WO2020098002A1 - 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法 - Google Patents

一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法 Download PDF

Info

Publication number
WO2020098002A1
WO2020098002A1 PCT/CN2018/118507 CN2018118507W WO2020098002A1 WO 2020098002 A1 WO2020098002 A1 WO 2020098002A1 CN 2018118507 W CN2018118507 W CN 2018118507W WO 2020098002 A1 WO2020098002 A1 WO 2020098002A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
xylene
reaction
catalyst
gasoline
Prior art date
Application number
PCT/CN2018/118507
Other languages
English (en)
French (fr)
Inventor
刘中民
于政锡
朱书魁
杨越
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811362317.4A external-priority patent/CN111187134A/zh
Priority claimed from CN201811362314.0A external-priority patent/CN111187132A/zh
Priority claimed from CN201811362319.3A external-priority patent/CN111187141A/zh
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2020098002A1 publication Critical patent/WO2020098002A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the application relates to a method for preparing para-xylene co-production gasoline from methanol and / or dimethyl ether, which belongs to the field of chemistry and chemical industry.
  • Paraxylene (PX) is the raw material for producing PET (polyethylene terephthalate), PBT (polybutylene terephthalate) and PTT (polypropylene terephthalate) and other polyesters.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polypropylene terephthalate
  • the source of PX is mainly derived from toluene, C 9 aromatic hydrocarbons and mixed xylene obtained by naphtha reforming through disproportionation, isomerization and adsorption separation or cryogenic separation.
  • the equipment investment is large and the operation cost high.
  • p-xylene Since the content of p-xylene in the product is controlled by thermodynamics, p-xylene accounts for only about 20% of the xylene isomers, and the boiling points of the three xylene isomers are very small. Purity para-xylene must use expensive adsorption separation process.
  • a method for preparing para-xylene co-production gasoline from methanol and / or dimethyl ether is provided, which overcomes the shortcomings of the conventional methanol-to-gasoline technology and can provide a highly selective preparation of methanol
  • the technology of para-xylene co-production of gasoline (heavy aromatics content ⁇ 1%).
  • the method for preparing para-xylene co-production gasoline from methanol and / or dimethyl ether is characterized in that it includes at least the following steps:
  • the raw materials containing methanol and / or dimethyl ether are contacted and reacted with the catalyst to obtain gasoline component products and para-xylene products;
  • the catalyst is selected from at least one kind of zeolite molecular sieve catalyst modified by metal modification and silylating agent.
  • the components containing benzene and toluene in the methanol and / or dimethyl ether conversion reaction product are separated and returned to the reaction system to continue the reaction, thereby increasing the yield of p-xylene rate.
  • the method includes at least the following steps:
  • step 1b Return the components containing benzene and toluene to step 1a), and react with the raw materials containing methanol and / or dimethyl ether.
  • the method includes at least the following steps:
  • the mixture enters the first separation system and separates C 1 -C 4 components and C 5+ components;
  • the C 5+ component enters the second separation system to separate the product containing benzene and toluene, the product containing p-xylene and the gasoline component; the component containing benzene and toluene is returned to Reaction system.
  • the components containing benzene, toluene and C 4 olefins in the methanol and / or dimethyl ether conversion reaction product are separated and returned to the reaction system to continue the reaction, thereby increasing The yield of p-xylene.
  • the method includes at least the following steps:
  • step 2b Return the benzene and toluene-containing component and the C 4 olefin-containing component to step 2a), and react with the raw material containing methanol and / or dimethyl ether.
  • the method includes at least the following steps:
  • the mixture enters the first separation system to separate the C 4 olefin-containing component and the C 5+ component; the C 4 olefin-containing component is returned to the reaction system;
  • the C 5+ component enters the second separation system to separate the product containing benzene and toluene, the product containing p-xylene and the gasoline component; the component containing benzene and toluene is returned to Reaction system.
  • the reaction system includes one reactor or multiple reactors connected in series and / or parallel.
  • the reactor is selected from at least one of fixed bed, fluidized bed and moving bed.
  • the weight percentage of methanol is ⁇ 80 wt%, preferably ⁇ 85 wt%, more preferably ⁇ 90 wt%.
  • the weight percentage of benzene and toluene is ⁇ 80 wt%, preferably ⁇ 85 wt%, more preferably ⁇ 90 wt%.
  • the reaction conditions include: an inert gas atmosphere, a reaction temperature of 300 to 500 ° C., a reaction pressure of 0.3 to 0.7 MPa, and a weight space velocity of methanol and / or dimethyl ether of 1 to 3 h -1 .
  • the inert gas is selected from at least one of an inert gas and nitrogen;
  • the upper limit of the reaction temperature is selected from 500 ° C, 490 ° C, 480 ° C, 470 ° C, 460 ° C, 450 ° C, 440 ° C, 430 °C, 420 °C, 410 °C, 400 °C, 390 °C, 380 °C
  • the lower limit is selected from 300 °C, 310 °C, 320 °C, 330 °C, 340 °C, 350 °C, 360 °C, 370 °C, 380 °C
  • the reaction The upper limit of the pressure is selected from 0.7 MPa, 0.65 MPa, 0.6 MPa, 0.55 MPa, 0.5 MPa
  • the lower limit is selected from 0.3 MPa, 0.35 MPa, 0.4 MPa, 0.45 MPa, 0.5 MPa; the weight empty of the methanol and / or dimethyl ether
  • reaction temperature is 350-410 ° C.
  • the reaction conditions include: a nitrogen atmosphere, a reaction temperature of 380 ° C., a reaction pressure of 0.5 MPa, and a weight space velocity of methanol and / or dimethyl ether of 2 h -1 .
  • the preparation method of the catalyst includes at least the following steps:
  • the zeolite molecular sieve is impregnated in a metal soluble salt solution, roasted to prepare a metal-modified zeolite molecular sieve;
  • the zeolite molecular sieve is immersed in a soluble salt solution of metal, filtered, dried, and roasted.
  • the concentration of the soluble salt solution is 5 to 15 wt%
  • the immersion time is 1 to 3 hours
  • the drying temperature is 110 to 150 ° C
  • the roasting is performed at 500 to 600 ° C for 2 to 6 hours.
  • the silylating agent is vaporized and contacted with a metal-modified zeolite molecular sieve.
  • the upper limit of the temperature for contacting the metal-modified zeolite molecular sieve after vaporizing the silylating agent is selected from 500 ° C, 480 ° C, 460 ° C, 440 ° C, 420 ° C, 400 ° C, 380 ° C, 360 ° C , 340 °C, 320 °C, 300 °C, the lower limit is selected from 130 °C, 140 °C, 160 °C, 180 °C, 200 °C, 220 °C, 240 °C, 260 °C, 280 °C, 300 °C.
  • the temperature at which the silylating agent is vaporized and contacted with the metal-modified zeolite molecular sieve is 150-450 ° C.
  • step 2) firing is performed at a temperature above 500 ° C for 1 to 6 hours.
  • the mixture containing the silanizing agent and the carrier is vaporized and then contacted with a metal-modified zeolite molecular sieve, wherein the silanizing agent and the carrier
  • the weight ratio of the agent is 10: 90-40: 60
  • the total weight space velocity of the silylating agent and the carrier is 0.5-1.5h -1
  • the contact time is 45-225min.
  • the carrier is methanol.
  • the upper limit of the weight ratio of the silylating agent to the carrier is selected from 40:60, 35:65, 30:70, 25:75, and the lower limit is selected from 10:90, 15:85, 20:80, 25 : 75.
  • the upper limit of the total weight space velocity of the silylating agent and the carrier is selected from 1.5h -1 , 1.4h -1 , 1.3h -1 , 1.2h -1 , 1.1h -1 , 1.0h -1 ,
  • the lower limit is selected from 0.5h -1 , 0.6h -1 , 0.7h -1 , 0.8h -1 , 0.9h -1 , 1.0h -1 .
  • the upper limit of the contact time is selected from 225min, 210min, 195min, 180min, 165min, 150min, 135min, and the lower limit is selected from 45min, 60min, 75min, 90min, 105min, 120min, 135min.
  • the silanating agent or the mixture containing the silanizing agent and the carrier is first vaporized by heating, and then the gasified silylating agent or the mixture containing the silanizing agent and the carrier is introduced into the Metal modified zeolite molecular sieve reactor.
  • step 2) the following steps are further included:
  • the zeolite molecular sieve catalyst modified by metal modification and silylation reagent is subjected to steam treatment.
  • the water vapor treatment is carried out at a temperature of 550-800 ° C and a water vapor weight space velocity of 2-50 hours -1 for 2-8 hours.
  • the upper limit of the temperature of the steam treatment is selected from 800 ° C, 780 ° C, 760 ° C, 740 ° C, 720 ° C, 700 ° C, and 680 ° C
  • the lower limit is selected from 550 ° C, 570 ° C, 590 ° C, 610 ° C, 630 °C, 650 °C, 670 °C.
  • the upper limit of the steam treatment time is selected from 8h, 7.5h, 7h, 6.5h, 6h, 5.5h, 5h, and the lower limit is selected from 2h, 2.5h, 3h, 3.5h, 4h, 4.5h, 5h .
  • the upper limit of the water vapor weight space velocity is selected from 50h -1 , 45h -1 , 40h -1 , 35h -1 , 30h -1 , 25h -1
  • the lower limit is selected from 2h -1 , 5h -1 , 10h -1 , 15h -1 , 20h -1 , 25h -1 .
  • the zeolite molecular sieve catalyst modified by a metal and a silylating agent is mainly prepared as follows:
  • the metal-modified and silylating agent-modified zeolite molecular sieve catalyst preparation method includes the following steps:
  • HZSM-5 zeolite molecular sieve is immersed in 10wt% of one or two soluble salt solutions selected from copper, zinc, gallium and lanthanum for 2 hours, then filtered, dried at 120 °C, at 550 °C After roasting for 4 hours, the metal-modified HZSM-5 molecular sieve catalyst was prepared;
  • the mixture of the weight ratio of silylating agent and methanol is 10: 90 ⁇ 40: 60, the total weight space velocity of 1h -1 and the feeding time of 45 ⁇ 225min are introduced into the equipment.
  • the zeolite molecules are selected from at least one of HZSM-5 molecular sieve and MZSM-11 molecular sieve having MFI or MEL framework structure.
  • the zeolite molecular sieve comprises HZSM-5 molecular sieve.
  • the metal is selected from at least one of copper, zinc, gallium, and lanthanum.
  • the metal is selected from one or two of copper, zinc, gallium and lanthanum.
  • the silylating agent is selected from at least one compound of the following chemical formula:
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C 1-10 alkyl and C 1-10 alkoxy.
  • At least one of R 1 , R 2 , R 3 and R 4 is selected from C 1-10 alkoxy groups.
  • R 1 , R 2 , R 3 and R 4 are each independently selected from C 1-10 alkoxy.
  • the silylating agent is selected from at least one of tetraethyl silicate and tetramethyl silicate.
  • the components containing benzene and toluene in the catalytic reaction product of methanol and / or dimethyl ether are separated and returned to the reaction system In case of continued reaction:
  • the structure and form of the first separation system there is no particular limitation on the structure and form of the first separation system, as long as it can achieve the separation of C 1 -C 4 components and C 5+ from methanol and / or dimethyl ether conversion reaction products Components are sufficient.
  • the structure and form of the second separation system there is no particular limitation on the structure and form of the second separation system, as long as it can achieve the separation of components containing benzene and toluene from the methanol and / or dimethyl ether conversion reaction product.
  • the manner of returning the components containing benzene and toluene to the reaction system is not particularly limited, but it is preferably carried out in a continuous manner.
  • the components containing benzene and toluene are separated in real time from the methanol and / or dimethyl ether conversion reaction product and pumped back to the reaction system in real time.
  • the components containing benzene, toluene and C 4 olefins in the methanol and / or dimethyl ether conversion reaction product are separated and returned To continue the reaction in the reaction system:
  • the structure and form of the first separation system there is no particular limitation on the structure and form of the first separation system, as long as it can achieve the separation of the C 4 olefin-containing component from the methanol and / or dimethyl ether conversion reaction product.
  • the structure and form of the second separation system there is no particular limitation on the structure and form of the second separation system, as long as it can achieve the separation of components containing benzene and toluene from the methanol and / or dimethyl ether conversion reaction product.
  • the manner of returning the C 4 olefin-containing component and the benzene and toluene-containing component to the reaction system is not particularly limited, but it is preferably carried out in a continuous manner.
  • the C 4 olefin-containing component, the benzene and toluene-containing component are separated from the methanol and / or dimethyl ether conversion reaction product in real time, and are separately pumped back to the reaction system in real time.
  • C 1-10 , C 4 , C 5+ , C 10+, etc. all represent the number of carbon atoms contained in the compound or group.
  • C 1-10 alkyl represents any one of the alkyl groups with a carbon number of 1-10 ;
  • C 5+ component represents a compound component with a carbon number of 5 or more;
  • C 10+ aromatic hydrocarbon represents carbon Aromatic hydrocarbons with an atomic number greater than or equal to 10.
  • alkyl means a group formed by the loss of any one hydrogen atom on a molecule of an alkane compound.
  • the alkane compounds include straight chain alkanes, branched alkanes, cycloalkanes, and branched cycloalkanes.
  • alkoxy means a group formed by the loss of hydrogen atoms on the OH group on the molecule of the alkyl alcohol compound.
  • gasoline or “gasoline component” means that the number of carbon atoms in the methanol produced during the gasoline component of not less than 5, e.g. C 5, C 6+ chain hydrocarbons such as benzene, toluene, , Ethylbenzene, m-xylene, o-xylene, C 9 aromatic hydrocarbons, C 10+ aromatic hydrocarbons, but excluding para-xylene.
  • C 5 C 6+ chain hydrocarbons
  • the method for preparing para-xylene co-produced gasoline from methanol and / or dimethyl ether provided in this application can prepare para-xylene and produce gasoline at a conversion rate of 100% of the raw materials, in which the heavy aromatics in the gasoline component The content of C is significantly reduced (C 10+ heavy aromatics content ⁇ 0.6wt%), while the para-xylene selectivity is significantly increased (the para-xylene selectivity in the xylene product> 99.5wt%).
  • the method for preparing para-xylene co-produced gasoline from methanol and / or dimethyl ether provided in this application is simple and flexible in operation, strong in implementation feasibility, and can save costs, improve production economy, and has important application value .
  • FIG. 1 is a schematic diagram of a process flow according to an embodiment of the method described in the present application.
  • FIG. 2 is a schematic process flow diagram of another embodiment of the method according to the present application.
  • a higher yield of para-xylene product and gasoline component product can be obtained at the same time, in which the conversion rate of methanol and / or dimethyl ether Is 100%, the selectivity of the gasoline component in the hydrocarbon product is> 35 wt%, the selectivity of the paraxylene in the hydrocarbon product is> 23 wt%, the content of C 10+ heavy aromatics in the gasoline component is ⁇ 0.6 wt%, xylene The selectivity of p-xylene in the product is> 99.5wt%.
  • methanol and / or dimethyl ether can be used as a raw material to produce p-xylene with high selectivity, while co-producing gasoline that meets the requirements.
  • methanol and / or dimethyl ether can be used as a raw material to produce p-xylene with high selectivity, while co-producing gasoline that meets the requirements.
  • preheating and gasifying the silylating agent or its mixture first and then fully contacting with the metal-modified zeolite molecular sieve, and by additionally carrying out water vapor on the metal-modified and silylating agent-modified zeolite molecular sieve catalyst
  • the treatment helps reduce the content of heavy aromatics in the gasoline components produced, and at the same time improves the selectivity of p-xylene.
  • the applicant unexpectedly discovered that in the process of preparing p-xylene co-production gasoline from methanol and / or dimethyl ether, the components containing benzene and toluene in the catalytic reaction product of methanol and / or dimethyl ether are separated When returning to the reaction system to continue the reaction, the benzene and toluene can form p-xylene, thereby improving the selectivity and yield of p-xylene in the product.
  • the applicant unexpectedly discovered that in the process of preparing p-xylene co-production gasoline from methanol and / or dimethyl ether, the components containing benzene and toluene in the catalytic reaction product of methanol and / or dimethyl ether are separated When returning to the reaction system to continue the reaction, the benzene and toluene can form p-xylene, thereby improving the selectivity and yield of p-xylene in the product.
  • the C 4 olefin-containing components in the methanol and / or dimethyl ether catalytic reaction product are separated and returned to the reaction system to continue the reaction, the C 4 olefins therein can be aromatized under the same reaction conditions
  • the formation of p-xylene further improves the selectivity and yield of p-xylene in the product.
  • FIG. 1 shows a schematic process flow diagram of an embodiment of the method according to the present application, in which the components containing benzene and toluene in the methanol and / or dimethyl ether catalytic reaction product are separated and returned to the reaction system to continue the reaction.
  • the raw material containing methanol and / or dimethyl ether is first fed to the reaction system, so that the raw material containing methanol and / or dimethyl ether is reacted with the catalyst in the reaction system to obtain Mixture A1.
  • the mixture A1 enters the first separation system, and the components C 1 -C 4 and C 5+ are separated .
  • the C 5+ component enters the second separation system to separate the product containing benzene and toluene, and the product containing p-xylene and gasoline.
  • the components containing benzene and toluene are pumped back to the reaction system to produce p-xylene. Finally, p-xylene and other gasoline components are separated.
  • FIG. 2 shows a schematic process flow diagram of another embodiment of the method according to the present application, in which the components containing benzene, toluene and C 4 olefins in the methanol and / or dimethyl ether conversion reaction product are separated and returned to the reaction system Continue to react.
  • the raw material containing methanol and / or dimethyl ether is first fed to the reaction system, so that the raw material containing methanol and / or dimethyl ether is reacted with the catalyst in the reaction system to obtain Mixture A2.
  • the mixture A2 enters the first separation system and separates the C 4 olefin-containing component, the C 1 -C 3 component, the C 4 alkane-containing component and the C 5+ component.
  • the components containing C 4 olefins are pumped back to the reaction system to produce p-xylene.
  • the C 5+ component enters the second separation system to separate the product containing benzene and toluene, and the product containing p-xylene and gasoline.
  • the components containing benzene and toluene are pumped back to the reaction system to produce p-xylene.
  • p-xylene and other gasoline components are separated.
  • composition and content of the product were analyzed by online Agilent 7890 gas chromatography.
  • reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction. The reaction results are shown in Table B5.
  • Example B1 Using the methanol reaction catalyst FXMTGCAT-B1 prepared in Example B1, the methanol-to-p-xylene co-production gasoline reaction was carried out in the same process as described in Example B1, with the difference that the reaction temperature was 300 ° C under an argon atmosphere. The total weight space velocity of methanol is 3h -1 and the reaction pressure is 0.3MPa. The reaction results are similar to Table B1.
  • Example B1 In the same process as described in Example B1, a methanol-to-paraxylene co-production gasoline fixed bed catalyst was prepared and a methanol-to-paraxylene co-production gasoline reaction was performed. The difference is that the total weight of tetraethyl silicate and methanol is empty. The speed is 0.5h -1 .
  • the reaction results are similar to Table B1.
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXCuZSM-5 catalyst prepared in Example A2 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • Example C2 On-line preparation and reaction evaluation of a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene (benzene and toluene return to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After feeding for 225 min, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined for 4 hours under an air atmosphere to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-C3.
  • the reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • the composition of benzene and toluene in the methanol conversion reaction product in Example B3 it is formulated into raw materials and fed by a micro-feed pump (equivalent to separating benzene and toluene from the methanol conversion reaction product and pumped back to the fixed by the micro-feed pump Bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting benzene and toluene are shown in Table C3.
  • Example C4 On-line preparation and reaction evaluation of a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene (benzene and toluene are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows: the FXLaZSM-5 catalyst prepared in Example A5 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined in an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-C4.
  • the reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • the composition of benzene and toluene in the methanol conversion reaction product in Example B4 it is formulated into raw materials and fed by a micro-feed pump (equivalent to separating benzene and toluene from the methanol conversion reaction product and pumped back to the fixed by the micro-feed pump Bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting benzene and toluene are shown in Table C4.
  • Example C5 On-line preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene and toluene are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 450 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined under an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-C5.
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50 ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 150 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined under an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-C6.
  • the reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • the composition of benzene and toluene in the methanol conversion reaction product in Example B6 it is formulated into raw materials and fed by a micro-feed pump (equivalent to separating benzene and toluene from the methanol conversion reaction product and pumped back to the fixed by the micro-feed pump Bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting benzene and toluene are shown in Table C6.
  • Example C1 Using the methanol reaction catalyst FXMTGCAT-C1 prepared in Example C1, the methanol-to-paraxylene co-production gasoline reaction was carried out in the same process as described in Example C1. The difference is as follows: argon atmosphere, reaction temperature is 350 °C, total weight space velocity of methanol is 3h -1 , reaction pressure is 0.3MPa. The reaction results are similar to Table C1.
  • Example C8 Online preparation and reaction evaluation of a fixed bed catalyst for co-production of gasoline from methanol to p-xylene (benzene and toluene are returned to the reaction system for further reaction)
  • the weight percentage of p-xylene in the product distribution is not less than 44.31 wt%. Further, in the product distribution, the weight percentage of p-xylene is 44.31 to 56.80 wt%, and the weight percentage of gasoline component is 9.82 to 22.12 wt%.
  • Example D1 On-line preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXCuZSM-5 catalyst prepared in Example A2 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • C 4 olefins, benzene and toluene are formulated into raw materials and fed by a micro-feed pump (equivalent to separating C 4 olefins, benzene and toluene from the methanol conversion reaction product and using The micro-feed pump is pumped back into the fixed bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D1.
  • Example D2 On-line preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • Atmospheric pressure After 45 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined in an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-D2.
  • reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • Example B2 in methanol conversion C 4 olefins, benzene and toluene in the reaction product composition formulated as a raw material, and with a micro feed pump feed (equivalent to the methanol conversion reaction product separated C 4 olefins, benzene and toluene, and treated with The micro-feed pump is pumped back into the fixed bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D2.
  • Example D3 On-line preparation and reaction evaluation of a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After feeding for 225 minutes, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined for 4 hours in an air atmosphere to produce a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-D3.
  • Example B3 methanol conversion C 4 olefins, benzene and toluene in the reaction product composition formulated as a raw material, and with a micro feed pump feed (equivalent to the methanol conversion reaction product separated C 4 olefins, benzene and toluene, and treated with The micro-feed pump is pumped back into the fixed bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D3.
  • Example D4 Online preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows: the FXLaZSM-5 catalyst prepared in Example A5 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 200 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined under an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-D4.
  • Example B4 methanol conversion C 4 olefins, benzene and toluene in the reaction product composition formulated as a raw material, and with a micro feed pump feed (equivalent to the methanol conversion reaction product separated C 4 olefins, benzene and toluene, and treated with The micro-feed pump is pumped back into the fixed bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D4.
  • Example D5 On-line preparation and reaction evaluation of a fixed-bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 450 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined in an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-D5.
  • reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • methanol conversion C 4 olefins, benzene and toluene in the reaction product composition formulated as a raw material, and with a micro feed pump feed (equivalent to the methanol conversion reaction product separated C 4 olefins, benzene and toluene, and treated with The micro-feed pump is pumped back into the fixed bed reactor).
  • the reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D5.
  • Example D6 On-line preparation and reaction evaluation of a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • a fixed-bed catalyst for co-production of gasoline from methanol to p-xylene is prepared online in a micro-fixed-bed reaction device.
  • the conditions for preparing the catalyst online are as follows:
  • the FXGaZSM-5 catalyst prepared in Example A4 is tableted and crushed and sieved to 40 to 60 mesh, and 5 g (40 to 60 mesh) of the catalyst is charged into a fixed bed reactor. 50 ml / min nitrogen was treated at 550 ° C for 1 hour, and then the temperature was lowered to 150 ° C in a nitrogen atmosphere.
  • Atmospheric pressure After 90 minutes of feeding, the feeding was stopped, purged with nitrogen, heated to 550 ° C, and calcined under an air atmosphere for 4 hours to obtain a methanol-made paraxylene co-production gasoline fixed bed catalyst, named FXMTGCAT-D6.
  • reaction conditions were as follows: the raw materials were fed by a micro-feed pump, the total weight space velocity of methanol was 2h -1 , and the reaction pressure was 0.5MPa.
  • the reaction product composition formulated as a raw material, and with a micro feed pump feed (equivalent to the methanol conversion reaction product separated C 4 olefins, benzene and toluene, and treated with The micro-feed pump is pumped back into the fixed bed reactor).
  • reaction products were analyzed by online Agilent 7890 gas chromatography, and samples were taken for analysis after 60 minutes of reaction.
  • the reaction results after deducting C 4 olefins and benzene and toluene are shown in Table D6.
  • Example D7 On-line preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • Example D1 Using the methanol reaction catalyst FXMTGCAT-D1 prepared in Example D1, the methanol-to-paraxylene co-production gasoline reaction was carried out in the same process as described in Example D1. The difference is as follows: argon atmosphere, reaction temperature is 350 °C, total weight space velocity of methanol is 3h -1 , reaction pressure is 0.3MPa. The reaction results are similar to Table D1.
  • Example D8 On-line preparation and reaction evaluation of a fixed bed catalyst for co-production of methanol from p-xylene to methanol (benzene, toluene and C 4 olefins are returned to the reaction system for further reaction)
  • Example D1 Using the methanol reaction catalyst FXMTGCAT-D1 prepared in Example D1, the methanol-to-paraxylene co-production gasoline reaction was carried out in the same process as described in Example D1. The difference lies in: helium atmosphere, reaction temperature is 410 °C, total weight space velocity of methanol is 1h -1 , reaction pressure is 0.7MPa. The reaction results are similar to Table D1.
  • the weight percentage of p-xylene in the product distribution is not less than 47.09wt%. Further, in the product distribution, the weight percentage of p-xylene is 47.09-59.29wt%, and the weight percentage of gasoline component is 10.26-23.52wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

提供了一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,属于化学化工领域。所述方法至少包括以下步骤:使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到汽油组分产物和对二甲苯产物;其中,所述催化剂选自经金属改性和硅烷化试剂改性的沸石分子筛催化剂中的至少一种。该方法可以100%原料转化率高选择性地制备对二甲苯并联产低重芳烃含量的汽油。所述方法还包括将产物中含有苯和甲苯的组分和/或含有C 4烯烃的组分分离并返回进料中继续反应,由此提高对二甲苯的选择性和收率。该方法操作简便灵活,实施可行性强,而且可节约成本,提高生产经济性,具有重要的应用价值。

Description

一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法 技术领域
本申请涉及一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,属于化学化工领域。
背景技术
对二甲苯(PX)是生产PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)和PTT(聚对苯二甲酸丙二醇酯)等聚酯的原料。近年来聚酯在纺织服装、饮料包装等领域的大量应用带动了PTA(精对苯二甲酸)以及上游产品PX的产量和消费量的快速增长。目前,PX的来源主要是采用石脑油重整得到的甲苯、C 9芳烃及混合二甲苯为原料通过歧化、异构化并通过吸附分离或深冷分离而制取,设备投资大,操作费用高。由于产物中对二甲苯的含量受热力学控制,对二甲苯在二甲苯异构体中只占20%左右,而三种二甲苯异构体的沸点相差很小,采用普通的蒸馏技术不能得到高纯度对二甲苯,必须采用昂贵的吸附分离工艺。
自20世纪70年代Mobil公司开发ZSM-5分子筛以来,甲醇制汽油过程得到了快速的发展。Mobil公司先后开发了固定床、流化床、多管式等不同反应器类型甲醇制汽油工艺。US 3928483、US 3931349、US 4035430、US 4579999分别公开了一种两段法甲醇制液化气和汽油固定床工艺。CN 10186813A公开了一种含锆的小晶粒ZSM-5分子筛催化剂及其制备方法,该催化剂应用于合成气两段法制汽油过程的二段反应,汽油收率高。
然而,传统的甲醇制汽油过程所生产的汽油中重芳烃(C 10+)含量较高(约10%),如四甲苯,其熔点高达79℃,常温下是固体,致使汽油产品出现结晶,影响汽油品质且对发动机产生负面影响。因此,传统的甲醇制汽油过程生产的汽油组分必须经过轻质化处理。另外,传统的甲醇制汽油过程生产的汽油组分中含有少量的对二甲苯,并且三种二甲苯产物中对二甲苯的含量只占约24%,还需采用昂贵的吸附分离工艺才能获得高纯度的对二甲苯。因此,发展一种甲醇高选择性制对二甲苯并联产汽油(重芳烃含量<1%)的方法具有非常重要的社会和经济意义。
发明内容
根据本申请的一个方面,提供了一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,该方法克服了传统甲醇制汽油技术的缺点,可提供一种甲醇高选择性制备对二甲苯并联产汽油(重芳烃含量<1%)的技术。
所述由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其特征在于,至少包括以下步骤:
使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到汽油组分产物和对二甲苯产物;
其中,所述催化剂选自经金属改性和硅烷化试剂改性的沸石分子筛催化剂中的至少一种。
在根据本申请的方法的一个实施方案中,将甲醇和/或二甲醚转化反应产物中的含有苯和甲苯的组分分离并返回至反应系统中继续反应,由此提高对二甲苯的收率。
可选地,所述方法至少包括以下步骤:
1a)使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到混合物;从所得混合物中分离出含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;
1b)将所述含有苯和甲苯的组分返回步骤1a),与含有甲醇和/或二甲醚的原料共进料反应。
优选地,所述方法至少包括以下步骤:
1-1)使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物;
1-2)所述混合物进入第一分离系统,分离得到C 1-C 4组分和C 5+组分;
1-3)所述C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;将所述含有苯和甲苯的组分返回至反应系统。
在根据本申请的方法的另一个实施方案中,将甲醇和/或二甲醚转化反应产物中的含有苯、甲苯和C 4烯烃的组分分离并返回至反应系统中继续反应,由此提高对二甲苯的收率。
可选地,所述方法至少包括以下步骤:
2a)使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到混合物;从所得混合物中分离出含有苯和甲苯的组分、含有C 4烯烃的组分、含有对二甲苯和汽油组分的产物;
2b)将所述含有苯和甲苯的组分、所述含有C 4烯烃的组分返回步骤2a),与含有甲醇和/或二甲醚的原料共进料反应。
优选地,所述方法至少包括以下步骤:
2-1)使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物;
2-2)所述混合物进入第一分离系统,分离得到含有C 4烯烃的组分和C 5+组分;将所述含有C 4烯烃的组分返回至反应系统;
2-3)所述C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;将所述含有苯和甲苯的组分返回至反应系统。
可选地,所述反应系统包括一个反应器或多个通过串联和/或并联方式连接的反应器。
可选地,所述反应器选自固定床、流化床和移动床中的至少一种。
可选地,在所述含有甲醇和/或二甲醚的原料中,甲醇的重量百分比≥80wt%,优选≥85wt%,更优选≥90wt%。
可选地,在所述含有苯和甲苯的组分中,苯和甲苯的重量百分比≥80wt%,优选≥85wt%,更优选≥90wt%。
可选地,所述反应的条件包括:非活性气体气氛,反应温度300~500℃,反应压力0.3~0.7MPa,甲醇和/或二甲醚的重量空速1~3h -1
优选地,所述非活性气体选自惰性气体和氮气中的至少一种;所述反应温度的上限选自500℃、490℃、480℃、470℃、460℃、450℃、440℃、430℃、420℃、410℃、400℃、390℃、380℃,下限选自300℃、310℃、320℃、330℃、340℃、350℃、360℃、370℃、380℃;所述反应压力的上限选自0.7MPa、0.65MPa、0.6MPa、0.55MPa、0.5MPa,下限选自0.3MPa、0.35MPa、0.4MPa、0.45MPa、0.5MPa;所述甲醇和/或二甲醚的重量空速的上限选自3h -1、2.5h -1、2h -1,下限选自1h -1、1.5h -1、2h -1
更优选地,所述反应温度为350~410℃。
特别优选地,所述反应的条件包括:氮气气氛,反应温度380℃,反应压力0.5MPa,甲醇和/或二甲醚的重量空速2h -1
可选地,所述催化剂的制备方法至少包括以下步骤:
1)将沸石分子筛在金属的可溶性盐溶液中浸渍,焙烧,制备经金属改性的沸石分子筛;
2)使所述经金属改性的沸石分子筛与硅烷化试剂接触,焙烧,制备经金属改性和硅烷化试剂改性的沸石分子筛催化剂。
可选地,在所述步骤1)中,将沸石分子筛在金属的可溶性盐溶液中浸渍,过滤,干燥,焙烧。
优选地,所述可溶性盐溶液的浓度为5~15wt%,所述浸渍的时间为1~3小时,所述干燥的温度为110~150℃,所述焙烧在500~600℃下进行2~6小时。
可选地,在所述步骤2)中,在130~500℃的温度下,使硅烷化试剂气化后与经金属改性的沸石分子筛接触。
优选地,所述使硅烷化试剂气化后与经金属改性的沸石分子筛接触的温度的上限选自500℃、480℃、460℃、440℃、420℃、400℃、380℃、360℃、340℃、320℃、300℃,下限选自130℃、140℃、160℃、180℃、200℃、220℃、240℃、260℃、280℃、300℃。
更优选地,所述使硅烷化试剂气化后与经金属改性的沸石分子筛接触的温度为150~450℃。
可选地,在所述步骤2)中,在500℃以上的温度下焙烧1~6小时。
可选地,在所述步骤2)中,在130~500℃的温度下,使含有硅烷化试剂和载剂的混合物气化后与经金属改性的沸石分子筛接触,其中硅烷化试剂与载剂的重量比为10:90~40:60,硅烷化试剂和载剂的总重量空速为0.5~1.5h -1,接触时间为45~225min。
优选地,所述载剂为甲醇。
优选地,所述硅烷化试剂与载剂的重量比的上限选自40:60、35:65、30:70、25:75,下限选自10:90、15:85、20:80、25:75。
优选地,所述硅烷化试剂和载剂的总重量空速的上限选自1.5h -1、1.4h -1、1.3h -1、1.2h -1、1.1h -1、1.0h -1,下限选自0.5h -1、0.6h -1、0.7h -1、0.8h -1、0.9h -1、1.0h -1
优选地,所述接触时间的上限选自225min、210min、195min、180min、165min、150min、135min,下限选自45min、60min、75min、90min、105min、120min、135min。
在一个具体的实施方案中,首先使硅烷化试剂或含有硅烷化试剂和载剂的混合物经加热而气化,然后将气化的硅烷化试剂或含有硅烷化试剂和载剂的混合物引入装有经金属改性的沸石分子筛的反应器中。
可选地,在所述步骤2)之后,还包括以下步骤:
对经金属改性和硅烷化试剂改性的沸石分子筛催化剂进行水蒸汽处理。
可选地,所述水蒸汽处理在550~800℃的温度下,以2~50h -1的水蒸汽重量空速进行2~8h。
优选地,所述水蒸汽处理的温度的上限选自800℃、780℃、760℃、740℃、720℃、700℃、680℃,下限选自550℃、570℃、590℃、610℃、630℃、650℃、670℃。
优选地,所述水蒸汽处理的时间的上限选自8h、7.5h、7h、6.5h、6h、5.5h、5h,下限选自2h、2.5h、3h、3.5h、4h、4.5h、5h。
优选地,所述水蒸汽重量空速的上限选自50h -1、45h -1、40h -1、35h -1、30h -1、25h -1,下限选自2h -1、5h -1、10h -1、15h -1、20h -1、25h -1
在一个具体的实施方案中,所述经金属改性和硅烷化试剂改性的沸石分子筛催化剂,其主要制备过程如下:
(1)采用铜、锌、镓和镧等中的一种或两种可溶性盐溶液浸渍沸石分子筛,过滤,干燥、焙烧,制得金属改性的沸石分子筛催化剂;
(2)在130~500℃条件下,将含有硅烷化试剂的混合物引入装有上述金属改性的沸石分子筛的反应器;
(3)升温至500℃以上,空气气氛下焙烧1~6小时;以及任选地
(4)切换成氮气气氛,升温至550~800℃,在2~50h -1的水蒸汽重量空速下进行水蒸汽处理2~8h。
在另一个具体的实施方案中,所述经金属改性和硅烷化试剂改性的沸石分子筛催化剂,其制备方法包括以下步骤:
(1)将HZSM-5沸石分子筛在10wt%的选自铜、锌、镓和镧中的一种或两种的可溶性盐溶液中浸渍2小时,然后过滤,在120℃下干燥,在550℃下焙烧4小时,制得金属改性的HZSM-5分子筛催化剂;
(2)在150~450℃下,将硅烷化试剂与甲醇的重量比为10:90~40:60的混合物,以1h -1的总重量空速和45~225min的进料时间引入装有所述金属改性的HZSM-5分子筛催化剂的反应器;
(3)升温至550℃,在空气气氛下焙烧4小时。
可选地,所述沸石分子筛选自具有MFI或MEL骨架结构的HZSM-5分子筛和HZSM-11分子筛中的至少一种。
优选地,所述沸石分子筛包含HZSM-5分子筛。
可选地,所述金属选自铜、锌、镓和镧中的至少一种。
优选地,所述金属选自铜、锌、镓和镧中的一种或两种。
可选地,所述硅烷化试剂选自具有以下化学式的化合物中的至少一种:
Figure PCTCN2018118507-appb-000001
其中R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷基、C 1-10的烷氧基。
可选地,R 1、R 2、R 3和R 4中的至少一个选自C 1-10的烷氧基。
可选地,R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷氧基。
可选地,所述硅烷化试剂选自硅酸四乙酯和硅酸四甲酯中的至少一种。
根据本申请的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,在将甲醇和/或二甲醚催化反应产物中的含有苯和甲苯的组分分离并返回至反应系统中继续反应的情况下:
在本申请的上下文中,对于第一分离系统的结构和形式没有特别的限制,只要其能够实现从甲醇和/或二甲醚转化反应产物中分离出C 1-C 4组分和C 5+组分即可。
在本申请的上下文中,对于第二分离系统的结构和形式没有特别的限制,只要其能够实现从甲醇和/或二甲醚转化反应产物中分离出含有苯和甲苯的组分即可。
在本申请的上下文中,对于将含有苯和甲苯的组分返回至反应系统中的方式没有特别限制,但优选以 连续方式进行。在一个实施方案中,从甲醇和/或二甲醚转化反应产物中实时分离出含有苯和甲苯的组分,并将其实时泵送回反应系统中。
根据本申请的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,在将甲醇和/或二甲醚转化反应产物中的含有苯、甲苯和C 4烯烃的组分分离并返回至反应系统中继续反应的情况下:
在本申请的上下文中,对于含有C 4烯烃的组分与含有苯和甲苯的组分的分离顺序没有特别限制,但优选先分离含有C 4烯烃的组分,然后分离含有苯和甲苯的组分。
在本申请的上下文中,对于第一分离系统的结构和形式没有特别限制,只要其能够实现从甲醇和/或二甲醚转化反应产物中分离出含有C 4烯烃的组分即可。
在本申请的上下文中,对于第二分离系统的结构和形式没有特别限制,只要其能够实现从甲醇和/或二甲醚转化反应产物中分离出含有苯和甲苯的组分即可。
在本申请的上下文中,对于将含有C 4烯烃的组分以及含有苯和甲苯的组分返回至反应系统中的方式没有特别限制,但优选以连续方式进行。在一个实施方案中,从甲醇和/或二甲醚转化反应产物中实时分离出含有C 4烯烃的组分、含有苯和甲苯的组分,并将其分别实时泵送回反应系统中。
在本申请的上下文中,C 1-10、C 4、C 5+、C 10+等均表示化合物或基团中包含的碳原子数。例如,C 1-10烷基表示碳原子数在1~10之间的烷基中的任意一种;C 5+组分表示碳原子数大于等于5的化合物组分;C 10+芳烃表示碳原子数大于等于10的芳烃。
在本申请的上下文中,术语“烷基”意指由烷烃化合物分子上失去任意一个氢原子所形成的基团。所述烷烃化合物包括直链烷烃、支链烷烃、环烷烃、带有支链的环烷烃。
在本申请的上下文中,术语“烷氧基”意指由烷基醇类化合物分子上失去OH基上的氢原子所形成的基团。
在本申请的上下文中,术语“汽油”或“汽油组分”意指在甲醇制汽油过程中生成的碳原子数不小于5的组分,例如C 5、C 6+链烃、苯、甲苯、乙苯、间二甲苯、邻二甲苯、C 9芳烃、C 10+芳烃,但不包括对二甲苯。
本申请能够产生的有益效果包括:
1)本申请所提供的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其可以100%原料转化率制备对二甲苯并联产汽油,其中所制汽油组分中重芳烃的含量显著降低(C 10+重芳烃含量<0.6wt%),同时对二甲苯选择性显著提高(二甲苯产物中对二甲苯选择性>99.5wt%)。
2)本申请所提供的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其在将甲醇和/或二甲醚转化反应产物中的含有苯和甲苯的组分分离并返回进料中继续反应的情况下,可有效提高对二甲苯的选择性和收率。
3)本申请所提供的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其在将甲醇和/或二甲醚转化反应产物中的含有苯、甲苯和C 4烯烃的组分分离并返回进料中继续反应的情况下,可有效提高对二甲苯的选择性和收率,同时提高低碳馏分的利用率。
4)本申请所提供的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其操作简便灵活,实施可行性强,而且可节约成本,提高生产经济性,具有重要的应用价值。
附图说明
图1为根据本申请所述方法的一个实施方案的工艺流程示意图。
图2为根据本申请所述方法的另一实施方案的工艺流程示意图。
具体实施方式
根据本申请的由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,能够同时获得较高产量的对二甲苯产物和汽油组分产物,其中甲醇和/或二甲醚的转化率为100%,烃类产物中汽油组分的选择性>35wt%,烃类产物中对二甲苯的选择性>23wt%,汽油组分中C 10+重芳烃的含量<0.6wt%,二甲苯产物中对二甲苯的选择性>99.5wt%。
申请人意外地发现,通过本申请所述的方法,能够以甲醇和/或二甲醚为原料高选择性制备对二甲苯,同时联产性能符合要求的汽油。特别地,通过将硅烷化试剂或其混合物首先预热气化后再与经金属改性的沸石分子筛充分接触,以及通过对经金属改性和硅烷化试剂改性的沸石分子筛催化剂另外进行水蒸汽处理, 有助于降低所制汽油组分中重芳烃的含量,同时提高对二甲苯的选择性。
并且,申请人意外地发现,在由甲醇和/或二甲醚制备对二甲苯联产汽油的过程中,当将甲醇和/或二甲醚催化反应产物中的含有苯和甲苯的组分分离并返回至反应系统中继续反应时,其中的苯和甲苯可生成对二甲苯,从而提高产物中对二甲苯的选择性和收率。
并且,申请人意外地发现,在由甲醇和/或二甲醚制备对二甲苯联产汽油的过程中,当将甲醇和/或二甲醚催化反应产物中的含有苯和甲苯的组分分离并返回至反应系统中继续反应时,其中的苯和甲苯可生成对二甲苯,从而提高产物中对二甲苯的选择性和收率。同时,当将甲醇和/或二甲醚催化反应产物中的含有C 4烯烃的组分分离并返回至反应系统中继续反应时,其中的C 4烯烃可在同样的反应条件下发生芳构化而生成对二甲苯,从而进一步提高产物中对二甲苯的选择性和收率。
图1示出根据本申请的方法的一个实施方案的工艺流程示意图,其中将甲醇和/或二甲醚催化反应产物中的含有苯和甲苯的组分分离并返回至反应系统中继续反应。
参见图1,在该实施方案中,首先将含有甲醇和/或二甲醚的原料进料至反应系统,使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物A1。混合物A1进入第一分离系统,分离得到C 1-C 4组分和C 5+组分。C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物。将含有苯和甲苯的组分泵送回反应系统以生成对二甲苯。最后分离对二甲苯和其他汽油组分。
图2示出根据本申请的方法的另一实施方案的工艺流程示意图,其中将甲醇和/或二甲醚转化反应产物中的含有苯、甲苯和C 4烯烃的组分分离并返回至反应系统中继续反应。
参见图2,在该实施方案中,首先将含有甲醇和/或二甲醚的原料进料至反应系统,使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物A2。混合物A2进入第一分离系统,分离得到含有C 4烯烃的组分、C 1-C 3组分、含有C 4烷烃的组分和C 5+组分。将含有C 4烯烃的组分泵送回反应系统以生成对二甲苯。C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物。将含有苯和甲苯的组分泵送回反应系统以生成对二甲苯。最后分离对二甲苯和其他汽油组分。
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料和试剂均通过商业途径购买,其中HZSM-5沸石分子筛原粉和HZSM-11沸石分子筛原粉购自南开大学催化剂厂,Si/Al=5。
本申请的实施例中的分析方法如下:
利用在线Agilent7890气相色谱分析产物的组分及含量。
本申请的实施例中的转化率、选择性计算如下:
Figure PCTCN2018118507-appb-000002
Figure PCTCN2018118507-appb-000003
Figure PCTCN2018118507-appb-000004
实施例A1 FXHZSM-5固定床催化剂制备
将100g HZSM-5沸石分子筛原粉(南开大学催化剂厂,Si/Al=5)在空气气氛、550℃下焙烧4小时,制得HZSM-5分子筛催化剂,将该催化剂命名为FXHZSM-5。
实施例A2 FXCuZSM-5固定床催化剂制备
将10g实施例1制备的FXHZSM-5催化剂置于10wt%Cu(NO 3) 2溶液中浸渍2小时,沥干后120℃干燥,然后在空气气氛、550℃条件下焙烧4小时,制得FXCuZSM-5固定床催化剂。
实施例A3 FXZnZSM-5固定床催化剂制备
将10g实施例1制备的FXHZSM-5催化剂置于10wt%Zn(NO 3) 2溶液中浸渍2小时,沥干后120℃干燥,然后在空气气氛、550℃条件下焙烧4小时,制得FXZnZSM-5固定床催化剂。
实施例A4 FXGaZSM-5固定床催化剂制备
将10g实施例1制备的FXHZSM-5催化剂置于10wt%Ga(NO 3) 3溶液中浸渍2小时,沥干后120℃干燥,然后在空气气氛、550℃条件下焙烧4小时,制得FXGaZSM-5固定床催化剂。
实施例A5 FXLaZSM-5固定床催化剂制备
将10g实施例1制备的FXHZSM-5催化剂置于10wt%La(NO 3) 3溶液中浸渍2小时,沥干后120℃干燥,然后在空气气氛、550℃条件下焙烧4小时,制得FXLaZSM-5固定床催化剂。
实施例A6 FXHZSM-11固定床催化剂制备
将100g HZSM-11沸石分子筛原粉(南开大学催化剂厂,Si/Al=5)在空气气氛、550℃下焙烧4小时,制得HZSM-11分子筛催化剂,将该催化剂命名为FXHZSM-11。
实施例A7 FXGaZSM-11固定床催化剂制备
将10g实施例2制备的FXHZSM-11催化剂置于10wt%Ga(NO 3) 3溶液中浸渍2小时,沥干后120℃干燥,然后在空气气氛、550℃条件下焙烧4小时,制得FXGaZSM-11固定床催化剂。
实施例B1 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A2中制备的FXCuZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时。切换成氮气气氛,升温至800℃,在15h -1的水蒸汽重量空速下进行水蒸汽处理2h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B1。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B1所示。
表B1
催化剂 FXMTGCAT-B1
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 37.03
二甲苯产物中对二甲苯选择性(wt%) 99.52
产物分布(wt%)  
CH 4 3.76
C 2H 4 3.99
C 2H 6 2.30
C 3H 6 3.49
C 3H 8 12.34
C 4烯烃 5.40
C 4烷烃 7.11
C 5 6.89
C 6+链烃 3.06
2.13
甲苯 21.38
乙苯 1.47
对二甲苯 24.56
间二甲苯 0.08
邻二甲苯 0.04
C 9芳烃 1.79
C 10+芳烃 0.20
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B2 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A3中制备的FXZnZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=40:60(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料45min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至650℃,在30h -1的水蒸汽重量空速下进行水蒸汽处理5.5h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B2。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B2所示。
表B2
催化剂 FXMTGCAT-B2
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 35.59
二甲苯产物中对二甲苯选择性(wt%) 99.60
产物分布(wt%)  
CH 4 3.64
C 2H 4 3.41
C 2H 6 2.02
C 3H 6 3.21
C 3H 8 11.84
C 4烯烃 5.71
C 4烷烃 7.73
C 5 4.48
C 6+链烃 2.41
2.25
甲苯 22.95
乙苯 1.46
对二甲苯 26.84
间二甲苯 0.07
邻二甲苯 0.04
C 9芳烃 1.75
C 10+芳烃 0.18
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B3 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=10:90(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料225min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至760℃,在50h -1的水蒸汽重量空速下进行水蒸汽处理3h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B3。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B3所示。
表B3
催化剂 FXMTGCAT-B3
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 36.55
二甲苯产物中对二甲苯选择性(wt%) 99.76
产物分布(wt%)  
CH 4 4.04
C 2H 4 2.67
C 2H 6 2.41
C 3H 6 2.19
C 3H 8 10.46
C 4烯烃 5.63
C 4烷烃 6.68
C 5 4.35
C 6+链烃 2.84
2.21
甲苯 24.51
乙苯 1.02
对二甲苯 28.53
间二甲苯 0.04
邻二甲苯 0.03
C 9芳烃 1.37
C 10+芳烃 0.18
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B4 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A5中制备的FXLaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至550℃,在25h -1的水蒸汽重量空速下进行水蒸汽处理8h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B4。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B4所示。
表B4
催化剂 FXMTGCAT-B4
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 41.91
二甲苯产物中对二甲苯选择性(wt%) 99.65
产物分布(wt%)  
CH 4 3.21
C 2H 4 3.86
C 2H 6 1.78
C 3H 6 3.52
C 3H 8 8.32
C 4烯烃 6.51
C 4烷烃 7.83
C 5 9.62
C 6+链烃 6.38
1.39
甲苯 21.00
乙苯 1.59
对二甲苯 23.03
间二甲苯 0.06
邻二甲苯 0.02
C 9芳烃 1.71
C 10+芳烃 0.15
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B5 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至450℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至610℃,在2h -1的水蒸汽重量空速下进行水蒸汽处理6.5h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B5。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B5所示。
表B5
催化剂 FXMTGCAT-B5
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 37.37
二甲苯产物中对二甲苯选择性(wt%) 99.68
产物分布(wt%)  
CH 4 3.23
C 2H 4 2.81
C 2H 6 2.58
C 3H 6 2.19
C 3H 8 12.06
C 4烯烃 5.33
C 4烷烃 6.76
C 5 5.12
C 6+链烃 3.44
2.30
甲苯 23.66
乙苯 1.19
对二甲苯 27.68
间二甲苯 0.06
邻二甲苯 0.03
C 9芳烃 1.45
C 10+芳烃 0.11
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B6 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至150℃。将硅酸四甲酯和甲醇的混合液用微量进料泵进料,硅酸四甲酯:甲醇=20:80(重量比),硅酸四甲酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至720℃,在45h -1的水蒸汽重量空速下进行水蒸汽处理4h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B6。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B6所示。
表B6
催化剂 FXMTGCAT-B6
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 35.87
二甲苯产物中对二甲苯选择性(wt%) 99.90
产物分布(wt%)  
CH 4 3.27
C 2H 4 2.51
C 2H 6 2.56
C 3H 6 1.84
C 3H 8 14.22
C 4烯烃 4.61
C 4烷烃 5.73
C 5 3.83
C 6+链烃 2.74
2.13
甲苯 25.36
乙苯 0.93
对二甲苯 29.38
间二甲苯 0.02
邻二甲苯 0.01
C 9芳烃 0.82
C 10+芳烃 0.04
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B7 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A7中制备的FXGaZSM-11催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至300℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,切换成氮气气氛,升温至680℃,在20h -1的水蒸汽重量空速下进行水蒸汽处理5h,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-B7。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。反应结果如表B7所示。
表B7
催化剂 FXMTGCAT-B7
反应温度(℃) 380
甲醇转化率(%) 100
烃类产物中汽油组分选择性(wt%) * 36.40
二甲苯产物中对二甲苯选择性(wt%) 99.81
产物分布(wt%)  
CH 4 3.86
C 2H 4 2.73
C 2H 6 2.70
C 3H 6 2.25
C 3H 8 11.63
C 4 13.09
C 5 5.15
C 6+链烃 3.68
2.35
甲苯 22.76
乙苯 1.29
对二甲苯 27.34
间二甲苯 0.03
邻二甲苯 0.02
C 9芳烃 1.07
C 10+芳烃 0.05
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例B8 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
使用实施例B1中制备的甲醇反应催化剂FXMTGCAT-B1,以与实施例B1中所述相同的过程进行甲醇制对二甲苯联产汽油反应,其区别在于:氩气气氛,反应温度为300℃,甲醇总重量空速为3h -1,反应压力为0.3MPa。反应结果与表B1类似。
实施例B9 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
使用实施例B1中制备的甲醇反应催化剂FXMTGCAT-B1,以与实施例B1中所述相同的过程进行甲醇制对二甲苯联产汽油反应,其区别在于:氦气气氛,反应温度为500℃,甲醇总重量空速为1h -1,反应压力为0.7MPa。反应结果与表B1类似。
实施例B10 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
以与实施例B1中所述相同的过程制备甲醇制对二甲苯联产汽油固定床催化剂并进行甲醇制对二甲苯联产汽油反应,其区别在于:硅酸四乙酯和甲醇的总重量空速为0.5h -1。反应结果与表B1类似。
实施例B11 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(无苯、甲苯和C 4烯烃返回反应系统进一步反应)
以与实施例B1中所述相同的过程制备甲醇制对二甲苯联产汽油固定床催化剂并进行甲醇制对二甲苯联产汽油反应,其区别在于:硅酸四乙酯和甲醇的总重量空速为1.5h -1。反应结果与表B1类似。
由上述实验结果可见,烃类产物中,汽油组分的选择性为35.59~41.91wt%,对二甲苯的选择性为23.03~29.38wt%。
另外,由上述实验结果可见,对二甲苯在二甲苯产物中的选择性不低于99.52wt%;C 10+重芳烃在产物分布中的重量百分比不高于0.20wt%,在汽油组分中的重量百分比不高于0.54wt%。
此外,由上述实验结果可见,C 9芳烃的含量也得到了显著降低,其在产物分布中的重量百分比不高于 1.79wt%,在汽油组分中的重量百分比不高于4.92wt%。
实施例C1 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A2中制备的FXCuZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C1。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B1中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C1所示。
表C1
催化剂 FXMTGCAT-C1
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.51
产物分布(wt%)  
CH 4 3.63
C 2H 4 3.85
C 2H 6 2.22
C 3H 6 3.37
C 3H 8 11.91
C 4 12.07
C 5 6.65
C 6+链烃 2.95
乙苯 2.84
对二甲苯 46.51
间二甲苯 0.15
邻二甲苯 0.08
C 9芳烃 3.39
C 10+芳烃 0.38
   
烃类产物中汽油组分选择性(wt%) * 16.44
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C2 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A3中制备的FXZnZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=40:60(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料45min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C2。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B2中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C2所示。
表C2
催化剂 FXMTGCAT-C2
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.59
产物分布(wt%)  
CH 4 3.50
C 2H 4 3.28
C 2H 6 1.94
C 3H 6 3.09
C 3H 8 11.40
C 4 12.94
C 5 4.31
C 6+链烃 2.32
乙苯 2.81
对二甲苯 50.55
间二甲苯 0.13
邻二甲苯 0.08
C 9芳烃 3.30
C 10+芳烃 0.34
   
烃类产物中汽油组分选择性(wt%) * 13.29
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C3 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=10:90(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料225min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C3。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B3中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C3所示。
表C3
催化剂 FXMTGCAT-C3
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.77
产物分布(wt%)  
CH 4 3.89
C 2H 4 2.57
C 2H 6 2.32
C 3H 6 2.11
C 3H 8 10.07
C 4 12.66
C 5 4.19
C 6+链烃 2.73
乙苯 1.96
对二甲苯 54.42
间二甲苯 0.07
邻二甲苯 0.06
C 9芳烃 2.61
C 10+芳烃 0.34
   
烃类产物中汽油组分选择性(wt%) * 11.97
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C4 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A5中制备的FXLaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C4。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B4中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C4所示。
表C4
催化剂 FXMTGCAT-C4
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.65
产物分布(wt%)  
CH 4 3.08
C 2H 4 3.70
C 2H 6 1.71
C 3H 6 3.37
C 3H 8 7.97
C 4 13.75
C 5 9.22
C 6+链烃 6.12
乙苯 3.05
对二甲苯 44.31
间二甲苯 0.12
邻二甲苯 0.04
C 9芳烃 3.29
C 10+芳烃 0.29
   
烃类产物中汽油组分选择性(wt%) * 22.12
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C5 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至450℃。 将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C5。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B5中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C5所示。
表C5
催化剂 FXMTGCAT-C5
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.68
产物分布(wt%)  
CH 4 3.11
C 2H 4 2.71
C 2H 6 2.49
C 3H 6 2.11
C 3H 8 11.62
C 4烷烃 11.65
C 5 4.93
C 6+链烃 3.32
乙苯 2.29
对二甲苯 52.62
间二甲苯 0.11
邻二甲苯 0.06
C 9芳烃 2.76
C 10+芳烃 0.21
   
烃类产物中汽油组分选择性(wt%) * 13.68
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C6 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至150℃。将硅酸四甲酯和甲醇的混合液用微量进料泵进料,硅酸四甲酯:甲醇=20:80(重量比),硅酸四甲酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-C6。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B6中甲醇转化反应产物中的苯、甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除苯和甲苯后的反应结果如表C6所示。
表C6
催化剂 FXMTGCAT-C6
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.90
产物分布(wt%)  
CH 4 3.14
C 2H 4 2.41
C 2H 6 2.46
C 3H 6 1.77
C 3H 8 13.66
C 4 9.93
C 5 3.68
C 6+链烃 2.63
乙苯 1.79
对二甲苯 56.80
间二甲苯 0.04
邻二甲苯 0.02
C 9芳烃 1.59
C 10+芳烃 0.08
   
烃类产物中汽油组分选择性(wt%) * 9.82
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例C7 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
使用实施例C1中制备的甲醇反应催化剂FXMTGCAT-C1,以与实施例C1中所述相同的过程进行甲醇制对二甲苯联产汽油反应。其区别在于:氩气气氛,反应温度为350℃,甲醇总重量空速为3h -1,反应压力为0.3MPa。反应结果与表C1类似。
实施例C8 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯和甲苯返回反应系统进一步反应)
使用实施例C1中制备的甲醇反应催化剂FXMTGCAT-C1,以与实施例C1中所述相同的过程进行甲醇制对二甲苯联产汽油反应。其区别在于:氦气气氛,反应温度为410℃,甲醇总重量空速为1h -1,反应压力为0.7MPa。反应结果与表C1类似。
由上述实验结果可以看出,对二甲苯在产物分布中的重量百分比不低于44.31wt%。进一步地,在产物分布中,对二甲苯的重量百分比为44.31~56.80wt%,汽油组分的重量百分比为9.82~22.12wt%。
实施例D1 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A2中制备的FXCuZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D1。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B1中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D1所示。
表D1
催化剂 FXMTGCAT-D1
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.51
产物分布(wt%)  
CH 4 3.82
C 2H 4 4.05
C 2H 6 2.34
C 3H 6 3.55
C 3H 8 12.53
C 4烷烃 7.48
C 5 7.00
C 6+链烃 3.10
乙苯 2.99
对二甲苯 48.94
间二甲苯 0.16
邻二甲苯 0.08
C 9芳烃 3.57
C 10+芳烃 0.40
   
烃类产物中汽油组分选择性(wt%) * 17.30
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D2 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A3中制备的FXZnZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=40:60(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料45min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D2。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B2中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D2所示。
表D2
催化剂 FXMTGCAT-D2
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.59
产物分布(wt%)  
CH 4 3.69
C 2H 4 3.46
C 2H 6 2.05
C 3H 6 3.26
C 3H 8 12.03
C 4烷烃 8.16
C 5 4.55
C 6+链烃 2.45
乙苯 2.96
对二甲苯 53.33
间二甲苯 0.14
邻二甲苯 0.08
C 9芳烃 3.48
C 10+芳烃 0.36
   
烃类产物中汽油组分选择性(wt%) * 14.02
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D3 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=10:90(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料225min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D3。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B3中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D3所示。
表D3
催化剂 FXMTGCAT-D3
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.77
产物分布(wt%)  
CH 4 4.14
C 2H 4 2.73
C 2H 6 2.47
C 3H 6 2.24
C 3H 8 10.71
C 4烷烃 7.10
C 5 4.46
C 6+链烃 2.90
乙苯 2.08
对二甲苯 57.88
间二甲苯 0.07
邻二甲苯 0.06
C 9芳烃 2.78
C 10+芳烃 0.36
   
烃类产物中汽油组分选择性(wt%) * 12.72
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D4 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A5中制备的FXLaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至200℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D4。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B4中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出 C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D4所示。
表D4
催化剂 FXMTGCAT-D4
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.65
产物分布(wt%)  
CH 4 3.27
C 2H 4 3.93
C 2H 6 1.82
C 3H 6 3.58
C 3H 8 8.47
C 4烷烃 8.32
C 5 9.80
C 6+链烃 6.50
乙苯 3.24
对二甲苯 47.09
间二甲苯 0.13
邻二甲苯 0.04
C 9芳烃 3.50
C 10+芳烃 0.31
   
烃类产物中汽油组分选择性(wt%) * 23.52
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D5 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至450℃。将硅酸四乙酯和甲醇的混合液用微量进料泵进料,硅酸四乙酯:甲醇=20:80(重量比),硅酸四乙酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D5。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B5中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D5所示。
表D5
催化剂 FXMTGCAT-D5
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.68
产物分布(wt%)  
CH 4 3.27
C 2H 4 2.85
C 2H 6 2.62
C 3H 6 2.22
C 3H 8 12.22
C 4烷烃 7.11
C 5 5.18
C 6+链烃 3.49
乙苯 2.41
对二甲苯 55.33
间二甲苯 0.12
邻二甲苯 0.06
C 9芳烃 2.90
C 10+芳烃 0.22
   
烃类产物中汽油组分选择性(wt%) * 14.38
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D6 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
在微型固定床反应装置内在线制备甲醇制对二甲苯联产汽油固定床催化剂。在线制备催化剂的条件如下:将实施例A4中制备的FXGaZSM-5催化剂压片成型并破碎筛分为40~60目,将5g(40~60目)催化剂装入固定床反应器中,先经50ml/min氮气在550℃下处理1小时,然后在氮气气氛下降温至150℃。将硅酸四甲酯和甲醇的混合液用微量进料泵进料,硅酸四甲酯:甲醇=20:80(重量比),硅酸四甲酯和甲醇的总重量空速为1h -1,常压。进料90min后停止进料,用氮气吹扫,升温至550℃,在空气气氛下焙烧4小时,制得甲醇制对二甲苯联产汽油固定床催化剂,命名为FXMTGCAT-D6。
然后,在氮气气氛下降温至反应温度380℃,进行甲醇制对二甲苯联产汽油反应,反应条件如下:原料用微量进料泵进料,甲醇总重量空速为2h -1,反应压力为0.5MPa。根据实施例B6中甲醇转化反应产物中的C 4烯烃、苯和甲苯组成配制成原料,并用微量进料泵进料(等同于将甲醇转化反应产物中分离出C 4烯烃、苯和甲苯,并用微量进料泵泵送回固定床反应器中)。反应产物通过在线Agilent7890气相色谱进行分析,反应60min时取样分析。扣除C 4烯烃以及苯和甲苯后的反应结果如表D6所示。
表D6
催化剂 FXMTGCAT-D6
反应温度(℃) 380
甲醇转化率(%) 100
二甲苯产物中对二甲苯选择性(wt%) 99.90
产物分布(wt%)  
CH 4 3.28
C 2H 4 2.52
C 2H 6 2.57
C 3H 6 1.85
C 3H 8 14.26
C 4烷烃 5.98
C 5 3.84
C 6+链烃 2.75
乙苯 1.87
对二甲苯 59.29
间二甲苯 0.04
邻二甲苯 0.02
C 9芳烃 1.66
C 10+芳烃 0.08
   
烃类产物中汽油组分选择性(wt%) * 10.26
*包括C 5、C 6+链烃和芳烃(对二甲苯除外)
实施例D7 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
使用实施例D1中制备的甲醇反应催化剂FXMTGCAT-D1,以与实施例D1中所述相同的过程进行甲 醇制对二甲苯联产汽油反应。其区别在于:氩气气氛,反应温度为350℃,甲醇总重量空速为3h -1,反应压力为0.3MPa。反应结果与表D1类似。
实施例D8 甲醇制对二甲苯联产汽油固定床催化剂在线制备及反应评价(苯、甲苯和C 4烯烃返回反应系统进一步反应)
使用实施例D1中制备的甲醇反应催化剂FXMTGCAT-D1,以与实施例D1中所述相同的过程进行甲醇制对二甲苯联产汽油反应。其区别在于:氦气气氛,反应温度为410℃,甲醇总重量空速为1h -1,反应压力为0.7MPa。反应结果与表D1类似。
由上述实验结果可以看出,对二甲苯在产物分布中的重量百分比不低于47.09wt%。进一步地,在产物分布中,对二甲苯的重量百分比为47.09~59.29wt%,汽油组分的重量百分比为10.26~23.52wt%。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (21)

  1. 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法,其特征在于,至少包括以下步骤:
    使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到汽油组分产物和对二甲苯产物;
    其中,所述催化剂选自经金属改性和硅烷化试剂改性的沸石分子筛催化剂中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,至少包括以下步骤:
    1a)使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到混合物;从所得混合物中分离出含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;
    1b)将所述含有苯和甲苯的组分返回步骤1a),与含有甲醇和/或二甲醚的原料共进料反应。
  3. 根据权利要求1所述的方法,其特征在于,至少包括以下步骤:
    2a)使含有甲醇和/或二甲醚的原料与催化剂接触反应,得到混合物;从所得混合物中分离出含有苯和甲苯的组分、含有C 4烯烃的组分、含有对二甲苯和汽油组分的产物;
    2b)将所述含有苯和甲苯的组分、所述含有C 4烯烃的组分返回步骤2a),与含有甲醇和/或二甲醚的原料共进料反应。
  4. 根据权利要求2所述的方法,其特征在于,至少包括以下步骤:
    1-1)使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物;
    1-2)所述混合物进入第一分离系统,分离得到C 1-C 4组分和C 5+组分;
    1-3)所述C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;将所述含有苯和甲苯的组分返回至反应系统。
  5. 根据权利要求3所述的方法,其特征在于,至少包括以下步骤:
    2-1)使含有甲醇和/或二甲醚的原料在反应系统中与催化剂接触发生反应,得到混合物;
    2-2)所述混合物进入第一分离系统,分离得到含有C 4烯烃的组分和C 5+组分;将所述含有C 4烯烃的组分返回至反应系统;
    2-3)所述C 5+组分进入第二分离系统,分离得到含有苯和甲苯的组分、含有对二甲苯和汽油组分的产物;将所述含有苯和甲苯的组分返回至反应系统。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述反应系统包括一个反应器或多个通过串联和/或并联方式连接的反应器。
  7. 根据权利要求6所述的方法,其特征在于,所述反应器选自固定床、流化床和移动床中的至少一种。
  8. 根据权利要求1至5中任一项所述的方法,其特征在于,所述反应的条件包括:
    非活性气体气氛,反应温度300~500℃,反应压力0.3~0.7MPa,甲醇和/或二甲醚的重量空速1~3h -1
  9. 根据权利要求8所述的方法,其特征在于,所述反应温度为350~410℃。
  10. 根据权利要求1至5中任一项所述的方法,其特征在于,所述催化剂的制备方法至少包括以下步骤:
    1)将沸石分子筛在金属的可溶性盐溶液中浸渍,焙烧,制备经金属改性的沸石分子筛;
    2)使所述经金属改性的沸石分子筛与硅烷化试剂接触,焙烧,制备经金属改性和硅烷化试剂改性的沸石分子筛催化剂。
  11. 根据权利要求10所述的方法,其特征在于,在所述步骤2)中,在130~500℃的温度下,使硅 烷化试剂气化后与经金属改性的沸石分子筛接触。
  12. 根据权利要求10所述的方法,其特征在于,在所述步骤2)中,在130~500℃的温度下,使含有硅烷化试剂和载剂的混合物气化后与经金属改性的沸石分子筛接触,其中硅烷化试剂与载剂的重量比为10:90~40:60,硅烷化试剂和载剂的总重量空速为0.5~1.5h -1,接触时间为45~225min。
  13. 根据权利要求10所述的方法,其特征在于,在所述步骤2)之后,还包括以下步骤:
    对经金属改性和硅烷化试剂改性的沸石分子筛催化剂进行水蒸汽处理。
  14. 根据权利要求13所述的方法,其特征在于,所述水蒸汽处理在550~800℃的温度下,以2~50h -1的水蒸汽重量空速进行2~8h。
  15. 根据权利要求1至5中任一项所述的方法,其特征在于,所述沸石分子筛选自具有MFI或MEL骨架结构的HZSM-5分子筛和HZSM-11分子筛中的至少一种。
  16. 根据权利要求15所述的方法,其特征在于,所述沸石分子筛包含HZSM-5分子筛。
  17. 根据权利要求1至5中任一项所述的方法,其特征在于,所述金属选自铜、锌、镓和镧中的至少一种。
  18. 根据权利要求17所述的方法,其特征在于,所述金属选自铜、锌、镓和镧中的一种或两种。
  19. 根据权利要求1至5中任一项所述的方法,其特征在于,所述硅烷化试剂选自具有以下化学式的化合物中的至少一种:
    Figure PCTCN2018118507-appb-100001
    其中R 1、R 2、R 3和R 4各自独立地选自C 1-10的烷基、C 1-10的烷氧基。
  20. 根据权利要求19所述的方法,其特征在于,R 1、R 2、R 3和R 4中的至少一个选自C 1-10的烷氧基。
  21. 根据权利要求20所述的方法,其特征在于,所述硅烷化试剂选自硅酸四乙酯和硅酸四甲酯中的至少一种。
PCT/CN2018/118507 2018-11-15 2018-11-30 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法 WO2020098002A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811362317.4A CN111187134A (zh) 2018-11-15 2018-11-15 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法
CN201811362319.3 2018-11-15
CN201811362317.4 2018-11-15
CN201811362314.0 2018-11-15
CN201811362314.0A CN111187132A (zh) 2018-11-15 2018-11-15 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
CN201811362319.3A CN111187141A (zh) 2018-11-15 2018-11-15 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法

Publications (1)

Publication Number Publication Date
WO2020098002A1 true WO2020098002A1 (zh) 2020-05-22

Family

ID=70731944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118507 WO2020098002A1 (zh) 2018-11-15 2018-11-30 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法

Country Status (1)

Country Link
WO (1) WO2020098002A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607864A (zh) * 2009-07-24 2009-12-23 中国海洋石油总公司 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
CN104710267A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种甲醇或/和二甲醚制对二甲苯和丙烯的方法
CN104710266A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种甲醇或/和二甲醚制对二甲苯联产低碳烯烃的方法
CN106694029A (zh) * 2016-12-06 2017-05-24 中国科学院山西煤炭化学研究所 一种非金属改性催化剂及其制备方法
CN107162866A (zh) * 2017-04-19 2017-09-15 新地能源工程技术有限公司 一种甲醇制汽油联产二甲苯的方法及装置
WO2018195865A1 (zh) * 2017-04-27 2018-11-01 中国科学院大连化学物理研究所 制甲苯、对二甲苯、低碳烯烃中至少一种的催化剂的原位制备方法及反应工艺
CN108794288A (zh) * 2017-04-27 2018-11-13 中国科学院大连化学物理研究所 一种制低碳烯烃联产对二甲苯的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101607864A (zh) * 2009-07-24 2009-12-23 中国海洋石油总公司 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
CN104710267A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种甲醇或/和二甲醚制对二甲苯和丙烯的方法
CN104710266A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种甲醇或/和二甲醚制对二甲苯联产低碳烯烃的方法
CN106694029A (zh) * 2016-12-06 2017-05-24 中国科学院山西煤炭化学研究所 一种非金属改性催化剂及其制备方法
CN107162866A (zh) * 2017-04-19 2017-09-15 新地能源工程技术有限公司 一种甲醇制汽油联产二甲苯的方法及装置
WO2018195865A1 (zh) * 2017-04-27 2018-11-01 中国科学院大连化学物理研究所 制甲苯、对二甲苯、低碳烯烃中至少一种的催化剂的原位制备方法及反应工艺
CN108794288A (zh) * 2017-04-27 2018-11-13 中国科学院大连化学物理研究所 一种制低碳烯烃联产对二甲苯的方法

Similar Documents

Publication Publication Date Title
US10894752B2 (en) Catalyst and method for aromatization of C3-C4 gases, light hydrocarbon fractions and aliphatic alcohols, as well as mixtures thereof
CN101607864B (zh) 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
JP5873570B2 (ja) メタノール及び/又はジメチルエーテルとc4液化ガスの混合転換によりパラキシレンを製造するための触媒及びその製造方法と使用
CN101602643B (zh) 一种甲醇/二甲醚转化制取乙烯丙烯联产对二甲苯的方法
WO2018195865A1 (zh) 制甲苯、对二甲苯、低碳烯烃中至少一种的催化剂的原位制备方法及反应工艺
EP3153489B1 (en) Method for preparing paraxylene and propylene by methanol and/or dimethyl ether
CN107973677B (zh) 甲醇芳构化制备低含量含氧化合物的混合芳烃装置和方法
RU2425091C1 (ru) Способ получения высокооктанового бензина и/или ароматических углеводородов с низким содержанием бензола
EP3153490B1 (en) Method for preparing paraxylene with co-production of propylene with high selectivity
CN111187132A (zh) 一种由甲醇和/或二甲醚制备汽油联产对二甲苯的方法
CN108794288B (zh) 一种制低碳烯烃联产对二甲苯的方法
WO2020098002A1 (zh) 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法
CA1250318A (en) Natural gas conversion
CN111187133B (zh) 一种由甲醇和/或二甲醚、苯制备对二甲苯联产乙苯和丙烯的方法
CN111187134A (zh) 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法
CN111187141A (zh) 一种由甲醇和/或二甲醚制备对二甲苯联产汽油的方法
CN108786906B (zh) 一种苯、甲醇制甲苯联产对二甲苯和低碳烯烃的催化剂的原位制备方法
WO2022083725A1 (zh) 一种汽油组分的处理方法和系统
CN114716291B (zh) 一种由混合芳烃多产对二甲苯的工艺系统和工艺方法
JP7018174B2 (ja) 芳香族炭化水素の製造方法
CN108786904B (zh) 一种制低碳烯烃联产对二甲苯的催化剂的原位制备方法
CN108794287B (zh) 一种制低碳烯烃联产对二甲苯的方法
CN108786905B (zh) 一种苯、甲醇烷基化制甲苯联产对二甲苯的催化剂的原位制备方法
WO2020155144A1 (zh) 一种分子筛催化剂及其制备方法和应用
CN117126029A (zh) 一种均四甲苯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940088

Country of ref document: EP

Kind code of ref document: A1