WO2020095916A1 - 光伝送システム - Google Patents

光伝送システム Download PDF

Info

Publication number
WO2020095916A1
WO2020095916A1 PCT/JP2019/043364 JP2019043364W WO2020095916A1 WO 2020095916 A1 WO2020095916 A1 WO 2020095916A1 JP 2019043364 W JP2019043364 W JP 2019043364W WO 2020095916 A1 WO2020095916 A1 WO 2020095916A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
symbol
optical
digital
Prior art date
Application number
PCT/JP2019/043364
Other languages
English (en)
French (fr)
Inventor
山本 秀人
陽 増田
寛樹 谷口
木坂 由明
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/291,228 priority Critical patent/US11444694B2/en
Publication of WO2020095916A1 publication Critical patent/WO2020095916A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors

Definitions

  • the present invention relates to an optical transmission system.
  • optical signal modulation technology that enables transmission of large-capacity traffic and optical transmission networks that use optical signal multiplexing technology are becoming widespread.
  • digital coherent technology combining coherent detection and digital signal processing technology is widely used in an ultrahigh-speed optical transmission system in which the transmission rate per wave is 100 Gbit / sec (hereinafter referred to as “Gb / s”) or more. It has become to.
  • Gb / s the transmission rate per wave
  • LTE Long Term Evolution
  • the cost is lower than that of the digital coherent technology described above, that is, 100 Gb / s class is achieved by a simpler transmission / reception device configuration. Realization of ultra-high-speed optical transmission is required.
  • a polarization multiplexing QPSK (Quadrature Phase Shift Keying) modulation method (hereinafter referred to as “PDM-QPSK” (Polarization Division Multiplexing) -QPSK) is generally used. ..
  • the modulation speed when PDM-QPSK is used is about 25 GBd (GigaBaud).
  • the modulation rate in the case of performing ultra-high speed optical transmission of 100 Gb / s class using the PAM4 modulation method is about 50 GBd. Therefore, the signal spectrum when using PAM4 is a signal spectrum that occupies a wider frequency than the PDM-QPSK system.
  • Occupying a wide frequency means that when the PAM4 modulation method is applied to realize 100 Gb / s class ultra-high-speed optical transmission, waveform deterioration due to band limitation of an electric device is higher than that of the PDM-QPSK method. It means that it will be greatly affected. Further, in the direct detection method, the waveform deterioration due to the chromatic dispersion of the transmission fiber cannot be compensated by the digital signal processing. Therefore, when the PAM4 method is applied, the signal quality deterioration due to the chromatic dispersion is also a big problem. Become.
  • the signal quality deterioration due to chromatic dispersion is proportional to the square of the modulation speed, the signal quality deterioration due to chromatic dispersion becomes remarkable especially for a signal modulated at a high speed of 50 Gbaud or more.
  • Non-Patent Document 1 a method using non-linear trellis coding has been proposed as a method for narrowing the spectrum band of a signal of a coherent detection method in order to suppress the above-mentioned signal quality deterioration (for example, Non-Patent Document 1). 1).
  • Non-Patent Document 1 is a method for a quadrature amplitude modulation (QAM) modulated signal, it cannot be applied to a PAM4 signal which is a direct detection method. Therefore, there has been a problem that it is not possible to realize a narrow band of the spectrum and it is not possible to suppress deterioration of signal quality. It should be noted that such a problem is not limited to the PAM4 system, but similarly occurs in a system using an arbitrary multilevel symbol.
  • QAM quadrature amplitude modulation
  • the present invention aims to provide a technique capable of suppressing deterioration of signal quality.
  • One aspect of the present invention is an optical transmission system that includes an optical transmitter and an optical receiver, wherein the optical transmitter performs signal trellis coding corresponding to nonlinear computation on a symbol sequence. And a modulator that modulates the symbol sequence coded by the signal coding unit and transmits the modulated signal sequence to the optical receiver, wherein the optical receiver is the light transmitted from the optical transmitter.
  • An optical transmission system comprising: a light receiving unit that receives a signal and converts the signal into an electric signal; and a digital signal processing unit that restores the symbol sequence by performing digital signal processing on the electric signal.
  • One aspect of the present invention is the optical transmission system described above, wherein the optical receiver further includes a Viterbi decoding unit that performs symbol determination based on sequence estimation using Viterbi decoding when demodulating the electrical signal. ..
  • One aspect of the present invention is the above-described optical transmission system, wherein the optical transmitter generates Gray-coded N (N is an integer of 2 or more) value symbols using the input information data.
  • a signal generation unit is further provided, and the signal coding unit generates N + 2 binary symbols by the nonlinear trellis coding process shown in the following Expressions 7 to 9, and the digital signal processing unit
  • An N + 2 binary symbol is restored by performing a predetermined determination, and the restored N + 2 binary symbol and the N + 2 binary symbol of the previous time slot that has already been determined are used to calculate To restore the N-valued symbol before encoding.
  • the optical transmitter uses input information data to generate two systems of N-valued symbols (N is an integer of 2 or more) that are Gray-coded.
  • the signal encoding unit further includes a signal generating unit for generating, and the digital signal processing unit generates two systems of N + 2 binary symbols by the nonlinear trellis encoding process represented by the following formulas 7 to 9, By performing predetermined determination on the signal, the N + binary symbols of the two systems are restored, and the restored N + binary symbols and the N + binary symbols of the previous time slot that have already been determined. Is used to restore N-valued symbols before encoding based on the following Expressions 10 to 12.
  • the present invention makes it possible to suppress deterioration of signal quality.
  • FIG. 1 is a diagram showing a relationship between symbols in each time slot and symbol transitions between successive time slots.
  • the condition for the transition of the symbol S is not imposed.
  • the transition probability from each symbol S to each symbol S is 1/4 for all transitions.
  • the transition probability matrix P is expressed by the following Expression 1.
  • the eigenvector q with respect to the eigenvalue 1 of this transition matrix is represented by the following Expression 2.
  • the occurrence probability of each state is 1/4, and each symbol occurs with equal probability.
  • the state transition probability is controlled by the nonlinear trellis coding to narrow the spectrum of the PAM4 signal, thereby improving the band limiting resistance and the chromatic dispersion resistance.
  • u n is 4-ary symbol of 0,1,2,3.
  • 2 bits that are gray-coded are assigned to each symbol. That is, it is assumed that the encoding is applied so that the Hamming distance between adjacent symbols becomes 1.
  • the symbol 0 is assigned to the bit 01
  • the symbol 1 is assigned to the bit 00
  • the symbol 2 is assigned to the bit 10
  • the symbol 3 is assigned to the bit 11 to be a gray code.
  • the symbol after coding is v n
  • the symbol after coding generated by the nonlinear trellis coding in the present invention is generated based on the following Expression 3.
  • [.] Is a Gauss symbol, which is a process corresponding to a non-linear operation.
  • a hexadecimal symbol of 0, 1, 2, 3, 4, 5 is obtained as the encoded symbol v n .
  • the transition probability matrix P of the symbol v n after this encoding is expressed by the following Expression 4.
  • the transition of the coded symbol v n is partially limited. For example, there are four symbols 0, 1, 2, and 3 that can transit from the symbol 0, and the transition to the symbols 4,5 is not permitted.
  • the present invention suppresses the occurrence of high-frequency symbol transitions by imposing restrictions on the symbol transitions, and realizes narrowing of the signal spectrum band.
  • the eigenvector q with respect to the eigenvalue 1 of this transition matrix is represented by the following Expression 5.
  • the nonlinear trellis coding in the present invention is a process corresponding to probability shaping.
  • FIG. 2 is a diagram showing an image of a symbol transition of the symbol v n after being coded by the nonlinear trellis coding according to the present invention.
  • u n which is the information before encoding
  • v n which is the symbol after encoding.
  • the nonlinear trellis coding according to the present invention is a method of allocating information to state transitions, and is a method of suppressing the generation of high frequency components by imposing restrictions on the state transitions.
  • FIG. 3 is a diagram showing a signal spectrum of a conventional PAM4 signal and a signal spectrum of a PAM4 signal (NLTCP signal) to which the nonlinear trellis coding according to the present invention is applied.
  • FIG. 3A is a diagram showing a signal spectrum of a conventional PAM4 signal
  • FIG. 3B is a diagram showing a signal spectrum of a PAM4 signal (NLTCP signal) to which the nonlinear trellis coding according to the present invention is applied.
  • the horizontal axis represents frequency and the vertical axis represents signal power. Both of them apply a raised cosine filter with a roll-off coefficient of 0.01.
  • FIGS. 3A and 3B by applying the nonlinear trellis coding, the high frequency component of the signal spectrum is suppressed and the signal power is concentrated in the low frequency region.
  • specific processing will be described in the embodiment.
  • FIG. 4 is a diagram showing a system configuration of the optical transmission system 100 according to the first embodiment.
  • the optical transmission system 100 includes an optical transmitter 10 and an optical receiver 20.
  • the optical transmitter 10 and the optical receiver 20 are connected via an optical fiber 30.
  • the optical fiber 30 is a transmission line that connects the optical transmitter 10 and the optical receiver 20.
  • the optical transmitter 10 includes a signal generator 11, a signal encoder 12, a DA converter 13, an amplifier 14, a signal light source 15, and an optical modulator 16.
  • the signal generation unit 11 inputs data information to be transmitted from the outside, and uses the input data information to generate a Gray-coded four-level symbol u n (0,1,2,3).
  • the signal encoding unit 12 performs a non-linear trellis encoding process on the 4-level symbol u n (0,1,2,3) generated by the signal generating unit 11 to generate a 6-level symbol v n (0,1). , 2, 3, 4, 5) is generated. Specifically, the signal encoding unit 12 performs the non-linear trellis encoding process shown in the above Expression 3 on the 4-level symbol u n (0,1,2,3) to generate the 6-level symbol v n. n (0,1,2,3,4,5) is generated.
  • the DA converter 13 converts the digital signal of the 6-valued symbol v n (0,1,2,3,4,5) generated by the signal encoding unit 12 into an analog signal.
  • the DA converter 13 outputs the analog signal to the amplifier 14.
  • the amplification unit 14 amplifies the signal power of the analog signal output from the DA converter 13 and applies it to the optical modulator 16.
  • the signal light source 15 sends continuous light to the optical modulator 16.
  • the optical modulator 16 modulates the continuous light emitted from the signal light source 15 with the analog signal amplified by the amplifier 14 to generate a NLTCP signal which is a 6-valued light intensity modulation signal.
  • the optical modulator 16 transmits the generated NLTCP signal to the optical receiver 20 via the optical fiber 30.
  • the signal light source 15 and the optical modulator 16 do not necessarily need to be separated, and the optical modulator 16 directly modulates the continuous light sent from the signal light source 15 to obtain a 6-valued light intensity modulation signal. May generate an NLTCP signal.
  • the optical receiver 20 includes a light receiving unit 21, an AD converter 22, and a digital signal processing unit 23.
  • the light receiving unit 21 directly detects the NLTCP signal transmitted from the optical transmitter 10 and acquires the light intensity information of the NLTCP signal.
  • the light receiving unit 21 converts the acquired light intensity information into an analog electric signal and outputs the analog electric signal to the AD converter 22.
  • the AD converter 22 converts the analog electric signal output from the light receiving unit 21 into a digital signal.
  • Digital signal processing unit 23, by processing the digital signal to obtain the u n is 4 value symbol prior to nonlinear trellis coding.
  • FIG. 5 is a diagram showing an internal configuration of the digital signal processing unit 23 in the first embodiment.
  • the digital signal processing unit 23 includes a digital filter 231, a signal determination unit 232, a signal decoding unit 233, a bit demapping unit 234, an adder 235, and a tap updating unit 236.
  • the digital filter 231 is composed of complex taps and shapes the waveform of the NLTCP signal.
  • the digital filter 231 outputs the NLTCP signal after waveform shaping to the signal determination unit 232 and the adder 235.
  • an FIR (Finite Impulse Response) filter that is a general linear filter, a Volterra filter that can describe a high-order transfer function, or the like is used.
  • the signal determination unit 232 acquires the 6-valued symbol v n by performing a threshold determination on the NLTCP signal after waveform shaping.
  • the signal determination unit 232 outputs the acquired 6-valued symbol v n to the signal decoding unit 233 and the adder 235.
  • the signal decoding unit 233 uses the 6-valued symbol v n output from the signal determination unit 232 and the 6-valued symbol v n ⁇ 1 of the immediately preceding time slot that has already been determined, based on the following Expression 6. to restore the u n is 4 value symbols before encoding by performing the process was.
  • the bit demapping unit 234 restores data information, which is bit information, from u n by performing Gray decoding on u n , which is a 4-level symbol restored by the signal decoding unit 233.
  • the adder 235 takes in the value output from the digital filter 231 and the value output from the signal determination unit 232.
  • the adder 235 takes in the value output from the digital filter 231 with a minus sign.
  • the adder 235 adds the two captured values, that is, subtracts the value output from the digital filter 231 from the value output from the signal determination unit 232, and outputs the subtraction value calculated by the subtraction to the tap update unit 236. To do.
  • the tap updating unit 236 updates the tap coefficient of the digital filter 231 based on the difference between the value after the determination by the signal determination unit 232 and the value before the determination by the signal determination unit 232. Specifically, the tap updating unit 236 digitally adjusts the difference between the value output from the digital filter 231 and the value output from the signal determining unit 232 to the minimum, that is, the subtraction value to 0. The tap coefficient of the filter 231 is updated. This improves the accuracy of demodulation.
  • FIG. 6 is a diagram showing transmission characteristics of a conventional PAM4 signal under a band-limited environment and an NLTCP signal according to the present invention evaluated by a numerical simulation.
  • FIG. 6A is a diagram showing the transmission characteristic of the PAM4 signal under the band limited environment
  • FIG. 6B is a diagram showing the transmission characteristic of the NLTCP signal of the present invention under the band limited environment.
  • the horizontal axis represents the reception power and the vertical axis represents the bit error rate. 6A and 6B, the signal modulation rate is 56 Gbaud and the transmission capacity is 112 Gb / s.
  • the conventional PAM4 signal has a waveform deterioration due to band limitation under the band limitation environment of 14 GHz corresponding to 25% of the modulation speed even when the reception power is sufficiently increased. Limits the transmission performance. Therefore, it is impossible to achieve a bit error rate (BER) lower than the error correction limit of 2.5 ⁇ 10 ⁇ 4 of KP4-FEC widely used in short-distance optical transmission systems.
  • BER bit error rate
  • the NLTCP signal in the present invention can achieve the error correction limit of KP4-FEC even under the 14 GHz band limited environment.
  • FIG. 7 is a diagram showing the transmission characteristics of the conventional PAM4 signal and NLTCP signal under the optical fiber transmission environment, that is, under the chromatic dispersion environment, evaluated by the numerical simulation.
  • FIG. 7A is a diagram showing the transmission characteristic of the PAM4 signal under the optical fiber transmission environment
  • FIG. 7B is a diagram showing the transmission characteristic of the NLTCP signal of the present invention under the optical fiber transmission environment.
  • the horizontal axis represents the reception power and the vertical axis represents the bit error rate.
  • the modulation rate of the signal is 56 Gbaud and the transmission capacity is 112 Gb / s.
  • the band limitation on the signal is set to 30 GHz.
  • the NLTCP signal according to the present invention can achieve the error correction limit of KP4-FEC even under the wavelength dispersion environment of ⁇ 48 ps / nm.
  • the nonlinear trellis coding according to the present invention it is possible to realize a dramatic improvement in the band limiting proof strength and the chromatic dispersion proof strength for the PAM4 signal.
  • the optical transmitter 10 generates a 6-level symbol by performing a nonlinear trellis encoding process on the 4-level symbol, and outputs an optical signal (NLTCP signal) based on the generated 6-level symbol. It transmits to the receiver 20.
  • NLTCP signal optical signal
  • the transition of symbols after coding is limited.
  • the occurrence probabilities of the respective states (symbols) are not equal to each other, but the probability is higher in the central symbol.
  • the optical receiver performs demodulation based on MLSE (Maximum Likelihood Sequence Estimation).
  • MLSE Maximum Likelihood Sequence Estimation
  • the configuration of the optical transmitter 10 is the same as that of the first embodiment, and the description thereof will be omitted.
  • the configuration of the optical receiver 20 is different from that of the optical receiver 20 according to the first embodiment in that a digital signal processing unit 23 is provided instead of the digital signal processing unit 23. The differences will be described below.
  • FIG. 8 is a diagram showing an internal configuration of the digital signal processing unit 23a in the second embodiment.
  • the digital signal processing unit 23a includes a signal decoding unit 233a, a bit demapping unit 234, a first digital filter 237, a Viterbi decoding unit 238, a second digital filter 239, an adder 240, and a metric calculation unit 241.
  • the first digital filter 237 is composed of complex taps and shapes the waveform of the NLTCP signal.
  • the first digital filter 237 outputs the waveform-shaped NLTCP signal to the Viterbi decoding unit 238 and the adder 240.
  • a general linear filter such as an FIR filter or a Volterra filter is used.
  • the Viterbi decoding unit 238 performs sequence estimation for the 6-valued symbol v n based on the waveform-shaped NLTCP signal output from the first digital filter 237 and the metric output from the metric calculation unit 241. Specifically, the Viterbi decoding unit 238 performs sequence estimation for the 6-ary symbol v n based on the Viterbi algorithm. The Viterbi decoding unit 238 adopts the symbol sequence having the smallest metric among the metrics obtained as a result of sequence estimation as the transmission sequence v n .
  • the metrics output from the metric calculator 241 are time-series data obtained by subjecting an expected sequence candidate (candidate sequence) to digital filtering by the second digital filter 239, and the first digital filter 237. Euclidean distance between time series data is used.
  • the second digital filter 239 is composed of complex taps, and obtains time series data by performing digital filtering on the input candidate series.
  • the second digital filter 239 outputs the acquired time series data to the adder 240.
  • a general linear filter such as an FIR filter or a Volterra filter is used.
  • a Volterra filter may be used as the second digital filter 239.
  • the determination of the symbol sequence v n in the present embodiment is the maximum likelihood sequence estimation (MLSE: Maximum Likelihood Sequence Estimation) itself with a memory length of 2.
  • the adder 240 takes in the value output from the first digital filter 237 and the value output from the second digital filter 239.
  • the adder 240 takes in the value output from the second digital filter 239 with a minus sign.
  • the adder 240 adds the two captured values, that is, subtracts the value (time series data) output from the second digital filter 239 from the value (time series data) output from the first digital filter 237,
  • the subtraction value calculated by the subtraction is output to the metric calculation unit 241.
  • the metric calculator 241 performs time-series data obtained by digitally filtering the subtraction value output from the adder 240, that is, an assumed sequence candidate (candidate sequence) by the second digital filter 239, and the first digital.
  • the Euclidean distance from the time series data output from the filter is calculated as a metric.
  • the signal decoding unit 233a restores the un-coded quaternary symbol u n by using Expression 6 from the transmission sequence v n adopted by the Viterbi decoding unit 238.
  • Bit demapping unit 234 restores the data information is bit information from the u n by performing a gray decoding to u n is 4 value symbols reconstructed by the signal decoding unit 233a.
  • optical transmission system 100 of the second embodiment configured as described above, the same effect as that of the first embodiment can be obtained.
  • the PAM4 signal is used as a symbol before encoding, but the present invention can be applied to any multi-level symbol. Therefore, in the third embodiment, a configuration in which the nonlinear trellis coding according to the present invention is applied to an N-valued PAM signal (PAM-N signal) will be described.
  • the configurations of the optical transmitter and the optical receiver in the third embodiment are the same as those in the first embodiment.
  • the signal generation unit 11 inputs data information to be transmitted from the outside, and uses the input data information to generate a Gray-coded N-ary symbol u n (0, 1, ..., N ⁇ 1). To do.
  • the signal encoding unit 12 performs a nonlinear trellis encoding process on the N-valued symbols u n (0, 1, ..., N ⁇ 1) generated by the signal generation unit 11 to generate N + 2 valued symbols v n (0 , 1, ..., N + 1) is generated.
  • the signal encoding unit 12 performs N + 2 on the N + 2-ary symbol v n (0,1, ..., N + 1) by performing the nonlinear trellis encoding processing shown in the following Equations 7 to 9. Generate value symbols v n (0, 1, ..., N + 1).
  • the DA converter 13 converts the N + binary symbol v n (0, 1, ..., N + 1) digital signal generated by the signal encoding unit 12 into an analog signal.
  • the DA converter 13 outputs the analog signal to the amplifier 14.
  • the amplification unit 14 amplifies the signal power of the analog signal output from the DA converter 13 and applies it to the optical modulator 16.
  • the signal light source 15 sends continuous light to the optical modulator 16.
  • the optical modulator 16 modulates the continuous light emitted from the signal light source 15 with the analog signal amplified by the amplifier 14 to generate an NLTCP signal which is an N + 2 valued light intensity modulation signal.
  • the optical modulator 16 transmits the generated NLTCP signal to the optical receiver 20 via the optical fiber 30.
  • the signal light source 15 and the optical modulator 16 do not necessarily have to be separated, and the optical modulator 16 directly modulates the continuous light transmitted from the signal light source 15 to obtain an N + 2 valued optical intensity modulation signal. May generate an NLTCP signal.
  • the light receiving unit 21 directly detects the NLTCP signal transmitted from the optical transmitter 10 and acquires the light intensity information of the NLTCP signal.
  • the light receiving unit 21 converts the acquired light intensity information into an analog electric signal and outputs the analog electric signal to the AD converter 22.
  • the AD converter 22 converts the analog electric signal output from the light receiving unit 21 into a digital signal.
  • Digital signal processing unit 23 by processing the digital signal to obtain a u n a N value symbol prior to nonlinear trellis coding.
  • the configuration of the digital signal processing unit 23 is similar to that of the first embodiment. That is, the digital signal processing unit 23 includes a digital filter 231, a signal determination unit 232, a signal decoding unit 233, a bit demapping unit 234, an adder 235, and a tap updating unit 236.
  • the digital filter 231 is composed of complex taps and shapes the waveform of the NLTCP signal.
  • the digital filter 231 outputs the NLTCP signal after waveform shaping to the signal determination unit 232 and the adder 235.
  • an FIR filter that is a general linear filter, a Volterra filter that can describe a high-order transfer function, or the like is used.
  • the signal determination unit 232 acquires the N + 2 valued symbol v n by performing a threshold determination on the NLTCP signal.
  • the signal determination unit 232 outputs the acquired N + binary symbol v n to the signal decoding unit 233 and the adder 235.
  • the signal decoding unit 233 uses the N + binary symbol v n output from the signal judging unit 232 and the N + binary symbol v n ⁇ 1 of the immediately preceding time slot that has already been judged, and uses the following formulas 10 to 10: process to recover the u n is before encoding n-ary symbol by the execution based on 12.
  • the bit demapping unit 234 restores data information, which is bit information, from u n by performing Gray decoding on u n , which is the N-ary symbol restored by the signal decoding unit 233.
  • the adder 235 takes in the value output from the digital filter 231 and the value output from the signal determination unit 232.
  • the adder 235 takes in the value output from the digital filter 231 with a minus sign.
  • the adder 235 adds the two captured values, that is, subtracts the value output from the digital filter 231 from the value output from the signal determination unit 232, and outputs the subtraction value calculated by the subtraction to the tap update unit 236. To do.
  • the tap updating unit 236 updates the tap coefficient of the digital filter 231 based on the difference between the value after the determination by the signal determination unit 232 and the value before the determination by the signal determination unit 232. Specifically, the tap updating unit 236 digitally adjusts the difference between the value output from the digital filter 231 and the value output from the signal determining unit 232 to the minimum, that is, the subtraction value to 0. The tap coefficient of the filter 231 is updated. This improves the accuracy of demodulation.
  • the configuration of the digital signal processing unit when performing symbol determination by Viterbi decoding is similar to that of the second embodiment. Specifically, the signal decoding unit 233 obtains the symbol u n before the nonlinear trellis coding from the adopted transmission sequence v n by using the equations 10 to 12. Subsequent processing is the same as that of the second embodiment, and therefore its explanation is omitted.
  • optical transmission system 100 of the third embodiment configured as described above, it can be applied to arbitrary multilevel symbols.
  • the first to third embodiments have shown the configurations in which the technique of the present invention is used for the PAM signal based on the direct detection method.
  • the technique of the present invention is applicable to QAM signals on the premise of the coherent detection method.
  • a configuration in which the nonlinear trellis coding according to the present invention is applied to 16QAM will be described.
  • FIG. 9 is a diagram showing a system configuration of an optical transmission system 100b according to the fourth embodiment.
  • the optical transmission system 100b includes an optical transmitter 10b and an optical receiver 20b.
  • the optical transmitter 10b and the optical receiver 20b are connected via an optical fiber 30.
  • the optical transmitter 10b includes signal generators 11b-1, 11b-2, signal encoders 12b-1, 12b-2, DA converters 13b-1, 13b-2, amplifiers 14b-1, 14b-2, A signal light source 15 and an optical vector modulator 17 are provided.
  • the signal generation unit 11b-1, the signal encoding unit 12b-1, the DA converter 13b-1, and the amplification unit 14b-1 are functional units that process the data information I.
  • the signal generator 11b-2, the signal encoder 12b-2, the DA converter 13b-1, and the amplifier 14b-1 are functional units that process the data information Q.
  • the signal generation units 11b-1 and 11b-2 will be referred to as the signal generation unit 11b when no distinction is made.
  • the signal coding units 12b-1 and 12b-2 will be referred to as the signal coding unit 12b unless distinction is made.
  • the DA converters 13b-1 and 13b-2 will be referred to as the DA converters 13b unless they are distinguished from each other.
  • the amplifiers 14b-1 and 14b-2 will be referred to as the amplifiers 14 when no distinction is made between them.
  • the signal generation unit 11b inputs data information to be transmitted from the outside and uses the input data information to generate two systems of Gray-coded four-valued symbols. Specifically, the signal generating unit 11b-1 receives the data information I consisting external transmission target, using the input data information I, 4-ary symbol is Gray coded ui n (0, 1 , 2, 3) is generated. The signal generation unit 11b-2 receives the data information Q to be transmitted from the outside, and uses the input data information Q, the gray-coded four-level symbol uq n (0,1,2,3) To generate.
  • Signal encoding unit 12b generated by the signal generating unit 11b 4-ary symbol ui n (0, 1, 2, 3) and uq n (0, 1, 2, 3) non-linear trellis coding on each
  • the signal coding unit 12b-1 performs the non-linear trellis coding processing shown in the above Expression 3 on the four-level symbol ui n (0,1,2,3) to generate a six-level signal.
  • the symbol vi n (0,1,2,3,4,5) is generated.
  • the signal encoding unit 12b-2 performs the non-linear trellis encoding process shown in the above Expression 3 on the 4-level symbol uq n (0,1,2,3) to generate the 6-level symbol vq n (0 , 1, 2, 3, 4, 5) is generated.
  • the DA converter 13b outputs the six-valued symbols vi n (0,1,2,3,4,5) and vq n (0,1,2,3,4,5) generated by the signal encoding unit 12b. Converts digital signals to analog signals. Specifically, the DA converter 13b-1 converts the digital signal of the 6-valued symbol vi n (0,1,2,3,4,5) generated by the signal encoding unit 12b-1 into an analog signal. To do. The DA converter 13b-1 outputs the analog signal to the amplifier 14b-1. The DA converter 13b-2 converts the digital signal of the 6-valued symbol vq n (0,1,2,3,4,5) generated by the signal coding unit 12b-2 into an analog signal. The DA converter 13b-2 outputs the analog signal to the amplifier 14b-2.
  • the amplifier 14b amplifies the signal power of the analog signal output from the DA converter 13b and applies it to the optical vector modulator 17.
  • the amplification unit 14b-1 amplifies the signal power of the analog signal output from the DA converter 13b-1 and applies it to the optical vector modulator 17.
  • the amplification unit 14b-2 amplifies the signal power of the analog signal output from the DA converter 13b-2 and applies it to the optical vector modulator 17.
  • the signal light source 15 sends out continuous light to the optical vector modulator 17.
  • the optical vector modulator 17 independently performs amplitude modulation using the analog signals output from the amplifiers 14b-1 and 14b-2. Specifically, the optical vector modulator 17 amplitude-modulates the In-phase component of the continuous light transmitted from the signal light source 15 with the analog signal output from the amplification unit 14b-1. The optical vector modulator 17 amplitude-modulates the quadrature component of the continuous light transmitted from the signal light source 15 with the analog signal output from the amplification unit 14b-2. In this way, the optical vector modulator 17 modulates the continuous light transmitted from the signal light source 15 by the optical vector modulator 17, thereby generating a 36-valued optical complex amplitude modulation signal (NLTCQ signal).
  • NLTCQ signal 36-valued optical complex amplitude modulation signal
  • the optical receiver 20b includes AD converters 22b-1 and 22b-2, a digital signal processing unit 23b, a local light source 24, and a coherent receiver 25.
  • the local light source 24 outputs local light that interferes with the received signal light.
  • the coherent receiver 25 outputs the complex amplitude information of the NLTCQ signal by coherently detecting the NLTCQ signal transmitted from the optical transmitter 10b based on the local light.
  • the complex amplitude information of the NLTCQ signal is the analog electric signal of the I component and the analog electric signal of the Q component.
  • the AD converter 22b converts the analog electric signal output from the coherent receiver 25 into a digital signal. Specifically, the AD converter 22b-1 converts the analog electric signal of the I component into a digital signal. The AD converter 22b-2 converts the Q component analog electric signal into a digital signal. The digital signal processing unit 23b, by processing the digital signal, ui n, obtains the uq n is a non-linear trellis coded previous symbol.
  • FIG. 10 is a diagram showing an internal configuration of the digital signal processing unit 23b in the fourth embodiment.
  • the digital signal processing unit 23b includes a digital filter 231b, a signal determining unit 232b, signal decoding units 233b-1 and 233b-2, bit demapping units 234b-1 and 234b-2, an adder 235b, a tap updating unit 236b, and IQ combining.
  • the unit 242, the phase estimation unit 243, and the IQ separation unit 244 are provided.
  • the IQ synthesizing unit 242 takes in each digital signal output from the AD converters 22b-1 and 22b-2 as a real part (I channel component digital signal) and an imaginary part (Q channel component digital signal).
  • the IQ combiner 242 combines the captured signals as a complex signal. Specifically, the IQ synthesizer 242 takes the digital signal output from the AD converter 22b-1 as the real part and the digital signal output from the AD converter 22b-2 as the imaginary part, and takes in each signal. Is synthesized as a complex signal.
  • the digital filter 231b is composed of complex taps, and shapes the waveform of the NLTCQ signal.
  • the digital filter 231b outputs the waveform-shaped NLTCQ signal to the phase estimation unit 243.
  • As the digital filter 231b an FIR filter that is a general linear filter, a Volterra filter that can describe a high-order transfer function, or the like is used.
  • the phase estimation unit 243 compensates for the phase difference between the signal light and the local light emitted by the local light source 24.
  • the phase estimation unit 243 outputs the compensated signal (NLTCQ signal) to the signal determination unit 232b and the adder 235b.
  • the signal determination unit 232b performs threshold determination on the NLTCQ signal as a 36-valued QAM signal.
  • the signal determination unit 232b outputs the signal obtained by the threshold determination to the adder 235b and the IQ separation unit 244.
  • the IQ separation unit 244 separates the signal output from the signal determination unit 232b into a real part (I channel component digital signal) and an imaginary part (Q channel component digital signal), so that two systems of six-valued symbols vi n , vq n are acquired.
  • the IQ separation unit 244 outputs the acquired 6-valued symbol vi n to the signal decoding unit 233b-1, and outputs the 6-valued symbol vq n to the signal decoding unit 233b-2.
  • the signal decoding unit 233b uses the 6-valued symbols vi n and vq n output from the IQ separation unit 244 and the 6-valued symbols vi n ⁇ 1 and vq n ⁇ 1 of the previous time slot that have already been determined.
  • Te, ui n is 4 value symbols before encoding by executing processing based on equation 6 to restore the uq n.
  • the signal decoding unit 233b-1 uses the 6-valued symbol vi n output from the IQ separation unit 244 and the 6-valued symbol vi n-1 of the previous time slot that has already been determined. restores ui n is 4 value symbols before encoding by executing processing based on equation 6.
  • the signal decoding unit 233b-2 using a 6-ary symbol vq n output from IQ separating section 244, and a 6-ary symbol vq n-1 of the previous time slot is already determined previously, the formula 6 Uq n , which is a four-valued symbol before encoding, is restored by executing processing based on
  • the bit demapping unit 234b performs gray decoding on the four-valued symbols ui n and uq n restored by the signal decoding unit 233b to generate data information I and Q, which is bit information, from ui n and uq n. Restore. Specifically, the bit demapping unit 234b-1 performs gray decoding on ui n , which is a four-level symbol restored by the signal decoding unit 233b-1, to obtain data information I that is bit information from ui n. Restore. The bit demapping unit 234b-2 restores the data information Q, which is bit information, from uq n by performing Gray decoding on uq n that is the four-level symbol restored by the signal decoding unit 233b-2.
  • the adder 235b takes in the value output from the phase estimation unit 243 and the value output from the signal determination unit 232b.
  • the adder 235b takes in the value output from the phase estimation unit 243 with a minus sign.
  • the adder 235b adds the two captured values, that is, subtracts the value output from the phase estimation unit 243 from the value output from the signal determination unit 232b, and outputs the subtraction value calculated by the subtraction to the tap update unit 236b. Output.
  • the tap update unit 236b updates the tap coefficient of the digital filter 231b based on the difference between the value after the determination by the signal determination unit 232b and the value before the determination by the signal determination unit 232b. Specifically, the tap updating unit 236b minimizes the difference between the value output from the phase estimation unit 243 and the value output from the signal determination unit 232b, that is, the subtraction value becomes 0. The tap coefficient of the digital filter 231b is updated. This improves the accuracy of demodulation.
  • FIG. 11 is a diagram showing an internal configuration of the digital signal processing unit 23c in the case of performing symbol determination by Viterbi decoding in the fourth embodiment.
  • the digital signal processing unit 23c includes signal decoding units 233c-1 and 233c-2, bit demapping units 234c-1 and 234c-2, first digital filter 237c, Viterbi decoding units 238c-1 and 238c-2, and second digital signals.
  • the unit 248 is provided.
  • the first digital filter 237c is composed of complex taps and shapes the waveform of the NLTCQ signal.
  • the first digital filter 237c outputs the waveform-shaped NLTCQ signal to the phase estimation unit 243c.
  • a general linear filter such as an FIR filter or a Volterra filter is used.
  • the phase estimation unit 243c compensates for the phase difference between the signal light and the local light emitted by the local light source 24.
  • the phase estimator 243c outputs the compensated signal (NLTCQ signal) to the IQ separator 244c and the adder 247c.
  • the IQ separation unit 244c separates the signal output from the phase estimation unit 243c into a real part (digital signal of I channel component) and an imaginary part (digital signal of Q channel component).
  • the IQ separation unit 244c outputs the signal of the I channel component to the Viterbi decoding unit 238c-1 and the adder 240c-2, and outputs the signal of the Q channel component to the Viterbi decoding unit 238c-2 and the adder 240c-1.
  • the Viterbi decoding unit 238c performs sequence estimation for each of the six-valued symbols vi n and vq n based on the signal output from the IQ separation unit 244c and the metric output from the metric calculation unit 241c. Specifically, the Viterbi decoding unit 238c-1 uses the Viterbi algorithm to calculate the I channel component based on the signal corresponding to the real part (I channel component) and the metric output from the metric calculating unit 241c-1. Sequence estimation is performed on the 6-valued symbol vi n in . The Viterbi decoding unit 238c-1 adopts the symbol sequence having the smallest metric among the metrics obtained as a result of sequence estimation as the transmission sequence vi n .
  • the sequence candidates (candidate sequences) assumed for vi n and vq n are combined into a complex number by the IQ combination unit 245, and then the second digital filter is used.
  • the Euclidean distance between the imaginary number component of the time series data digitally filtered by the 239c and the imaginary number component of the time series data output from the first digital filter 237c is used.
  • the Viterbi decoding unit 238c-2 uses the Viterbi algorithm to generate a 6-valued Q channel component based on the signal corresponding to the imaginary part (Q channel component) and the metric output from the metric calculation unit 241c-2. Sequence estimation is performed on the symbol vi n .
  • the Viterbi decoding unit 238c-2 adopts the symbol sequence having the smallest metric among the metrics obtained as a result of sequence estimation as the transmission sequence vq n .
  • a sequence candidate (candidate sequence) assumed for each of vi n and vq n is combined into a complex number by the IQ combination unit 245, and then the second digital filter is used.
  • the Euclidean distance between the real number component of the time series data digitally filtered by the 239c and the real number component of the time series data output from the first digital filter 237c is used.
  • the signal decoding unit 233c applies the equation 6 to each of the transmission sequences vi n and vq n adopted by the Viterbi decoding unit 238c for each of the vi n and vq n to obtain the ui n that is the symbol before the nonlinear trellis encoding. , uq n are restored.
  • the signal decoding unit 233c-1 is a symbol before nonlinear trellis coding by applying the expression 6 to the transmission sequence vi n adopted by the Viterbi decoding unit 238c-1 to vi n . Restore vq n .
  • Signal decoding unit 233 c-2 from the transmission sequence vq n adopted by the Viterbi decoding unit 238c-2, to restore the uq n is a non-linear trellis coded preceding symbol by applying Equation 6 with respect vq n ..
  • the bit demapping unit 234c performs gray decoding on the four-level symbols ui n and uq n restored by the signal decoding unit 233c to obtain data information I and Q, which is bit information, from ui n and uq n. Restore. Specifically, the bit demapping unit 234c-1 performs gray decoding on ui n , which is a four-level symbol restored by the signal decoding unit 233c-1, to obtain data information I that is bit information from ui n. Restore. The bit demapping unit 234c-2 restores the data information Q that is bit information from uq n by performing Gray decoding on uq n that is the four-level symbol restored by the signal decoding unit 233c-2.
  • the IQ combination unit 245 combines a sequence candidate (candidate sequence) assumed for each of the input vi n and vq n into a complex number.
  • the second digital filter 239c is composed of complex taps, and obtains time-series data by performing digital filter processing on the complex number synthesized by the IQ synthesizer 245.
  • the second digital filter 239c outputs the acquired time series data to the IQ separation unit 246 and the adder 247c.
  • a general linear filter such as an FIR filter or a Volterra filter is used.
  • a Volterra filter may be used as the second digital filter 239c for a system having a large non-linear response.
  • the IQ separation unit 246 separates the signal output from the second digital filter 239c into a real part and an imaginary part.
  • the IQ separation unit 246 outputs a signal corresponding to the real part (signal of the I channel component) to the adder 240c-2, and outputs a signal corresponding to the imaginary part (signal of the Q channel component) to the adder 240c-1. To do.
  • the adder 247c takes in the value output from the phase estimation unit 243c and the value output from the second digital filter 239c.
  • the adder 247c takes in the value output from the phase estimation unit 243c with a minus sign.
  • the adder 247c adds the two captured values, that is, subtracts the value output from the phase estimation unit 243c from the value output from the second digital filter 239c, and the subtraction value calculated by the subtraction is the metric calculation unit 248c. Output to.
  • the metric calculator 248c calculates the subtraction value output from the adder 247c as a metric.
  • the adder 240c-1 takes in the value output from the IQ separation section 246 (Q channel component signal) and the value output from the IQ separation section 244c (Q channel component signal).
  • the adder 240c-1 takes in the value output from the IQ separation unit 244c with a minus sign.
  • the adder 240c-1 adds the two captured values, that is, subtracts the value output from the phase estimation unit 243c from the value output from the IQ separation unit 246, and subtracts the subtraction value calculated by the subtraction from the metric calculation unit. It is output to 241c-1.
  • the adder 240c-2 takes in the value (I channel component signal) output from the IQ separation unit 246 and the value (I channel component signal) output from the IQ separation unit 244c.
  • the adder 240c-2 takes in the value output from the IQ separation unit 244c with a minus sign.
  • the adder 240c-2 adds the two captured values, that is, subtracts the value output from the phase estimation unit 243c from the value output from the IQ separation unit 246, and subtracts the subtraction value calculated by the subtraction from the metric calculation unit. It is output to 241c-2.
  • the metric calculator 241c-1 calculates the subtraction value output from the adder 240c-1 as a metric.
  • the metric calculator 241c-2 calculates the subtraction value output from the adder 240c-2 as a metric.
  • optical transmission system 100b according to the fourth embodiment configured as described above can be applied to the coherent detection method.
  • the present invention is applicable to QAM signals having arbitrary multi-level symbols. Therefore, in the fifth embodiment, a configuration in which the nonlinear trellis coding according to the present invention is applied to an N 2 -valued QAM signal will be described.
  • the configurations of the optical transmitter and the optical receiver in the fifth embodiment are similar to those in the fourth embodiment.
  • the signal generation unit 11b receives data information to be transmitted from the outside and uses the input data information to generate two systems of Gray-coded N-valued symbols. Specifically, the signal generating unit 11b-1 receives the data information I consisting external transmission target, using the input data information I, N-ary symbol is Gray coded ui n (0, 1 , ..., N-1) is generated. The signal generation unit 11b-2 receives the data information Q to be transmitted from the outside, and uses the input data information Q to gray-code the N-valued symbols uq n (0, 1, ..., N ⁇ ). 1) is generated.
  • the signal encoding unit 12b is nonlinear with respect to each of the N-valued symbols ui n (0,1, ..., N-1) and uq n (0,1, ..., N-1) generated by the signal generation unit 11b.
  • the signal encoding unit 12b-1 performs the non-linear trellis encoding processing shown in the above Expressions 7 to 9 on the N-ary symbol ui n (0, 1, ..., N-1). Generate N + 2 binary symbols vi n (0,1, ..., N + 1).
  • the signal encoding unit 12b-2 performs N + 2 value symbol vq n on the N value symbol uq n (0,1, ..., N-1) by the nonlinear trellis encoding process shown in the above Expressions 7 to 9. (0, 1, ..., N + 1) is generated.
  • the DA converter 13b converts the digital signal of the N + 2 binary symbols vi n (0,1, ..., N + 1) and vq n (0,1, ..., N + 1) generated by the signal encoding unit 12b into an analog signal. .. Specifically, the DA converter 13b-1 converts the digital signal of the N + binary symbol vi n (0,1, ..., N + 1) generated by the signal encoding unit 12b-1 into an analog signal. The DA converter 13b-1 outputs the analog signal to the amplifier 14b-1. The DA converter 13b-2 converts the vq n (0, 1, ..., N + 1) digital signal generated by the signal encoding unit 12b-2 into an analog signal. The DA converter 13b-2 outputs the analog signal to the amplifier 14b-2.
  • the amplifier 14b amplifies the signal power of the analog signal output from the DA converter 13b and applies it to the optical vector modulator 17.
  • the amplification unit 14b-1 amplifies the signal power of the analog signal output from the DA converter 13b-1 and applies it to the optical vector modulator 17.
  • the amplification unit 14b-2 amplifies the signal power of the analog signal output from the DA converter 13b-2 and applies it to the optical vector modulator 17.
  • the signal light source 15 sends out continuous light to the optical vector modulator 17.
  • the optical vector modulator 17 independently performs amplitude modulation using the analog signals output from the amplifiers 14b-1 and 14b-2. Specifically, the optical vector modulator 17 amplitude-modulates the In-phase component of the continuous light transmitted from the signal light source 15 with the analog signal output from the amplification unit 14b-1. The optical vector modulator 17 amplitude-modulates the quadrature component of the continuous light transmitted from the signal light source 15 with the analog signal output from the amplification unit 14b-2. Thus, the optical vector modulator 17 modulates a continuous light sent out from the signal source 15 by an optical vector modulator 17, generates an (N + 2) 2 value of the optical complex amplitude modulation signal (NLTCQ signal) ..
  • the local light source 24 outputs local light that interferes with the received signal light.
  • the coherent receiver 25 outputs the complex amplitude information of the NLTCQ signal by coherently detecting the NLTCQ signal transmitted from the optical transmitter 10b based on the local light.
  • the complex amplitude information of the NLTCQ signal is the analog electric signal of the I component and the analog electric signal of the Q component.
  • the AD converter 22b converts the analog electric signal output from the coherent receiver 25 into a digital signal. Specifically, the AD converter 22b-1 converts the analog electric signal of the I component into a digital signal. The AD converter 22b-2 converts the Q component analog electric signal into a digital signal. The digital signal processing unit 23b, by processing the digital signal, ui n, obtains the uq n is a non-linear trellis coded previous symbol.
  • the configuration of the digital signal processing unit 23b is similar to that of the fourth embodiment.
  • the IQ combiner 242 takes in the digital signals output from the AD converters 22b-1 and 22b-2, respectively, as a real part and an imaginary part.
  • the IQ combiner 242 combines the captured signals as a complex signal.
  • the IQ synthesizer 242 takes the digital signal output from the AD converter 22b-1 as the real part and the digital signal output from the AD converter 22b-2 as the imaginary part, and takes in each signal. Is synthesized as a complex signal.
  • the digital filter 231b is composed of complex taps, and shapes the waveform of the NLTCQ signal.
  • the digital filter 231b outputs the waveform-shaped NLTCQ signal to the phase estimation unit 243.
  • As the digital filter 231b an FIR filter that is a general linear filter, a Volterra filter that can describe a high-order transfer function, or the like is used.
  • the phase estimation unit 243 compensates for the phase difference between the signal light and the local light emitted by the local light source 24.
  • the phase estimation unit 243 outputs the compensated signal (NLTCQ signal) to the signal determination unit 232b and the adder 235b.
  • the signal determination unit 232b performs threshold determination on the NLTCQ signal as a (N + 2) 2 -valued QAM signal.
  • the signal determination unit 232b outputs the signal obtained by the threshold determination to the adder 235b and the IQ separation unit 244.
  • the IQ separation unit 244 separates the signal output from the signal determination unit 232b into a real part and an imaginary part, and acquires two systems of N + 2 binary symbols vi n and vq n .
  • the IQ separation unit 244 outputs the acquired N + 2 value symbol vi n to the signal decoding unit 233b-1 and outputs the N + 2 value symbol vq n to the signal decoding unit 233b-2.
  • the signal decoding unit 233b uses the N + 2 value symbols vi n , vq n output from the IQ separation unit 244 and the N + 2 value symbols vi n ⁇ 1 , vq n ⁇ 1 of the immediately preceding time slot that have already been determined. Then, the processing based on Expressions 10 to 12 is executed to restore ui n , uq n which are N-valued symbols before encoding. Specifically, the signal decoding unit 233b-1 uses the N + 2 value symbol vi n output from the IQ separation unit 244 and the N + 2 value symbol vi n ⁇ 1 of the previous time slot that has already been determined. restores ui n is n-ary symbol before encoding by executing processing based on equation 10 to equation 12.
  • the signal decoding unit 233b-2 uses the N + 2 binary symbol vq n output from the IQ separating unit 244 and the N + 2 binary symbol vq n-1 of the immediately preceding time slot that has already been determined, to obtain Expression 10 By executing the processing based on Expression 12, uq n , which is an N-value symbol before encoding, is restored.
  • the bit demapping unit 234b performs gray decoding on ui n , uq n , which are N-valued symbols restored by the signal decoding unit 233b, to generate data information I, Q that is bit information from ui n , uq n. Restore.
  • the bit demapping unit 234b-1 performs gray decoding on ui n , which is the N-valued symbol restored by the signal decoding unit 233b-1, to obtain data information I that is bit information from ui n. Restore.
  • the bit demapping unit 234b-2 restores the data information Q that is bit information from uq n by performing Gray decoding on uq n that is the N-valued symbol restored by the signal decoding unit 233b-2.
  • optical transmission system 100b in the fifth embodiment configured as described above, it can be applied to QAM of an arbitrary multivalued number.
  • a part or all of the functions of the optical transmitters 10 and 10b and the optical receivers 20 and 20b in the above-described embodiments may be realized by a computer.
  • the program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read by a computer system and executed.
  • the “computer system” mentioned here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line.
  • a network such as the Internet or a communication line such as a telephone line.
  • the program may be for realizing some of the functions described above, or may be one that can realize the functions described above in combination with a program already recorded in the computer system, It may be realized using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • Signal determination unit 233 233a, 233b-1, 233b-2 ...
  • Signal decoding unit 234, 234b-1, 234b-2 ...
  • Bit demapping unit 235, 235b ... Adder, 2 6, 236b ...
  • First digital filter 238, 238c-1, 238c-2 ...
  • Viterbi decoding unit 239, 239c ...
  • Second digital filter 240, 240c-1, 240c-2 ... Adder, 241, 241c-1, 241c-2 ... Metric calculation section, 242 ... IQ combination section, 243, 243c ... Phase estimation section, 244, 244c ... IQ separation section, 245 ... IQ combination section, 246 ... IQ separation section , 247, 247c ... adder, 248 ... metric calculation unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Probability & Statistics with Applications (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Optical Communication System (AREA)

Abstract

光送信器と、光受信器とを備える光伝送システムであって、光送信器は、シンボル系列に対して、非線形演算に相当する非線形トレリス符号化を行う信号符号化部と、信号符号化部により符号化がなされたシンボル系列を変調して光受信器に送信する変調器と、を備え、光受信器は、光送信器から送信された光信号を受光して電気信号に変換する受光部と、電気信号に対してデジタル信号処理を行うことによってシンボル系列を復元するデジタル信号処理部と、を備える光伝送システム。

Description

光伝送システム
 本発明は、光伝送システムに関する。
 データ通信需要の増大に伴い、大容量トラヒックの伝送を可能とする光信号変調技術や、光信号多重技術を用いた光伝送ネットワークが普及しつつある。特に、1波当たりの伝送速度が100Gbit/sec(以下「Gb/s」という。)以上の超高速光伝送システムにおいて、コヒーレント検波とデジタル信号処理技術を組み合わせたデジタルコヒーレント技術が広く用いられるようになってきている。これに対して、LTE(Long TermEvolution)に代表されるモバイル端末における大容量データ通信の普及により、上記のデジタルコヒーレント技術よりも安価に、すなわち、より簡易な送受信の装置構成によって100Gb/s級の超高速光伝送を実現することが求められている。
 簡易な装置構成で100Gb/s級の超高速光伝送を実現する方式として、光信号の強度情報に基づいてデータ信号の復調を行う直接検波方式が注目されている。その中でも、2値の強度変調信号であるNRZ(Non Return-to-Zero)方式に比べて、高い周波数利用効率を有する4値強度変調方式であるPAM4(4-level Pulse Amplitude Modulation)を用いた超高速光伝送方式の検討が特に進められている。
 デジタルコヒーレント技術を用いた100Gb/s級光伝送では、一般に偏波多重QPSK(Quadrature Phase Shift Keying)の変調方式(以下「PDM-QPSK」(Polarization Division Multiplexing)-QPSKという。)が用いられている。PDM-QPSKを用いた場合の変調速度は25GBd(GigaBaud)程度である。これに対して、PAM4の変調方式を用いて100Gb/s級の超高速光伝送を行う場合の変調速度は、50GBd程度となる。そのため、PAM4を用いた場合の信号スペクトルは、PDM-QPSK方式よりも広い周波数を占有する信号スペクトルとなる。
 広い周波数を占有するということは、100Gb/s級の超高速光伝送の実現のためにPAM4の変調方式を適用した場合、PDM-QPSK方式に比べて電気デバイスの帯域制限に起因する波形劣化の影響を大きく受けてしまうことを意味する。また、直接検波方式では、伝送ファイバの有する波長分散に起因した波形劣化をデジタル信号処理によって補償することができないため、PAM4方式を適用する際には波長分散に起因した信号品質劣化も大きな問題となる。波長分散に起因した信号品質劣化は変調速度の二乗に比例するため、特に50Gbaud以上の高速に変調された信号に対しては、波長分散に起因した信号品質劣化は顕著なものとなる。
Joo Sung Park, Saul B. Gelfand and Michael P. Fitz, "A Spectral Shaping Nonlinear Binary Coded Modulation with Gray-Mapped QAM Signals",The 2010 Military Communications Conference - Unclassified Program - Waveforms and Signal Processing Track, pp. 2363-2368
 PAM4方式を用いた100Gb/s級超高速光伝送の実現においては、上述した通り、電気光デバイスによる帯域制限に起因した信号品質劣化、及び、光ファイバ伝送路が有する波長分散に起因した信号品質劣化が課題となる。
 従来では、上記のような信号品質劣化を抑制するためにコヒーレント検波方式の信号に対するスペクトルの狭帯域化を実現する方式として、非線形トレリス符号化を用いる方式が提案されている(例えば、非特許文献1参照)。しかしながら、非特許文献1に記載の方式は、直交位相振幅(QAM:Quadrature Amplitude Modulation)変調信号に対する方式であるため、直接検波方式であるPAM4信号に適用することができない。そのため、スペクトルの狭帯域化を実現することができず、信号品質の劣化を抑制することができないという問題があった。なお、このような問題は、PAM4方式に限らず、任意の多値シンボルを用いる方式にも同様に生じる問題である。
 上記事情に鑑み、本発明は、信号品質の劣化を抑制することができる技術の提供を目的としている。
 本発明の一態様は、光送信器と、光受信器とを備える光伝送システムであって、前記光送信器は、シンボル系列に対して、非線形演算に相当する非線形トレリス符号化を行う信号符号化部と、前記信号符号化部により符号化がなされたシンボル系列を変調して前記光受信器に送信する変調器と、を備え、前記光受信器は、前記光送信器から送信された光信号を受光して電気信号に変換する受光部と、前記電気信号に対してデジタル信号処理を行うことによって前記シンボル系列を復元するデジタル信号処理部と、を備える光伝送システムである。
 本発明の一態様は、上記の光伝送システムであって、前記光受信器は、前記電気信号を復調する際に、ビタビ復号を用いた系列推定に基づくシンボル判定を行うビタビ復号部をさらに備える。
 本発明の一態様は、上記の光伝送システムであって、前記光送信器は、入力された情報データを用いて、グレイ符号化されたN(Nは2以上の整数)値シンボルを生成する信号生成部をさらに備え、前記信号符号化部は、以下の式7~式9で示した非線形トレリス符号化処理によってN+2値シンボルを生成し、前記デジタル信号処理部は、前記電気信号に対して所定の判定を行うことによってN+2値シンボルを復元し、復元した前記N+2値シンボルと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルとを用いて、以下の式10~式12に基づいて、符号化前のN値シンボルを復元する。
 本発明の一態様は、上記の光伝送システムであって、前記光送信器は、入力された情報データを用いて、グレイ符号化されたN(Nは2以上の整数)値シンボルを2系統生成する信号生成部をさらに備え、前記信号符号化部は、以下の式7~式9で示した非線形トレリス符号化処理によってN+2値シンボルを2系統生成し、前記デジタル信号処理部は、前記電気信号に対して所定の判定を行うことによって、2系統のN+2値シンボルをそれぞれ復元し、復元した複数の前記N+2値シンボルと、既に判定済みであるひとつ前のタイムスロットの複数のN+2値シンボルとを用いて、以下の式10~式12に基づいて、符号化前のN値シンボルを復元する。
 本発明により、信号品質の劣化を抑制することが可能となる。
各タイムスロットにおけるシンボルと、連続するタイムスロット間のシンボル遷移の関係を示す図である。 本発明における非線形トレリス符号化によって符号化された後のシンボルのシンボル遷移のイメージを示す図である。 従来のPAM4信号の信号スペクトルと、本発明における非線形トレリス符号化を適用したPAM4信号の信号スペクトルとを示す図である。 第1の実施形態における光伝送システムシステム構成を示す図である。 第1の実施形態におけるデジタル信号処理部の内部構成を示す図である。 数値シミュレーションによって評価した、帯域制限環境下における従来のPAM4信号と、本発明におけるNLTCP信号の伝送特性を示す図である。 数値シミュレーションによって評価した、光ファイバ伝送環境下における従来のPAM4信号と本発明におけるNLTCP信号の伝送特性を示す図である。 第2の実施形態におけるデジタル信号処理部の内部構成を示す図である。 第4の実施形態における光伝送システムのシステム構成を示す図である。 第4の実施形態におけるデジタル信号処理部の内部構成を示す図である。 第4の実施形態においてビタビ復号によってシンボル判定を行う場合のデジタル信号処理部の内部構成を示す図である。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(概要)
 まず、本発明の概要について、従来技術と比較しながら説明する。
 従来のPAM4方式では、2ビットのデータ情報を0,1,2,3の4値シンボルの光強度に割り当てることで、2bit/symbolの伝送を実現している。図1は、各タイムスロットにおけるシンボルと、連続するタイムスロット間のシンボル遷移の関係を示す図である。図1に示すように、従来のPAM4方式の場合、例えばタイムスロットt=0においてシンボルSの値(シンボルレベル)が“2”であった場合、t=1におけるシンボルSとして0,1,2,3のいずれのシンボルSへの遷移が可能である。すなわち、従来のPAM4方式では、シンボルSの遷移に対する条件が課されていない形となる。ランダムな信号系列を伝送する場合は、各シンボルSから各シンボルSへの遷移確率は、すべての遷移に対して1/4である。このシンボル遷移を離散マルコフ連鎖のモデルに当てはめると、遷移確率行列Pは以下の式1のように表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、行列の各要素pij(i,j=0,1,2,3)は、状態jから状態iへの遷移確率を表す。この遷移行列の固有値1に対する固有ベクトルqは以下の式2のように表される。
Figure JPOXMLDOC01-appb-M000006
 各状態(シンボル)の生起確率は1/4であり、各シンボルとも等確率に発生する。それに対して、本発明では、非線形トレリス符号化によって状態遷移確率を制御することにより、PAM4信号のスペクトルを狭帯域化し、帯域制限耐力及び波長分散耐力の向上を実現する。
 本発明における非線形トレリス符号化の手順を以下に示す。
 タイムスロットn(nは1以上の整数)における符号化前のオリジナルの4値信号をuとすると、uは0,1,2,3の4値シンボルとなる。ここで、各シンボルにはグレイ符号化された2ビットが割り当てられているものとする。すなわち、隣接するシンボル間のハミング距離が1となるような符号化が適用されているものとする。例えば、シンボル0にビット01、シンボル1にビット00、シンボル2にビット10、シンボル3にビット11を割り当てたものはグレイ符号となっている。符号化後のシンボルをvとすると、本発明における非線形トレリス符号化によって生成される符号化後シンボルは、以下の式3に基づいて生成される。
Figure JPOXMLDOC01-appb-M000007
 ここで、[.]はガウス記号であり、非線形な演算に相当する処理である。このような符号化を施すことにより、符号化後シンボルvとして0,1,2,3,4,5の6値シンボルが得られる。この符号化後のシンボルvの遷移確率行列Pは以下の式4のように表される。
Figure JPOXMLDOC01-appb-M000008
 式4からわかるように、本発明における非線形トレリス符号化を適用することで、符号化後のシンボルvの遷移が一部制限されている。例えば、シンボル0から遷移可能なシンボルは、0,1,2,3の4つであり、シンボル4,5への遷移は許されていない。このように、本発明ではシンボル遷移に制限を課すことによって高周波のシンボル遷移の発生を抑圧し、信号スペクトルの狭帯域化を実現する。この遷移行列の固有値1に対する固有ベクトルqは、以下の式5のように表される。
Figure JPOXMLDOC01-appb-M000009
 各状態(シンボル)の生起確率は等確率ではなく、中央のシンボルほど高い確率で発生する。これは、本発明における非線形トレリス符号化が、確率整形に相当する処理であることを意味する。
 図2は、本発明における非線形トレリス符号化によって符号化された後のシンボルvのシンボル遷移のイメージを示す図である。図2からわかるように、符号化前の情報であるuは、符号化後シンボルであるvの状態遷移に対応している。すなわち、本発明における非線形トレリス符号化は、状態遷移に情報を割り当てる方式となっており、その状態遷移に制限を課すことによって高周波成分の発生を抑圧する方式となっている。
 図3は、従来のPAM4信号の信号スペクトルと、本発明における非線形トレリス符号化を適用したPAM4信号(NLTCP信号)の信号スペクトルとを示す図である。図3(A)は従来のPAM4信号の信号スペクトルを示す図であり、図3(B)は本発明における非線形トレリス符号化を適用したPAM4信号(NLTCP信号)の信号スペクトルを示す図である。図3において横軸は周波数を表し、縦軸は信号パワーを表す。なお、両者とも、ロールオフ係数0.01のレイズドコサインフィルタを適用している。
 図3(A)及び(B)からわかるように、非線形トレリス符号化を適用することで、信号スペクトルの高周波成分が抑圧され、信号パワーが低周波領域に集中していることがわかる。
 以下、具体的な処理について実施形態で説明する。
(第1の実施形態)
 図4は、第1の実施形態における光伝送システム100のシステム構成を示す図である。光伝送システム100は、光送信器10及び光受信器20を備える。光送信器10と光受信器20とは、光ファイバ30を介して接続される。光ファイバ30は、光送信器10と光受信器20とを接続する伝送路である。
 光送信器10は、信号生成部11、信号符号化部12、DA変換器13、増幅部14、信号光源15及び光変調器16を備える。
 信号生成部11は、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化された4値シンボルu(0,1,2,3)を生成する。
 信号符号化部12は、信号生成部11によって生成された4値シンボルu(0,1,2,3)に対して非線形トレリス符号化処理を行うことによって6値シンボルv(0,1,2,3,4,5)を生成する。具体的には、信号符号化部12は、4値シンボルu(0,1,2,3)に対して、上記の式3で示した非線形トレリス符号化処理を行うことによって6値シンボルv(0,1,2,3,4,5)を生成する。
 DA変換器13は、信号符号化部12によって生成された6値シンボルv(0,1,2,3,4,5)のデジタル信号をアナログ信号に変換する。DA変換器13は、アナログ信号を増幅部14に出力する。
 増幅部14は、DA変換器13から出力されたアナログ信号の信号パワーを増幅して、光変調器16に印加する。
 信号光源15は、光変調器16に対して連続光を送出する。
 光変調器16は、増幅部14によって増幅されたアナログ信号で、信号光源15から送出された連続光を変調することによって、6値の光強度変調信号であるNLTCP信号を生成する。光変調器16は、生成したNLTCP信号を、光ファイバ30を介して光受信器20に送信する。なお、信号光源15と、光変調器16は、必ずしも分離されている必要はなく、光変調器16は信号光源15から送出された連続光を直接変調することによって、6値の光強度変調信号であるNLTCP信号を生成してもよい。
 光受信器20は、受光部21、AD変換器22及びデジタル信号処理部23を備える。
 受光部21は、光送信器10から送信されたNLTCP信号を直接検波してNLTCP信号の光強度情報を取得する。受光部21は、取得した光強度情報をアナログの電気信号に変換してAD変換器22に出力する。
 AD変換器22は、受光部21から出力されたアナログの電気信号をデジタル信号に変換する。
 デジタル信号処理部23は、デジタル信号を処理することによって、非線形トレリス符号化前の4値シンボルであるuを取得する。
 図5は、第1の実施形態におけるデジタル信号処理部23の内部構成を示す図である。
 デジタル信号処理部23は、デジタルフィルタ231、信号判定部232、信号復号部233、ビットデマッピング部234、加算器235及びタップ更新部236を備える。
 デジタルフィルタ231は、複素タップで構成されており、NLTCP信号の波形整形を行う。デジタルフィルタ231は、波形整形後のNLTCP信号を信号判定部232及び加算器235に出力する。デジタルフィルタ231は、一般的な線形フィルタであるFIR(Finite Impulse Response)フィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
 信号判定部232は、波形整形後のNLTCP信号に対して閾値判定を行うことによって6値シンボルvを取得する。信号判定部232は、取得した6値シンボルvを信号復号部233及び加算器235に出力する。
 信号復号部233は、信号判定部232から出力された6値シンボルvと、既に判定済みであるひとつ前のタイムスロットの6値シンボルvn-1とを用いて、以下の式6に基づいた処理を実行することで符号化前の4値シンボルであるuを復元する。
Figure JPOXMLDOC01-appb-M000010
 ただし、信号復号部233は、式6によって得られたuが、u<0であった場合にはu=0とし、u>3であった場合にはu=3とする。
 ビットデマッピング部234は、信号復号部233によって復元された4値シンボルであるuに対してグレイ復号を行うことによってuからビット情報であるデータ情報を復元する。
 加算器235は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値とを取り込む。なお、加算器235は、デジタルフィルタ231から出力された値をマイナスの符号を付与して取り込む。加算器235は、取り込んだ2つの値を加算、すなわち信号判定部232から出力された値から、デジタルフィルタ231から出力された値を減算し、減算により算出した減算値をタップ更新部236に出力する。
 タップ更新部236は、信号判定部232による判定後の値と、信号判定部232による判定前の値との差分に基づいて、デジタルフィルタ231のタップ係数を更新する。具体的には、タップ更新部236は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値との差分が最小となるように、すなわち減算値が0となるようにデジタルフィルタ231のタップ係数を更新する。これにより、復調の精度が向上する。
 図6は、数値シミュレーションによって評価した、帯域制限環境下における従来のPAM4信号と、本発明におけるNLTCP信号の伝送特性を示す図である。図6(A)は帯域制限環境下におけるPAM4信号の伝送特性を示す図であり、図6(B)は帯域制限環境下における本発明のNLTCP信号の伝送特性を示す図である。図6において、横軸は受信パワーを表し、縦軸はビット誤り率を表す。また、図6(A)及び(B)ともに信号の変調速度は56Gbaudであり、伝送容量は112Gb/sである。
 図6(A)に示すように、従来のPAM4信号は、変調速度の25%に相当する14GHzの帯域制限環境下では、受信パワーを十分に大きくした場合であっても、帯域制限による波形劣化が伝送性能を律速してしまう。そのため、短距離光伝送システムにおいて広く用いられているKP4-FECの誤り訂正限界である2.5×10-4を下回るビット誤り率(BER)を達成することができない。
 それに対して、図6(B)に示すように、本発明におけるNLTCP信号は、14GHzの帯域制限環境下であってもKP4-FECの誤り訂正限界を達成することが可能である。
 図7は、数値シミュレーションによって評価した、光ファイバ伝送環境下、すなわち波長分散環境下における従来のPAM4信号とNLTCP信号の伝送特性を示す図である。
図7(A)は光ファイバ伝送環境下におけるPAM4信号の伝送特性を示す図であり、図7(B)は光ファイバ伝送環境下における本発明のNLTCP信号の伝送特性を示す図である。図7において、横軸は受信パワーを表し、縦軸はビット誤り率を表す。また、図7(A)及び(B)ともに信号の変調速度は56Gbaudであり、伝送容量は112Gb/sである。また、信号に対する帯域制限は30GHzとしている。
 図7(A)に示すように、従来のPAM4信号は、-32ps/nmの波長分散環境下では受信パワーを十分に大きくした場合であっても、波長分散による波形劣化が伝送性能を律速してしまう。そのため、KP4-FECの誤り訂正限界を達成することができない。 それに対して、図7(B)に示すように、本発明におけるNLTCP信号は、-48ps/nmの波長分散環境下であってもKP4-FECの誤り訂正限界を達成することが可能である。
 以上のように、本発明における非線形トレリス符号化を適用することで、PAM4信号に対して飛躍的な帯域制限耐力の向上および波長分散耐力の向上を実現することが可能である。
 以上のように構成された光伝送システム100によれば、信号品質の劣化を抑制することが可能になる。具体的には、光送信器10において、4値シンボルに対して非線形トレリス符号化処理を行うことによって6値シンボルを生成して、生成した6値シンボルに基づく光信号(NLTCP信号を)を光受信器20に送信する。光送信器10で非線形トレリス符号化処理を行うことによって、符号化後のシンボルの遷移に制限を与える。これにより、各状態(シンボル)の生起確率が等確率ではなく、中央のシンボルほど高い確率で発生するようになる。この構成により、時間的にみて強度の急激な変化が少なくなるため高周波のシンボル遷移の発生を抑圧し、信号スペクトルの狭帯域化を実現することができる。そのため、電気光デバイスによる帯域制限に起因した信号品質劣化、及び、光ファイバ伝送路が有する波長分散に起因した信号品質劣化を抑制することが可能になる。
(第2の実施形態)
 第2の実施形態では、光受信器においてMLSE(Maximum Likelihood Sequence Estimation:最尤系列推定)に基づいて復調を行う。
 第2の実施形態において光送信器10の構成は、第1の実施形態と同様であるため説明を省略する。光受信器20の構成は、デジタル信号処理部23に代えてデジタル信号処理部23aを備える点が第1の実施形態における光受信器20と構成が異なる。以下、相違点について説明する。
 図8は、第2の実施形態におけるデジタル信号処理部23aの内部構成を示す図である。
 デジタル信号処理部23aは、信号復号部233a、ビットデマッピング部234、第1デジタルフィルタ237、ビタビ復号部238、第2デジタルフィルタ239、加算器240及びメトリック算出部241を備える。
 第1デジタルフィルタ237は、複素タップで構成されており、NLTCP信号の波形整形を行う。第1デジタルフィルタ237は、波形整形後のNLTCP信号をビタビ復号部238及び加算器240に出力する。第1デジタルフィルタ237は、FIRフィルタやボルテラフィルタ等の一般的な線形フィルタが用いられる。
 ビタビ復号部238は、第1デジタルフィルタ237から出力された波形整形後のNLTCP信号と、メトリック算出部241から出力されるメトリックとに基づいて6値シンボルvに対する系列推定を行う。具体的には、ビタビ復号部238は、ビタビアルゴリズムに基づいて6値シンボルvに対する系列推定を行う。ビタビ復号部238は、系列推定の結果として得られたメトリックのうち最もメトリックの小さいシンボル系列を送信系列vとして採用する。メトリック算出部241から出力されるメトリックとしては、想定される系列の候補(候補系列)に対して第2デジタルフィルタ239によるデジタルフィルタ処理を施した時系列データと、第1デジタルフィルタ237から出力された時系列データ間のユークリッド距離が用いられる。
 第2デジタルフィルタ239は、複素タップで構成されており、入力された候補系列に対してデジタルフィルタ処理を施すことによって時系列データを取得する。第2デジタルフィルタ239は、取得した時系列データを加算器240に出力する。第2デジタルフィルタ239は、FIRフィルタやボルテラフィルタ等の一般的な線形フィルタが用いられる。特に、大きな非線形応答を有するシステムに対しては、第2デジタルフィルタ239としてボルテラフィルタを用いるとよい。
 なお、本発明における非線形トレリス符号化では、シンボルの遷移に制限が課せられているため、候補系列としては以下の24通りが考えられる。
00
01
02
03
10
11
12
13
21
22
23
24
31
32
33
34
42
43
44
45
52
53
54
55
 すなわち、本実施例におけるシンボル系列vの判定は、記憶長2の最尤系列推定(MLSE:Maximum Likelihood Sequence Estimation)そのものである。
 加算器240は、第1デジタルフィルタ237から出力された値と、第2デジタルフィルタ239から出力された値とを取り込む。なお、加算器240は、第2デジタルフィルタ239から出力された値をマイナスの符号を付与して取り込む。加算器240は、取り込んだ2つの値を加算、すなわち第1デジタルフィルタ237から出力された値(時系列データ)から、第2デジタルフィルタ239から出力された値(時系列データ)を減算し、減算により算出した減算値をメトリック算出部241に出力する。
 メトリック算出部241は、加算器240から出力された減算値、すなわち想定される系列の候補(候補系列)に対して第2デジタルフィルタ239によってデジタルフィルタ処理を施した時系列データと、第1デジタルフィルタから出力された時系列データとの間のユークリッド距離をメトリックとして算出する。
 信号復号部233aは、ビタビ復号部238によって採用された送信系列vから、式6を用いることで符号化前の4値シンボルであるuを復元する。
 ビットデマッピング部234は、信号復号部233aによって復元された4値シンボルであるuに対してグレイ復号を行うことによってuからビット情報であるデータ情報を復元する。
 以上のように構成された第2の実施形態における光伝送システム100によれば、第1の実施形態と同様の効果を得ることができる。
(第3の実施形態)
 第1の実施形態及び第2の実施形態では、符号化前のシンボルとしてPAM4信号を対象としていたが、本発明は任意の多値シンボルに対しても適用可能である。そこで、第3の実施形態では、N値のPAM信号(PAM-N信号)に対して本発明における非線形トレリス符号化を適用した構成について説明する。
 第3の実施形態における光送信器と光受信器の構成は、第1の実施形態と同様である。
 まず、第3の実施形態における光送信器10の構成について説明する。
 信号生成部11は、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化されたN値シンボルu(0,1,…,N-1)を生成する。
 信号符号化部12は、信号生成部11によって生成されたN値シンボルu(0,1,…,N-1)に対して非線形トレリス符号化処理を行うことによってN+2値シンボルv(0,1,…,N+1)を生成する。具体的には、信号符号化部12は、N+2値シンボルv(0,1,…,N+1)に対して、以下の式7~式9で示した非線形トレリス符号化処理を行うことによってN+2値シンボルv(0,1,…,N+1)を生成する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 DA変換器13は、信号符号化部12によって生成されたN+2値シンボルv(0,1,…,N+1)のデジタル信号をアナログ信号に変換する。DA変換器13は、アナログ信号を増幅部14に出力する。
 増幅部14は、DA変換器13から出力されたアナログ信号の信号パワーを増幅して、光変調器16に印加する。
 信号光源15は、光変調器16に対して連続光を送出する。
 光変調器16は、増幅部14によって増幅されたアナログ信号で、信号光源15から送出された連続光を変調することによって、N+2値の光強度変調信号であるNLTCP信号を生成する。光変調器16は、生成したNLTCP信号を、光ファイバ30を介して光受信器20に送信する。なお、信号光源15と、光変調器16は、必ずしも分離されている必要はなく、光変調器16は信号光源15から送出された連続光を直接変調することによって、N+2値の光強度変調信号であるNLTCP信号を生成してもよい。
 次に、第3の実施形態における光受信器20の構成について説明する。
 受光部21は、光送信器10から送信されたNLTCP信号を直接検波してNLTCP信号の光強度情報を取得する。受光部21は、取得した光強度情報をアナログの電気信号に変換してAD変換器22に出力する。
 AD変換器22は、受光部21から出力されたアナログの電気信号をデジタル信号に変換する。
 デジタル信号処理部23は、デジタル信号を処理することによって、非線形トレリス符号化前のN値シンボルであるuを取得する。
 デジタル信号処理部23の構成は、第1の実施形態と同様である。すなわち、デジタル信号処理部23は、デジタルフィルタ231、信号判定部232、信号復号部233、ビットデマッピング部234、加算器235及びタップ更新部236を備える。
 デジタルフィルタ231は、複素タップで構成されており、NLTCP信号の波形整形を行う。デジタルフィルタ231は、波形整形後のNLTCP信号を信号判定部232及び加算器235に出力する。デジタルフィルタ231は、一般的な線形フィルタであるFIRフィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
 信号判定部232は、NLTCP信号に対して閾値判定を行うことによってN+2値シンボルvを取得する。信号判定部232は、取得したN+2値シンボルvを信号復号部233及び加算器235に出力する。
 信号復号部233は、信号判定部232から出力されたN+2値シンボルvと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルvn-1とを用いて、以下の式10~式12に基づいた処理を実行することで符号化前のN値シンボルであるuを復元する。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ただし、信号復号部233は、式10~12によって得られたuが、u<0であった場合にはu=0とし、u>N-1であった場合にはu=N-1とする。
 ビットデマッピング部234は、信号復号部233によって復元されたN値シンボルであるuに対してグレイ復号を行うことによってuからビット情報であるデータ情報を復元する。
 加算器235は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値とを取り込む。なお、加算器235は、デジタルフィルタ231から出力された値をマイナスの符号を付与して取り込む。加算器235は、取り込んだ2つの値を加算、すなわち信号判定部232から出力された値から、デジタルフィルタ231から出力された値を減算し、減算により算出した減算値をタップ更新部236に出力する。
 タップ更新部236は、信号判定部232による判定後の値と、信号判定部232による判定前の値との差分に基づいて、デジタルフィルタ231のタップ係数を更新する。具体的には、タップ更新部236は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値との差分が最小となるように、すなわち減算値が0となるようにデジタルフィルタ231のタップ係数を更新する。これにより、復調の精度が向上する。
 なお、ビタビ復号によってシンボル判定を行う場合のデジタル信号処理部の構成は、第2の実施形態と同様である。具体的には、信号復号部233は、採用された送信系列vから、式10~式12を用いることで非線形トレリス符号化前のシンボルであるuを得る。その後の処理においては、第2の実施形態と同様であるため説明を省略する。
 以上のように構成された第3の実施形態における光伝送システム100によれば、任意の多値シンボルに対しても適用することができる。
(第4の実施形態)
 第1の実施形態から第3の実施形態では、本発明における技術を、直接検波方式を前提としたPAM信号に用いる構成を示した。本発明における技術は、コヒーレント検波方式を前提としQAM信号に対しても適用可能である。第4の実施形態では、16QAMに対して本発明における非線形トレリス符号化を適用した構成について説明する。
 図9は、第4の実施形態における光伝送システム100bのシステム構成を示す図である。光伝送システム100bは、光送信器10b及び光受信器20bを備える。光送信器10bと光受信器20bとは、光ファイバ30を介して接続される。
 光送信器10bは、信号生成部11b-1,11b-2、信号符号化部12b-1,12b-2、DA変換器13b-1,13b-2、増幅部14b-1,14b-2、信号光源15及び光ベクトル変調器17を備える。図9において、信号生成部11b-1、信号符号化部12b-1、DA変換器13b-1及び増幅部14b-1は、データ情報Iに対して処理を行う機能部である。また、信号生成部11b-2、信号符号化部12b-2、DA変換器13b-1及び増幅部14b-1は、データ情報Qに対して処理を行う機能部である。
 なお、以下の説明では、信号生成部11b-1,11b-2について区別しない場合には信号生成部11bと記載する。また、以下の説明では、信号符号化部12b-1,12b-2について区別しない場合には信号符号化部12bと記載する。また、以下の説明では、DA変換器13b-1,13b-2について区別しない場合にはDA変換器13bと記載する。また、以下の説明では、増幅部14b-1,14b-2について区別しない場合には増幅部14と記載する。
 信号生成部11bは、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化された4値シンボルを2系統生成する。具体的には、信号生成部11b-1は、外部から送信対象となるデータ情報Iを入力し、入力されたデータ情報Iを用いて、グレイ符号化された4値シンボルui(0,1,2,3)を生成する。信号生成部11b-2は、外部から送信対象となるデータ情報Qを入力し、入力されたデータ情報Qを用いて、グレイ符号化された4値シンボルuq(0,1,2,3)を生成する。
 信号符号化部12bは、信号生成部11bによって生成された4値シンボルui(0,1,2,3)及びuq(0,1,2,3)それぞれに対して非線形トレリス符号化処理を行うことによって6値シンボルを2系統生成する。具体的には、信号符号化部12b-1は、4値シンボルui(0,1,2,3)に対して、上記の式3で示した非線形トレリス符号化処理を行うことによって6値シンボルvi(0,1,2,3,4,5)を生成する。信号符号化部12b-2は、4値シンボルuq(0,1,2,3)に対して、上記の式3で示した非線形トレリス符号化処理を行うことによって6値シンボルvq(0,1,2,3,4,5)を生成する。
 DA変換器13bは、信号符号化部12bによって生成された6値シンボルvi(0,1,2,3,4,5)及びvq(0,1,2,3,4,5) のデジタル信号をアナログ信号に変換する。具体的には、DA変換器13b-1は、信号符号化部12b-1によって生成された6値シンボルvi(0,1,2,3,4,5)のデジタル信号をアナログ信号に変換する。
DA変換器13b-1は、アナログ信号を増幅部14b-1に出力する。DA変換器13b-2は、信号符号化部12b-2によって生成された6値シンボルvq(0,1,2,3,4,5)のデジタル信号をアナログ信号に変換する。DA変換器13b-2は、アナログ信号を増幅部14b-2に出力する。
 増幅部14bは、DA変換器13bから出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。具体的には、増幅部14b-1は、DA変換器13b-1から出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。増幅部14b-2は、DA変換器13b-2から出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。
 信号光源15は、光ベクトル変調器17に対して連続光を送出する。
 光ベクトル変調器17は、増幅部14b-1及び14b-2それぞれから出力されたアナログ信号を用いて独立に振幅変調を行う。具体的には、光ベクトル変調器17は、信号光源15から送出された連続光のIn-phase成分を、増幅部14b-1から出力されたアナログ信号で振幅変調する。光ベクトル変調器17は、信号光源15から送出された連続光のQuadrature成分を、増幅部14b-2から出力されたアナログ信号で振幅変調する。このように、光ベクトル変調器17は、信号光源15から送出された連続光を光ベクトル変調器17によって変調することで、36値の光複素振幅変調信号(NLTCQ信号)を生成する。In-phase成分の値がi、Quadrature成分の値がjとなる確率をrijとした場合、rij=s×sとなる。ここで、s(n=0,1,2,3,4,5)はそれぞれの成分がnという値をとる確率である。したがって、rijを成分とする6×6行列Rは、以下の式13のように表される。
Figure JPOXMLDOC01-appb-M000017
 光受信器20bは、AD変換器22b-1,22b-2、デジタル信号処理部23b、局発光源24及びコヒーレント受信器25を備える。
 局発光源24は、受信信号光に干渉させる局発光を出力する。
 コヒーレント受信器25は、光送信器10bから送信されたNLTCQ信号を局発光に基づいてコヒーレント検波することで、NLTCQ信号の複素振幅情報を出力する。ここで、NLTCQ信号の複素振幅情報とは、I成分のアナログ電気信号とQ成分のアナログ電気信号である。
 AD変換器22bは、コヒーレント受信器25から出力されたアナログの電気信号をデジタル信号に変換する。具体的には、AD変換器22b-1は、I成分のアナログ電気信号をデジタル信号に変換する。AD変換器22b-2は、Q成分のアナログ電気信号をデジタル信号に変換する。
 デジタル信号処理部23bは、デジタル信号を処理することによって、非線形トレリス符号化前のシンボルであるui,uqを取得する。
 図10は、第4の実施形態におけるデジタル信号処理部23bの内部構成を示す図である。
 デジタル信号処理部23bは、デジタルフィルタ231b、信号判定部232b、信号復号部233b-1,233b-2、ビットデマッピング部234b-1,234b-2、加算器235b、タップ更新部236b、IQ合成部242、位相推定部243及びIQ分離部244を備える。
 IQ合成部242は、AD変換器22b-1及び22b-2から出力されるデジタル信号それぞれを実部(Iチャネル成分のデジタル信号)と虚部(Qチャネル成分のデジタル信号)として取り込む。IQ合成部242は、取り込んだ各信号を複素信号として合成する。具体的には、IQ合成部242は、AD変換器22b-1から出力されるデジタル信号を実部とし、AD変換器22b-2から出力されるデジタル信号を虚部として取り込み、取り込んだ各信号を複素信号として合成する。
 デジタルフィルタ231bは、複素タップで構成されており、NLTCQ信号の波形整形を行う。デジタルフィルタ231bは、波形整形後のNLTCQ信号を位相推定部243に出力する。デジタルフィルタ231bは、一般的な線形フィルタであるFIRフィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
 位相推定部243は、信号光と局発光源24による局発光との位相差を補償する。位相推定部243は、補償後の信号(NLTCQ信号)を信号判定部232b及び加算器235bに出力する。
 信号判定部232bは、NLTCQ信号に対して36値のQAM信号として閾値判定を行う。信号判定部232bは、閾値判定により得られた信号を加算器235b及びIQ分離部244に出力する。
 IQ分離部244は、信号判定部232bから出力された信号を実部(Iチャネル成分のデジタル信号)と虚部(Qチャネル成分のデジタル信号)に分離することで、2系統の6値シンボルvi,vqを取得する。IQ分離部244は、取得した6値シンボルviを信号復号部233b-1に出力し、6値シンボルvqを信号復号部233b-2に出力する。
 信号復号部233bは、IQ分離部244から出力された6値シンボルvi,vqと、既に判定済みであるひとつ前のタイムスロットの6値シンボルvin-1,vqn-1とを用いて、式6に基づいた処理を実行することで符号化前の4値シンボルであるui,uqを復元する。具体的には、信号復号部233b-1は、IQ分離部244から出力された6値シンボルviと、既に判定済みであるひとつ前のタイムスロットの6値シンボルvin-1とを用いて、式6に基づいた処理を実行することで符号化前の4値シンボルであるuiを復元する。また、信号復号部233b-2は、IQ分離部244から出力された6値シンボルvqと、既に判定済みであるひとつ前のタイムスロットの6値シンボルvqn-1とを用いて、式6に基づいた処理を実行することで符号化前の4値シンボルであるuqを復元する。
 ただし、信号復号部233b-1は、式6によって得られたuiが、ui<0であった場合にはui=0とし、ui>3であった場合にはui=3とする。また、信号復号部233b-2は、式6によって得られたuqが、uq<0であった場合にはuq=0とし、uq>3であった場合にはuq=3とする。
 ビットデマッピング部234bは、信号復号部233bによって復元された4値シンボルであるui,uqに対してグレイ復号を行うことによってui,uqからビット情報であるデータ情報I,Qを復元する。具体的には、ビットデマッピング部234b-1は、信号復号部233b-1によって復元された4値シンボルであるuiに対してグレイ復号を行うことによってuiからビット情報であるデータ情報Iを復元する。ビットデマッピング部234b-2は、信号復号部233b-2によって復元された4値シンボルであるuqに対してグレイ復号を行うことによってuqからビット情報であるデータ情報Qを復元する。
 加算器235bは、位相推定部243から出力された値と、信号判定部232bから出力された値とを取り込む。なお、加算器235bは、位相推定部243から出力された値をマイナスの符号を付与して取り込む。加算器235bは、取り込んだ2つの値を加算、すなわち信号判定部232bから出力された値から、位相推定部243から出力された値を減算し、減算により算出した減算値をタップ更新部236bに出力する。
 タップ更新部236bは、信号判定部232bによる判定後の値と、信号判定部232bによる判定前の値との差分に基づいて、デジタルフィルタ231bのタップ係数を更新する。具体的には、タップ更新部236bは、位相推定部243から出力された値と、信号判定部232bから出力された値との差分が最小となるように、すなわち減算値が0となるようにデジタルフィルタ231bのタップ係数を更新する。これにより、復調の精度が向上する。
 次に、ビタビ復号によってシンボル判定を行う場合のデジタル信号処理部の構成について図11を用いて説明する。図11は、第4の実施形態においてビタビ復号によってシンボル判定を行う場合のデジタル信号処理部23cの内部構成を示す図である。
 デジタル信号処理部23cは、信号復号部233c-1,233c-2、ビットデマッピング部234c-1,234c-2、第1デジタルフィルタ237c、ビタビ復号部238c-1,238c-2、第2デジタルフィルタ239c、加算器240c-1,240c-2、メトリック算出部241c-1,241c-2、IQ合成部242、位相推定部243c、IQ合成部245、IQ分離部246、加算器247及びメトリック算出部248を備える。
 第1デジタルフィルタ237cは、複素タップで構成されており、NLTCQ信号の波形整形を行う。第1デジタルフィルタ237cは、波形整形後のNLTCQ信号を位相推定部243cに出力する。第1デジタルフィルタ237cは、FIRフィルタやボルテラフィルタ等の一般的な線形フィルタが用いられる。
 位相推定部243cは、信号光と局発光源24による局発光との位相差を補償する。位相推定部243cは、補償後の信号(NLTCQ信号)をIQ分離部244c及び加算器247cに出力する。
 IQ分離部244cは、位相推定部243cから出力された信号を実部(Iチャネル成分のデジタル信号)と虚部(Qチャネル成分のデジタル信号)に分離する。IQ分離部244cは、Iチャネル成分の信号をビタビ復号部238c-1及び加算器240c-2に出力し、Qチャネル成分の信号をビタビ復号部238c-2及び加算器240c-1に出力する。
 ビタビ復号部238cは、IQ分離部244cから出力された信号と、メトリック算出部241cから出力されるメトリックとに基づいて6値シンボルvi,vqそれぞれに対する系列推定を行う。具体的には、ビタビ復号部238c-1は、ビタビアルゴリズムを用いて、実部(Iチャネル成分)に対応する信号と、メトリック算出部241c-1から出力されるメトリックとに基づいてIチャネル成分における6値シンボルviに対する系列推定を行う。ビタビ復号部238c-1は、系列推定の結果として得られたメトリックのうち最もメトリックの小さいシンボル系列を送信系列viとして採用する。メトリック算出部241c-1から出力されるメトリックとしては、vi,vqそれぞれに対して想定される系列の候補(候補系列)をIQ合成部245によって複素数に合成したうえで、第2デジタルフィルタ239cによってデジタルフィルタ処理を施した時系列データの虚数成分と、第1デジタルフィルタ237cから出力された時系列データの虚数成分との間のユークリッド距離が用いられる。
 また、ビタビ復号部238c-2は、ビタビアルゴリズムを用いて、虚部(Qチャネル成分)に対応する信号と、メトリック算出部241c-2から出力されるメトリックとに基づいてQチャネル成分における6値シンボルviに対する系列推定を行う。ビタビ復号部238c-2は、系列推定の結果として得られたメトリックのうち最もメトリックの小さいシンボル系列を送信系列vqとして採用する。メトリック算出部241c-2から出力されるメトリックとしては、vi,vqそれぞれに対して想定される系列の候補(候補系列)をIQ合成部245によって複素数に合成したうえで、第2デジタルフィルタ239cによってデジタルフィルタ処理を施した時系列データの実数成分と、第1デジタルフィルタ237cから出力された時系列データの実数成分との間のユークリッド距離が用いられる。
 信号復号部233cは、ビタビ復号部238cによって採用された送信系列vi,vqから、vi,vqそれぞれに対して式6を適用することで非線形トレリス符号化前のシンボルであるui,uqを復元する。具体的には、信号復号部233c-1は、ビタビ復号部238c-1によって採用された送信系列viから、viに対して式6を適用することで非線形トレリス符号化前のシンボルであるvqを復元する。信号復号部233c-2は、ビタビ復号部238c-2によって採用された送信系列vqから、vqに対して式6を適用することで非線形トレリス符号化前のシンボルであるuqを復元する。
 ビットデマッピング部234cは、信号復号部233cによって復元された4値シンボルであるui,uqに対してグレイ復号を行うことによってui,uqからビット情報であるデータ情報I,Qを復元する。具体的には、ビットデマッピング部234c-1は、信号復号部233c-1によって復元された4値シンボルであるuiに対してグレイ復号を行うことによってuiからビット情報であるデータ情報Iを復元する。ビットデマッピング部234c-2は、信号復号部233c-2によって復元された4値シンボルであるuqに対してグレイ復号を行うことによってuqからビット情報であるデータ情報Qを復元する。
 IQ合成部245は、入力されたvi,vqそれぞれに対して想定される系列の候補(候補系列)を複素数に合成する。
 第2デジタルフィルタ239cは、複素タップで構成されており、IQ合成部245によって合成された複素数に対してデジタルフィルタ処理を施すことによって時系列データを取得する。第2デジタルフィルタ239cは、取得した時系列データをIQ分離部246及び加算器247cに出力する。第2デジタルフィルタ239cは、FIRフィルタやボルテラフィルタ等の一般的な線形フィルタが用いられる。特に、大きな非線形応答を有するシステムに対しては、第2デジタルフィルタ239cとしてボルテラフィルタを用いるとよい。
 IQ分離部246は、第2デジタルフィルタ239cから出力された信号を実部と虚部に分離する。IQ分離部246は、実部に対応する信号(Iチャネル成分の信号)を加算器240c-2に出力し、虚部に対応する信号(Qチャネル成分の信号)を加算器240c-1に出力する。
 加算器247cは、位相推定部243cから出力された値と、第2デジタルフィルタ239cから出力された値とを取り込む。なお、加算器247cは、位相推定部243cから出力された値をマイナスの符号を付与して取り込む。加算器247cは、取り込んだ2つの値を加算、すなわち第2デジタルフィルタ239cから出力された値から、位相推定部243cから出力された値を減算し、減算により算出した減算値をメトリック算出部248cに出力する。
 メトリック算出部248cは、加算器247cから出力された減算値をメトリックとして算出する。
 加算器240c-1は、IQ分離部246から出力された値(Qチャネル成分の信号)と、IQ分離部244cから出力された値(Qチャネル成分の信号)とを取り込む。なお、加算器240c-1は、IQ分離部244cから出力された値をマイナスの符号を付与して取り込む。加算器240c-1は、取り込んだ2つの値を加算、すなわちIQ分離部246から出力された値から、位相推定部243cから出力された値を減算し、減算により算出した減算値をメトリック算出部241c-1に出力する。
 加算器240c-2は、IQ分離部246から出力された値(Iチャネル成分の信号)と、IQ分離部244cから出力された値(Iチャネル成分の信号)とを取り込む。なお、加算器240c-2は、IQ分離部244cから出力された値をマイナスの符号を付与して取り込む。加算器240c-2は、取り込んだ2つの値を加算、すなわちIQ分離部246から出力された値から、位相推定部243cから出力された値を減算し、減算により算出した減算値をメトリック算出部241c-2に出力する。
 メトリック算出部241c-1は、加算器240c-1から出力された減算値をメトリックとして算出する。
 メトリック算出部241c-2は、加算器240c-2から出力された減算値をメトリックとして算出する。
 以上のように構成された第4の実施形態における光伝送システム100bによれば、コヒーレント検波方式にも適用することが可能になる。
(第5の実施形態)
 本発明は、任意の多値シンボルを有するQAM信号に対して適用可能である。そこで、第5の実施形態では、N値のQAM信号に対して本発明における非線形トレリス符号化を適用した構成について説明する。
 第5の実施形態における光送信器と光受信器の構成は、第4の実施形態と同様である。
 まず、第5の実施形態における光送信器10bの構成について説明する。
 信号生成部11bは、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化されたN値シンボルを2系統生成する。具体的には、信号生成部11b-1は、外部から送信対象となるデータ情報Iを入力し、入力されたデータ情報Iを用いて、グレイ符号化されたN値シンボルui(0,1,…,N-1)を生成する。信号生成部11b-2は、外部から送信対象となるデータ情報Qを入力し、入力されたデータ情報Qを用いて、グレイ符号化されたN値シンボルuq(0,1,…,N-1)を生成する。
 信号符号化部12bは、信号生成部11bによって生成されたN値シンボルui(0,1,…,N-1)及びuq(0,1,…,N-1)それぞれに対して非線形トレリス符号化処理を行うことによってN+2値シンボルを2系統生成する。具体的には、信号符号化部12b-1は、N値シンボルui(0,1,…,N-1)に対して、上記の式7~式9で示した非線形トレリス符号化処理によってN+2値シンボルvi(0,1,…,N+1)を生成する。信号符号化部12b-2は、N値シンボルuq(0,1,…,N-1)に対して、上記の式7~式9で示した非線形トレリス符号化処理によってN+2値シンボルvq(0,1,…,N+1)を生成する。
 DA変換器13bは、信号符号化部12bによって生成されたN+2値シンボルvi(0,1,…,N+1)及びvq(0,1,…,N+1)のデジタル信号をアナログ信号に変換する。具体的には、DA変換器13b-1は、信号符号化部12b-1によって生成されたN+2値シンボルvi(0,1,…,N+1)のデジタル信号をアナログ信号に変換する。DA変換器13b-1は、アナログ信号を増幅部14b-1に出力する。DA変換器13b-2は、信号符号化部12b-2によって生成されたvq(0,1,…,N+1)のデジタル信号をアナログ信号に変換する。DA変換器13b-2は、アナログ信号を増幅部14b-2に出力する。
 増幅部14bは、DA変換器13bから出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。具体的には、増幅部14b-1は、DA変換器13b-1から出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。増幅部14b-2は、DA変換器13b-2から出力されたアナログ信号の信号パワーを増幅して、光ベクトル変調器17に印加する。
 信号光源15は、光ベクトル変調器17に対して連続光を送出する。
 光ベクトル変調器17は、増幅部14b-1及び14b-2それぞれから出力されたアナログ信号を用いて独立に振幅変調を行う。具体的には、光ベクトル変調器17は、信号光源15から送出された連続光のIn-phase成分を、増幅部14b-1から出力されたアナログ信号で振幅変調する。光ベクトル変調器17は、信号光源15から送出された連続光のQuadrature成分を、増幅部14b-2から出力されたアナログ信号で振幅変調する。このように、光ベクトル変調器17は、信号光源15から送出された連続光を光ベクトル変調器17によって変調することで、(N+2)値の光複素振幅変調信号(NLTCQ信号)を生成する。
 次に、第5の実施形態における光受信器20bの構成について説明する。
 局発光源24は、受信信号光に干渉させる局発光を出力する。
 コヒーレント受信器25は、光送信器10bから送信されたNLTCQ信号を局発光に基づいてコヒーレント検波することで、NLTCQ信号の複素振幅情報を出力する。ここで、NLTCQ信号の複素振幅情報とは、I成分のアナログ電気信号とQ成分のアナログ電気信号である。
 AD変換器22bは、コヒーレント受信器25から出力されたアナログの電気信号をデジタル信号に変換する。具体的には、AD変換器22b-1は、I成分のアナログ電気信号をデジタル信号に変換する。AD変換器22b-2は、Q成分のアナログ電気信号をデジタル信号に変換する。
 デジタル信号処理部23bは、デジタル信号を処理することによって、非線形トレリス符号化前のシンボルであるui,uqを取得する。
 デジタル信号処理部23bの構成は、第4の実施形態と同様である。
 IQ合成部242は、AD変換器22b-1及び22b-2から出力されるデジタル信号それぞれを実部と虚部として取り込む。IQ合成部242は、取り込んだ各信号を複素信号として合成する。具体的には、IQ合成部242は、AD変換器22b-1から出力されるデジタル信号を実部とし、AD変換器22b-2から出力されるデジタル信号を虚部として取り込み、取り込んだ各信号を複素信号として合成する。
 デジタルフィルタ231bは、複素タップで構成されており、NLTCQ信号の波形整形を行う。デジタルフィルタ231bは、波形整形後のNLTCQ信号を位相推定部243に出力する。デジタルフィルタ231bは、一般的な線形フィルタであるFIRフィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
 位相推定部243は、信号光と局発光源24による局発光との位相差を補償する。位相推定部243は、補償後の信号(NLTCQ信号)を信号判定部232b及び加算器235bに出力する。
 信号判定部232bは、NLTCQ信号に対して(N+2)値のQAM信号として閾値判定を行う。信号判定部232bは、閾値判定により得られた信号を加算器235b及びIQ分離部244に出力する。
 IQ分離部244は、信号判定部232bから出力された信号を実部と虚部に分離することで、2系統のN+2値シンボルvi,vqを取得する。IQ分離部244は、取得したN+2値シンボルviを信号復号部233b-1に出力し、N+2値シンボルvqを信号復号部233b-2に出力する。
 信号復号部233bは、IQ分離部244から出力されたN+2値シンボルvi,vqと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルvin-1,vqn-1とを用いて、式10~式12に基づいた処理を実行することで、符号化前のN値シンボルであるui,uqを復元する。具体的には、信号復号部233b-1は、IQ分離部244から出力されたN+2値シンボルviと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルvin-1とを用いて、式10~式12に基づいた処理を実行することで符号化前のN値シンボルであるuiを復元する。また、信号復号部233b-2は、IQ分離部244から出力されたN+2値シンボルvqと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルvqn-1とを用いて、式10~式12に基づいた処理を実行することで符号化前のN値シンボルであるuqを復元する。
 ただし、信号復号部233b-1は、式10~式12によって得られたuiが、ui<0であった場合にはui=0とし、ui>N-1であった場合にはui=N-1とする。また、信号復号部233b-2は、式10~式12によって得られたuqが、uq<0であった場合にはuq=0とし、uq>N-1であった場合にはuq=N-1とする。
 ビットデマッピング部234bは、信号復号部233bによって復元されたN値シンボルであるui,uqに対してグレイ復号を行うことによってui,uqからビット情報であるデータ情報I,Qを復元する。具体的には、ビットデマッピング部234b-1は、信号復号部233b-1によって復元されたN値シンボルであるuiに対してグレイ復号を行うことによってuiからビット情報であるデータ情報Iを復元する。ビットデマッピング部234b-2は、信号復号部233b-2によって復元されたN値シンボルであるuqに対してグレイ復号を行うことによってuqからビット情報であるデータ情報Qを復元する。
 以上のように構成された第5の実施形態における光伝送システム100bによれば、任意の多値数のQAMに対しても適用することができる。
 上述した実施形態における光送信器10,10b及び光受信器20,20bの一部または全ての機能をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10、10b…光送信器, 11、11b-1、11b-2…信号生成部, 12、12b-1、12b-2…信号符号化部, 13、13b-1、13b-2…DA変換器, 14、14b-1、14b-2…増幅部, 15…信号光源, 16…光変調器, 17…光ベクトル変調器, 20、20b…光受信器, 21…受光部, 22、21b-1、21b-2…AD変換器, 23、23a、23b、23c…デジタル信号処理部, 24…局発光源, 25…コヒーレント受信器, 231、231b…デジタルフィルタ, 232、232b…信号判定部, 233、233a、233b-1、233b-2…信号復号部, 234、234b-1、234b-2…ビットデマッピング部, 235、235b…加算器, 236、236b…タップ更新部, 237、237c…第1デジタルフィルタ, 238、238c-1、238c-2…ビタビ復号部, 239、239c…第2デジタルフィルタ, 240、240c-1、240c-2…加算器, 241、241c-1、241c-2…メトリック算出部, 242…IQ合成部, 243、243c…位相推定部, 244、244c…IQ分離部, 245…IQ合成部, 246…IQ分離部, 247、247c…加算器, 248…メトリック算出部

Claims (4)

  1.  光送信器と、光受信器とを備える光伝送システムであって、
     前記光送信器は、
     シンボル系列に対して、非線形演算に相当する非線形トレリス符号化を行う信号符号化部と、
     前記信号符号化部により符号化がなされたシンボル系列を変調して前記光受信器に送信する変調器と、
     を備え、
     前記光受信器は、
     前記光送信器から送信された光信号を受光して電気信号に変換する受光部と、
     前記電気信号に対してデジタル信号処理を行うことによって前記シンボル系列を復元するデジタル信号処理部と、
     を備える光伝送システム。
  2.  前記光受信器は、前記電気信号を復調する際に、ビタビ復号を用いた系列推定に基づくシンボル判定を行うビタビ復号部をさらに備える、請求項1に記載の光伝送システム。
  3.  前記光送信器は、入力された情報データを用いて、グレイ符号化されたN(Nは2以上の整数)値シンボルを生成する信号生成部をさらに備え、
     前記信号符号化部は、以下の式1~式3で示した非線形トレリス符号化処理によってN+2値シンボルを生成し、
     前記デジタル信号処理部は、前記電気信号に対して所定の判定を行うことによってN+2値シンボルを復元し、復元した前記N+2値シンボルと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルとを用いて、以下の式4~式6に基づいて、符号化前のN値シンボルを復元する、請求項1に記載の光伝送システム。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
  4.  前記光送信器は、入力された情報データを用いて、グレイ符号化されたN(Nは2以上の整数)値シンボルを2系統生成する信号生成部をさらに備え、
     前記信号符号化部は、以下の式7~式9で示した非線形トレリス符号化処理によってN+2値シンボルを2系統生成し、
     前記デジタル信号処理部は、前記電気信号に対して所定の判定を行うことによって、2系統のN+2値シンボルをそれぞれ復元し、復元した複数の前記N+2値シンボルと、既に判定済みであるひとつ前のタイムスロットの複数のN+2値シンボルとを用いて、以下の式10~式12に基づいて、符号化前のN値シンボルを復元する、請求項1に記載の光伝送システム。
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
PCT/JP2019/043364 2018-11-06 2019-11-06 光伝送システム WO2020095916A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/291,228 US11444694B2 (en) 2018-11-06 2019-11-06 Optical transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208960A JP7161104B2 (ja) 2018-11-06 2018-11-06 光伝送システム
JP2018-208960 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020095916A1 true WO2020095916A1 (ja) 2020-05-14

Family

ID=70610716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043364 WO2020095916A1 (ja) 2018-11-06 2019-11-06 光伝送システム

Country Status (3)

Country Link
US (1) US11444694B2 (ja)
JP (1) JP7161104B2 (ja)
WO (1) WO2020095916A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393700B2 (ja) * 2020-08-03 2023-12-07 日本電信電話株式会社 光信号復調器、制御方法およびプログラム
WO2022224296A1 (ja) * 2021-04-19 2022-10-27 日本電信電話株式会社 デジタル信号処理装置及びコヒーレントデジタル信号処理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228419A1 (en) * 2003-05-12 2004-11-18 Ba-Zhong Shen Non-systematic and non-linear PC-TCM (Parallel Concatenate Trellis coded modulation)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6704399B1 (en) * 1999-04-12 2004-03-09 Conexant Systems, Inc. Quick connect parameter exchange
US20030126545A1 (en) * 2001-10-05 2003-07-03 Tan Alfred Keng Tiong Non-linear code-division multiple access technology with improved detection algorithms and error correction coding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040228419A1 (en) * 2003-05-12 2004-11-18 Ba-Zhong Shen Non-systematic and non-linear PC-TCM (Parallel Concatenate Trellis coded modulation)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAMOTO SHUTO ET AL.: "92-Gbaud PAM4 Transmission using Spectral-Shaping Trellis-Coded-Modulation with 20-GHz Bandwidth Limitation", 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC, 7 March 2019 (2019-03-07), XP033540692 *

Also Published As

Publication number Publication date
JP7161104B2 (ja) 2022-10-26
US20210367671A1 (en) 2021-11-25
JP2020077934A (ja) 2020-05-21
US11444694B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6681217B2 (ja) 光情報伝送システム、及び光送信器
Zhou An improved feed-forward carrier recovery algorithm for coherent receivers with $ M $-QAM modulation format
Smith et al. A pragmatic coded modulation scheme for high-spectral-efficiency fiber-optic communications
CA2658148C (en) A receiver structure and method for the demodulation of a quadrature-modulated signal
Qu et al. Geometrically shaped 16QAM outperforming probabilistically shaped 16QAM
WO2022227296A1 (zh) 概率整形pam-4信号传输方法及装置
JP4884959B2 (ja) 光ディジタル伝送システムおよび方法
Li et al. Enhanced performance of a phosphorescent white LED CAP 64QAM VLC system utilizing deep neural network (DNN) post equalization
WO2020095916A1 (ja) 光伝送システム
Yamamoto et al. Spectral-shaping technique based on nonlinear-coded-modulation for short-reach optical transmission
CN109314530A (zh) 光接收机、光传输装置和光接收机用的方法
CN111181652B (zh) 一种基于比特加权分布匹配的ps-pam4系统
Maneekut et al. Hybrid probabilistic and geometric shaping for 64-QAM optical fiber transmission with maximum aposterior probability detection
Leibrich et al. Multidimensional constellations for power-efficient and flexible optical networks
US11581944B2 (en) Optical transmission system
JP7328581B2 (ja) 光伝送システム、光送信機及び光受信機
JP6470198B2 (ja) 光送受信システム
CN113315735B (zh) 一种基于分层调制的概率整形方法、装置及电子设备
JP2013016978A (ja) 光通信システムおよび光通信方法
US10868561B2 (en) Digital resolution enhancement for high speed digital-to-analog converters
CN109565436B (zh) Pam-4传输系统中的时钟和数据恢复
JP4843650B2 (ja) 光伝送装置
CN112787723B (zh) 一种非线性编码器、编码方法及光传输系统
Yamamoto et al. O-band transmission of 92-Gbaud PAM4 with 20-GHz limitation using nonlinear spectral shaping and 2-memory MLSE
JP2020096264A (ja) 光伝送システム、光送信機、光受信機及び伝達関数推定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881919

Country of ref document: EP

Kind code of ref document: A1