路淋洗设备及其在吸附分离中的应用
CN107879900A (zh) * 2017-12-22 2018-04-06 中触媒新材料股份有限公司 一种甲酚混合异构体分离提纯的工艺方法
CN109432822A (zh) * 2018-11-14 2019-03-08 内蒙古伊泰煤基新材料研究院有限公司 一种高效模拟移动床设备以及高效模拟移动床工艺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706812A (en) * 1970-12-07 1972-12-19 Universal Oil Prod Co Fluid-solid contacting apparatus
US4797233A (en) * 1986-08-20 1989-01-10 Uop Inc. Process for separating mono-, di- and triglycerides
JPH0695090B2 (ja) * 1990-09-21 1994-11-24 川崎重工業株式会社 擬似移動床式液体クロマト分離装置
JP2962590B2 (ja) * 1991-05-07 1999-10-12 オルガノ株式会社 擬似移動層式クロマト分離装置
JPH0779927B2 (ja) * 1992-05-22 1995-08-30 川崎重工業株式会社 擬似移動床式液体クロマトオリゴ糖分離装置
JPH0724725B2 (ja) * 1992-05-22 1995-03-22 川崎重工業株式会社 3成分分離用液体クロマト分離装置
JP3277575B2 (ja) * 1992-12-09 2002-04-22 日本錬水株式会社 クロマト分離法
US5795398A (en) * 1994-09-30 1998-08-18 Cultor Ltd. Fractionation method of sucrose-containing solutions
US5635072A (en) 1995-01-31 1997-06-03 Uop Simulated moving bed adsorptive separation process
JPH1190106A (ja) 1997-09-26 1999-04-06 Daicel Chem Ind Ltd 擬似移動床式クロマト分離装置
JPH11228455A (ja) * 1998-02-18 1999-08-24 Japan Organo Co Ltd 有用物質の製造方法
JP3604935B2 (ja) * 1999-01-14 2004-12-22 三和興産株式会社 糖類の精製方法
US7618539B2 (en) 2008-03-31 2009-11-17 Ampac Fine Chemicals Llc Simulated moving bed chromatography for strongly retained compounds
CN201618442U (zh) * 2009-12-08 2010-11-03 辽宁科技大学 三带模拟移动床色谱装置
CN101940850B (zh) * 2010-09-29 2012-08-29 西安航天华威化工生物工程有限公司 顺序式模拟移动床
CN102895799B (zh) 2011-07-28 2015-09-23 中国石油化工股份有限公司 控制阀数量减少的模拟移动床吸附分离方法和设备
US20140251912A1 (en) 2011-10-11 2014-09-11 Georgia Tech Research Corporation Methods and Controllers for Simulated Moving Bed Chromatography for Multicomponent Separation
JP2014029294A (ja) * 2012-07-31 2014-02-13 Nippon Rensui Co Ltd クロマト分離法
CN112807745B (zh) * 2014-09-29 2023-03-03 阿彻丹尼尔斯米德兰公司 使用二羧酸盐型的阴离子交换色谱树脂制备和分离含二羧酸混合物
GB201419852D0 (en) * 2014-11-07 2014-12-24 Dupont Nutrition Biosci Aps Method
US10300404B2 (en) * 2016-06-30 2019-05-28 Exxonmobil Chemical Patents Inc. Process for the recovering of paraxylene
JP6732575B2 (ja) * 2016-07-07 2020-07-29 オルガノ株式会社 クロマト分離方法及びクロマト分離システム
KR102072695B1 (ko) * 2016-12-08 2020-03-02 주식회사 삼양사 재순환을 이용한 사이코스의 제조방법 및 장치
FR3065173B1 (fr) * 2017-04-12 2020-06-26 IFP Energies Nouvelles Nouveau dessin des canaux de collecte et de distribution pour un procede de separation en lit mobile simule utilisant n-colonnes en serie
CN209575841U (zh) * 2018-11-14 2019-11-05 内蒙古伊泰煤基新材料研究院有限公司 一种高效模拟移动床设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127670A (zh) * 1994-06-22 1996-07-31 法国石油公司 以减小长度校正死体积的色谱法模拟移动床分离方法
US6004518A (en) * 1997-12-12 1999-12-21 Uop Llc High-purity simulated moving bed adsorptive separation apparatus
CN100453867C (zh) 2007-01-19 2009-01-21 西安交通大学 一种用于高效液相制备色谱模拟移动床的36通旋转阀
CN202315413U (zh) * 2011-11-18 2012-07-11 上海兆光色谱分离技术有限公司 多级循环模拟移动床
CN203220780U (zh) * 2013-05-21 2013-10-02 吕获柱 变频控压控量顺序模拟移动床
CN105521622A (zh) * 2014-09-30 2016-04-27 中国石油化工股份有限公司 模拟移动床吸附塔外管路淋洗设备及其在吸附分离中的应用
CN107879900A (zh) * 2017-12-22 2018-04-06 中触媒新材料股份有限公司 一种甲酚混合异构体分离提纯的工艺方法
CN109432822A (zh) * 2018-11-14 2019-03-08 内蒙古伊泰煤基新材料研究院有限公司 一种高效模拟移动床设备以及高效模拟移动床工艺

Also Published As

Publication number Publication date
US20220008840A1 (en) 2022-01-13
EP3881919A1 (en) 2021-09-22
JP2022500241A (ja) 2022-01-04
EP3881919A4 (en) 2022-08-10
CN109432822B (zh) 2023-09-29
JP7195667B2 (ja) 2022-12-26
US11980833B2 (en) 2024-05-14
CN109432822A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020098295A1 (zh) 一种高效模拟移动床设备以及高效模拟移动床工艺
US9085499B2 (en) Energy efficiency in adsorptive separation
US7790040B2 (en) Continuous isocratic affinity chromatography
US20080053543A1 (en) Valve Module And Methods For Simulated Moving Bed Chromatography
Faria et al. Instrumental aspects of simulated moving bed chromatography
US20080053917A1 (en) Control System For Simulated Moving Bed Chromatography
KR20080002695A (ko) 회전형 인덱싱 멀티 포트 밸브를 구비하는 압력 변동 흡착장치
JP2013049052A (ja) 擬似向流によるパラキシレンの製造のための、高い柔軟性を有する方法および装置
CN102123775B (zh) 具有调制的旁通流体流的模拟移动床分离方法和装置
US20070199873A1 (en) Chromatographic Separation Equipment
CN209575841U (zh) 一种高效模拟移动床设备
CN106166402A (zh) 一种模拟移动床色谱分离装置
JP6013639B1 (ja) 多成分を3以上の画分に分離するクロマト分離方法および装置
CN113457373A (zh) 一种高效利用吸附剂的vpsa制氧工艺及其系统
CN203529931U (zh) 一种从空气中制取氧气的装置
CN202289556U (zh) 连续吸附交换设备
CN205340222U (zh) 色谱分离装置
CN209575842U (zh) 一种适用于模拟移动床的温度控制系统
CN106031838A (zh) 转轮、流体处理设备及处理材块体拆卸方法
CN109432823B (zh) 一种适用于模拟移动床的温度控制系统以及模拟移动床的温度控制方法
TW202304580A (zh) 藉由具有高高徑比之模擬移動床分離之裝置及方法
CN206334397U (zh) 一种模拟移动床色谱分离装置
CN203447819U (zh) 一种单盘旋转型连续逆流层析装置
KR101084628B1 (ko) 혼합물 분리향상을 위해 크로마토그라피 컬럼을 갖는 유사 이동층 흡착 분리장치 및 분리방법
CN201179362Y (zh) 旋转阀、固定柱式模拟移动床实验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883376

Country of ref document: EP

Effective date: 20210614