WO2020095536A1 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
WO2020095536A1
WO2020095536A1 PCT/JP2019/035832 JP2019035832W WO2020095536A1 WO 2020095536 A1 WO2020095536 A1 WO 2020095536A1 JP 2019035832 W JP2019035832 W JP 2019035832W WO 2020095536 A1 WO2020095536 A1 WO 2020095536A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
catalyst
temperature
control
Prior art date
Application number
PCT/JP2019/035832
Other languages
English (en)
French (fr)
Inventor
昇吾 南波
猿渡 匡行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/289,909 priority Critical patent/US20220001851A1/en
Priority to JP2020556637A priority patent/JPWO2020095536A1/ja
Publication of WO2020095536A1 publication Critical patent/WO2020095536A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/04Varying compression ratio by alteration of volume of compression space without changing piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/10Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying inlet or exhaust valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/11Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/10Parameters used for exhaust control or diagnosing said parameters being related to the vehicle or its components
    • F01N2900/104Battery status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/03Controlling by changing the compression ratio
    • F02D2700/035Controlling by changing the compression ratio without modifying the volume of the compression space, e.g. by changing the valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an internal combustion engine control device.
  • An engine for a hybrid vehicle that uses an internal combustion engine as a power source (hereinafter, a hybrid engine) is widely known as one means of an engine configuration that suppresses air pollution.
  • a hybrid engine generally purifies engine exhaust using a catalyst, as in a conventional automobile engine (hereinafter referred to as a conventional engine) that does not have a battery for traveling.
  • the hybrid engine has the feature that the frequency of use of the engine is lower than that of the conventional engine because it is accompanied by electric power assistance from the running battery.
  • the time for running on the battery (hereinafter, battery running) becomes long, and therefore the engine stop time tends to be long. Therefore, the hybrid engine often has advantages in fuel consumption and exhaust as compared with the conventional engine.
  • the hybrid engine has a longer engine stop time than the conventional engine, so the temperature of the three-way catalyst (hereinafter referred to as the catalyst temperature) existing on the downstream side of the engine system tends to decrease during traveling.
  • the catalyst activation of a three-way catalyst depends largely on the catalyst temperature, and if the catalyst temperature falls below a certain standard value, the purification rate of hydrocarbons, nitrogen oxides, carbon monoxide, etc. will decrease, and the exhaust gas of the entire engine system will decrease. Performance will decrease.
  • Patent Document 1 As a means for solving such a problem, it is described in Patent Document 1, for example.
  • the hybrid engine described in Patent Document 1 closes the throttle valve and the EGR valve while the motor is driven by a motor generator using a battery as a power source at the time of starting the engine or before starting the engine, and The catalyst is heated by the heater installed on the upstream side. Then, the air heated by the heater flows back to the intake pipe through the EGR pipe, is compressed by the internal combustion engine, and then passes through the reflux route that warms the catalyst again, thereby effectively performing the catalyst warm-up.
  • Patent Document 2 discloses a control method for warming up an engine in a hybrid diesel engine by closing intake and exhaust valves to execute motoring of the engine, and by generating frictional heat due to mixture compression and piston sliding. Has been done.
  • Patent Document 1 it is necessary to provide a heater on the upstream side of the catalyst, and the number of components increases. Further, in the control method disclosed in Patent Document 2, since the intake and exhaust valves are fully closed, the exhaust heat energy is not supplied to the catalyst. Therefore, the engine is started with the catalyst temperature lowered, and it takes time for the catalyst to reach the activation temperature. Further, the exhaust gas of the engine is exhausted to the outside air until the catalyst reaches the activation temperature, which causes air pollution.
  • An object of the present invention is to provide an internal combustion engine control device capable of maintaining the activation temperature of a catalyst in a hybrid engine while suppressing deterioration of exhaust gas in consideration of the above problems.
  • an internal combustion engine control device of the present invention controls an internal combustion engine in an engine for a hybrid vehicle.
  • the internal combustion engine has a catalyst that purifies harmful substances in exhaust gas.
  • the internal combustion engine control device includes a catalyst temperature detection unit for detecting the temperature of the catalyst, and a catalyst for increasing the temperature of the catalyst when the temperature of the catalyst detected by the catalyst temperature detection unit has not reached a predetermined temperature. And a control unit that performs temperature raising control and motoring.
  • FIG. 1 It is a schematic block diagram which shows the structural example of the vehicle provided with the hybrid engine which concerns on the 1st Embodiment of this invention. It is a schematic structure figure showing an internal-combustion engine and an internal-combustion-engine control device (ECU) concerning a 1st embodiment of the present invention. It is a figure explaining the intake-exhaust valve profile of the internal combustion engine provided with the variable valve mechanism of an intake valve and an exhaust valve. It is a figure explaining the catalyst temperature estimation calculation part in the internal combustion engine control device (ECU) which concerns on the 1st Embodiment of this invention. It is a flow chart which shows catalyst activation temperature processing by an internal-combustion-engine control device (ECU) concerning a 1st embodiment of the present invention.
  • ECU internal-combustion-engine control device
  • FIGS. 1 to 6 An internal combustion engine control device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • common members are designated by the same reference numerals.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of a vehicle equipped with a hybrid engine.
  • a vehicle 1 is a hybrid system vehicle having an engine 2 and a motor 3 showing an example of an internal combustion engine.
  • the vehicle 1 includes an engine 2, a motor 3, a shaft 4, a tire 5 connected to the shaft 4, a generator 6, an inverter 7, and a battery 8. There is. Further, the vehicle 1 is provided with a vehicle control system 10.
  • a generator 6 is connected to the drive shaft of the engine 2. Then, the engine 2 and the generator 6 constitute a generator that generates electric power. The electric power generated by the engine 2 and the generator 6 is supplied to the motor 3 or the battery 8. As a result, the battery 8 is charged.
  • the motor 3 is driven by the electric power charged in the battery 8 or the electric power generated by the engine 2 and the generator 6. When the motor 3 is driven, the tire 5 rotates via the shaft 4.
  • the vehicle 1 has a pattern in which the electric power stored in the battery 8 drives the motor 3 to travel, and a pattern in which the electric power generated by the engine 2 and the generator 6 drives the motor 3 to travel. Further, the vehicle 1 has a pattern in which, when the load is high, the motor 3 is driven by the electric power of the battery 8 and the electric power generated by the engine 2 and the generator 6 to run.
  • the vehicle 1 rotates the motor 3 and the inverter 7 by the kinetic energy from the tire 5 to generate electric power.
  • the battery 8 is charged with the electric power generated by the motor 3 and the inverter 7.
  • the vehicle 1 also has a vehicle control system 10 that controls the engine 2, the motor 3, the battery 8 and the like described above.
  • the vehicle control system 10 includes an engine control device 11, which is a specific example of an internal combustion engine control device, a battery control device 12, an electric motor control device 13, and an integrated control device 14.
  • the engine control device 11, the battery control device 12, the electric motor control device 13, and the integrated control device 14 send and receive various information to and from each other via the communication line 16.
  • a multiplex communication line is used and constitutes a network based on the CAN (Controller Area Network) protocol.
  • the communication line 16 is not limited to the multiplex communication line.
  • the integrated control device 14 detects the operation of the driver and the state of the vehicle from various sensors provided in the vehicle 1, information received from the engine control device 11, the battery control device 12, and the electric motor control device 13. Then, the integrated control device 14 determines the traveling pattern of the vehicle 1 and transmits the control command data to the engine control device 11, the battery control device 12, and the electric motor control device 13.
  • the engine control unit 11 which is an ECU (Engine Control Unit), controls the engine 2, which is an internal combustion engine, based on the control command data transmitted from the integrated control unit 14. Further, the engine control device 11 acquires various kinds of information from the engine 2 and outputs the information to the integrated control device 14 via a communication line.
  • ECU Engine Control Unit
  • the battery control device 12 acquires the SOC (State Of Charge) which is the remaining capacity of the battery 8. Hereinafter, it is simply referred to as SOC. Then, the battery control device 12 outputs the acquired SOC to the integrated control device 14 via the communication line 16.
  • SOC State Of Charge
  • the electric motor control device 13 controls the drive of the motor 3 and the inverter 7 based on the control command data transmitted from the integrated control device 14. Further, the electric motor control device 13 acquires various information from the motor 3 and the inverter 7, and outputs the acquired information to the integrated control device 14 via the communication line 16.
  • the integrated control device 14, the engine control device 11, the battery control device 12, and the electric motor control device 13 each have, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). is doing.
  • the RAM is used as a work area of the CPU, and the ROM stores programs executed by the CPU.
  • FIG. 2 is a schematic configuration diagram showing the engine 2 and the engine control device 11.
  • the engine 2 shown in FIG. 2 is a cylinder injection type engine.
  • the engine 2 is a four-cycle engine that repeats four strokes of an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke, and is, for example, a multi-cylinder engine including four cylinders.
  • the number of cylinders that the engine 2 has is not limited to four, and may have six or eight or more cylinders.
  • the engine 2 has a cylinder 21, a piston 22, a crankshaft 23, an intake valve 24, and an exhaust valve 25.
  • An intake pipe 27 forming an intake passage and an exhaust pipe 28 forming an exhaust passage are connected to the cylinder 21.
  • the intake pipe 27 is provided with a throttle valve 31 for controlling the amount of gas flowing into the cylinder 21 by narrowing the intake flow path.
  • the throttle valve 31 is an electronically controlled throttle valve that can control the valve opening independently of the accelerator pedal depression amount.
  • An air flow sensor 32 is attached upstream of the throttle valve 31 in the intake pipe 27. The air flow sensor 32 detects the temperature and the amount of gas flowing into the intake pipe 27.
  • An intake manifold 33 is provided downstream of the throttle valve 31 in the intake pipe 27.
  • a temperature and pressure sensor 34 is attached to the intake manifold 33.
  • the cylinder 21 is provided with a fuel injection device 36, a spark plug 37, and a water temperature sensor 38.
  • the fuel injection device 36 is connected to a fuel tank (not shown) in which fuel is stored via a fuel supply pipe and a common rail, and injects fuel into the cylinder 21.
  • the spark plug 37 exposes the electrode portion in the cylinder 21 and ignites the combustible air-fuel mixture by sparking.
  • the water temperature sensor 38 measures the temperature of the cooling water that cools the cylinder 21.
  • the intake valve 24 is arranged to be openable / closable in the intake port of the cylinder 21, and the exhaust valve 25 is arranged to be openable / closable in the exhaust port of the cylinder 21.
  • a variable valve mechanism that continuously changes the opening / closing phase of the intake valve 24 and the exhaust valve 25 is adopted, and has an intake side camshaft and an exhaust side camshaft.
  • the intake valve 24 By rotating the intake camshaft, the intake valve 24 is driven to open and close the intake port of the cylinder 21.
  • An intake valve sensor 39 for detecting the opening / closing phase of the intake valve 24 is attached to the intake valve 24.
  • the exhaust valve 25 is driven to open and close the exhaust port of the cylinder 21.
  • An exhaust valve sensor 40 for detecting the opening / closing phase of the exhaust valve 25 is attached to the exhaust valve 25.
  • the piston 22 reciprocates in the cylinder 21 due to combustion pressure.
  • a crankshaft 23 is connected to the piston 22 via a connecting rod 41.
  • the reciprocating motion of the piston 22 is converted into a rotary motion by the crankshaft 23.
  • a crank angle sensor 42 is attached to the crankshaft 23.
  • the crank angle sensor 42 detects the rotation and the phase of the crankshaft 23 and outputs the detection result to the engine control device 11.
  • the engine control device 11 can detect the rotation speed of the engine (internal combustion engine) 2 based on the output of the crank angle sensor 42.
  • a temperature and pressure sensor 43 for detecting the temperature and pressure of exhaust gas is attached to the exhaust pipe 28.
  • An air-fuel ratio sensor 44 is provided downstream of the temperature and pressure sensor 43 in the exhaust pipe 28.
  • the air-fuel ratio sensor 44 detects the oxygen concentration contained in the exhaust gas and outputs the detection result to the engine control device 11.
  • the engine control device 11 performs feedback control based on the detection result of the air-fuel ratio sensor 44 so that the fuel injection amount supplied from the fuel injection device 36 becomes the target air-fuel ratio.
  • a three-way catalyst 45 is provided downstream of the air-fuel ratio sensor 44 in the exhaust pipe 28.
  • the three-way catalyst 45 purifies harmful substances such as nitrogen oxides (NOx) contained in the exhaust gas.
  • NOx nitrogen oxides
  • the engine control unit (ECU) 11 includes an air flow sensor 32, a temperature / pressure sensor 34, a water temperature sensor 38, an intake valve sensor 39, an exhaust valve sensor 40, a crank angle sensor 42, a temperature / pressure sensor 43, and an air-fuel ratio sensor.
  • Various sensors such as 44 are connected.
  • the engine control device 11 is connected with various actuators such as an intake valve 24, an exhaust valve 25, a throttle valve 31, a fuel injection device 36, and an ignition plug 37.
  • the engine control device 11 outputs control signals to actuators such as the throttle valve 31, the fuel injection device 36, the intake / exhaust valves 24 and 25 with a variable mechanism, and controls the driving of various actuators.
  • the engine control device 11 also detects the operating state of the engine (internal combustion engine) 2 based on the detection results (signals) supplied from the various sensors described above.
  • the engine control device 11 determines the timing of ignition performed by the spark plug 37 according to the operating state of the engine (internal combustion engine) 2.
  • the control signal output from the engine control device 11 to the fuel injection device 36 is called an injection pulse signal
  • the control signal output to the spark plug 37 is called an ignition signal.
  • FIG. 3 is a diagram illustrating an intake / exhaust valve profile of an internal combustion engine including a variable valve mechanism of an intake valve 24 and an exhaust valve 25.
  • variable phase variable valve mechanism As described above, in the present embodiment, the variable phase variable valve mechanism is adopted. As shown in FIG. 3, in the variable phase variable valve mechanism, only the phase can be changed while keeping the valve open period (hereinafter, valve working angle) constant.
  • valve working angle The portion of the CPU of the engine control device 11 that controls the variable valve mechanism is the first specific example of the control unit according to the present invention.
  • FIG. 4 is a diagram illustrating the catalyst temperature estimation calculation unit.
  • the engine control unit (ECU) 11 has a catalyst temperature estimation calculation unit 18 showing a specific example of the catalyst temperature detection unit.
  • the catalyst temperature estimation calculation unit 18 performs the catalyst temperature estimation calculation based on the amount of gas that flows in from the intake pipe 27, the intake air temperature, the outside air temperature, the fuel injection amount, the cooling water temperature, and the ignition timing of the spark plug 37. , The estimated catalyst temperature is calculated.
  • the intake air amount and the outside air temperature are detected by the air flow sensor 32.
  • the fuel injection amount is detected based on the injection pulse signal output to the fuel injection device 36.
  • the cooling water temperature is detected by the water temperature sensor 38. In this way, when the estimated catalyst temperature is obtained using the cooling water temperature or the like, the temperature of the catalyst can be detected without providing a special sensor or the like, and the number of parts can be reduced.
  • the catalyst temperature detection unit may be a catalyst temperature sensor that detects the temperature of the three-way catalyst 45.
  • the catalyst temperature sensor is provided between the upstream side and the downstream side of the three-way catalyst 45, and the detection result of the catalyst temperature sensor is sent to the engine control device 11.
  • FIG. 5 is a flowchart showing the catalyst activation temperature processing by the internal combustion engine control unit (ECU).
  • the engine control device 11 determines whether the remaining capacity (SOC) of the battery 8 is smaller than Limit1 (S1). Limit1 corresponds to the third threshold value according to the present invention.
  • SOC remaining capacity
  • S1 Limit1 corresponds to the third threshold value according to the present invention.
  • the SOC of the battery 8 is supplied from the battery control device 12 to the engine control device 11 via the integrated control device 14.
  • the SOC of the battery 8 may be directly supplied from the battery 8 to the engine control device 11.
  • LIMIT 1 (third threshold value) indicates the SOC threshold value when it is determined that the electric power of the battery 8 can be used for catalyst temperature increase control and motoring. For example, at the time of deceleration, the motor 3 and the inverter 7 are rotated by the kinetic energy from the tire 5 to generate electric power. In this case, if the SOC of the battery 8 is sufficient, the electric power is surplus, and the surplus electric power is used to perform the catalyst temperature raising control and the motoring to raise the temperature of the three-way catalyst 45. You can
  • Limit1 When it is determined in S1 that the SOC of the battery 8 is greater than or equal to Limit1 (when S1 is NO), the engine control device 11 proceeds to the process of S7. On the other hand, when it is determined in S1 that the SOC of the battery 8 is smaller than the Limit1 (when S1 is YES), the engine control device 11 determines whether the SOC of the battery 8 is smaller than the Limit2 (S2). ). Limit2 corresponds to the second threshold value according to the present invention.
  • the engine control device 11 determines that EV traveling is possible and executes EV traveling (S3). That is, Limit2 (second threshold value) indicates the SOC threshold value when it is determined that EV traveling is possible. In the process of S3, the engine control device 11 does not generate power by the engine 2 and the generator 6. After the processing of S3, the engine control device 11 ends the catalyst activation temperature processing.
  • the engine control device 11 determines whether the fuel injection by the fuel injection device 36 is stopped. Yes (S4). When it is determined in S4 that the fuel injection by the fuel injection device 36 is not stopped (when NO is determined in S4), that is, when the engine 2 and the generator 6 are generating power, the engine control device 11 determines The activation temperature process ends.
  • the engine control device 11 determines that the temperature of the three-way catalyst 45 (catalyst temperature) is higher than the predetermined temperature. Is also low (S5).
  • the temperature of the three-way catalyst 45 (catalyst temperature) is calculated by the catalyst temperature estimation calculation unit 18 (see FIG. 4) as described above. Further, the predetermined temperature is a temperature within a constant or variable range from the temperature (activation temperature) at which the three-way catalyst 45 is activated and the purification rate of hydrocarbons, nitrogen oxides, carbon monoxide, etc. reaches a predetermined level. Is.
  • the engine control device 11 ends the catalyst activation temperature process. That is, the engine control device 11 determines that it is not necessary to raise the temperature of the three-way catalyst 45, because the temperature has reached the temperature at which the three-way catalyst 45 is activated.
  • the engine control device 11 determines whether the SOC of the battery 8 is higher than the Limit3. It is determined whether or not (S6). That is, the engine control device 11 determines that it is necessary to raise the temperature of the three-way catalyst 45, because the temperature at which the three-way catalyst 45 is activated has not been reached. Further, Limit3 corresponds to the first threshold value according to the present invention.
  • the engine control device 11 starts the fuel injection by the fuel injection device 36 (S7). That is, in the process of S7, the engine control device 11 causes the engine 2 and the generator 6 to generate electric power. After the processing of S7, the engine control device 11 ends the catalyst activation temperature processing.
  • LIMIT3 (first threshold) indicates the SOC threshold when it is determined that the engine 2 and the generator 6 need to generate power. That is, when it is necessary to generate power by the engine 2 and the generator 6, the catalyst temperature raising control described later is not performed or is stopped. Note that Limit3 is smaller than Limit2, and Limit2 is smaller than Limit1 (Limit3 ⁇ Limit2 ⁇ Limit1).
  • the engine control device 11 reads the phase angles of the intake and exhaust valves 24 and 25 detected by the intake valve sensor 39 and the exhaust valve sensor 40 (S8).
  • the engine control device 11 reads the temperature in the intake manifold 33 by the temperature and pressure sensor 34 in the process of S8. Then, the engine control device 11 estimates the temperature in the cylinder 21 at the compression top dead center.
  • the engine control device 11 executes the catalyst temperature raising control based on the phase angles of the intake and exhaust valves 24 and 25 and the temperature inside the cylinder 21 at the compression top dead center (S9). This catalyst temperature increase control will be described later in detail.
  • the engine control device 11 carries out motoring (S10).
  • motoring is to rotate the crankshaft 23 (output shaft) by electric power of the battery 8 without performing combustion.
  • the engine control device 11 shifts the processing to S5.
  • FIG. 6 is a diagram for explaining changes in the state quantity of the internal combustion engine due to the catalyst temperature increase control according to the first embodiment.
  • the EVO (Exhaust Valve Open) shown in FIG. 6 represents the exhaust valve opening timing
  • the EVC (Exhaust Valve Close) represents the exhaust valve closing timing
  • IVO (Intake Valve Open) shown in FIG. 6 represents the intake valve opening timing
  • IVC (Intake Valve Close) represents the intake valve closing timing.
  • FIG. 6A shows the valve timing when the catalyst temperature raising control of the engine 2 in the first embodiment is not performed. Further, FIG. 6B shows the valve timing when the catalyst temperature raising control according to the first embodiment is executed.
  • the effective compression ratio is increased by the variable valve mechanism. That is, in the catalyst temperature raising control according to the first embodiment, the phase of the intake valve 24 and the exhaust valve 25 is manipulated by using the variable valve mechanism of the variable phase type to open / close the valve shown in FIG. The profile is changed to the valve opening / closing profile shown in FIG. Specifically, the EVO is brought closer to the compression top dead center and the IVC is brought closer to the bottom dead center.
  • FIG. 6C shows the temperature in the cylinder 21 (hereinafter, in-cylinder temperature) and the temperature and pressure sensor when the catalyst temperature raising control of the first embodiment is performed with a plurality of cycles and is not performed.
  • the temperature of the exhaust gas detected by 43 hereinafter, exhaust temperature
  • the temperature of the three-way catalyst 45 hereinafter, catalyst temperature
  • the in-cylinder temperature starts to decrease as the piston 22 descends, and when the exhaust valve 25 opens (EVO), the thermal energy held by the gas in the cylinder 21 flows into the exhaust passage, so the in-cylinder temperature further decreases. To do. At this time, as the EVO gets closer to the compression top dead center, more heat energy when the air is compressed at the compression top dead center can be guided to the exhaust passage. Therefore, when the catalyst temperature raising control is performed to bring the EVO close to the compression top dead center, the catalyst temperature can be increased as compared with the case where the catalyst temperature raising control is not performed.
  • the catalyst temperature increase control is performed to bring the IVC close to the bottom dead center, the catalyst temperature can be increased as compared with the case where the catalyst temperature increase control is not performed.
  • the EVO is brought close to the compression top dead center and the IVC is brought close to the bottom dead center.
  • FIG. 7 is a diagram illustrating changes in the state quantity of the internal combustion engine due to the catalyst temperature increase control according to the second embodiment.
  • the internal combustion engine control device has the same configuration as the internal combustion engine control device according to the first embodiment described above, and the different point is the catalyst temperature increase control. Therefore, here, the catalyst temperature increase control according to the second embodiment will be described, and description of the configuration and processing common to the first embodiment will be omitted.
  • FIG. 7A shows the valve timing during the expansion stroke in the catalyst temperature increase control of the engine 2 according to the first embodiment. Further, FIG. 7B shows the valve timing during the exhaust stroke in the catalyst temperature raising control.
  • variable valve mechanism is used during the exhaust stroke to perform the EVO in the latter half of the exhaust stroke (late period) or the first half of the intake stroke (first period). At this time, the valve timing of the intake valve 24 may or may not be changed.
  • FIG. 7C shows the in-cylinder temperature when the catalyst temperature raising control of the second embodiment is carried out for a plurality of cycles and when the catalyst temperature raising control of the first embodiment is carried out for a plurality of cycles, It shows the exhaust temperature and the catalyst temperature.
  • the in-cylinder temperature in the compression stroke rises, the exhaust temperature rises higher than in the first embodiment, and the heat is supplied to the three-way catalyst 45. Therefore, it becomes possible to keep the catalyst temperature higher than in the first embodiment while effectively suppressing the deterioration of exhaust gas.
  • the catalyst temperature raising control of the second embodiment it is possible to reliably raise the catalyst temperature above the catalyst activation temperature even if the outside air temperature is low, and the catalyst temperature raising effect during one cycle is enhanced.
  • the catalyst temperature increase control of the second embodiment may be carried out in one specific cylinder (cylinder) or may be carried out in a plurality of cylinders (cylinders). Further, in the second embodiment, the opening / closing timing of the exhaust valve 25 is moved (changed) by using the variable valve mechanism during the exhaust stroke. However, as the catalyst temperature raising control according to the present invention, if the interference between the intake / exhaust valves 24 and 25 and the piston 22 is taken into consideration, the opening / closing timing of the exhaust valve 25 may be moved outside the exhaust stroke.
  • FIG. 8 is a diagram illustrating changes in the state quantity of the internal combustion engine due to the catalyst temperature increase control according to the third embodiment.
  • the internal combustion engine control device has the same configuration as the internal combustion engine control device according to the first embodiment described above, except for the catalyst temperature increase control. Therefore, here, the catalyst temperature increase control according to the third embodiment will be described, and description of the configuration and processing common to the first embodiment will be omitted.
  • the internal combustion engine control device includes a stroke volume variable mechanism capable of changing the stroke volume.
  • the stroke volume is the volume discharged in the stroke in which the piston 22 moves from the bottom dead center to the top dead center.
  • the stroke volume variable mechanism for example, a mechanism that changes the piston offset amount or a mechanism that changes the connecting rod length can be applied.
  • the portion of the CPU of the engine control device 11 that controls the stroke volume varying mechanism is the second specific example of the control unit according to the present invention.
  • FIG. 8A shows the valve timing when the catalyst temperature raising control of the engine 2 in the first embodiment is not performed.
  • FIG. 7B shows the stroke volume when the catalyst temperature increase control of the third embodiment is executed and the stroke volume when the catalyst temperature increase control is not executed.
  • the stroke volume varying mechanism is controlled to increase the stroke volume of the cylinder 21. That is, the catalyst temperature increase control according to the third embodiment increases the stroke volume as compared with the case where the catalyst temperature increase control is not executed.
  • FIG. 7C shows the in-cylinder temperature, the exhaust temperature, and the catalyst temperature when the catalyst temperature raising control according to the third embodiment is performed for a plurality of cycles and when the catalyst temperature raising control is not performed.
  • the catalyst temperature raising control according to the third embodiment warms up the three-way catalyst 45 without injecting fuel or using a heater even in an internal combustion engine that does not have a variable valve mechanism. It is possible to do (heat up).
  • FIG. 9 is a diagram illustrating changes in the state quantity of the internal combustion engine due to the catalyst temperature increase control according to the fourth embodiment.
  • the internal combustion engine control device has the same configuration as the internal combustion engine control device according to the first embodiment described above, and the different point is the catalyst temperature increase control. Therefore, here, the catalyst temperature increase control according to the third embodiment will be described, and description of the configuration and processing common to the first embodiment will be omitted.
  • the internal combustion engine control device includes a variable valve mechanism, like the internal combustion engine control device according to the first embodiment. Further, the internal combustion engine control device according to the fourth embodiment is provided with a stroke volume variable mechanism capable of changing the stroke volume, similarly to the internal combustion engine control device according to the third embodiment.
  • FIG. 9A shows the valve timing when the catalyst temperature raising control of the engine 2 in the first embodiment is not performed.
  • FIG. 9B shows the valve timing and the stroke volume when the catalyst temperature increase control of the fourth embodiment is executed.
  • the stroke volume varying mechanism is controlled to increase the stroke volume of the cylinder 21 as in the third embodiment.
  • the phases of the intake valve 24 and the exhaust valve 25 are manipulated to bring the EVO close to the compression top dead center and the IVC. Close to bottom dead center.
  • FIG. 9C shows the in-cylinder temperature when the catalyst temperature raising control according to the fourth embodiment is performed for a plurality of cycles and when the catalyst temperature raising control according to the first embodiment is performed for a plurality of cycles. Represents the exhaust temperature and the catalyst temperature.
  • the stroke volume increases and the mechanical compression ratio increases.
  • the effective compression ratio of the engine 2 increases by bringing the IVC closer to the bottom dead center.
  • the in-cylinder temperature at the compression top dead center is higher than in the catalyst temperature raising control according to the first embodiment. Therefore, the exhaust gas temperature in the EVO rises, and the catalyst temperature can be raised earlier than in the case where the catalyst temperature raising control according to the first embodiment is performed.
  • the catalyst temperature increase control according to the fourth embodiment when the catalyst temperature increase control according to the fourth embodiment is performed, by bringing the EVO close to the compression top dead center, more heat energy is generated when the air is compressed at the compression top dead center. You can lead to the road. Therefore, when the catalyst temperature raising control according to the fourth embodiment is performed, the catalyst temperature can be raised earlier than when the catalyst temperature raising control according to the first embodiment is performed. Becomes
  • the internal combustion engine control device controls the internal combustion engine (engine 2) for the hybrid vehicle (vehicle 1). ..
  • the internal combustion engine has a catalyst (three-way catalyst 45) that purifies harmful substances in exhaust gas.
  • the internal combustion engine controller controls the temperature of the catalyst when the temperature of the catalyst detected by the catalyst temperature detection unit (catalyst temperature estimation calculation unit 18) for detecting the temperature of the catalyst has not reached the predetermined temperature.
  • the catalyst can be warmed up (heated) without burning the gas or using a heater.
  • the catalyst temperature can be maintained at the activation temperature or higher while effectively suppressing the exhaust gas deterioration.
  • the invention described in the above-mentioned Patent Document 1 even if control is performed to perform motoring operation of the engine without providing a heater on the upstream side of the catalyst, exhaust heat and exhaust enthalpy enough to warm up the catalyst are generated. Is difficult to do.
  • the catalyst temperature raising control according to the above-described first to fourth embodiments, at least one of the control for increasing the effective compression ratio of the internal combustion engine and the control for increasing the mechanical compression ratio is performed to execute the internal combustion engine. Raise the exhaust temperature.
  • the catalyst is warmed up without burning gas or using a heater. It can be heated (heated).
  • the catalyst temperature raising control is a control for bringing the opening timing of the exhaust valve (exhaust valve 25) close to the top dead center by the variable valve mechanism. Thereby, more heat energy when the air is compressed at the top dead center can be guided to the exhaust passage, and the catalyst temperature can be raised.
  • the catalyst temperature raising control is a control for bringing the closing timing of the intake valve (intake valve 24) close to the bottom dead center by the variable valve mechanism.
  • the effective compression ratio of the internal combustion engine is increased, and the in-cylinder temperature at the top dead center of the compression stroke can be increased.
  • the temperature of the exhaust gas (exhaust temperature) in the next cycle rises, and the catalyst temperature can rise.
  • the catalyst temperature raising control according to the third and fourth embodiments described above is a control for increasing the stroke volume of the internal combustion engine by the stroke volume variable mechanism.
  • the mechanical compression ratio of the internal combustion engine increases and the in-cylinder temperature at the compression top dead center rises, so that the temperature of the exhaust gas (exhaust temperature) at the opening timing of the exhaust valve (exhaust valve 25) can be increased. it can.
  • the catalyst temperature can be raised.
  • the catalyst temperature raising control according to the second embodiment described above is a control for causing gas to flow into the cylinder (cylinder 21) from the intake valve (intake valve 24) and the exhaust valve (exhaust valve 25).
  • the gas (exhaust gas) whose temperature has risen in the exhaust pipe (exhaust pipe 28) also flows into the cylinder, so that the gas inside the cylinder is more exhausted than when the gas flows from only the intake pipe (intake pipe 27).
  • the temperature (cylinder temperature) can be increased.
  • the catalyst temperature estimation calculation unit 18 is applied as the catalyst temperature detection unit. Then, the catalyst temperature estimation calculation unit 18 calculates the estimated temperature of the catalyst (three-way catalyst 45) using the temperature of the cooling water that cools the cylinder (cylinder 21). As a result, the temperature of the catalyst can be detected without providing a special sensor or the like, and the number of parts can be reduced.
  • control unit (CPU) of the internal combustion engine control devices performs the catalyst temperature raising control when the remaining capacity of the battery is smaller than the first threshold value (Limit3). Stop. Accordingly, when the remaining capacity of the battery is smaller than the first threshold value (Limit3), the internal combustion engine (engine 2) can be used as the power source.
  • control unit (CPU) of the internal combustion engine control device is configured such that the remaining capacity of the battery is equal to or greater than the first threshold value (Limit3) and is greater than the second threshold value (Limit2). Is smaller, or is larger than a third threshold (Limit1) which is a value larger than the second threshold, the catalyst temperature increase control is executed.
  • the catalyst can be warmed up (heated) in preparation for switching the power source to the internal combustion engine (engine 2). ..
  • the remaining capacity of the battery is larger than the third threshold value, it can be determined that there is surplus power and the catalyst can be warmed up (heated) with the surplus power.
  • control unit (CPU) of the internal combustion engine control device determines whether or not the fuel injection by the fuel injection device 36 is stopped, and the fuel injection is stopped. If it is determined that the catalyst temperature increase control is performed. Accordingly, it is possible to prevent the catalyst temperature increase control from being performed while the fuel injection device 36 is injecting fuel.
  • the embodiment of the internal combustion engine control device of the present invention has been described, including its function and effect.
  • the internal combustion engine control device of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention described in the claims.
  • the catalyst temperature raising control according to the present invention is applied to the so-called series type vehicle 1 in which the engine 2 is the power source for power generation.
  • the catalyst temperature raising control according to the present invention is not limited to being applied to a vehicle of a series system, and, for example, using a plurality of mounted power sources (motor and engine) to drive wheels, a so-called It can also be applied to parallel vehicles.
  • the catalyst temperature raising control according to the present invention can also be applied to a so-called series-parallel (split) type vehicle in which torque from an engine is divided by a power split mechanism and distributed to a generator and a drive shaft.
  • the three-way catalyst 45 is applied as the catalyst.
  • the catalyst according to the present invention is not limited to a three-way catalyst, and for example, a NOx storage reduction catalyst can also be applied.
  • Temperature and pressure sensor 36 ... Fuel injection device, 37 ... Spark plug, 38 ... Water temperature sensor, 39 ... Intake valve sensor, 40 ... Exhaust valve sensor, 41 ... Connecting rod, 42 ... Crank angle Sensor, 44 ... Air-fuel ratio sensor, 45 ... Three-way catalyst

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

ハイブリッド用エンジンにおいて、排気悪化を抑制しつつ、触媒の活性化温度を保持することが可能な内燃機関制御装置を提供する。このため、本発明の内燃機関制御装置は、ハイブリッド自動車用エンジンにおける内燃機関を制御する。内燃機関は、排気ガス中の有害物質を浄化する触媒と、触媒の温度を検知する触媒温度検知部とを有する。そして、内燃機関制御装置は、触媒温度検知部によって検知した触媒の温度が所定温度に達していない場合に、触媒の温度を昇温するための触媒温度昇温制御を実施してモータリングする。

Description

内燃機関制御装置
 本発明は、内燃機関制御装置に関する。
 内燃機関を動力源としたハイブリッド自動車用エンジン(以下、ハイブリッド用エンジン)は、大気汚染を抑制するエンジン構成の一手段として、広く知られている。ハイブリッド用エンジンは、走行用バッテリを搭載しない従来型自動車エンジン(以下、従来エンジン)と同様に、触媒を用いてエンジンの排気を浄化するのが一般的である。
 ハイブリッド用エンジンは、走行用バッテリによる電力のアシストが付随することで、従来エンジンと比べて、エンジンの使用頻度が低いという特徴がある。特に、街乗り走行のような、ストップ&ゴーを繰り返すシーンでは、バッテリによる走行(以下、バッテリ走行)の時間が長くなるので、エンジンの停止時間が長くなる傾向がある。したがって、ハイブリッド用エンジンは、従来エンジンに比べて、燃費及び排気において、メリットを有することが多い。
 一方、ハイブリッド用エンジンは、従来エンジンと比べてエンジンの停止時間が長いため、走行中にエンジンシステムの下流側に存在する三元触媒の温度(以下、触媒温度)が低下しやすい傾向にある。三元触媒の触媒活性化は、触媒温度に大きく依存し、触媒温度がある基準値を下回ると、炭化水素類や窒素酸化物及び一酸化炭素などの浄化率が低下し、エンジンシステム全体の排気性能が低下してしまう。
 触媒温度の低下を抑制するには、例えば、触媒温度を推定し、基準値を下回った場合に、エンジンを始動させる制御を実施することが考えられる。しかし、この場合は、外気の温度条件及びエアコンのON/OFFの状況によって頻繁にエンジンを始動する必要があり、結果として排気性能を向上させることができない課題があった。
 このような課題を解決する手段としては、例えば、特許文献1に記載されている。特許文献1に記載されたハイブリッド用エンジンは、エンジンの始動時もしくは始動前に、バッテリを動力源としたモータジェネレータによりエンジンをモータリング運転させつつ、スロットル弁を閉じると共にEGR弁を開け、触媒の上流側に設置したヒータにより触媒を加熱する。そして、ヒータに熱せられた空気が、EGR配管を通って吸気配管へ還流し、内燃機関で圧縮された後、再度触媒を暖める還流経路を通ることで、触媒暖機を効果的に実施する。
 また、特許文献2には、ハイブリッドディーゼルエンジンにおいて、吸排気バルブを閉じてエンジンのモータリングを実行し、混合気圧縮及びピストン摺動による摩擦熱の生成によって、エンジンを暖機する制御方法が開示されている。
特開2011-011647号公報 特開2004-324442号公報
 しかしながら、特許文献1に記載された発明では、触媒の上流側にヒータを設ける必要があり、構成部品が増加してしまう。また、特許文献2に開示された制御方法では、吸排気バルブを全閉しているため、触媒へ排気熱のエネルギー供給が実施されない。したがって、触媒温度が低下したまま、エンジン始動を実施することになり、触媒が活性化温度に達するまでに時間を要する。また、触媒が活性化温度に達するまでエンジンの排気が外気へ排出されることになるので、大気汚染の原因となる。
 本発明の目的は、上記の問題点を考慮し、ハイブリッド用エンジンにおいて、排気悪化を抑制しつつ、触媒の活性化温度を保持することが可能な内燃機関制御装置を提供することにある。
 上記課題を解決し、本発明の目的を達成するため、本発明の内燃機関制御装置は、ハイブリッド自動車用エンジンにおける内燃機関を制御する。内燃機関は、排気ガス中の有害物質を浄化する触媒を有する。そして、内燃機関制御装置は、触媒の温度を検知する触媒温度検知部と、触媒温度検知部によって検知した触媒の温度が所定温度に達していない場合に、触媒の温度を昇温するための触媒温度昇温制御を実施してモータリングを実施する制御部とを備える。
 上記構成の内燃機関制御装置によれば、排気悪化を抑制しつつ、触媒の活性化温度を保持することができる。
 なお、上述した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態に係るハイブリット用エンジンを備えた車両の構成例を示す概略構成図である。 本発明の第1の実施形態に係る内燃機関及び内燃機関制御装置(ECU)を示す概略構成図である。 吸気バルブと排気バルブの可変バルブ機構を備えた内燃機関の吸排気バルブプロフィールを説明する図である。 本発明の第1の実施形態に係る内燃機関制御装置(ECU)における触媒温度推定演算部を説明する図である。 本発明の第1の実施形態に係る内燃機関制御装置(ECU)による触媒の活性化温度処理を示すフローチャートである。 本発明の第1の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。 本発明の第2の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。 本発明の第3の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。 本発明の第4の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。
1.第1の実施形態
 以下、本発明の第1の実施形態に係る内燃機関制御装置について、図1~図6を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。
[車両の構成]
 まず、第1の実施形態にかかるハイブリット用エンジンを備えた車両の構成例について、図1を参照して説明する。
 図1は、ハイブリット用エンジンを備えた車両の構成例を示す概略構成図である。
 図1に示すように、車両1は、内燃機関の一例を示すエンジン2とモータ3とを有するハイブリッドシステムの車両である。図1に示すように、車両1は、エンジン2と、モータ3と、シャフト4と、このシャフト4に接続されているタイヤ5と、ジェネレータ6と、インバータ7と、バッテリ8と、を備えている。また、車両1には、車両制御システム10が設けられている。
 エンジン2の駆動軸には、ジェネレータ6が接続されている。そして、エンジン2とジェネレータ6は、電力を発生する発電機を構成する。エンジン2とジェネレータ6で発電された電力は、モータ3又はバッテリ8に供給される。これにより、バッテリ8が充電される。
 モータ3は、バッテリ8に充電された電力、又はエンジン2とジェネレータ6で発電された電力により駆動する。モータ3が駆動することで、シャフト4を介してタイヤ5が回転する。
 車両1は、バッテリ8に蓄えられた電力でモータ3を駆動して走行するパターンと、エンジン2とジェネレータ6で発電された電力でモータ3を駆動して走行するパターンを有している。さらに、車両1は、高負荷時には、バッテリ8の電力とエンジン2とジェネレータ6で発電された電力でモータ3を駆動して走行するパターンを有している。
 さらに、減速時には、車両1は、タイヤ5からの運動エネルギーによりモータ3及びインバータ7が回転し、発電を行う。そして、モータ3及びインバータ7によって発電された電力は、バッテリ8に充電される。
 また、車両1は、上述したエンジン2、モータ3やバッテリ8等を制御する車両制御システム10を有している。車両制御システム10は、内燃機関制御装置の一具体例を示すエンジン制御装置11と、バッテリ制御装置12と、電動機制御装置13と、統合制御装置14とを備えている。
 エンジン制御装置11、バッテリ制御装置12、電動機制御装置13及び統合制御装置14は、通信線16を介して互いに種々の情報を送受信する。通信線16としては、例えば、多重通信線が用いられ、CAN(Controller Area Network)プロトコルに基づくネットワークを構成する。なお、通信線16としては、多重通信線に限定されるものではない。
 統合制御装置14は、車両1に設けた各種センサや、エンジン制御装置11、バッテリ制御装置12及び電動機制御装置13から受信した情報から運転者の操作及び車両の状態を検出する。そして、統合制御装置14は、車両1の走行パターンを判定し、制御指令データを、エンジン制御装置11、バッテリ制御装置12及び電動機制御装置13に送信する。
 ECU(Engine Control Unit)であるエンジン制御装置11は、統合制御装置14から送信された制御指令データに基づいて、内燃機関であるエンジン2の制御を行う。また、エンジン制御装置11は、エンジン2から各種情報を取得し、統合制御装置14に通信線を介して出力する。
 バッテリ制御装置12は、バッテリ8の残容量であるSOC(State Of Charge)を取得する。以下、単にSOCと称す。そして、バッテリ制御装置12は、取得したSOCを統合制御装置14に通信線16を介して出力する。
 電動機制御装置13は、統合制御装置14から送信された制御指令データに基づいて、モータ3及びインバータ7の駆動を制御する。また、電動機制御装置13は、モータ3やインバータ7から各種情報を取得し、取得した情報を統合制御装置14に通信線16を介して出力する。
 統合制御装置14、エンジン制御装置11、バッテリ制御装置12及び電動機制御装置13は、それぞれ例えば、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、を有している。RAMは、CPUの作業領域として使用され、ROMは、CPUが実行するプログラム等を記憶している。
[内燃機関の構成]
 次に、図2を参照して内燃機関であるエンジン2の構成について説明する。
 図2は、エンジン2及びエンジン制御装置11を示す概略構成図である。
 図2に示すエンジン2は、筒内噴射型のエンジンである。エンジン2は、吸入行程、圧縮行程、燃焼(膨張)行程、排気行程の4行程を繰り返す4サイクルエンジンであり、例えば、4つの気筒(シリンダ)を備えた多気筒エンジンである。なお、エンジン2が有する気筒の数は、4つに限定されるものではなく、6つ又は8つ以上の気筒を有していてもよい。
 エンジン2は、シリンダ21と、ピストン22と、クランクシャフト23と、吸気バルブ24と、排気バルブ25とを有している。シリンダ21には、吸気流路を形成する吸気管27と、排気流路を形成する排気管28とが連通されている。吸気管27には、吸気流路を絞ってシリンダ21に流入するガスの量を制御するためのスロットル弁31が設けられている。
 スロットル弁31は、アクセルペダル踏量とは独立して弁開度を制御することができる電子制御式スロットル弁である。吸気管27におけるスロットル弁31の上流には、エアフローセンサ32が取り付けられている。エアフローセンサ32は、吸気管27に流入するガスの温度及び流入量を検出する。また、吸気管27におけるスロットル弁31の下流には、吸気マニホールド33が設けられている。吸気マニホールド33には、温度及び圧力センサ34が組み付けられている。
 シリンダ21には、燃料噴射装置36と、点火プラグ37と、水温センサ38が設けられている。燃料噴射装置36は、燃料供給配管及びコモンレールを介して燃料が貯蔵された燃料タンク(不図示)に接続されており、燃料をシリンダ21内に噴射する。点火プラグ37は、シリンダ21内に電極部を露出させ、スパークによって可燃混合気を引火する。水温センサ38は、シリンダ21を冷却する冷却水の温度を測定する。
 吸気バルブ24は、シリンダ21における吸気ポートに開閉可能に配置されており、排気バルブ25は、シリンダ21における排気ポートに開閉可能に配置されている。本実施形態では、吸気バルブ24及び排気バルブ25の開閉の位相を連続的に可変とする可変バルブ機構を採用しており、吸気側カムシャフト及び排気側カムシャフトを有している。
 吸気側カムシャフトが回転することで、吸気バルブ24が駆動し、シリンダ21の吸気ポートを開閉する。この吸気バルブ24には、吸気バルブ24の開閉位相を検知するための吸気バルブセンサ39が取り付けられている。また、排気側カムシャフトが回転することで、排気バルブ25が駆動し、シリンダ21の排気ポートを開閉する。この排気バルブ25には、排気バルブ25の開閉位相を検知するための排気バルブセンサ40が取り付けられている。
 ピストン22は、燃焼圧力によりシリンダ21内を往復運動する。このピストン22には、クランクシャフト23がコンロッド41を介して接続されている。そして、ピストン22の往復運動がクランクシャフト23により回転運動に変換される。
 クランクシャフト23には、クランク角度センサ42が取り付けられている。クランク角度センサ42は、クランクシャフト23の回転と位相を検出し、その検出結果をエンジン制御装置11に出力する。エンジン制御装置11は、クランク角度センサ42の出力に基づいて、エンジン(内燃機関)2の回転速度を検出することができる。
 排気管28には、排気ガスの温度と圧力とを検知する温度及び圧力センサ43が取り付けられている。排気管28における温度及び圧力センサ43の下流には、空燃比センサ44が設けられている。空燃比センサ44は、排気ガス中に含まれる酸素濃度を検出し、その検出結果をエンジン制御装置11に出力する。エンジン制御装置11は、空燃比センサ44の検出結果に基づいて、燃料噴射装置36から供給される燃料噴射量が目標空燃比となるように、フィードバック制御を行う。
 排気管28における空燃比センサ44の下流には、三元触媒45が設けられている。三元触媒45は、排気ガス中に含まれる、例えば、窒素酸化物(NOx)等の有害物質を浄化する。
 エンジン制御装置(ECU)11には、上述したエアフローセンサ32、温度及び圧力センサ34、水温センサ38、吸気バルブセンサ39、排気バルブセンサ40、クランク角度センサ42、温度及び圧力センサ43、空燃比センサ44等の各種センサ接続されている。また、エンジン制御装置11には、吸気バルブ24、排気バルブ25、スロットル弁31、燃料噴射装置36、点火プラグ37等の各種アクチュエータが接続されている。
 エンジン制御装置11は、スロットル弁31、燃料噴射装置36、可変機構付き吸排気バルブ24,25等のアクチュエータに制御信号を出力し、各種アクチュエータの駆動を制御する。また、エンジン制御装置11は、上述した各種センサから供給された検出結果(信号)に基づいて、エンジン(内燃機関)2の運転状態を検知する。
 さらに、エンジン制御装置11は、エンジン(内燃機関)2の運転状態に応じて、点火プラグ37により行う点火のタイミングを決定する。なお、ここでは、エンジン制御装置11から燃料噴射装置36に出力する制御信号を噴射パルス信号と呼び、点火プラグ37に出力する制御信号を点火信号と呼ぶ。
[可変バルブ機構の動作]
 次に、可変バルブ機構の動作について、図3を参照して説明する。
 図3は、吸気バルブ24と排気バルブ25の可変バルブ機構を備えた内燃機関の吸排気バルブプロフィールを説明する図である。
 上述したように、本実施形態では、位相可変型の可変バルブ機構を採用している。図3に示すように、位相可変型の可変バルブ機構では、バルブの開いている期間(以下、バルブ作用角)を一定として、位相のみを変化させることができる。そして、エンジン制御装置11のCPUにおける可変バルブ機構を制御する部分が、本発明に係る制御部の第1の具体例となる。
[触媒温度検知部]
 次に、触媒温度検知部について、図4を参照して説明する。
 図4は、触媒温度推定演算部を説明する図である。
 図4に示すように、エンジン制御装置(ECU)11は、触媒温度検知部の一具体例を示す触媒温度推定演算部18を有している。触媒温度推定演算部18は、吸気管27から流入するガスの量である吸気量、外気温度、燃料噴射量、冷却水温度、点火プラグ37の点火時期に基づいて、触媒温度推定演算を実施し、触媒推定温度を算出する。
 吸気量及び外気温度は、エアフローセンサ32によって検出される。燃料噴射量は、燃料噴射装置36に出力する噴射パルス信号に基づいて検出される。冷却水温度は、水温センサ38によって検出される。このように、冷却水温度等を用いて触媒推定温度を得る場合は、特別なセンサ等を設けずに触媒の温度を検知することができ、部品点数の削減を図ることができる。
 なお、本発明に係る触媒温度検知部としては、三元触媒45の温度を検出する触媒温度センサであってもよい。触媒温度センサは、三元触媒45の上流から下流の間に設けられ、触媒温度センサの検出結果は、エンジン制御装置11に送られる。
[エンジン制御装置による触媒の活性化温度処理]
 次に、エンジン制御装置11による触媒の活性化温度処理について、図5を参照して説明する。
 図5は、内燃機関制御装置(ECU)による触媒の活性化温度処理を示すフローチャートである。
 まず、エンジン制御装置11は、バッテリ8の残容量(SOC)がLimit1よりも小さいか否かを判定する(S1)。Limit1は、本発明に係る第3の閾値に対応する。バッテリ8のSOCは、バッテリ制御装置12から統合制御装置14を介してエンジン制御装置11に供給される。なお、バッテリ8のSOCは、バッテリ8からエンジン制御装置11へ直接供給されるようにしてもよい。
 Limit1(第3の閾値)は、触媒温度昇温制御やモータリングにバッテリ8の電力を使用可能と判定する際のSOCの閾値を示す。例えば、減速時には、タイヤ5からの運動エネルギーによりモータ3及びインバータ7が回転して発電を行う。この場合に、バッテリ8のSOCが十分にあれば、電力が余ることになり、その余っている電力で触媒温度昇温制御やモータリングを行って、三元触媒45の温度を昇温することができる。
 S1において、バッテリ8のSOCがLimit1以上であると判定したとき(S1がNO判定の場合)、エンジン制御装置11は、S7の処理に移行する。一方、S1において、バッテリ8のSOCがLimit1よりも小さいと判定したとき(S1がYES判定の場合)、エンジン制御装置11は、バッテリ8のSOCがLimit2よりも小さいか否かを判定する(S2)。Limit2は、本発明に係る第2の閾値に対応する。
 S2において、バッテリ8のSOCがLimit2以上であると判定したとき(S2がNO判定の場合)、エンジン制御装置11は、EV走行可能と判定し、EV走行を実施する(S3)。すなわち、Limit2(第2の閾値)は、EV走行可能と判定する際のSOCの閾値を示す。S3の処理において、エンジン制御装置11は、エンジン2とジェネレータ6で発電を行わない。また、S3の処理後、エンジン制御装置11は、触媒の活性化温度処理を終了する。
 一方、S2において、バッテリ8のSOCがLimit2よりも小さいと判定したとき(S2がYES判定の場合)、エンジン制御装置11は、燃料噴射装置36による燃料噴射が停止中であるか否かを判別する(S4)。S4において、燃料噴射装置36による燃料噴射が停止中でないと判定したとき(S4がNO判定の場合)、すなわち、エンジン2とジェネレータ6で発電中である場合に、エンジン制御装置11は、触媒の活性化温度処理を終了する。
 一方、S4において、燃料噴射装置36による燃料噴射が停止中であると判定したとき(S4がYES判定の場合)、エンジン制御装置11は、三元触媒45の温度(触媒温度)が所定温度よりも低いか否かを判定する(S5)。
 三元触媒45の温度(触媒温度)は、上述したように、触媒温度推定演算部18(図4参照)によって算出される。また、所定温度は、三元触媒45が活性化し、炭化水素類や窒素酸化物及び一酸化炭素などの浄化率が所定の水準に達する温度(活性化温度)から一定もしくは可変の範囲内の温度である。
 S5において、三元触媒45の温度(触媒温度)が所定温度以上であると判定したとき(S5がNO判定の場合)、エンジン制御装置11は、触媒の活性化温度処理を終了する。すなわち、エンジン制御装置11は、三元触媒45が活性化する温度に達しているため、三元触媒45を昇温する必要は無いと判断する。
 一方、S5において、三元触媒45の温度(触媒温度)が所定温度よりも低いと判定したとき(S5がYES判定の場合)、エンジン制御装置11は、バッテリ8のSOCがLimit3よりも大きいか否かを判定する(S6)。すなわち、エンジン制御装置11は、三元触媒45が活性化する温度に達していないため、三元触媒45を昇温する必要があると判断する。また、Limit3は、本発明に係る第1の閾値に対応する。
 S6において、バッテリ8のSOCがLimit3以下であると判定したとき(S6がNO判定の場合)、エンジン制御装置11は、燃料噴射装置36による燃料の噴射を開始する(S7)。すなわち、S7の処理において、エンジン制御装置11は、エンジン2とジェネレータ6で発電を行う。S7の処理後、エンジン制御装置11は、触媒の活性化温度処理を終了する。
 Limit3(第1の閾値)は、エンジン2とジェネレータ6で発電を行う必要があると判定する際のSOCの閾値を示す。すなわち、エンジン2とジェネレータ6で発電を行う必要がある場合は、後で説明する触媒温度昇温制御を行わない又は停止する。なお、Limit3は、Limit2よりも小さく、Limit2は、Limit1よりも小さい(Limit3<Limit2<Limit1)。
 一方、S6において、バッテリ8のSOCがLimit3よりも大きいと判定したとき(S6がNO判定の場合)、又はS1において、バッテリ8のSOCがLimit1以上であると判定したとき(S1がNO判定の場合)、エンジン制御装置11は、吸気バルブセンサ39及び排気バルブセンサ40から検知した吸排気バルブ24,25の位相角を読み込む(S8)。
 また、エンジン制御装置11は、S8の処理において、温度及び圧力センサ34により吸気マニホールド33内の温度を読み込む。そして、エンジン制御装置11は、圧縮上死点におけるシリンダ21内の温度を推定する。
 次に、エンジン制御装置11は、吸排気バルブ24,25の位相角、及び圧縮上死点におけるシリンダ21内の温度に基づいて、触媒温度昇温制御を実施する(S9)。この触媒温度昇温制御については、後で詳しく説明する。
 その後、エンジン制御装置11は、モータリングを実施する(S10)。ここで、モータリングは、燃焼を行わずにバッテリ8の電力によってクランクシャフト23(出力軸)を廻すことである。S10の処理後、エンジン制御装置11は、処理をS5に移行する。
[触媒温度昇温制御]
 次に、図5に示す触媒の活性化温度処理のS9にて行われる触媒温度昇温制御について、図6を参照して説明する。
 図6は、第1の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。
 図6に示すEVO(Exhaust Valve Open)は、排気バルブ開時期を表し、EVC(Exhaust Valve Close)は、排気バルブ閉時期を表す。また、図6に示すIVO(Intake Valve Open)は、吸気バルブ開時期を表し、IVC(Intake Valve Close)は、吸気バルブ閉時期を表す。
 図6(a)は、第1の実施形態におけるエンジン2の触媒温度昇温制御を実施しない場合のバルブタイミングを表す。また、図6(b)は、第1の実施形態に係る触媒温度昇温制御を実施した場合のバルブタイミングを表す。
 第1の実施形態に係る触媒温度昇温制御では、可変バルブ機構によって有効圧縮比を増加させる。すなわち、第1の実施形態に係る触媒温度昇温制御では、位相可変型の可変バルブ機構を用いて、吸気バルブ24と排気バルブ25の位相を操作して、図6(a)に示すバルブ開閉プロフィールから、図6(b)に示すバルブ開閉プロフィールに変化させる。具体的には、EVOを圧縮上死点に近づけると共に、IVCを下死点に近づける。
 図6(c)は、第1の実施形態の触媒温度昇温制御を複数サイクル実施した場合と実施しなかった場合の、シリンダ21内の温度(以下、筒内温度)と、温度及び圧力センサ43によって検出したでの排気ガスの温度(以下、排気温度)と、三元触媒45の温度(以下、触媒温度)を表す。
 筒内温度は、ピストン22の下降とともに下がり始め、排気バルブ25が開く(EVO)と、シリンダ21内のガスが保持していた熱エネルギーが排気流路に流入するため、筒内温度は更に下降する。この際、EVOが圧縮上死点に近づくほど、圧縮上死点で空気が圧縮された際の熱エネルギーをより多く排気流路へ導くことができる。したがって、触媒温度昇温制御を実施してEVOを圧縮上死点に近づけた場合は、触媒温度昇温制御を実施しない場合に比べて、触媒温度を上昇させることが可能となる。
 また、IVCを下死点に近づけることにより、エンジン2の有効圧縮比が増加し、圧縮行程上死点での筒内温度が上昇する。その結果、次サイクルにおける排気温度が上昇し、触媒温度が上昇する。したがって、触媒温度昇温制御を実施してIVCを下死点に近づけた場合は、触媒温度昇温制御を実施しない場合に比べて、触媒温度を上昇させることが可能となる。
 このような触媒温度昇温制御を複数サイクルにおいて実施することにより、燃料噴射装置36による燃料の噴射を実施してシリンダ21内に流入したガスを燃焼させたり、ヒータを用いたりすることなく、三元触媒45を暖機する(昇温する)ことが可能となる。その結果、排気悪化を効果的に抑制しつつ、触媒温度を活性化温度以上に保持することができる。
 なお、本実施形態に係る触媒温度昇温制御では、EVOを圧縮上死点に近づけると共に、IVCを下死点に近づけた。しかし、本発明に係る触媒温度昇温制御としては、EVOを圧縮上死点に近づけるのみでもよく、また、IVCを下死点に近づけけるのみでもよい。
2.第2の実施形態[触媒温度昇温制御]
 以下、本発明の第2の実施形態に係る内燃機関制御装置について、図7を参照して説明する。
 図7は、第2の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。
 第2の実施形態に係る内燃機関制御装置は、上述の第1の実施形態に係る内燃機関制御装置と同様の構成を有しており、異なる点は、触媒温度昇温制御である。そのため、ここでは、第2の実施形態に係る触媒温度昇温制御について説明し、第1の実施形態と共通する構成及び処理についての説明を省略する。
 図7(a)は、第1の実施形態に係るエンジン2の触媒温度昇温制御において、膨張行程中のバルブタイミングを表す。また、図7(b)は、触媒温度昇温制御における排気行程中のバルブタイミングを表す。
 第2の実施形態に係る触媒温度昇温制御では、排気行程中に可変バルブ機構を用いて、EVOを排気行程の後半(後期)もしくは吸気行程の前半(前期)に行う。この際、吸気バルブ24のバルブタイミングは、変化させてもさせなくてもよい。
 図7(c)は、第2の実施形態の触媒温度昇温制御を複数サイクル実施した場合と、第1の実施形態の触媒温度昇温制御を複数サイクル実施した場合の、筒内温度と、排気温度と、触媒温度を表す。
 図7(b)に示すように、第2の実施形態の触媒温度昇温制御により、排気バルブ25を吸気行程中にも開くことにより、シリンダ21内に吸気管27からガスが流入すると共に、排気管28からのガスが再流入する。排気管28におけるガス(排気ガス)は、触媒温度昇温制御により温度が上昇しているため、吸気管27のみからガスが流入する場合よりも、筒内温度が上昇する。すなわち、IVC時点での筒内温度が第1の実施形態よりも上昇する。
 その結果、圧縮行程における筒内温度が上昇し、排気温度が第1の実施形態よりも高くなり、その熱が三元触媒45へ供給される。したがって、排気悪化を効果的に抑制しつつ、第1の実施形態よりも触媒温度を高く保持することが可能となる。第2の実施形態の触媒温度昇温制御では、外気温度が低くても確実に触媒活性化温度以上に触媒温度を昇温させることが可能となり、1サイクル中の触媒温度上昇効果が高くなる。
 第2の実施形態の触媒温度昇温制御は、特定の1つのシリンダー(気筒)で実施してもよいし、複数のシリンダー(気筒)で実施してもよい。また、第2の実施形態では、排気行程中に可変バルブ機構を用いて、排気バルブ25の開閉時期を移動(変化)させている。しかし、本発明に係る触媒温度昇温制御としては、吸排気バルブ24,25とピストン22の干渉を考慮すれば、排気行程以外で排気バルブ25の開閉時期を移動させてもよい。
3.第3の実施形態[触媒温度昇温制御]
 以下、本発明の第3の実施形態に係る内燃機関制御装置について、図8を参照して説明する。
 図8は、第3の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。
 第3の実施形態に係る内燃機関制御装置は、上述の第1の実施形態に係る内燃機関制御装置と同様の構成を有しており、異なる点は、触媒温度昇温制御である。そのため、ここでは、第3の実施形態に係る触媒温度昇温制御について説明し、第1の実施形態と共通する構成及び処理についての説明を省略する。
 第3の実施形態に係る内燃機関制御装置は、行程容積を変更可能な行程容積可変機構を備えている。なお、行程容積は、ピストン22が下死点から上死点まで動く行程で排出される容積である。行程容積可変機構としては、例えば、ピストンオフセット量を変化させる機構や、コンロッド長を変化させる機構を適用することができる。また、エンジン制御装置11のCPUにおける行程容積可変機構を制御する部分が、本発明に係る制御部の第2の具体例となる。
 図8(a)は、第1の実施形態におけるエンジン2の触媒温度昇温制御を実施しない場合のバルブタイミングを表す。図7(b)は、第3の実施形態の触媒温度昇温制御を実施した場合の行程容積と、触媒温度昇温制御を実施しない場合の行程容積を表す。
 第3の実施形態に係る触媒温度昇温制御は、行程容積可変機構を制御してシリンダ21の行程容積を増大させる。すなわち、第3の実施形態に係る触媒温度昇温制御は、触媒温度昇温制御を実施しない場合よりも行程容積を増大させる。
 図7(c)は、第3の実施形態に係る触媒温度昇温制御を複数サイクル実施した場合と、触媒温度昇温制御を実施しない場合の、筒内温度と、排気温度と、触媒温度を表す。第3の実施形態に係る触媒温度昇温制御を実施した場合は、行程容積が増大して、機械圧縮比が増大する。これにより、圧縮上死点における筒内温度が上昇するため、EVOにおける排気温度が上昇する。その結果、触媒温度昇温制御を実施しない場合に比べて、触媒温度を上昇させることが可能となる。
 このような触媒温度昇温制御を複数サイクルにおいて実施することにより、燃料噴射装置36による燃料の噴射を実施してシリンダ21内に流入したガスを燃焼させたり、ヒータを用いたりすることなく、三元触媒45を暖機する(昇温する)ことが可能となる。その結果、排気悪化を効果的に抑制しつつ、触媒温度を活性化温度以上に保持することができる。
 また、第3の実施形態に係る触媒温度昇温制御は、可変バルブ機構を有していない内燃機関であっても、燃料の噴射やヒータを用いたりすることなく、三元触媒45を暖機する(昇温する)ことが可能である。
4.第4の実施形態[触媒温度昇温制御]
 以下、本発明の第4の実施形態に係る内燃機関制御装置について、図9を参照して説明する。
 図9は、第4の実施形態に係る触媒温度昇温制御による内燃機関の状態量の変化を説明する図である。
 第4の実施形態に係る内燃機関制御装置は、上述の第1の実施形態に係る内燃機関制御装置と同様の構成を有しており、異なる点は、触媒温度昇温制御である。そのため、ここでは、第3の実施形態に係る触媒温度昇温制御について説明し、第1の実施形態と共通する構成及び処理についての説明を省略する。
 第4の実施形態に係る内燃機関制御装置は、第1の実施形態に係る内燃機関制御装置と同様に、可変バルブ機構を備えている。また、第4の実施形態に係る内燃機関制御装置は、第3の実施形態に係る内燃機関制御装置と同様に、行程容積を変更可能な行程容積可変機構を備えている。
 図9(a)は、第1の実施形態におけるエンジン2の触媒温度昇温制御を実施しない場合のバルブタイミングを表す。図9(b)は、第4の実施形態の触媒温度昇温制御を実施した場合のバルブタイミングと行程容積を表す。
 図9(b)に示すように、第4の実施形態に係る触媒温度昇温制御は、第3の実施形態と同様に、行程容積可変機構を制御してシリンダ21の行程容積を増大させる。また、第4の実施形態に係る触媒温度昇温制御は、第1の実施形態と同様に、吸気バルブ24と排気バルブ25の位相を操作して、EVOを圧縮上死点に近づけると共に、IVCを下死点に近づける。
 図9(c)は、第4の実施形態に係る触媒温度昇温制御を複数サイクル実施した場合と、第1の実施形態に係る触媒温度昇温制御を複数サイクル実施した場合の、筒内温度と、排気温度と、触媒温度を表す。
 第4の実施形態に係る触媒温度昇温制御を実施した場合は、行程容積が増大して、機械圧縮比が増大する。さらに、IVCを下死点に近づけることにより、エンジン2の有効圧縮比が増加する。その結果、第1の実施形態に係る触媒温度昇温制御よりも、圧縮上死点における筒内温度が上昇する。したがって、EVOにおける排気温度が上昇することになり、第1の実施形態に係る触媒温度昇温制御を実施した場合に比べて、早期に触媒温度を上昇させることが可能となる。
 さらに、第4の実施形態に係る触媒温度昇温制御を実施した場合は、EVOを圧縮上死点に近づけることにより、圧縮上死点で空気が圧縮された際の熱エネルギーをより多く排気流路へ導くことができる。したがって、第4の実施形態に係る触媒温度昇温制御を実施した場合は、第1の実施形態に係る触媒温度昇温制御を実施した場合に比べて、早期に触媒温度を上昇させることが可能となる。
5.まとめ
 以上説明したように、上述した第1~第4の実施形態に係る内燃機関制御装置(エンジン制御装置11)は、ハイブリッド自動車(車両1)用の内燃機関(エンジン2)を制御する。内燃機関は、排気ガス中の有害物質を浄化する触媒(三元触媒45)を有する。そして、内燃機関制御装置は、触媒の温度を検知する触媒温度検知部(触媒温度推定演算部18)と、触媒温度検知部によって検知した触媒の温度が所定温度に達していない場合に、触媒の温度を昇温するための触媒温度昇温制御を実施してモータリングを実施する制御部とを備える。これにより、ガスを燃焼させたり、ヒータを用いたりすることなく、触媒を暖機する(昇温する)ことができる。その結果、排気悪化を効果的に抑制しつつ、触媒温度を活性化温度以上に保持することができる。
 なお、上記特許文献1に記載された発明において、触媒の上流側にヒータを設けずに、エンジンをモータリング運転する制御を行っても、触媒を暖機する程度の排気熱及び排気エンタルピを生成することは困難である。
 また、上述した第1~第4の実施形態に係る触媒温度昇温制御では、内燃機関の有効圧縮比を増加させる制御もしくは機械圧縮比を増加させる制御の少なくとも一つを実施して、内燃機関の排気温度を昇温させる。これにより、内燃機関の有効圧縮比を増加させる機構、或は機械圧縮比を増加させる機構の少なくとも1つを備えていれば、ガスを燃焼させたり、ヒータを用いたりすることなく、触媒を暖機する(昇温する)ことができる。
 また、上述した第1、第2、第4の実施形態に係る触媒温度昇温制御は、可変バルブ機構によって排気バルブ(排気バルブ25)の開き時期を上死点に近づける制御である。これにより、上死点で空気が圧縮された際の熱エネルギーをより多く排気流路へ導くことができ、触媒温度を上昇させることができる。
 また、上述した第1、第2、第4の実施形態に係る触媒温度昇温制御は、可変バルブ機構によって吸気バルブ(吸気バルブ24)の閉じ時期を下死点に近づける制御である。これにより、内燃機関の有効圧縮比が増加し、圧縮行程上死点での筒内温度を上昇させることができる。その結果、次サイクルにおける排気ガスの温度(排気温度)が上昇し、触媒温度を上昇させることができる。
 また、上述した第3、第4の実施形態に係る触媒温度昇温制御は、行程容積可変機構によって内燃機関の行程容積を増加させる制御である。これにより、内燃機関の機械圧縮比が増大し、圧縮上死点における筒内温度が上昇するため、排気バルブ(排気バルブ25)の開き時期における排気ガスの温度(排気温度)を上昇させることができる。その結果、触媒温度を上昇させることができる。
 また、上述した第2の実施形態に係る触媒温度昇温制御は、吸気バルブ(吸気バルブ24)と排気バルブ(排気バルブ25)からシリンダ(シリンダ21)にガスを流入させる制御である。これにより、排気管(排気管28)の温度が上昇しているガス(排気ガス)もシリンダ内に流入するため、吸気管(吸気管27)のみからガスが流入する場合よりも、シリンダ内の温度(筒内温度)を上昇させることができる。
 また、上述した第1~第4の実施形態に係る内燃機関制御装置では、触媒温度検知部として触媒温度推定演算部18を適用した。そして、触媒温度推定演算部18は、シリンダ(シリンダ21)を冷却する冷却水の温度を用いて触媒(三元触媒45)の推定温度を算出する。これにより、特別なセンサ等を設けずに触媒の温度を検知することができ、部品点数の削減を図ることができる。
 また、上述した第1~第4の実施形態に係る内燃機関制御装置の制御部(CPU)は、バッテリの残容量が第1の閾値(Limit3)よりも小さい場合に、触媒温度昇温制御を停止する。これにより、バッテリの残容量が第1の閾値(Limit3)よりも小さい場合に、内燃機関(エンジン2)を動力源にすることができる。
 また、上述した第1~第4の実施形態に係る内燃機関制御装置の制御部(CPU)は、バッテリの残容量が第1の閾値(Limit3)以上であって第2の閾値(Limit2)よりも小さい場合、又は、第2の閾値よりも大きい値である第3の閾値(Limit1)よりも大きい場合に、触媒温度昇温制御を実施する。バッテリの残容量が第1の閾値以上であって第2の閾値よりも小さい場合は、動力源を内燃機関(エンジン2)に切り替える準備として、触媒を暖機する(昇温する)ことができる。また、バッテリの残容量が第3の閾値よりも大きい場合は、余剰電力があると判断して、余剰電力で触媒を暖機する(昇温する)ことができる。
 また、上述した第1~第4の実施形態に係る内燃機関制御装置の制御部(CPU)は、燃料噴射装置36による燃料噴射が停止中であるか否かを判定し、燃料噴射が停止中であると判定した場合に、触媒温度昇温制御を実施する。これにより、燃料噴射装置36による燃料噴射が行われているときに触媒温度昇温制御が実施されないようにすることができる。
 以上、本発明の内燃機関制御装置の実施形態について、その作用効果も含めて説明した。しかしながら、本発明の内燃機関制御装置は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。
 また、上述した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、上述した第1~第4の実施形態は、エンジン2を発電用の動力源とした、いわゆるシリーズ方式の車両1に、本発明に係る触媒温度昇温制御を適用した。しかし、本発明に係る触媒温度昇温制御は、シリーズ方式の車両に適用することに限定されず、例えば、搭載している複数の動力源(モータとエンジン)を車輪の駆動に使用する、いわゆるパラレル方式の車両に適用することもできる。また、本発明に係る触媒温度昇温制御は、エンジンからのトルクを動力分割機構により分割し、発電機と駆動軸とへ振り分ける、いわゆるシリーズパラレル(スプリット)方式の車両に適用することもできる。
 また、上述した第1~第4の実施形態では、触媒として三元触媒45を適用した。しかし、本発明に係る触媒としては、三元触媒に限定されず、例えば、NOx吸蔵還元触媒を適用することもできる。
 1・・・車両、 2・・・エンジン、 3・・・モータ、 4・・・シャフト、 5・・・タイヤ、 6・・・ジェネレータ、 7・・・インバータ、 8・・・バッテリ、 10・・・車両制御システム、 11・・・エンジン制御装置(内燃機関制御装置)、 12・・・バッテリ制御装置、 13・・・電動機制御装置、 14・・・統合制御装置、 18・・・触媒温度推定演算部、 21・・・シリンダ、 22・・・ピストン、 23・・・クランクシャフト、 24・・・吸気バルブ、 25・・・排気バルブ、 27・・・吸気管、 28・・・排気管、 31・・・スロットル弁、 32・・・エアフローセンサ、 33・・・吸気マニホールド、 34,43・・・温度及び圧力センサ、
 36・・・燃料噴射装置、 37・・・点火プラグ、 38・・・水温センサ、 39・・・吸気バルブセンサ、 40・・・排気バルブセンサ、 41・・・コンロッド、 42・・・クランク角度センサ、 44・・・空燃比センサ、 45・・・三元触媒

Claims (13)

  1.  ハイブリッド自動車用の内燃機関を制御する内燃機関制御装置において、
     前記内燃機関は、排気ガス中の有害物質を浄化する触媒を有し、
     前記触媒の温度を検知する触媒温度検知部と、
     前記触媒温度検知部によって検知した前記触媒の温度が所定温度に達していない場合に、前記触媒の温度を昇温するための触媒温度昇温制御を実施してモータリングを実施する制御部と、を備える
     ことを特徴とする内燃機関制御装置。
  2.  前記触媒温度昇温制御では、前記内燃機関の有効圧縮比を増加させる制御もしくは機械圧縮比を増加させる制御の少なくとも一つを実施して、前記内燃機関の排気温度を昇温させる
     ことを特徴とする請求項1に記載の内燃機関制御装置。
  3.  前記内燃機関は、排気バルブの開閉時期を可変にする可変バルブ機構を有しており、
     前記触媒温度昇温制御は、前記排気バルブの開き時期を上死点に近づける制御である
     ことを特徴とする請求項2に記載の内燃機関制御装置。
  4.  前記内燃機関は、吸気バルブの開閉時期を可変にする可変バルブ機構を有しており、
     前記触媒温度昇温制御は、前記吸気バルブの閉じ時期を下死点に近づける制御である
     ことを特徴とする請求項2に記載の内燃機関制御装置。
  5.  前記内燃機関の行程容積を変更可能な行程容積可変機構を有し、
     前記触媒温度昇温制御は、前記行程容積可変機構によって前記内燃機関の行程容積を増加させる制御である
     ことを特徴とする請求項2に記載の内燃機関制御装置。
  6.  前記触媒温度昇温制御は、前記内燃機関の吸気バルブと排気バルブからシリンダにガスを流入させる制御である
     ことを特徴とする請求項1に記載の内燃機関制御装置。
  7.  前記触媒温度検知部は、前記内燃機関のシリンダを冷却する冷却水の温度を用いて前記触媒の推定温度を算出する
     ことを特徴とする請求項1に記載の内燃機関制御装置。
  8.  前記制御部は、バッテリの残容量が第1の閾値よりも小さい場合に、前記触媒温度昇温制御を停止する
     ことを特徴とする請求項1に記載の内燃機関制御装置。
  9.  前記制御部は、バッテリの残容量が前記第1の閾値以上であって第2の閾値よりも小さい場合、又は、前記触媒の温度に関わらず前記バッテリの残容量が前記第2の閾値よりも大きい値である第3の閾値よりも大きい場合に、前記触媒温度昇温制御を実施する
     ことを特徴とする請求項8に記載の内燃機関制御装置。
  10.  前記制御部は、前記内燃機関の燃料噴射が停止中であるか否かを判定し、前記燃料噴射が停止中であると判定した場合に、前記触媒温度昇温制御を実施する
     ことを特徴とする請求項1に記載の内燃機関制御装置。
  11.  ハイブリッド自動車用の内燃機関を制御する内燃機関制御装置において、
     前記内燃機関は、排気ガス中の有害物質を浄化する触媒を有し、
     前記触媒の温度を検知する触媒温度検知部と、
     前記触媒温度検知部によって検知した前記触媒の温度が所定温度に達していない場合に、前記内燃機関の有効圧縮比を増加させる制御もしくは機械圧縮比を増加させる制御を実施してモータリングを実施する制御部と、を備える
     ことを特徴とする内燃機関制御装置。
  12.  前記触媒温度検知部によって検知した前記触媒の温度が所定温度に達していない場合に、前記制御部は、前記内燃機関の有効圧縮比を増加させる制御もしくは機械圧縮比を増加させる制御に加えて、前記内燃機関の吸気バルブと排気バルブからシリンダにガスを流入させる制御を行う
     ことを特徴とする請求項10に記載の内燃機関制御装置。
  13.  ハイブリッド自動車用の内燃機関を制御する内燃機関制御装置において、
     前記内燃機関は、排気ガス中の有害物質を浄化する触媒を有し、
     前記触媒の温度を検知する触媒温度検知部と、
     前記触媒温度検知部によって検知した前記触媒の温度が所定温度に達していない場合に、前記内燃機関の吸気バルブと排気バルブからシリンダにガスを流入させる制御を実施してモータリングを実施する制御部と、を備える
     ことを特徴とする内燃機関制御装置。
PCT/JP2019/035832 2018-11-06 2019-09-12 内燃機関制御装置 WO2020095536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/289,909 US20220001851A1 (en) 2018-11-06 2019-09-12 Internal Combustion Engine Control Device
JP2020556637A JPWO2020095536A1 (ja) 2018-11-06 2019-09-12 内燃機関制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208729 2018-11-06
JP2018-208729 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020095536A1 true WO2020095536A1 (ja) 2020-05-14

Family

ID=70611591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035832 WO2020095536A1 (ja) 2018-11-06 2019-09-12 内燃機関制御装置

Country Status (3)

Country Link
US (1) US20220001851A1 (ja)
JP (1) JPWO2020095536A1 (ja)
WO (1) WO2020095536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001984A1 (de) * 2021-07-22 2023-01-26 Mercedes-Benz Group AG Verfahren zum betreiben eines kraftfahrzeugs sowie kraftfahrzeug
US20230127422A1 (en) * 2021-10-27 2023-04-27 Ford Global Technologies, Llc Method and system for reactivating a catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329060A (ja) * 1996-06-10 1997-12-22 Toyota Motor Corp ハイブリッド型車両の触媒温度制御装置
JP2002227672A (ja) * 2001-01-30 2002-08-14 Toyota Motor Corp 内燃機関の制御装置
JP2006090221A (ja) * 2004-09-24 2006-04-06 Mitsubishi Motors Corp 触媒活性化制御装置
JP2008038602A (ja) * 2006-08-01 2008-02-21 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011011647A (ja) * 2009-07-02 2011-01-20 Mitsubishi Motors Corp ハイブリッド自動車
JP2013002324A (ja) * 2011-06-14 2013-01-07 Toyota Motor Corp 内燃機関の制御装置
WO2013171830A1 (ja) * 2012-05-14 2013-11-21 トヨタ自動車株式会社 内燃機関の制御装置
JP2014015942A (ja) * 2013-10-28 2014-01-30 Mitsubishi Motors Corp 内燃機関の制御装置
JP2016117451A (ja) * 2014-12-24 2016-06-30 日産自動車株式会社 車両の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428442B2 (ja) * 2007-11-08 2010-03-10 トヨタ自動車株式会社 火花点火式内燃機関
CN102884300B (zh) * 2010-04-30 2015-07-22 马自达汽车株式会社 火花点火引擎的控制方法以及火花点火引擎
JP5854126B2 (ja) * 2012-03-22 2016-02-09 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329060A (ja) * 1996-06-10 1997-12-22 Toyota Motor Corp ハイブリッド型車両の触媒温度制御装置
JP2002227672A (ja) * 2001-01-30 2002-08-14 Toyota Motor Corp 内燃機関の制御装置
JP2006090221A (ja) * 2004-09-24 2006-04-06 Mitsubishi Motors Corp 触媒活性化制御装置
JP2008038602A (ja) * 2006-08-01 2008-02-21 Toyota Motor Corp 内燃機関の排気浄化装置
JP2011011647A (ja) * 2009-07-02 2011-01-20 Mitsubishi Motors Corp ハイブリッド自動車
JP2013002324A (ja) * 2011-06-14 2013-01-07 Toyota Motor Corp 内燃機関の制御装置
WO2013171830A1 (ja) * 2012-05-14 2013-11-21 トヨタ自動車株式会社 内燃機関の制御装置
JP2014015942A (ja) * 2013-10-28 2014-01-30 Mitsubishi Motors Corp 内燃機関の制御装置
JP2016117451A (ja) * 2014-12-24 2016-06-30 日産自動車株式会社 車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001984A1 (de) * 2021-07-22 2023-01-26 Mercedes-Benz Group AG Verfahren zum betreiben eines kraftfahrzeugs sowie kraftfahrzeug
US20230127422A1 (en) * 2021-10-27 2023-04-27 Ford Global Technologies, Llc Method and system for reactivating a catalyst
US11873774B2 (en) * 2021-10-27 2024-01-16 Ford Global Technologies, Llc Method and system for reactivating a catalyst

Also Published As

Publication number Publication date
US20220001851A1 (en) 2022-01-06
JPWO2020095536A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US8844272B2 (en) Particulate filter regeneration during engine shutdown
US7527028B2 (en) Hybrid vehicle system having engine with variable valve operation
US8438841B2 (en) Particulate filter regeneration in an engine
US8407988B2 (en) Particulate filter regeneration in an engine coupled to an energy conversion device
US9080482B2 (en) Control of exhaust flow in an engine including a particulate filter
US8099223B2 (en) Control system of internal combustion engine and control method of the control system
US20130118154A1 (en) Controlling operation of exhaust of an engine including a particulate filter
US20110072799A1 (en) Particulate filter regeneration during engine shutdown
JP4867687B2 (ja) 内燃機関装置およびその制御方法並びに車両
US9322353B2 (en) Engine control apparatus and hybrid vehicle including thereof
CN103670727A (zh) 通过排气背压的催化剂加热
CN103541791A (zh) 氨存储控制
CN103670726A (zh) 通过排气背压的催化剂加热
CN102301114A (zh) 用于多汽缸内燃机的运转控制设备和运转控制方法
JP2004523691A (ja) 自動車の内燃機関の運転方法およびその制御装置
KR20160067745A (ko) 자동차
WO2020095536A1 (ja) 内燃機関制御装置
JP5109921B2 (ja) ハイブリッド車両の制御装置
KR102038906B1 (ko) 차량 및 차량의 제어 방법
CN106132798B (zh) 混合动力车辆、用于混合动力车辆的控制器和用于混合动力车辆的控制方法
US20180340478A1 (en) Cooling apparatus of internal combustion engine
CN108138677B (zh) 内燃机的控制装置
JP5514623B2 (ja) ハイブリッド車両の制御装置
US20210262401A1 (en) Methods and system for reducing engine hydrocarbon emissions
JP2013216223A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882874

Country of ref document: EP

Kind code of ref document: A1