JP7161104B2 - 光伝送システム - Google Patents
光伝送システム Download PDFInfo
- Publication number
- JP7161104B2 JP7161104B2 JP2018208960A JP2018208960A JP7161104B2 JP 7161104 B2 JP7161104 B2 JP 7161104B2 JP 2018208960 A JP2018208960 A JP 2018208960A JP 2018208960 A JP2018208960 A JP 2018208960A JP 7161104 B2 JP7161104 B2 JP 7161104B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- symbol
- unit
- optical
- digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/4917—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/39—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
- H03M13/41—Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/524—Pulse modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Probability & Statistics with Applications (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
- Optical Communication System (AREA)
Description
従来では、上記のような信号品質劣化を抑制するためにコヒーレント検波方式の信号に対するスペクトルの狭帯域化を実現する方式として、非線形トレリス符号化を用いる方式が提案されている(例えば、非特許文献1参照)。しかしながら、非特許文献1に記載の方式は、直交位相振幅(QAM:Quadrature Amplitude Modulation)変調信号に対する方式であるため、直接検波方式であるPAM4信号に適用することができない。そのため、スペクトルの狭帯域化を実現することができず、信号品質の劣化を抑制することができないという問題があった。なお、このような問題は、PAM4方式に限らず、任意の多値シンボルを用いる方式にも同様に生じる問題である。
(概要)
まず、本発明の概要について、従来技術と比較しながら説明する。
従来のPAM4方式では、2ビットのデータ情報を0,1,2,3の4値シンボルの光強度に割り当てることで、2bit/symbolの伝送を実現している。図1は、各タイムスロットにおけるシンボルと、連続するタイムスロット間のシンボル遷移の関係を示す図である。図1に示すように、従来のPAM4方式の場合、例えばタイムスロットt=0においてシンボルSの値(シンボルレベル)が“2”であった場合、t=1におけるシンボルSとして0,1,2,3のいずれのシンボルSへの遷移が可能である。すなわち、従来のPAM4方式では、シンボルSの遷移に対する条件が課されていない形となる。ランダムな信号系列を伝送する場合は、各シンボルSから各シンボルSへの遷移確率は、すべての遷移に対して1/4である。このシンボル遷移を離散マルコフ連鎖のモデルに当てはめると、遷移確率行列Pは以下の式1のように表される。
タイムスロットn(nは1以上の整数)における符号化前のオリジナルの4値信号をunとすると、unは0,1,2,3の4値シンボルとなる。ここで、各シンボルにはグレイ符号化された2ビットが割り当てられているものとする。すなわち、隣接するシンボル間のハミング距離が1となるような符号化が適用されているものとする。例えば、シンボル0にビット01、シンボル1にビット00、シンボル2にビット10、シンボル3にビット11を割り当てたものはグレイ符号となっている。符号化後のシンボルをvnとすると、本発明における非線形トレリス符号化によって生成される符号化後シンボルは、以下の式3に基づいて生成される。
図3(A)及び(B)からわかるように、非線形トレリス符号化を適用することで、信号スペクトルの高周波成分が抑圧され、信号パワーが低周波領域に集中していることがわかる。
以下、具体的な処理について実施形態で説明する。
図4は、第1の実施形態における光伝送システム100のシステム構成を示す図である。光伝送システム100は、光送信器10及び光受信器20を備える。光送信器10と光受信器20とは、光ファイバ30を介して接続される。光ファイバ30は、光送信器10と光受信器20とを接続する伝送路である。
信号生成部11は、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化された4値シンボルun(0,1,2,3)を生成する。
増幅部14は、DA変換器13から出力されたアナログ信号の信号パワーを増幅して、光変調器16に印加する。
光変調器16は、増幅部14によって増幅されたアナログ信号で、信号光源15から送出された連続光を変調することによって、6値の光強度変調信号であるNLTCP信号を生成する。光変調器16は、生成したNLTCP信号を、光ファイバ30を介して光受信器20に送信する。なお、信号光源15と、光変調器16は、必ずしも分離されている必要はなく、光変調器16は信号光源15から送出された連続光を直接変調することによって、6値の光強度変調信号であるNLTCP信号を生成してもよい。
受光部21は、光送信器10から送信されたNLTCP信号を直接検波してNLTCP信号の光強度情報を取得する。受光部21は、取得した光強度情報をアナログの電気信号に変換してAD変換器22に出力する。
AD変換器22は、受光部21から出力されたアナログの電気信号をデジタル信号に変換する。
デジタル信号処理部23は、デジタル信号を処理することによって、非線形トレリス符号化前の4値シンボルであるunを取得する。
デジタル信号処理部23は、デジタルフィルタ231、信号判定部232、信号復号部233、ビットデマッピング部234、加算器235及びタップ更新部236を備える。
デジタルフィルタ231は、複素タップで構成されており、NLTCP信号の波形整形を行う。デジタルフィルタ231は、波形整形後のNLTCP信号を信号判定部232及び加算器235に出力する。デジタルフィルタ231は、一般的な線形フィルタであるFIR(Finite Impulse Response)フィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
信号復号部233は、信号判定部232から出力された6値シンボルvnと、既に判定済みであるひとつ前のタイムスロットの6値シンボルvn-1とを用いて、以下の式6に基づいた処理を実行することで符号化前の4値シンボルであるunを復元する。
加算器235は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値とを取り込む。なお、加算器235は、デジタルフィルタ231から出力された値をマイナスの符号を付与して取り込む。加算器235は、取り込んだ2つの値を加算、すなわち信号判定部232から出力された値から、デジタルフィルタ231から出力された値を減算し、減算により算出した減算値をタップ更新部236に出力する。
以上のように、本発明における非線形トレリス符号化を適用することで、PAM4信号に対して飛躍的な帯域制限耐力の向上および波長分散耐力の向上を実現することが可能である。
第2の実施形態では、光受信器においてMLSE(Maximum Likelihood Sequence Estimation:最尤系列推定)に基づいて復調を行う。
第2の実施形態において光送信器10の構成は、第1の実施形態と同様であるため説明を省略する。光受信器20の構成は、デジタル信号処理部23に代えてデジタル信号処理部23aを備える点が第1の実施形態における光受信器20と構成が異なる。以下、相違点について説明する。
デジタル信号処理部23aは、信号復号部233a、ビットデマッピング部234、第1デジタルフィルタ237、ビタビ復号部238、第2デジタルフィルタ239、加算器240及びメトリック算出部241を備える。
01
02
03
10
11
12
13
21
22
23
24
31
32
33
34
42
43
44
45
52
53
54
55
ビットデマッピング部234は、信号復号部233aによって復元された4値シンボルであるunに対してグレイ復号を行うことによってunからビット情報であるデータ情報を復元する。
第1の実施形態及び第2の実施形態では、符号化前のシンボルとしてPAM4信号を対象としていたが、本発明は任意の多値シンボルに対しても適用可能である。そこで、第3の実施形態では、N値のPAM信号(PAM-N信号)に対して本発明における非線形トレリス符号化を適用した構成について説明する。
第3の実施形態における光送信器と光受信器の構成は、第1の実施形態と同様である。
信号生成部11は、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化されたN値シンボルun(0,1,…,N-1)を生成する。
信号符号化部12は、信号生成部11によって生成されたN値シンボルun(0,1,…,N-1)に対して非線形トレリス符号化処理を行うことによってN+2値シンボルvn(0,1,…,N+1)を生成する。具体的には、信号符号化部12は、N+2値シンボルvn(0,1,…,N+1)に対して、以下の式7~式9で示した非線形トレリス符号化処理を行うことによってN+2値シンボルvn(0,1,…,N+1)を生成する。
増幅部14は、DA変換器13から出力されたアナログ信号の信号パワーを増幅して、光変調器16に印加する。
光変調器16は、増幅部14によって増幅されたアナログ信号で、信号光源15から送出された連続光を変調することによって、N+2値の光強度変調信号であるNLTCP信号を生成する。光変調器16は、生成したNLTCP信号を、光ファイバ30を介して光受信器20に送信する。なお、信号光源15と、光変調器16は、必ずしも分離されている必要はなく、光変調器16は信号光源15から送出された連続光を直接変調することによって、N+2値の光強度変調信号であるNLTCP信号を生成してもよい。
受光部21は、光送信器10から送信されたNLTCP信号を直接検波してNLTCP信号の光強度情報を取得する。受光部21は、取得した光強度情報をアナログの電気信号に変換してAD変換器22に出力する。
AD変換器22は、受光部21から出力されたアナログの電気信号をデジタル信号に変換する。
デジタル信号処理部23は、デジタル信号を処理することによって、非線形トレリス符号化前のN値シンボルであるunを取得する。
デジタルフィルタ231は、複素タップで構成されており、NLTCP信号の波形整形を行う。デジタルフィルタ231は、波形整形後のNLTCP信号を信号判定部232及び加算器235に出力する。デジタルフィルタ231は、一般的な線形フィルタであるFIRフィルタや、高次の伝達関数を記述可能なボルテラフィルタ等が用いられる。
信号復号部233は、信号判定部232から出力されたN+2値シンボルvnと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルvn-1とを用いて、以下の式10~式12に基づいた処理を実行することで符号化前のN値シンボルであるunを復元する。
加算器235は、デジタルフィルタ231から出力された値と、信号判定部232から出力された値とを取り込む。なお、加算器235は、デジタルフィルタ231から出力された値をマイナスの符号を付与して取り込む。加算器235は、取り込んだ2つの値を加算、すなわち信号判定部232から出力された値から、デジタルフィルタ231から出力された値を減算し、減算により算出した減算値をタップ更新部236に出力する。
第1の実施形態から第3の実施形態では、本発明における技術を、直接検波方式を前提としたPAM信号に用いる構成を示した。本発明における技術は、コヒーレント検波方式を前提としQAM信号に対しても適用可能である。第4の実施形態では、16QAMに対して本発明における非線形トレリス符号化を適用した構成について説明する。
光ベクトル変調器17は、増幅部14b-1及び14b-2それぞれから出力されたアナログ信号を用いて独立に振幅変調を行う。具体的には、光ベクトル変調器17は、信号光源15から送出された連続光のIn-phase成分を、増幅部14b-1から出力されたアナログ信号で振幅変調する。光ベクトル変調器17は、信号光源15から送出された連続光のQuadrature成分を、増幅部14b-2から出力されたアナログ信号で振幅変調する。このように、光ベクトル変調器17は、信号光源15から送出された連続光を光ベクトル変調器17によって変調することで、36値の光複素振幅変調信号(NLTCQ信号)を生成する。In-phase成分の値がi、Quadrature成分の値がjとなる確率をrijとした場合、rij=si×sjとなる。ここで、sn(n=0,1,2,3,4,5)はそれぞれの成分がnという値をとる確率である。したがって、rijを成分とする6×6行列Rは、以下の式13のように表される。
局発光源24は、受信信号光に干渉させる局発光を出力する。
コヒーレント受信器25は、光送信器10bから送信されたNLTCQ信号を局発光に基づいてコヒーレント検波することで、NLTCQ信号の複素振幅情報を出力する。ここで、NLTCQ信号の複素振幅情報とは、I成分のアナログ電気信号とQ成分のアナログ電気信号である。
デジタル信号処理部23bは、デジタル信号を処理することによって、非線形トレリス符号化前のシンボルであるuin,uqnを取得する。
デジタル信号処理部23bは、デジタルフィルタ231b、信号判定部232b、信号復号部233b-1,233b-2、ビットデマッピング部234b-1,234b-2、加算器235b、タップ更新部236b、IQ合成部242、位相推定部243及びIQ分離部244を備える。
位相推定部243は、信号光と局発光源24による局発光との位相差を補償する。位相推定部243は、補償後の信号(NLTCQ信号)を信号判定部232b及び加算器235bに出力する。
IQ分離部244は、信号判定部232bから出力された信号を実部(Iチャネル成分のデジタル信号)と虚部(Qチャネル成分のデジタル信号)に分離することで、2系統の6値シンボルvin,vqnを取得する。IQ分離部244は、取得した6値シンボルvinを信号復号部233b-1に出力し、6値シンボルvqnを信号復号部233b-2に出力する。
デジタル信号処理部23cは、信号復号部233c-1,233c-2、ビットデマッピング部234c-1,234c-2、第1デジタルフィルタ237c、ビタビ復号部238c-1,238c-2、第2デジタルフィルタ239c、加算器240c-1,240c-2、メトリック算出部241c-1,241c-2、IQ合成部242、位相推定部243c、IQ合成部245、IQ分離部246、加算器247及びメトリック算出部248を備える。
IQ分離部244cは、位相推定部243cから出力された信号を実部(Iチャネル成分のデジタル信号)と虚部(Qチャネル成分のデジタル信号)に分離する。IQ分離部244cは、Iチャネル成分の信号をビタビ復号部238c-1及び加算器240c-2に出力し、Qチャネル成分の信号をビタビ復号部238c-2及び加算器240c-1に出力する。
第2デジタルフィルタ239cは、複素タップで構成されており、IQ合成部245によって合成された複素数に対してデジタルフィルタ処理を施すことによって時系列データを取得する。第2デジタルフィルタ239cは、取得した時系列データをIQ分離部246及び加算器247cに出力する。第2デジタルフィルタ239cは、FIRフィルタやボルテラフィルタ等の一般的な線形フィルタが用いられる。特に、大きな非線形応答を有するシステムに対しては、第2デジタルフィルタ239cとしてボルテラフィルタを用いるとよい。
加算器240c-1は、IQ分離部246から出力された値(Qチャネル成分の信号)と、IQ分離部244cから出力された値(Qチャネル成分の信号)とを取り込む。なお、加算器240c-1は、IQ分離部244cから出力された値をマイナスの符号を付与して取り込む。加算器240c-1は、取り込んだ2つの値を加算、すなわちIQ分離部246から出力された値から、位相推定部243cから出力された値を減算し、減算により算出した減算値をメトリック算出部241c-1に出力する。
メトリック算出部241c-2は、加算器240c-2から出力された減算値をメトリックとして算出する。
本発明は、任意の多値シンボルを有するQAM信号に対して適用可能である。そこで、第5の実施形態では、N2値のQAM信号に対して本発明における非線形トレリス符号化を適用した構成について説明する。
第5の実施形態における光送信器と光受信器の構成は、第4の実施形態と同様である。
信号生成部11bは、外部から送信対象となるデータ情報を入力し、入力されたデータ情報を用いて、グレイ符号化されたN値シンボルを2系統生成する。具体的には、信号生成部11b-1は、外部から送信対象となるデータ情報Iを入力し、入力されたデータ情報Iを用いて、グレイ符号化されたN値シンボルuin(0,1,…,N-1)を生成する。信号生成部11b-2は、外部から送信対象となるデータ情報Qを入力し、入力されたデータ情報Qを用いて、グレイ符号化されたN値シンボルuqn(0,1,…,N-1)を生成する。
光ベクトル変調器17は、増幅部14b-1及び14b-2それぞれから出力されたアナログ信号を用いて独立に振幅変調を行う。具体的には、光ベクトル変調器17は、信号光源15から送出された連続光のIn-phase成分を、増幅部14b-1から出力されたアナログ信号で振幅変調する。光ベクトル変調器17は、信号光源15から送出された連続光のQuadrature成分を、増幅部14b-2から出力されたアナログ信号で振幅変調する。このように、光ベクトル変調器17は、信号光源15から送出された連続光を光ベクトル変調器17によって変調することで、(N+2)2値の光複素振幅変調信号(NLTCQ信号)を生成する。
局発光源24は、受信信号光に干渉させる局発光を出力する。
コヒーレント受信器25は、光送信器10bから送信されたNLTCQ信号を局発光に基づいてコヒーレント検波することで、NLTCQ信号の複素振幅情報を出力する。ここで、NLTCQ信号の複素振幅情報とは、I成分のアナログ電気信号とQ成分のアナログ電気信号である。
デジタル信号処理部23bは、デジタル信号を処理することによって、非線形トレリス符号化前のシンボルであるuin,uqnを取得する。
IQ合成部242は、AD変換器22b-1及び22b-2から出力されるデジタル信号それぞれを実部と虚部として取り込む。IQ合成部242は、取り込んだ各信号を複素信号として合成する。具体的には、IQ合成部242は、AD変換器22b-1から出力されるデジタル信号を実部とし、AD変換器22b-2から出力されるデジタル信号を虚部として取り込み、取り込んだ各信号を複素信号として合成する。
位相推定部243は、信号光と局発光源24による局発光との位相差を補償する。位相推定部243は、補償後の信号(NLTCQ信号)を信号判定部232b及び加算器235bに出力する。
IQ分離部244は、信号判定部232bから出力された信号を実部と虚部に分離することで、2系統のN+2値シンボルvin,vqnを取得する。IQ分離部244は、取得したN+2値シンボルvinを信号復号部233b-1に出力し、N+2値シンボルvqnを信号復号部233b-2に出力する。
Claims (2)
- 光送信器と、光受信器とを備える光伝送システムであって、
前記光送信器は、
シンボル系列に対して、非線形演算に相当する非線形トレリス符号化を行う信号符号化部と、
前記信号符号化部により符号化がなされたシンボル系列を変調して前記光受信器に送信する変調器と、
を備え、
前記光受信器は、
前記光送信器から送信された光信号を受光して電気信号に変換する受光部と、
前記電気信号に対してデジタル信号処理を行うことによって前記シンボル系列を復元するデジタル信号処理部と、
を備え、
前記光送信器は、入力された情報データを用いて、グレイ符号化されたN(Nは2以上の整数)値シンボルを生成する信号生成部をさらに備え、
前記信号符号化部は、以下の式1~式3で示した非線形トレリス符号化処理によってN+2値シンボルを生成し、
前記デジタル信号処理部は、前記電気信号に対して所定の判定を行うことによってN+2値シンボルを復元し、復元した前記N+2値シンボルと、既に判定済みであるひとつ前のタイムスロットのN+2値シンボルとを用いて、以下の式4~式6に基づいて、符号化前のN値シンボルを復元する 光伝送システム。
- 前記光受信器は、前記電気信号を復調する際に、ビタビ復号を用いた系列推定に基づくシンボル判定を行うビタビ復号部をさらに備える、請求項1に記載の光伝送システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018208960A JP7161104B2 (ja) | 2018-11-06 | 2018-11-06 | 光伝送システム |
US17/291,228 US11444694B2 (en) | 2018-11-06 | 2019-11-06 | Optical transmission system |
PCT/JP2019/043364 WO2020095916A1 (ja) | 2018-11-06 | 2019-11-06 | 光伝送システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018208960A JP7161104B2 (ja) | 2018-11-06 | 2018-11-06 | 光伝送システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020077934A JP2020077934A (ja) | 2020-05-21 |
JP7161104B2 true JP7161104B2 (ja) | 2022-10-26 |
Family
ID=70610716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018208960A Active JP7161104B2 (ja) | 2018-11-06 | 2018-11-06 | 光伝送システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11444694B2 (ja) |
JP (1) | JP7161104B2 (ja) |
WO (1) | WO2020095916A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7393700B2 (ja) * | 2020-08-03 | 2023-12-07 | 日本電信電話株式会社 | 光信号復調器、制御方法およびプログラム |
WO2022224296A1 (ja) * | 2021-04-19 | 2022-10-27 | 日本電信電話株式会社 | デジタル信号処理装置及びコヒーレントデジタル信号処理装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040228419A1 (en) | 2003-05-12 | 2004-11-18 | Ba-Zhong Shen | Non-systematic and non-linear PC-TCM (Parallel Concatenate Trellis coded modulation) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6704399B1 (en) * | 1999-04-12 | 2004-03-09 | Conexant Systems, Inc. | Quick connect parameter exchange |
US20030126545A1 (en) * | 2001-10-05 | 2003-07-03 | Tan Alfred Keng Tiong | Non-linear code-division multiple access technology with improved detection algorithms and error correction coding |
-
2018
- 2018-11-06 JP JP2018208960A patent/JP7161104B2/ja active Active
-
2019
- 2019-11-06 WO PCT/JP2019/043364 patent/WO2020095916A1/ja active Application Filing
- 2019-11-06 US US17/291,228 patent/US11444694B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040228419A1 (en) | 2003-05-12 | 2004-11-18 | Ba-Zhong Shen | Non-systematic and non-linear PC-TCM (Parallel Concatenate Trellis coded modulation) |
Also Published As
Publication number | Publication date |
---|---|
WO2020095916A1 (ja) | 2020-05-14 |
US20210367671A1 (en) | 2021-11-25 |
JP2020077934A (ja) | 2020-05-21 |
US11444694B2 (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6681217B2 (ja) | 光情報伝送システム、及び光送信器 | |
WO2022227296A1 (zh) | 概率整形pam-4信号传输方法及装置 | |
WO2018114410A1 (en) | Methods of converting or reconverting a data signal and method and system for data transmission and/or data reception | |
JP4884959B2 (ja) | 光ディジタル伝送システムおよび方法 | |
US11258650B2 (en) | Communication method, communications apparatus, and storage medium | |
US10644908B2 (en) | System and methods for multi-level signal transmission | |
JP7161104B2 (ja) | 光伝送システム | |
Li et al. | Enhanced performance of a phosphorescent white LED CAP 64QAM VLC system utilizing deep neural network (DNN) post equalization | |
Yamamoto et al. | Spectral-shaping technique based on nonlinear-coded-modulation for short-reach optical transmission | |
Chen et al. | Subtraction-clustering-based modulation format identification in Stokes space | |
CN110224955B (zh) | 一种数字均衡器结构及实现方法 | |
Qin et al. | Recurrent neural network based joint equalization and decoding method for trellis coded modulated optical communication system | |
WO2020226172A1 (ja) | シンボル判定装置、及びシンボル判定方法 | |
Leibrich et al. | Multidimensional constellations for power-efficient and flexible optical networks | |
JP7328581B2 (ja) | 光伝送システム、光送信機及び光受信機 | |
US11581944B2 (en) | Optical transmission system | |
CN110740105B (zh) | 信号处理方法和装置 | |
Liu et al. | Multi-distributed probabilistically shaped PAM-4 system for intra-data-center networks | |
JP6470198B2 (ja) | 光送受信システム | |
US10868561B2 (en) | Digital resolution enhancement for high speed digital-to-analog converters | |
JP2020096264A (ja) | 光伝送システム、光送信機、光受信機及び伝達関数推定方法 | |
CN112787723B (zh) | 一种非线性编码器、编码方法及光传输系统 | |
CN116996075B (zh) | 一种分层多级噪声整形Delta-sigma调制方法 | |
Yamamoto et al. | O-band transmission of 92-Gbaud PAM4 with 20-GHz limitation using nonlinear spectral shaping and 2-memory MLSE | |
Karanova et al. | Machine learning for short reach optical fiber systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220926 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7161104 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |