WO2020097948A1 - 利用金属镓进行碳化的方法 - Google Patents

利用金属镓进行碳化的方法 Download PDF

Info

Publication number
WO2020097948A1
WO2020097948A1 PCT/CN2018/116079 CN2018116079W WO2020097948A1 WO 2020097948 A1 WO2020097948 A1 WO 2020097948A1 CN 2018116079 W CN2018116079 W CN 2018116079W WO 2020097948 A1 WO2020097948 A1 WO 2020097948A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization
carbon fiber
carbonizing
metal gallium
carbonized
Prior art date
Application number
PCT/CN2018/116079
Other languages
English (en)
French (fr)
Inventor
顾宏伟
张克勤
刘雅媛
曹雪琴
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2020097948A1 publication Critical patent/WO2020097948A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • the invention relates to the technical field of material carbonization, in particular to a method for carbonizing with metal gallium.
  • Carbon fiber is a special fiber composed of carbon element, and its carbon content is above 90%. Compared with other carbon materials, it has unique properties, such as light weight, high modulus, high strength, high temperature resistance, good stability and the advantages of both electrical and thermal conductivity. It is precisely because of its excellent mechanical, chemical and electrical properties, carbon fiber materials have received widespread attention. With the maturity of carbon fiber production technology and the needs of multiple fields (including aerospace, aviation, automobiles, machinery, sports equipment, leisure products, etc.), the carbon fiber industry has broad development prospects.
  • the main types of carbon fiber produced on the international market include polyacrylonitrile (PAN) -based carbon fiber and pitch-based carbon fiber.
  • PAN polyacrylonitrile
  • the former is the main product.
  • the appearance and production of carbon fiber began in the middle and late 20th century.
  • the production process generally includes three stages: pre-oxidation, carbonization, and graphitization.
  • the production technology of carbon fiber, especially high-performance carbon fiber technology is mainly controlled by the earliest countries that developed carbon fiber materials, such as the United States, Japan, and Germany. China's carbon fiber industry started late. With the strong support and help of the country, China has achieved certain results from research and production to production, but the quality of the products currently produced is still far behind the international high-end products.
  • the carbon fiber manufacturing process mainly includes the production of raw silk ⁇ pre-oxidation ⁇ carbonization ⁇ graphitization ⁇ PAN-based carbon fiber (Shi Yanping. Raman studied the microstructure and properties of carbon fiber [D]. Shanghai: Donghua University, 2010: 1-67) .
  • the pre-oxidation process is carried out in an air atmosphere
  • the low-temperature carbonization and graphitization processes are carried out in an inert atmosphere. Since the 21st century, the demand for high-quality carbon fiber has increased, and the production levels at home and abroad are quite different.
  • the existing process of producing PAN-based carbon fiber requires an inert gas atmosphere, which is difficult to recycle due to large gas consumption, and requires high equipment during the assembly line process.
  • the cost of carbon fiber has always been high. To achieve profitability, the cost must be reduced. The cost mainly includes raw materials, labor, fuel, depreciation, and others. In these links, the cost can be reduced to a certain extent. profit.
  • the technical problem to be solved by the present invention is to provide a method for carbonization using metal gallium, which is carried out in an air atmosphere, coupled with good thermal conductivity of metal gallium, and low energy consumption loss; in addition, gallium can be recovered again after the reaction The utilization can greatly reduce the carbonization cost.
  • the present invention provides a method for carbonizing with metal gallium, including:
  • the step of heating to carbonize the material is
  • the material to be carbonized may be any material known in the art that can undergo a carbonization reaction, preferably a fibrous material, and more preferably a PNA strand.
  • the heating temperature is 400-1100 ° C.
  • the holding time is 2-6h; more preferably, the holding time is 4-6h.
  • it also includes the step of removing gallium for recycling after the carbonization is completed.
  • a step of cleaning the carbonized material is also included.
  • the carbonized material is washed with dilute acid and hot water.
  • the present invention utilizes the characteristics of low melting point and high boiling point of metal gallium. At a certain temperature, metal gallium is in a liquid state. After immersing the material, a closed space is created to isolate the material from the air, thereby eliminating the need to use an inert gas atmosphere and simple production conditions;
  • Metal gallium has good thermal conductivity.
  • the present invention uses metal gallium as a heat conduction medium to carbonize the material, which has less energy consumption and higher efficiency than that in a gas atmosphere;
  • gallium has good chemical stability, it hardly reacts with external substances at high temperature, so it can be recycled after carbonization, and the cost is low;
  • Figure 1 is a process flow diagram of the present invention
  • SEM scanning electron microscope
  • SEM scanning electron microscope
  • Example 1-14 Using metal gallium to carbonize PAN filament
  • Figure 2 shows (A) PAN filament, (B) carbon fiber sample (CF) sample and reaction at 600 °C (C) 0.5h, (D) 1h, (E) 2h, (F) 3h, (G) 4h , (H) 6h and (I) 8h fiber SEM images. It can be seen from the figure that the morphology of the fiber remains the same after different times of reaction without major changes.
  • Figure 3 is (A) PAN raw silk, (B) carbon fiber samples and reaction at 600 °C (C) 0.5h, (D) 1h, (E) 2h, (F) 3h, (G) 4h, (H) 6h and (I) 8h fiber Raman data analysis chart. It can be seen from the figure that the method of the present invention can carbonize PAN fibril fibers. After reacting at 600 ° C for different times, the degree of carbonization is almost the same, and both are lower than the carbon fiber samples.
  • Figure 4 is (A) PAN raw silk, (B) carbon fiber samples and reaction at 600 °C (C) 0.5h, (D) 1h, (E) 2h, (F) 3h, (G) 4h, (H) 6h and (I) 8h fiber XRD data analysis chart. It can be seen from the figure that the method of the present invention can carbonize PAN fibril fibers, and the carbonization reaction time is preferably 2-6 hours, and more preferably 4-6 hours.
  • Table 2 is an X-ray energy spectrum analysis (EDS) diagram of PAN raw silk, carbon fiber samples, and fibers reacted at 600 ° C for 0.5h, 1h, 2h, 3h, 4h, 6h, and 8h. It can be seen from the table: 1. The reaction time is within 3h, the material mainly undergoes an oxidation reaction, and the oxygen content increases; 2. When the reaction is 4h, the degree of carbonization is the highest, and gallium will take part of the oxygen and nitrogen elements; 3. With time Continued to extend, the degree of oxidation of the material has increased, resulting in a slight decrease in carbon content.
  • the reaction time is preferably 4-8 h, and more preferably 4-6 h.
  • Figure 5 is (A) PAN raw silk, (B) carbon fiber sample (CF) sample and (C) 200 °C, (D) 400 °C, (E) 500 °C, (F) 600 °C, (G) 800 °C , (H) 1000 °C, (I) SEM image of the fiber kept at 1100 °C for 4h. It can be seen from the figure that at different temperatures, the morphology of the fiber remains unchanged without major changes.
  • Figure 6 is (A) PAN raw silk, (B) carbon fiber samples and (C) 200 °C, (D) 400 °C, (E) 500 °C, (F) 600 °C, (G) 800 °C, (H) Raman data analysis chart of fiber kept at 1000 °C and (I) 1100 °C for 4h. It can be drawn from the figure: 1. With the increase of temperature, the degree of carbonization of the fiber generally shows an increasing trend; 2. The ID / IG of the fiber is less than that of the carbon fiber sample at 1000 ° C, which leads to a high degree of carbonization.
  • Figure 7 is (A) PAN raw silk, (B) carbon fiber samples and (C) 200 °C, (D) 400 °C, (E) 500 °C, (F) 600 °C, (G) 800 °C, (H) XRD data analysis chart of fiber kept at 1000 °C, (I) 1100 °C for 4h. It can be drawn from the figure that the method of the present invention can carbonize PAN fibril fibers; 2.
  • the holding temperature is preferably 400-1100 ° C.
  • Table 3 is the X-ray energy spectrum analysis (EDS) graph of PAN raw silk, carbon fiber samples and fibers held at 200 ° C, 400 ° C, 500 ° C, 600 ° C, 800 ° C, 1000 ° C, and 1100 ° C for 4 hours. It can be drawn from the figure: 1. When the holding temperature is below 500 °C, the O content in the EDS data increases, and the degree of oxidation of the fiber is high; 2. When the temperature reaches 600 °C, the nitrogen and oxygen content gradually decreases and the carbon content increases ; When the temperature is above 1000 °C, the carbon content of the fiber is even higher than that of the carbon fiber sample.
  • EDS X-ray energy spectrum analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

一种利用金属镓进行碳化的方法,包括以下步骤:采用液体金属镓浸没待碳化的材料,使所述材料与空气隔绝;以及加热,使得材料发生碳化。利用金属镓进行碳化的方法,在空气气氛中进行,加之金属镓良好的导热性,能耗损失少;此外,镓在反应结束后可再次回收利用,可大大降低碳化成本。

Description

利用金属镓进行碳化的方法 技术领域
本发明涉及材料碳化技术领域,具体涉及一种利用金属镓进行碳化的方法。
背景技术
碳纤维是一种由碳元素构成的特种纤维,其含碳量在90%以上。与其它碳材料相比,它具有独特的性质,如质轻、高模量、高强度、耐高温、稳定性佳和兼备导电导热的优点。正是由于其优异的力学、化学和电学性能,碳纤维材料受到广泛关注。随着碳纤维生产技术的成熟以及多领域(包括航天、航空、汽车、机械和运动器材休闲用品等方面)的需求,碳纤维产业具有广阔的发展前景。
目前,国际市场上主要生产的碳纤维种类包括聚丙烯腈(PAN)基碳纤维和沥青基碳纤维两种,前者是主要的产品。碳纤维的出现与生产始于20世纪中后期,生产过程大致包括预氧化、碳化和石墨化这三个阶段。碳纤维的生产技术尤其是高性能的碳纤维技术主要掌握在美国、日本和德国等这些最早开发碳纤维材料的国家。我国的碳纤维产业发展起步晚,在国家大力支持与帮助下,我国从研制到生产都取得一定的成绩,但目前生产的产品质量与国际高端产品相比仍有很大差距。
如今,碳纤维制造流程主要包括生产原丝→预氧化→碳化→石墨化→PAN基碳纤维(石彦平.拉曼研究碳纤维的微观结构与性能[D].上海:东华大学,2010:1-67)。传统的生产流程中,除预氧化过程在空气气氛中进行外,低高温碳化以及石墨化过程均在惰性气氛中进行。21世纪以来,对高品质碳纤维的需求愈加增多,而国内外生产水平相差颇大,世界上PAN基碳纤维生产技术主要掌握在 日本(Toray、Toho和Mitsubishi Rayon等)和美国(Hexcel、Amoco和Zoltek等)等起步较早的国家,我国也已投入大量资金和人力开发研制碳纤维,但生产能力和技术远不及发达国家。
现有的生产PAN基碳纤维的过程需要惰性气体气氛,气体消耗大难以循环使用,并且流水线过程中对设备要求较高。另外,碳纤维的成本一直居高不下,要想实现盈利必须降低成本,成本主要包括原材料、人工、燃料、折旧和其他,在这些环节中能降低成本就可以在一定程度上减少碳纤维价格,从而实现盈利。
发明内容
本发明要解决的技术问题是提供一种利用金属镓进行碳化的方法,该方法在空气气氛中进行,加之金属镓良好的导热性,能耗损失少;此外,镓在反应结束后可再次回收利用,可大大降低碳化成本。
为了解决上述技术问题,本发明提供了一种利用金属镓进行碳化的方法,包括:
采用液体金属镓浸没待碳化的材料,使所述材料与空气隔绝的步骤;以及
加热,使得材料发生碳化的步骤。
本发明中,所述待碳化材料可为本领域公开已知的任何可发生碳化反应的材料,优选地为纤维材料,更优选地为PNA原丝。
作为优选,加热的温度为400-1100℃。
作为优选,保温时间为2-6h;更优选地,保温时间为4-6h。
作为优选,还包括碳化结束后,移除镓以回收利用的步骤。
本发明中,还包括清洗碳化后的材料的步骤。作为优选,采用稀酸和热水洗涤所述碳化后的材料。
本发明的有益效果:
1.本发明利用了金属镓低熔点、高沸点的特性,在一定温度下金属镓呈液态,浸没材料后营造了封闭空间,将材料与空气隔绝,从而无需使用惰性气体气氛,生产条件简单;
2.金属镓具有良好的导热性能,本发明利用金属镓作为导热介质来碳化材料,较之在气体气氛中能耗少,效率高;
3.由于镓具有较好的化学稳定性,高温下几乎不与外界物质发生反应,因此碳化后可回收再利用,成本较低;
4.本发明的碳化方法中,由于材料处于密闭环境中,因此C元素损失少,产率高。
附图说明
图1是本发明的工艺流程图;
图2是实施例1-7中碳化后的纤维、PAN原丝与碳纤维样品的扫描电镜(SEM)图;
图3是实施例1-7中碳化后的纤维、PAN原丝与碳纤维样品的拉曼光谱图;
图4是实施例1-7中碳化后的纤维、PAN原丝与碳纤维样品的XRD图谱;
图5是实施例8-14中碳化后的纤维、PAN原丝与碳纤维样品的扫描电镜(SEM)图;
图6是实施例8-14中碳化后的纤维、PAN原丝与碳纤维样品的拉曼光谱图;
图7是实施例8-14中碳化后的纤维、PAN原丝与碳纤维样品的XRD图谱。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1-14:利用金属镓碳化PAN原丝
取100mg PAN基原丝置于石英管底部,上层覆盖2mL液态金属Ga,置于马弗炉中程序升温,按照表1的参数进行碳化反应。反应结束后移除上层的Ga,取出纤维丝用50℃稀酸和热水洗涤2h后自然晾干。
表1实施例1-14中碳化的时间和温度
Figure PCTCN2018116079-appb-000001
图2为(A)PAN原丝、(B)碳纤维样品(CF sample)和在600℃下反应(C)0.5h、(D)1h、(E)2h、(F)3h、(G)4h、(H)6h和(I)8h的纤维的SEM图。从图中可以看出,反应不同时间后,纤维的形貌仍然保持,未有大的改变。
图3是(A)PAN原丝、(B)碳纤维样品和在600℃下反应(C)0.5h、(D)1h、(E)2h、(F)3h、(G)4h、(H)6h和(I)8h的纤维的拉曼数据分析图。从图中可以看出:本发明的方法可以碳化PAN原丝纤维,在600℃下反应不同时间后,碳化的程度相差无几,且均低于碳纤维样品。
图4是(A)PAN原丝、(B)碳纤维样品和在600℃下反应(C)0.5h、(D)1h、(E)2h、(F)3h、(G)4h、(H)6h和(I)8h的纤维XRD数据分析图。从图中可以看出:本发明的方法可以碳化PAN原丝纤维,碳化反应的时间优选为2-6h,更优选为4-6h。
表2是PAN原丝、碳纤维样品和在600℃下反应0.5h、1h、2h、3h、4h、6h和8h的纤维的X射线能谱分析(EDS)图。从表中可以看出:1.反应时间在3h以内,材料主要发生了氧化反应,氧含量提升;2.反应4h时,碳化程度最高,镓会夺取部分氧和氮元素;3.随着时间继续延长,材料氧化程度有所提高,造成碳含量略有降低。反应时间优选为4-8h,更优选为4-6h。
表2 PAN原丝、碳纤维样品与实施例1-7中的纤维的EDS结果
Figure PCTCN2018116079-appb-000002
图5是(A)PAN原丝、(B)碳纤维样品(CF sample)和在(C)200℃、(D)400℃、(E)500℃、(F)600℃、(G)800℃、(H)1000℃、(I)1100℃下保温4h的纤维SEM图。从图中看出,在不同温度下,纤维的形貌仍然保持,未有大的改变。
图6是(A)PAN原丝、(B)碳纤维样品和在(C)200℃、(D)400℃、(E)500℃、(F)600℃、(G)800℃、(H)1000℃、(I)1100℃下保温4h的纤维的拉曼数据分析图。从图中可以得出:1.随着温度的提高,纤维的碳化程度总体上呈提高的趋势;2.在1000℃下纤维的ID/IG小于碳纤维样品,从而得出其碳化程度高。
图7是(A)PAN原丝、(B)碳纤维样品和在(C)200℃、(D)400℃、(E)500℃、(F)600℃、(G)800℃、(H)1000℃、(I)1100℃下保温4h的纤维XRD数据分析图。从图中可以得出:本发明的方法可以碳化PAN原丝纤维;2.保温温度优选为400-1100℃。
表3是PAN原丝、碳纤维样品和200℃、400℃、500℃、600℃、800℃、 1000℃、1100℃下保温4h纤维X射线能谱分析(EDS)图。从图中可以得出:1.保温温度在500℃以下时,EDS数据中O含量提高,纤维的氧化程度高;2.当温度到达600℃后,氮和氧的含量逐渐降低,碳含量提高;当温度为1000℃以上时,纤维的碳含量甚至高于碳纤维样品。
表3实施例8-14中的纤维的EDS结果
Figure PCTCN2018116079-appb-000003
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (8)

  1. 一种利用金属镓进行碳化的方法,其特征在于,包括以下步骤:
    采用液体金属镓浸没待碳化的材料,使所述材料与空气隔绝;以及
    加热,使得材料发生碳化。
  2. 如权利要求1所述的利用金属镓进行碳化的方法,其特征在于,所述待碳化的材料为聚丙烯腈原丝。
  3. 如权利要求1所述的利用金属镓进行碳化的方法,其特征在于,加热的温度为400-1100℃。
  4. 如权利要求1所述的利用金属镓进行碳化的方法,其特征在于,保温时间为2-6h。
  5. 如权利要求4所述的利用金属镓进行碳化的方法,其特征在于,保温时间为4-6h。
  6. 如权利要求1所述的利用金属镓进行碳化的方法,其特征在于,还包括碳化结束后,移除镓以回收利用的步骤。
  7. 如权利要求1所述的利用金属镓进行碳化的方法,其特征在于,还包括清洗碳化后的材料的步骤。
  8. 如权利要求7所述的利用金属镓进行碳化的方法,其特征在于,采用稀酸和热水清洗所述碳化后的材料。
PCT/CN2018/116079 2018-11-14 2018-11-19 利用金属镓进行碳化的方法 WO2020097948A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811353701.8 2018-11-14
CN201811353701.8A CN109457323B (zh) 2018-11-14 2018-11-14 利用金属镓进行碳化的方法

Publications (1)

Publication Number Publication Date
WO2020097948A1 true WO2020097948A1 (zh) 2020-05-22

Family

ID=65610451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116079 WO2020097948A1 (zh) 2018-11-14 2018-11-19 利用金属镓进行碳化的方法

Country Status (2)

Country Link
CN (1) CN109457323B (zh)
WO (1) WO2020097948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791301A (zh) * 2019-10-31 2020-02-14 中国科学院青岛生物能源与过程研究所 易熔金属热载体传热加工工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111022A (ja) * 1987-10-20 1989-04-27 Ibiden Co Ltd 熱安定性高強度炭素繊維の製造方法
CN1928011A (zh) * 2006-09-28 2007-03-14 王亿理 一种焦炭的生产设备及其工艺
CN101113341A (zh) * 2007-09-11 2008-01-30 昆明理工大学 利用冶金熔融渣与固体可燃物制备可燃气的方法
US20080307703A1 (en) * 2007-04-24 2008-12-18 Dietenberger Mark A Method and apparatus to protect synthesis gas via flash pyrolysis and gasification in a molten liquid
CN101942108A (zh) * 2009-07-09 2011-01-12 巫协森 热裂解有机高分子混合物以分类回收基材方法及其装置
CN102912413A (zh) * 2011-08-04 2013-02-06 通用电气公司 用定向铸造的系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312813B2 (ja) * 2008-01-31 2013-10-09 独立行政法人科学技術振興機構 高導電性炭素繊維の製造方法、送電用フィラメントの製造方法及び送電用ケーブルの製造方法
JP2009274936A (ja) * 2008-05-16 2009-11-26 Sumitomo Electric Ind Ltd 炭素線、集合線材およびそれらの製造方法
WO2013157160A1 (ja) * 2012-04-18 2013-10-24 テックワン株式会社 炭素繊維材、炭素繊維材製造方法、前記炭素繊維材を有する材
WO2015042387A1 (en) * 2013-09-19 2015-03-26 Dow Global Technologies Llc Polyolefin-derived carbon fibers containing boron
WO2015119618A1 (en) * 2014-02-07 2015-08-13 Empire Technology Development Llc Method of producing graphene from a hydrocarbon gas and liquid metal catalysts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111022A (ja) * 1987-10-20 1989-04-27 Ibiden Co Ltd 熱安定性高強度炭素繊維の製造方法
CN1928011A (zh) * 2006-09-28 2007-03-14 王亿理 一种焦炭的生产设备及其工艺
US20080307703A1 (en) * 2007-04-24 2008-12-18 Dietenberger Mark A Method and apparatus to protect synthesis gas via flash pyrolysis and gasification in a molten liquid
CN101113341A (zh) * 2007-09-11 2008-01-30 昆明理工大学 利用冶金熔融渣与固体可燃物制备可燃气的方法
CN101942108A (zh) * 2009-07-09 2011-01-12 巫协森 热裂解有机高分子混合物以分类回收基材方法及其装置
CN102912413A (zh) * 2011-08-04 2013-02-06 通用电气公司 用定向铸造的系统和方法

Also Published As

Publication number Publication date
CN109457323A (zh) 2019-03-12
CN109457323B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
EP3266743B1 (en) Method for preparing biomass graphene by using cellulose as raw material
JP6162352B1 (ja) 多孔質グラフェンの製造方法
CN105887245A (zh) 一种连续高性能中间相沥青基炭纤维的制备方法
CN101956252A (zh) 一种硼改性聚丙烯腈原丝制备碳纤维的方法
CN107287699B (zh) 一种聚丙烯腈基碳纤维原丝快速预氧化工艺
CN112624783B (zh) 一种生长碳纳米管的预氧化丝增强受电弓滑板的制备方法
CN105565836A (zh) 催化cvd法制备碳纤维复合材料
CN113321522B (zh) 一种原位生长SiC纳米线改性SiCf/SiC陶瓷基复合材料的制备方法和应用
CN106744783A (zh) 一种石墨化空心炭微球的制备方法
CN111118671B (zh) 一种25k大丝束碳纤维的制备方法
WO2020097948A1 (zh) 利用金属镓进行碳化的方法
CN109750492B (zh) 一种碳布表面均匀生长碳纳米管前期的表面处理方法
CN102383224B (zh) 三氯化硼交联聚丙烯腈原丝制备炭纤维的方法
CN117431082B (zh) 生物质热解产生的焦油的催化碳化方法、碳材料及应用
CN106757535B (zh) 一种剑麻纤维基管状中空结构生物炭材料及其制备方法
CN108821266A (zh) 一种氮掺杂石墨烯的制备方法
CN1331743C (zh) 一种试管刷状碳化硅的制备方法
CN105060272B (zh) 一种以卤虫卵壳作为碳源低温下制备碳纳米管的方法
CN108754673B (zh) 一种高拉伸模量石墨纤维及其制备方法
KR101005115B1 (ko) 표면에 그라파이트 나노 구조층을 갖는 셀룰로오스 탄화물 구조체의 합성방법
CN114195124B (zh) 一种多孔碳材料及其制备方法和在钠电池中的应用
CN108708000A (zh) 一种高抗氧化性硼硅掺杂碳纤维的制备方法
CN210657241U (zh) 一种碳纤维生产用热稳定化装置
CN110092381B (zh) 一种高纯碳化硅材料的制备方法
CN109957859A (zh) 一种碳化硅纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940054

Country of ref document: EP

Kind code of ref document: A1