WO2020094001A1 - 球囊扩张导管、球囊及其制备方法 - Google Patents

球囊扩张导管、球囊及其制备方法 Download PDF

Info

Publication number
WO2020094001A1
WO2020094001A1 PCT/CN2019/115699 CN2019115699W WO2020094001A1 WO 2020094001 A1 WO2020094001 A1 WO 2020094001A1 CN 2019115699 W CN2019115699 W CN 2019115699W WO 2020094001 A1 WO2020094001 A1 WO 2020094001A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
blending
hollow tube
mass ratio
layer structure
Prior art date
Application number
PCT/CN2019/115699
Other languages
English (en)
French (fr)
Inventor
岳斌
贾婧玮
陈国明
李�雨
Original Assignee
上海微创心通医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创心通医疗科技有限公司 filed Critical 上海微创心通医疗科技有限公司
Priority to EP19881309.9A priority Critical patent/EP3871730A4/en
Priority to KR1020217016427A priority patent/KR102600243B1/ko
Priority to US17/291,530 priority patent/US20220016400A1/en
Publication of WO2020094001A1 publication Critical patent/WO2020094001A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/049Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1034Joining of shaft and balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • A61M2025/1031Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1075Balloon catheters with special features or adapted for special applications having a balloon composed of several layers, e.g. by coating or embedding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production

Definitions

  • the present invention relates to the field of medical devices, and in particular, to a balloon dilatation catheter, a balloon, and a preparation method thereof.
  • Percutaneous balloon valvuloplasty has become one of the important methods for the treatment of heart valve disease.
  • Percutaneous balloon valvuloplasty has the advantages of less trauma, safety, and accurate efficacy, and it has replaced open heart valve incision / dissection to a certain extent.
  • the valve balloon is suitable for patients with severe calcified aortic valve stenosis and surgical contraindications or high-risk.
  • the valve balloon is used to dilate the stenotic lesions, which is conducive to the implantation of the valve stent. At the same time, the valve balloon is expanded afterwards It can make the aortic valve attach better and heal better.
  • valve balloon needs to have high puncture resistance to prevent puncture by calcified lesions during surgery; at the same time
  • the balloon used in the aortic valve needs to have a larger size (the diameter of the balloon ranges from 8.0mm to 50.0mm).
  • a larger balloon means that it will have greater compliance. Overexpansion may occur during the process, causing the valve to tear, or it may expand posteriorly to the valve stent and damage the stent structure.
  • valve valves are mainly made of a single nylon material, and the specifications are large, but limited to material factors, their puncture resistance is low, and their compliance is also large.
  • the object of the present invention is to provide a balloon dilatation catheter, a balloon and a preparation method thereof, to solve the problem of low puncture resistance and large compliance of the existing valve balloon.
  • the present invention provides a balloon, the balloon is made by blending L25 and at least two of TR55, TR90 and TR70.
  • the balloon is made by blending L25 and TR55; or, the balloon is made by blending L25 and TR90; or, the balloon is made by L25, TR55, and TR90 It is made after mixing; or, the balloon is made by blending L25 and TR70.
  • the balloon is made by blending L25 and TR55, wherein the mass ratio of L25: TR55 is between 9: 1 ⁇ 7: 3; or, the balloon is made up of L25 and TR90 It is made after mixing, wherein the mass ratio of L25: TR90 is between 9: 1 ⁇ 6: 4; or, the balloon is made by blending L25, TR55 and TR90, wherein the mass percentage of T R90 is 10% And the mass ratio of L25: TR55 is between 7: 2 ⁇ 5: 4; or, the balloon is made by blending L25 and TR70, wherein the mass ratio of L25: TR70 is 9: 1 ⁇ 7: 3 between. .
  • the balloon is made by blending L25 and TR55, wherein the mass ratio of L25: TR55 is 8: 2; or, the balloon is made by blending L25 and TR90, wherein The mass ratio of L25: TR90 is 7: 3 or 8: 2; alternatively, the balloon is made by blending L25, TR55 and TR90, wherein the mass ratio of L25: TR55: TR90 is 6: 3: 1; Alternatively, the balloon is made by blending L25 and TR70, wherein the mass ratio of L25: TR 70 is 9: 1.
  • the balloon is a hollow multi-layer structure, each layer of the multi-layer structure is sequentially stacked inside and outside, and the thickness and material of each layer are the same.
  • the multilayer structure is a two-layer structure or a three-layer structure.
  • the balloon has an expanded state and a compressed state, the diameter of the balloon in the expanded state is
  • the length of the balloon is between 20mm and 60mm.
  • the diameter of the balloon in the expanded state is 8 mm, 18 mm, 20 mm, 26 mm, or 28 mm.
  • the length of the balloon is 20 mm, 30 mm, 40 mm, 50 mm, or 60 mm.
  • the present invention also provides a balloon dilatation catheter, including the balloon as described above, the balloon dilatation catheter further includes an inner tube and an outer tube; the inner tube is inserted into the outer tube A tube, and the distal section of the inner tube extending out of the outer tube is sheathed with the balloon; the distal end of the balloon is connected to the distal end of the inner tube, and the proximal end of the balloon It is connected to the distal end of the outer tube and the inner tube.
  • the present invention also provides a method for preparing a balloon as described above, including:
  • the hollow tube is subjected to nitrogen filling, heating, and axial stretching in the forming cavity of the balloon forming mold Shaping and cooling treatment to obtain the balloon.
  • the hollow pipe is extruded through an extrusion device.
  • the step of subjecting the hollow tube to the molding cavity of the balloon molding mold under nitrogen, heating, axial stretching, shaping and cooling includes:
  • the main body portion of the balloon is axially stretched to produce an initial structure of the balloon, the initial structure includes an intermediate section, two balloon tapers, and two balloon catheter sections; the two Balloon cones are located at both ends of the middle section, and the two balloon catheter sections are located at the ends of the two balloon cones away from the middle section;
  • the initial structure of the balloon is shaped and cooled to obtain the balloon.
  • the nylon blend material is composed of L25 and TR55, wherein the mass ratio of L25: TR55 is between 9: 1 ⁇ 7: 3;
  • the pressure of the nitrogen gas into the hollow tube is between 8atm ⁇ 12atm
  • the temperature of the hollow tube is heated to 100 ° C ⁇ 120 ° C
  • the initial structure of the balloon is shaped and
  • the cooling process includes: heating the initial structure of the balloon, pressurizing it to 125 ° C ⁇ 135 ° C, 10 atm, and setting it for 10s ⁇ 14s, and then cooling by circulating cooling water.
  • the nylon blend material is composed of L25 and TR90, wherein the mass ratio of L25: TR90 is between 9: 1 ⁇ 6: 4;
  • the pressure of nitrogen gas into the hollow tube is between 9.5atm ⁇ 15.5atm
  • the temperature of the hollow tube is heated to 100 ° C ⁇ 130 ° C
  • the initial structure of the balloon is made
  • the steps of setting and cooling treatment include: warming up the initial structure of the balloon, pressurizing to 130 ° C ⁇ 150 ° C, 10atm ⁇ 16atm, and setting for 20s ⁇ 60s, and then cooling by circulating cooling water.
  • the nylon blending material is made by blending L25, TR55 and TR90, wherein the mass percentage of TR90 is 10%, and the mass ratio of L25: TR55 is 7: 2 ⁇ 5: 4 Between
  • the pressure of the nitrogen gas into the hollow tube is between 1.1 to 13.5 atm
  • the temperature of the hollow tube is heated to 100 ° C to 120 ° C
  • the initial value of the balloon The steps of structuring and cooling the structure include: warming and pressurizing the initial structure of the balloon to 130 ° C ⁇ 140 ° C, l latm ⁇ 15atm, and proceeding The line is set for 20s ⁇ 40s, and then it is cooled by circulating cooling water.
  • the nylon blend material is composed of L25 and TR70, wherein the mass ratio of L25: TR70 is 9
  • the pressure of the nitrogen gas into the hollow tube is between 21.5atm ⁇ 25.5atm
  • the temperature of the hollow tube is heated to 100 ° C ⁇ 120 ° C
  • the initial structure of the balloon is made
  • the steps of setting and cooling treatment include: warming up the initial structure of the balloon, pressurizing to 130 ° C ⁇ 140 ° C, 22atm ⁇ 26atm, and setting for 20s ⁇ 40s, and then cooling by circulating cooling water.
  • the material of the balloon is made by blending L2 5 and at least two of TR55, TR90 and TR70, compared
  • the balloon of the present invention has higher puncture resistance and less compliance.
  • the balloon of the present invention is preferably a hollow multi-layer structure, which can further improve the puncture resistance and further reduce the compliance of the balloon compared to the single-layer structure.
  • the object of the present invention is to provide a balloon dilatation catheter, a balloon and a preparation method thereof, those of ordinary skill in the art will understand that the accompanying drawings are provided to better understand the present invention, but not to the present invention The scope constitutes any limitation. among them:
  • FIG. 1 is a schematic diagram of a balloon dilatation catheter provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a balloon provided by an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the balloon shown in FIG. 2 along line A-A.
  • FIG. 1 is a schematic view of a balloon dilatation catheter provided by an embodiment of the present invention
  • FIG. 2 is a schematic view of a balloon provided by an embodiment of the present invention
  • FIG. 3 is shown in FIG. Of the balloon along the AA line.
  • an embodiment of the present invention provides a balloon dilatation catheter, which includes a balloon 10, an inner tube 20, and an outer tube 40; the inner tube 20 is inserted into the outer tube 40, and the inner A section of the tube 20 extending out of the outer tube 40 is sheathed with the balloon 10; the distal end of the balloon 10 is connected to the section of the inner tube 20, the balloon 10 The proximal end is connected to the distal end of the outer tube 40 and the inner tube 20.
  • the balloon 10 is made by blending at least two brands of nylon materials.
  • the nylon material here refers to nylon 12 (PA12), whose scientific name is polydodecrolactam, which includes a variety of different grades, such as: TR55, TR70, TR90 and L25, etc. Different grades of nylon 12 have different molecular structures And aggregated structure, so they have different properties.
  • the balloon 10 is made by blending L25 and TR55; or, the balloon 10 is made by blending L25 and TR90; or, the balloon 10 is made by blending L25, TR55, and TR90 Made; or, the balloon 10 is made by blending L25 and TR70.
  • a balloon made by blending at least two different brands of nylon material can effectively improve the ball The puncture resistance of the balloon 10 and reduced compliance of the balloon 10.
  • the balloon 10 is made by blending L25 and TR55, wherein the mass ratio of L25: TR55 is between 9: 1 ⁇ 7: 3, more preferably the mass of L25: TR55 The ratio is 8: 2. Among them, TR55 has a high glass transition temperature, extremely high dynamic strength, impact resistance and resistance to stress cracking. [0046] In one embodiment, the balloon 10 is made by blending L25 and TR90, wherein the mass ratio of L25: TR90 is between 9: 1 ⁇ 6: 4, more preferably the mass of L25: TR90 The ratio is 7: 3 or 8: 2. Among them, TR90 has extremely high dynamic strength.
  • the balloon 10 is made by blending L25, TR55 and TR90, wherein the mass percentage of TR90 is 10%, and the mass ratio of L25: TR55 is 7: 2 ⁇ 5 : Between 4, more preferably the mass ratio of L25: T R55: TR90 is 6: 3: 1.
  • the balloon 10 is made by blending L25 and TR70, wherein the mass ratio of L25: TR70 is between 9: 1 ⁇ 7: 3, more preferably the mass ratio of L25: TR70 9: 1. Among them, TR70 has a relatively high glass transition temperature.
  • the material of the balloon 10 is selected from two or three of L25, TR55, TR70 and TR90 materials blended in a certain proportion As a result, the balloon 10 can have higher puncture resistance and lower compliance.
  • the balloon 10 includes an intermediate section 103, two balloon cones 102, and two balloon catheter sections 101; the two balloon cones 102 are located at two of the intermediate section 103, respectively End, the two balloon catheter segments 101 are respectively located at the ends of the two balloon cones 102 away from the intermediate segment 103, wherein the distal end of the one balloon catheter segment 101 at the distal end forms a seal It is connected to the distal end of the inner tube 20, and the proximal end of one of the balloon catheter segments 101 at the proximal end forms an opening and is connected to the distal end of the outer tube 40 and the inner tube 20.
  • the inner tube 20 and the balloon 10 are arranged coaxially.
  • the balloon dilatation catheter further includes a developing point 30, a sheath 50, a fluid connection 61 and a guide wire connection 62.
  • the developing spot 30 is made of a developing material, for example, it can be made of X-ray impermeable molybdenum-iridium alloy, which is used to monitor the position of the balloon 10 through a display during X-ray fluoroscopy.
  • the developing point 30 may be provided on the section of the inner tube 20, and specifically, the developing point 30 may be provided on the inner tube 20 by pressing.
  • One ends of the liquid-permeable connector 61 and the guide wire connector 62 are connected to the proximal end of the outer tube 40.
  • the fluid connection piece 61 is a joint for emptying / filling the balloon for injection of contrast fluid when the balloon is inflated; the guide wire connection piece 62 is used for threading the guide wire.
  • the sheath 50 is sleeved on the outer tube 40 to protect the connection between the liquid-through connector 61 and the guide wire connector 62 and the outer tube 40 The connection between the liquid connector 61 and the guide wire connector 62 and the outer tube 40 avoids detachment damage.
  • the balloon dilatation catheter can be prepared as follows: [0053] Step SI: heat-treating the balloon 10 for 10 min, and connecting the proximal end of the balloon 10 with the distal end of the outer tube 40 by thermal blow molding;
  • Step S2 a part of the inner tube 20 is inserted into the balloon 10, and the distal end of the balloon 10 and the inner tube 20 are connected by thermal blow molding;
  • Step S3 The balloon 10 is folded into five wings, and the outer tube 40 is formed with a liquid port;
  • Step S4 bonding the liquid-through connector 61 and the guide wire connector 62 to the outer tube 40 through medical-grade glue
  • Step S5 Sleeve the sheath 50 on the outer tube 40 away from the fluid connection 61 and the guide wire connection 62.
  • the balloon 10 is a hollow multi-layer structure, and each layer of the multi-layer structure is sequentially stacked inside and outside, and the thickness and material of each layer are the same. More preferably, the balloon 10 has a hollow two-layer structure or a three-layer structure. Compared with a single layer, multiple layers can further improve the puncture resistance of the balloon and further reduce the compliance.
  • the balloon 10 has an expanded state and a compressed state. In both states, the diameter of the balloon 10 changes. I.e., when the balloon 10 in an expanded state after filling, in an expanded state, the balloon 10 preferably have a diameter of between 8mm ⁇ 28mm, while the length of the balloon 10 ° preferably between 20mm ⁇ 6 Omm
  • the balloon 10 targeted by this embodiment is made by blending L25 and TR55, wherein the mass ratio of L25: TR55 is between 9: 1 ⁇ 7: 3.
  • the mass ratio of L25: TR55 is 8: 2.
  • the preparation method of the balloon 10 is as follows:
  • Step 1 The nylon blending material is extruded through an extrusion device to make a hollow tube, and the hollow tube is put into a molding cavity of a balloon molding die.
  • the nylon blend material is composed of L25 and TR55, and the hollow tube is preferably a three-layer structure, and the length of the balloon forming mold is preferably 47.8 mm ⁇ 50.6 mm °
  • Step 2 Close one end of the hollow pipe, and pass nitrogen gas with a pressure of 8 atm to 12 atm to the other end of the hollow pipe;
  • Step 3 heating the hollow pipe to 100 ° C to 120 ° C, and applying a pulling force between 200 N and 300 N at both ends of the hollow pipe, and stretching at 50 mm / s to 90 mm / s Axially stretching the hollow tube 30 mm to 40 mm at a speed to obtain a body part of the balloon, the body part being a tube of equal diameter;
  • Step 4 Extend the main body portion of the balloon by 3 mm to 7 mm axially again to form the initial structure of the balloon.
  • the initial structure includes an intermediate section 103, two balloon cones 102, and two balloon catheters Section 101; the two balloon cones 102 are located at both ends of the middle section 103, the two balloon catheter sections 101 are located at two of the balloon cones 102 away from the middle section 103 End (as shown in Figure 2);
  • Step 5 Heat the initial structure of the balloon to 125 ° C ⁇ 135 ° C, pressurize it to 10atm at the same time, and shape it for 10s ⁇ 14s, then pass through circulating cooling water to cool, that is to complete the preparation of the balloon 10 .
  • the balloon 10 obtained by the above steps has a hollow three-layer structure, the thickness of each layer is the same, and the material of each layer is also the same.
  • the expanded diameter of the balloon 10 is 28 mm, and the length is 40 mm.
  • the diameter here refers to the maximum diameter of the balloon 10, which is the outer diameter of the outermost layer of the middle section of the balloon 10, not the diameter of the balloon cone portion 102 and the balloon catheter section 101;
  • the length is It refers to the sum of the axial length of the middle section of the balloon 10 and the balloon cone portion 102, but does not include the length of the portion of the balloon catheter section 101.
  • a control balloon A1, a control balloon B1, and a control balloon C1 are prepared.
  • the control balloon A1 is made of a single L25 and has a three-layer structure, the thickness of each layer is the same, and the total thickness is the same as the total thickness of the balloon 10 provided in this embodiment;
  • the control balloon B 1 is made of the same as this embodiment
  • the provided L25 and TR55 with the same ratio are blended and made, but a single-layer structure, the thickness of the single-layer structure is the same as the total thickness of the balloon 10 provided in this embodiment;
  • the control balloon C1 is made of a single L25
  • the thickness of the single-layer structure is the same as the total thickness of the balloon 10 provided in this embodiment.
  • the size of the control balloon A1, the control balloon B 1 and the control balloon C1 are the same as the size of the balloon 10 provided in this embodiment.
  • the specific preparation process of the control balloon A1, the control balloon B1 and the control balloon C1 is similar to the preparation method provided in this embodiment, please refer to the above preparation method, which will not be repeated here.
  • the balloon 10, the control balloon A1, the control balloon B1, and the control balloon C1 provided in this embodiment are separately tested for puncture resistance and compliance.
  • the test method of the puncture resistance of the balloon includes:
  • Step A3 Adjust the position of the puncture fixture so that the puncture is aimed at the balloon on the fixture;
  • Step A4 Fill the balloon to the rated burst pressure in the fixture
  • Step A5 Activate the test program to start the test, and read the puncture resistance value from the instrument.
  • puncture resistance it is generally considered that under the test method described above, a puncture force value> 10N is high puncture resistance, and the higher the puncture resistance, the more beneficial it is to ensure the reliability of the operation.
  • the test method of balloon compliance includes:
  • Step B1 the balloon is filled to a nominal pressure Pn, the nominal diameter of the balloon Dn is measured;
  • Step B2 the balloon is filled to the rated burst pressure Prbp, the balloon burst diameter Drbp is measured;
  • Step B3 Obtaining the compliance of the balloon, the compliance is:
  • low compliance is defined as ⁇ 0.1
  • ⁇ 0.8 for a balloon with a diameter of 14 mm to 20 mm
  • low compliance Sex is defined as ⁇ 1.5. The smaller the compliance, the more beneficial it is to ensure the reliability of the operation.
  • the puncture resistance and compliance of the balloon 10 provided in this embodiment is significantly better than the control balloon A1, the control balloon B1, and the control balloon C1.
  • the balloon 10 and the control balloon A1 provided in this embodiment have the same structural size and are all three-layer structures, The two materials differ only in that the balloon 10 provided in this embodiment uses a blended material of L25 and TR55, while the control balloon A1 uses a single L25, so it can be concluded that the blended material is made of L25 and TR55 Compared with the balloon made of a single material, the balloon has higher puncture resistance and less compliance.
  • the balloon 10 provided in this embodiment has the same material and the same size as the control balloon B1, the two differ only in the number of structural layers.
  • the balloon 10 provided in this embodiment adopts a three-layer structure.
  • the control balloon B 1 has a single-layer structure, so it can be concluded that a three-layer structure balloon has higher puncture resistance and less compliance than a single-layer structure balloon.
  • control balloon B1 and the control balloon C1 can be obtained, whether it is a single material into a blend of L25 and TR55, or a single layer structure into a three-layer structure, all It can improve the puncture resistance of the balloon and reduce the compliance of the balloon.
  • the balloon 10 provided in this embodiment is improved in both material and structure.
  • the experimental results show that the use of the L25 and TR55 blend materials and the three-layer structure can be greater Improve the puncture resistance of the balloon, and can significantly reduce the compliance of the balloon.
  • the balloon 10 targeted by this embodiment is made by blending L25 and TR90, wherein the mass ratio of L25: TR90 is between 9: 1 ⁇ 6: 4.
  • the mass ratio of L25: TR90 is 7: 3.
  • the preparation method of the balloon 10 is as follows:
  • Step 1 The nylon blending material is extruded through an extrusion device to make a hollow tube, and the hollow tube is put into a balloon forming mold.
  • the nylon blend material is composed of L25 and TR90, and the hollow tube is preferably a two-layer structure, and the length of the balloon forming mold is preferably 39.5 mm to 41.5 mm.
  • Step 2 Close one end of the hollow pipe, and pass nitrogen gas at a pressure of 9.5 atm to 11.5 atm to the other end of the hollow pipe;
  • Step three Heat the hollow pipe to 110 ° C to 130 ° C, and apply a pulling force between 220 N and 300 N to both ends of the hollow pipe to stretch at 80 mm / s to 120 mm / s Axially stretching the hollow tube 20 mm to 30 mm at a speed to obtain a body portion of the balloon, the body portion being a tube of equal diameter;
  • Step 4 Extend the main body portion of the balloon by 5 mm to 10 mm axially again to form the initial structure of the balloon.
  • the initial structure includes an intermediate section 103, two balloon cones 102, and two balloon catheters Section 101; the two balloon cones 102 are located at both ends of the middle section 103, the two balloon catheter sections 101 are respectively Located at the ends of the two balloon cones 102 away from the middle section 103;
  • Step 5 Heating the initial structure of the balloon to 140 ° C to 150 ° C, while pressurizing to 10atm to 14atm, and setting for 40s to 60s, and then cooling by circulating cooling water to complete the balloon 10's preparation.
  • the balloon 10 obtained by the above steps is a hollow two-layer structure, the thickness of each layer is the same, the material of each layer is also the same, and each layer is sequentially stacked inside and outside.
  • the expanded diameter of the balloon 10 is 26 mm, and the length is 30 mm.
  • the definition of the diameter and length of the balloon is the same as that of the first embodiment.
  • a control balloon A2, a control balloon B2, and a control balloon C2 are prepared.
  • the control balloon A2 is made of a single L25 and has a two-layer structure, the thickness of each layer is the same, and the total thickness is the same as the total thickness of the two-layer structure of the balloon 10 provided in this embodiment;
  • the control balloon B2 is composed of The L25 and TR90 with the same ratio provided in this embodiment are blended and made, but it is a single-layer structure, and the thickness of the single-layer structure is the same as the total thickness of the two-layer structure of the balloon 10 provided in this embodiment;
  • the balloon C2 is made of a single L25 and has a single-layer structure.
  • the thickness of the single-layer structure is the same as the total thickness of the two-layer structure of the balloon 10 provided in this embodiment.
  • the size of the control balloon A2, the control balloon B2, and the control balloon C2 are the same as the size of the balloon 10 provided in this embodiment.
  • the specific preparation process of the control balloon A2, the control balloon B2 and the control balloon C2 is similar to the preparation method provided in this embodiment, please refer to the above preparation method.
  • the balloon 10, the control balloon A2, the control balloon B2, and the control balloon C2 provided in this embodiment were tested for puncture resistance and compliance, respectively.
  • a specific method please refer to Embodiment 1, which will not be repeated here.
  • the puncture resistance and compliance of the balloon 10 provided in this embodiment are significantly better than the control balloon A2, the control balloon B2, and the control balloon C2. Since the balloon 10 and the control balloon A2 provided in this embodiment have the same structural size and both have a two-layer structure, the two only differ in materials.
  • the balloon 10 provided in this embodiment uses a blend material of L25 and TR90 , And the control balloon A2 uses a single L25, so it can be concluded: Balloons made with L25 and TR90 blended materials have higher puncture resistance and less compliance than single materials.
  • the balloon 10 provided in this embodiment has the same material and the same size as the control balloon B2, the two differ only in the number of structural layers.
  • the balloon 10 provided in this embodiment adopts a two-layer structure, while the control ball
  • the balloon B2 is a single-layer structure, so it can be concluded that a balloon with a two-layer structure has higher puncture resistance and less compliance than a balloon with a single-layer structure.
  • control balloon B2 and control balloon C2 it can be concluded that whether the single material is changed to a blended material of L25 and TR90, or the single-layer structure is changed to a two-layer structure, the ball can be improved The puncture resistance of the balloon, as well as reducing the compliance of the balloon.
  • the balloon 10 provided in this embodiment is improved in both material and structure.
  • the experimental results show that the use of L25 and TR90 blended materials and two-layer structure can greatly improve the balloon. Puncture resistance, and can significantly reduce the compliance of the balloon.
  • the balloon 10 targeted by this embodiment is made by blending L25, TR55 and TR90, wherein the mass percentage of TR90 is 10%, and the mass ratio of L25: TR55 is between 7: 2 ⁇ 5: 4.
  • the mass ratio of L25: TR55: T R90 is 6: 3: 1.
  • the preparation method of the balloon 10 is as follows:
  • Step 1 The nylon blend material is extruded through an extrusion device to make a hollow tube, and the hollow tube is put into a balloon forming mold.
  • the nylon blend material is composed of L25, TR55 and TR90, and the hollow tube is preferably a three-layer structure, and the length of the balloon forming mold is preferably between 57.5 mm and 59.5 mm.
  • Step 2 Close one end of the hollow pipe, and pass the pressure to the other end of the hollow pipe to 11.
  • Step 3 heating the hollow pipe to 100 ° C to 120 ° C, and applying a pulling force between 160 N and 220 N at both ends of the hollow pipe to stretch at 80 mm / s to 120 mm / s Axially stretching the hollow tube 30 mm to 50 mm at a speed to obtain a body part of the balloon, the body part being a tube of equal diameter;
  • the balloon 10 obtained by the above steps has a hollow three-layer structure, the thickness of each layer is the same, the material of each layer is also the same, and each layer is sequentially stacked inside and outside.
  • the expanded diameter of the balloon 10 is 20 mm, and the length is 50 mm.
  • the definition of the diameter and length of the balloon is the same as that of the first embodiment.
  • the size of the control balloon A3, the control balloon B3, and the control balloon C3 are the same as the size of the balloon 10 provided in this embodiment.
  • the specific preparation process of the control balloon A3, the control balloon B3 and the control balloon C3 is similar to the preparation method provided in this embodiment, please refer to the above preparation method.
  • the balloon 10, the control balloon A3, the control balloon B3, and the control balloon C3 provided in this embodiment were tested for puncture resistance and compliance, respectively.
  • a specific method please refer to Embodiment 1, which will not be repeated here.
  • Table 3 provides relevant experimental data of this embodiment:
  • the puncture resistance and compliance of the balloon 10 provided in this embodiment are superior to the control balloon A3, the control balloon B3, and the control balloon C3. Since the balloon 10 provided in this embodiment and the control balloon A3 have the same structural size and are both three-layer structures, the two only differ in materials.
  • the balloon 10 provided in this embodiment uses a total of L25, TR55, and TR90. Mixed material, and the control balloon A3 uses a single L25, so it can be concluded that the balloon made of L25, TR55 and TR90 blended material has more High puncture resistance and less compliance.
  • the balloon 10 provided in this embodiment has the same material and the same size as the control balloon B 3, the two differ only in the number of structural layers.
  • the balloon 10 provided in this embodiment adopts a three-layer structure, while the control The balloon B3 has a single-layer structure, so it can be concluded that the three-layer structure of the balloon has higher puncture resistance and less compliance than the single-layer structure of the balloon.
  • the control balloon B3 and the control balloon C3 can be obtained, whether it is a single material into L25, TR55 and TR90 blended materials, or a single layer structure into a three-layer structure, It can improve the puncture resistance of the balloon and reduce the compliance of the balloon.
  • the balloon 10 provided in this embodiment is improved in both material and structure.
  • the experimental results show that the use of L25, TR55 and TR90 blend materials and the three-layer structure can be greatly improved The puncture resistance of the balloon can significantly reduce the compliance of the balloon.
  • the preparation method of the balloon 10 is as follows:
  • Step 1 The nylon blend material is extruded through an extrusion device to make a hollow tube, and the hollow tube is placed in a balloon forming mold.
  • the nylon blend material is composed of L25 and TR90, and the hollow tube is preferably a three-layer structure, and the length of the balloon forming mold is preferably 59.5 mm to 61.5 mm.
  • Step 2 Close one end of the hollow pipe, and pass the pressure to the other end of the hollow pipe to 12.
  • Step 3 Heat the hollow pipe to 100 ° C to 120 ° C, and apply 160 to both ends of the hollow pipe
  • the tensile force between N ⁇ 220N is used to axially stretch the hollow tube 50mm ⁇ 70mm at a stretching speed of 80mm / s ⁇ 120mm / s to obtain the main part of the balloon, the main part is of equal diameter Body
  • Step 4 Extend the main body portion of the balloon by 10 mm to 15 mm axially again to form an initial structure of the balloon, which includes an intermediate section 103, two balloon cones 102, and two balloon catheters Section 101; the two balloon cones 102 are located at both ends of the middle section 103, the two balloon catheter sections 101 are located at two of the balloon cones 102 away from the middle section 103 Ends;
  • Step 5 Heating the initial structure of the balloon to 130 ° C to 140 ° C, while pressurizing to 12atm to 16atm, and performing shaping for 20s to 40s, and then cooling with circulating cooling water to complete the balloon 10's preparation.
  • the balloon 10 produced by the above steps has a hollow three-layer structure, the thickness of each layer is the same, the material of each layer is also the same, and each layer is sequentially stacked inside and outside.
  • the expanded diameter of the balloon 10 is 18 mm, and the length is 60 mm.
  • the definition of the diameter and length of the balloon is the same as that of the first embodiment.
  • a control balloon A4, a control balloon B4, and a control balloon C4 are prepared.
  • the control balloon A4 is made of a single L25 and has a three-layer structure, the thickness of each layer is the same, and the total thickness is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment;
  • the control balloon B4 is composed of The L25 and TR90 with the same ratio provided in this embodiment are blended and made, but it is a single-layer structure, and the thickness of the single-layer structure is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment;
  • the balloon C4 is made of a single L25 and has a single-layer structure, and the thickness of the single-layer structure is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment.
  • the size of the control balloon A4, the control balloon B4 and the control balloon C4 are the same as the size of the balloon 10 provided in this embodiment.
  • the specific preparation process of the control balloon A4, the control balloon B4 and the control balloon C4 is similar to the preparation method provided in this embodiment, please refer to the above preparation method.
  • the balloon 10, the control balloon A4, the control balloon B4, and the control balloon C4 provided in this embodiment were tested for puncture resistance and compliance, respectively.
  • a specific method please refer to Embodiment 1, which will not be repeated here.
  • Table 4 provides relevant experimental data of this embodiment:
  • the puncture resistance and compliance of the balloon 10 provided in this embodiment are superior to the control balloon A4, the control balloon B4, and the control balloon C4. Since the balloon 10 and the control balloon A4 provided in this embodiment have the same structural size and a three-layer structure, the two only differ in materials.
  • the balloon 10 provided in this embodiment uses a blend material of L25 and TR90 , And the control balloon A4 uses a single L25, so it can be concluded that the balloon made of L 25 and TR90 blended material has higher puncture resistance and smaller size than the balloon made of a single material Compliance.
  • the balloon 10 provided in this embodiment has the same material and the same size as the control balloon B4, the two differ only in the number of structural layers.
  • the balloon 10 provided in this embodiment adopts a three-layer structure
  • the control balloon B4 is a single-layer structure, so it can be concluded that the three-layer structure of the balloon has higher puncture resistance and less compliance than the single-layer structure of the balloon.
  • control balloon B 4 and control balloon C4 can be concluded The puncture resistance of the balloon, as well as reducing the compliance of the balloon.
  • the balloon 10 provided in this embodiment is improved in both material and structure.
  • the experimental results show that the use of L25 and TR90 blended materials and three-layer structure can greatly improve the balloon. Puncture resistance, and can significantly reduce the compliance of the balloon.
  • the balloon 10 targeted by this embodiment is made by blending L25 and TR70, wherein the mass ratio of L25: TR70 is
  • the mass ratio of L25: TR70 is 9: 1.
  • the preparation method of the balloon 10 is as follows:
  • Step 1 The nylon blending material is extruded through an extrusion device to make a hollow tube, and the hollow tube is put into a balloon forming mold.
  • the nylon blend material is composed of L25 and TR70, and the hollow tube is preferably a three-layer structure, and the length of the balloon forming mold is preferably 19.5 mm to 21.5 mm.
  • Step 2 Close one end of the hollow pipe, and pass a pressure of 21 to the other end of the hollow pipe
  • Step 3 Heat the hollow pipe to 100 ° C to 120 ° C, and apply a tensile force between 160 N to 220 N at both ends of the hollow pipe to stretch at 80 mm / s to 120 mm / s Axially stretching the hollow tube 10 mm to 20 mm at a speed to obtain a body part of the balloon, the body part being a tube of equal diameter;
  • Step 5 Heat the initial structure of the balloon to 130 ° C ⁇ 140 ° C, pressurize it to 22atm ⁇ 26atm at the same time, and carry out shaping for 20s ⁇ 40s, then pass the circulating cooling water to cool, that is to complete the balloon 10's preparation.
  • the balloon 10 produced by the above steps has a hollow three-layer structure, the thickness of each layer is the same, the material of each layer is also the same, and each layer is sequentially stacked inside and outside.
  • the expanded diameter of the balloon 10 is 8 mm, and the length is 20 mm.
  • the definition of the diameter and length of the balloon is the same as that of the first embodiment.
  • the control balloon A5 is made of a single L25 and has a three-layer structure, the thickness of each layer is the same, and the total thickness is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment;
  • the control balloon B5 is composed of The L25 and TR70 with the same ratio provided in this embodiment are blended and made, but it is a single layer structure, and the thickness of the single layer structure is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment;
  • the balloon C5 is made of a single L25 and has a single-layer structure, and the thickness of the single-layer structure is the same as the total thickness of the three-layer structure of the balloon 10 provided in this embodiment.
  • the size of the control balloon A5, the control balloon B5 and the control balloon C5 are the same as the size of the balloon 10 provided in this embodiment.
  • the specific preparation process of the control balloon A5, the control balloon B5 and the control balloon C5 is similar to the preparation method provided in this embodiment, please refer to the above preparation method.
  • the balloon 10, the control balloon A5, the control balloon B5, and the control balloon C5 provided in this embodiment were tested for puncture resistance and compliance, respectively.
  • a specific method please refer to Embodiment 1, which will not be repeated here.
  • Table 5 provides relevant experimental data of this embodiment:
  • the puncture resistance and compliance of the balloon 10 provided in this embodiment are superior to the control balloon A5, the control balloon B5, and the control balloon C5. Since the balloon 10 and the control balloon A5 provided in this embodiment have the same structure size and a three-layer structure, the two only differ in materials.
  • the balloon 10 provided in this embodiment uses a blend material of L25 and TR70
  • the control balloon A5 uses a single L25, so it can be concluded that the balloon made of the L 25 and TR70 blended material has higher puncture resistance and smaller size than the balloon made of a single material Compliance.
  • the balloon 10 provided in this embodiment has the same material and the same size as the control balloon B5, the two differ only in the number of structural layers.
  • the balloon 10 provided in this embodiment adopts a three-layer structure, while the control ball
  • the balloon B5 has a single-layer structure, so it can be concluded that the three-layer balloon has higher puncture resistance and less compliance than the single-layer balloon.
  • control balloon A5 control balloon B 5 and control balloon C5 can be obtained, whether it is a single material changed to a blended material of L25 and TR70, also The single-layer structure is changed to a three-layer structure, which can improve the puncture resistance of the balloon and reduce the compliance of the balloon.
  • the balloon 10 provided in this embodiment is improved in both material and structure.
  • the experimental results show that the use of L25 and TR70 blended materials and three-layer structure can greatly improve the balloon. Puncture resistance, and can significantly reduce the compliance of the balloon.
  • the material of the balloon 10 provided by the embodiment of the present invention is selected from L25 and at least two of TR55, TR90 and TR70 blended, compared to a single nylon A balloon made of material, the balloon 10 of the present invention has higher puncture resistance and less compliance.
  • the balloon 10 of the present invention is preferably a hollow multi-layer structure, which can further improve the puncture resistance of the balloon and further reduce the compliance compared to the single-layer structure.

Abstract

一种球囊扩张导管、球囊(10)及其制备方法,球囊(10)由L25以及TR55、TR90和TR70中的至少两种共混后制成,相比于单一的尼龙材料制成的球囊(10),具有较高的耐刺破性和较小的顺应性。球囊(10)优选为中空的多层结构,相比于单层结构,能够进一步提高球囊(10)的耐刺破性以及进一步减小顺应性。

Description

球囊扩张导管、 球囊及其制备方法 技术领域
[0001] 本发明涉及医疗器械领域, 特别涉及一种球囊扩张导管、 球囊及其制备方法。
背景技术
[0002] 自 1984年 Inoue成功开展经皮球囊瓣膜成形术 (PBV) 以来, PBV已成为心脏瓣 膜病治疗的重要方法之一。 经皮球囊瓣膜成形术具有创伤小、 安全、 疗效确切 等优点, 在一定程度上取代了开胸心脏瓣膜切开 /分离术。 瓣膜球囊适用于严重 的钙化性主动脉瓣狭窄且外科手术禁忌或高危的患者, 通过瓣膜球囊对狭窄病 变扩张疏通, 有利于瓣膜支架的植入操作, 同时, 通过瓣膜球囊的后扩张可以 使得主动脉瓣贴附效果更好, 治愈效果更佳。
发明概述
技术问题
[0003] 然而, 严重钙化性主动脉瓣狭窄的患者, 其主动脉瓣往往钙化严重, 因此需要 瓣膜球囊具有较高的耐刺破性, 以防止在手术过程中被钙化病变刺破; 同时使 用于主动脉瓣的球囊需要有较大的尺寸 (球囊直径范围在 8.0mm~50.0mm) , 较 大的球囊意味着会具有较大的顺应性, 大顺应性的球囊在手术过程中可能会发 生过扩而导致瓣膜撕裂, 或发生向瓣膜支架后扩而致使支架结构损坏。 但是,
5见有的瓣膜球囊却没有克服这些问题。
[0004] 发明人发现, 5见有的瓣膜球囊主要由单一的尼龙材质制成, 规格较大, 但限于 材料因素, 其耐刺破性能却较低, 顺应性也偏大。
问题的解决方案
技术解决方案
[0005] 本发明的目的在于提供一种球囊扩张导管、 球囊及其制备方法, 以解决现有瓣 膜球囊的耐刺破性能低且顺应性偏大的问题。
[0006] 为解决上述技术问题, 本发明提供一种球囊, 所述球囊由 L25以及 TR55、 TR90 和 TR70中的至少两种共混后制成。 [0007] 可选的, 所述球囊由 L25和 TR55共混后制成; 或者, 所述球囊由 L25和 TR90共 混后制成; 或者, 所述球囊由 L25、 TR55和 TR90共混后制成; 或者, 所述球囊 由 L25和 TR70共混后制成。
[0008] 可选的, 所述球囊由 L25和 TR55共混后制成, 其中 L25: TR55的质量比在 9: 1 ~7: 3之间; 或者, 所述球囊由 L25和 TR90共混后制成, 其中 L25: TR90的质量 比在 9: 1~6: 4之间; 或者, 所述球囊由 L25、 TR55和 TR90共混后制成, 其中 T R90的质量百分比为 10%, 且 L25: TR55的质量比在 7: 2~5: 4之间; 或者, 所述 球囊由 L25和 TR70共混后制成, 其中 L25: TR70的质量比在 9: 1~7: 3之间。 。
[0009] 可选的, 所述球囊由 L25和 TR55共混后制成, 其中 L25: TR55的质量比为 8: 2 ; 或者, 所述球囊由 L25和 TR90共混后制成, 其中 L25: TR90的质量比为 7: 3或 8: 2; 或者, 所述球囊由 L25、 TR55和 TR90共混后制成, 其中 L25: TR55: TR9 0的质量比为 6: 3: 1 ; 或者, 所述球囊由 L25和 TR70共混后制成, 其中 L25: TR 70的质量比为 9: 1。
[0010] 可选的, 所述球囊为中空的多层结构, 所述多层结构的各层内外依次层叠设置 , 且各层的厚度和材料相同。
[0011] 可选的, 所述多层结构为两层结构或三层结构。
[0012] 可选的, 所述球囊具有扩张状态和压缩状态, 所述球囊在扩张状态下的直径在
8mm~28mm之间, 所述球囊的长度在 20mm~60mm之间。
[0013] 可选的, 所述球囊在扩张状态下的直径为 8mm、 18mm、 20mm、 26mm或 28m m。
[0014] 可选的, 所述球囊的长度为 20mm、 30mm、 40mm、 50mm或 60mm。
[0015] 为解决上述技术问题, 本发明还提供一种球囊扩张导管, 包括如上所述的球囊 , 所述球囊扩张导管还包括内管和外管; 所述内管插入所述外管, 且所述内管 伸出所述外管的远端区段套设有所述球囊; 所述球囊的远端与所述内管的远端 连接, 所述球囊的近端与所述外管的远端以及所述内管连接。
[0016] 为解决上述技术问题, 本发明还提供一种如上所述的球囊的制备方法, 包括:
[0017] 提供由尼龙共混材料制成的中空管材;
[0018] 使所述中空管材在球囊成型模具的成型腔中, 接受充氮气、 加热、 轴向拉伸、 定型、 冷却处理, 以取得所述球囊。
[0019] 可选的, 所述中空管材通过挤出设备挤出成型。
[0020] 可选的, 使所述中空管材在球囊成型模具的成型腔中, 接受充氮气、 加热、 轴 向拉伸、 定型和冷却处理的步骤包括:
[0021] 封闭所述中空管材的一端, 并向所述中空管材的另一端通入氮气;
[0022] 加热所述中空管材, 并轴向拉伸所述中空管材, 以制得球囊的主体部分;
[0023] 轴向拉伸所述球囊的主体部分, 以制得球囊的初始结构, 所述初始结构包括中 间段、 两个球囊锥部以及两个球囊导管段; 所述两个球囊锥部分别位于所述中 间段的两端, 所述两个球囊导管段分别位于两个所述球囊锥部远离所述中间段 的端部;
[0024] 对所述球囊的初始结构作定型和冷却处理, 即制得所述球囊。
[0025] 可选的, 所述尼龙共混材料由 L25和 TR55组成, 其中 L25: TR55的质量比在 9 : 1~7: 3之间;
[0026] 其中, 向所述中空管材通入氮气的压力在 8atm~12atm之间, 加热所述中空管材 的温度至 100°C~120°C, 且对所述球囊的初始结构作定型和冷却处理的步骤包括 : 将所述球囊的初始结构升温、 加压至 125°C~135°C、 lOatm, 并定型 10s~14s, 之后通入循环冷却水冷却。
[0027] 可选的, 所述尼龙共混材料由 L25和 TR90组成, 其中 L25: TR90的质量比在 9 : 1~6: 4之间;
[0028] 其中, 向所述中空管材通入氮气的压力在 9.5atm~15.5atm之间, 加热所述中空 管材的温度至 100°C~ 130°C, 且对所述球囊的初始结构作定型和冷却处理的步骤 包括: 将所述球囊的初始结构升温、 加压至 130°C~150°C、 10atm~16atm, 并定 型 20s~60s, 之后通入循环冷却水冷却。
[0029] 可选的, 所述尼龙共混材料由 L25、 TR55和 TR90共混后制成, 其中 TR90的质 量百分比为 10%, 且 L25: TR55的质量比在 7: 2~5: 4之间;
[0030] 其中, 向所述中空管材通入氮气的压力在 l l.5atm~13.5atm之间, 加热所述中空 管材的温度至 100°C~ 120°C, 且对所述球囊的初始结构作定型和冷却处理的步骤 包括: 将所述球囊的初始结构升温、 加压至 130°C~140°C、 l latm~15atm, 并进 行定型 20s~40s, 之后通入循环冷却水冷却。
[0031] 可选的, 所述尼龙共混材料由 L25和 TR70组成, 其中 L25: TR70的质量比在 9
: 1~7: 3之间;
[0032] 其中, 向所述中空管材通入氮气的压力在 21.5atm~25.5atm之间, 加热所述中空 管材的温度至 100°C~ 120°C, 且对所述球囊的初始结构作定型和冷却处理的步骤 包括: 将所述球囊的初始结构升温、 加压至 130°C~140°C、 22atm~26atm, 并进 行定型 20s~40s, 之后通入循环冷却水冷却。
[0033] 综上, 在本发明提供的球囊扩张导管、 球囊及其制备方法中, 球囊的材料由 L2 5以及 TR55、 TR90和 TR70中的至少两种共混后制成, 相比于单一的尼龙材料制 成的球囊, 本发明的球囊具有较高的耐刺破性和较小的顺应性。 并且, 本发明 的球囊优选为中空的多层结构, 相比于单层结构, 能够进一步提高球囊的耐刺 破性以及进一步减小顺应性。
发明的有益效果
对附图的简要说明
附图说明
[0034] 本发明的目的在于提供一种球囊扩张导管、 球囊及其制备方法, 本领域的普通 技术人员将会理解, 提供的附图用于更好地理解本发明, 而不对本发明的范围 构成任何限定。 其中:
[0035] 图 1是本发明一个实施例提供的球囊扩张导管的示意图;
[0036] 图 2是本发明一个实施例提供的球囊的示意图;
[0037] 图 3是图 2所示的球囊沿 A- A连线的剖面图。
[0038] 图中:
[0039] 10-球囊; 101-球囊导管段; 102 -球囊锥部; 103 -中间段; 20-内管; 30-显影点
; 40-外管; 50-护套; 61-通液连接件; 62 -导丝连接件。
发明实施例
本发明的实施方式
[0040] 为使本发明的目的、 优点和特征更加清楚, 以下结合附图和具体实施例对本发 明作进一步详细说明。 需说明的是, 附图均采用非常简化的形式且未按比例绘 制, 仅用以方便、 明晰地辅助说明本发明实施例的目的。 此外, 附图所展示的 结构往往是实际结构的一部分。 特别的, 各附图需要展示的侧重点不同, 有时 会采用不同的比例。
[0041] 如在本说明书和所附权利要求书中所使用的, 单数形式“一”、 “一个”以及“该” 包括复数对象, 除非内容另外明确指出外。 如在本说明书和所附权利要求中所 使用的, 术语“或”通常是以包括“和 /或”的含义而进行使用的, 除非内容另外明 确指出外, 术语“近端”通常是靠近术者的一端, 术语“远端”通常是靠近患者之病 变部位的一端。
[0042]
[0043] 请参考图 1至图 3 , 图 1是本发明一个实施例提供的球囊扩张导管的示意图; 图 2 是本发明一个实施例提供的球囊的示意图, 图 3是图 2所示的球囊沿 A-A连线的剖 面图。
[0044] 如图 1所示, 本发明实施例提供了一种球囊扩张导管, 其包括球囊 10、 内管 20 和外管 40; 所述内管 20插入外管 40, 且所述内管 20伸出所述外管 40的一区段套 设有所述球囊 10; 所述球囊 10的远端与所述内管 20的所述区段连接, 所述球囊 1 0的近端与所述外管 40的远端以及所述内管 20连接。 其中, 所述球囊 10由至少两 种牌号的尼龙材料共混制成。 这里尼龙材料, 指尼龙 12 (PA12) , 学名为聚十 二内酰胺, 其具体包括多种不同牌号, 例如: TR55、 TR70、 TR90和 L25等, 不 同牌号的尼龙 12分别具有不同的分子结构和聚集态结构, 故而具有不同的性能 。 例如, 所述球囊 10由 L25和 TR55共混后制成; 或者, 所述球囊 10由 L25和 TR90 共混后制成; 或者, 所述球囊 10由 L25、 TR55和 TR90共混后制成; 或者, 所述 球囊 10由 L25和 TR70共混后制成, 相比单一牌号的尼龙材料, 采用至少两种不同 牌号的尼龙材料共混后制成的球囊, 能有效提高球囊 10的耐刺破性以及减小球 囊 10的顺应性。
[0045] 在一种实施例中, 所述球囊 10由 L25和 TR55共混后制成, 其中 L25: TR55的质 量比在 9: 1~7: 3之间, 更优选 L25: TR55的质量比为 8: 2。 其中, TR55具有较 高的玻璃化转变温度、 极高的动态强度、 耐冲击与可抵抗应力开裂。 [0046] 在一种实施例中, 所述球囊 10由 L25和 TR90共混后制成, 其中 L25: TR90的质 量比在 9: 1~6: 4之间, 更优选 L25: TR90的质量比为 7: 3或 8: 2。 其中, TR90 具有极高的动态强度。
[0047] 在另一种实施例中, 所述球囊 10由 L25、 TR55和 TR90共混后制成, 其中 TR90 的质量百分比为 10%, 且 L25: TR55的质量比在 7: 2~5: 4之间, 更优选 L25: T R55: TR90的质量比为 6: 3: 1。
[0048] 在其他实施例中, 所述球囊 10由 L25和 TR70共混后制成, 其中 L25: TR70的质 量比在 9: 1~7: 3之间, 更优选 L25: TR70的质量比为 9: 1。 其中, TR70具有较 高的玻璃化转变温度。
[0049] 发明人研究发现, 相比现有单一尼龙材质的球囊, 所述球囊 10的材料选用 L25 、 TR55、 TR70和 TR90材料中的两种或三种按一定的比例共混而制成, 能够使球 囊 10具有较高的耐刺破性和较小的顺应性。
[0050] 进一步, 所述球囊 10包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 10 1 ; 所述两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分别位于两个所述球囊锥部 102远离所述中间段 103的端部, 其中位于远端的 一个所述球囊导管段 101的远端形成封闭并与所述内管 20的远端连接, 位于近端 的一个所述球囊导管段 101的近端形成敞口并与所述外管 40的远端以及所述内管 20连接。 优选, 所述内管 20与所述球囊 10同轴设置。
[0051] 进一步, 所述球囊扩张导管还包括显影点 30、 护套 50、 通液连接件 61和导丝连 接件 62。 所述显影点 30由显影材料制成, 例如可采用不透 X射线的钼铱合金制 造, 用于在 X射线透视可通过显示器监视球囊 10的位置。 所述显影点 30可设置于 所述内管 20的所述区段上, 具体可通过压握的方式在内管 20上设置显影点 30。 所述通液连接件 61和所述导丝连接件 62的一端均与所述外管 40的近端连接。 所 述通液连接件 61为排空 /充盈球囊的接头, 以供球囊扩张时注射造影液用; 所述 导丝连接件 62用于供导丝穿设。 在所述通液连接件 61和所述导丝连接件 62与所 述外管 40相连接的部位之外, 所述外管 40上还套设有所述护套 50, 以保护所述 通液连接件 61和所述导丝连接件 62与外管 40的连接处, 避免脱离损坏。
[0052] 更进一步, 所述球囊扩张导管可通过如下方式制备而成: [0053] 步骤 SI : 对球囊 10热处理 lOmin, 并将球囊 10的近端与外管 40的远端进行热吹 塑连接;
[0054] 步骤 S2: 将内管 20的一部分穿入球囊 10, 并将球囊 10的远端与内管 20进行热吹 塑连接;
[0055] 步骤 S3: 将球囊 10折叠成五翼, 并对外管 40进行通液口成型;
[0056] 步骤 S4: 将通液连接件 61与导丝连接件 62通过医疗级胶水粘接到外管 40上;
[0057] 步骤 S5: 将护套 50套设于外管 40上远离所述通液连接件 61和所述导丝连接件 62 的区域。
[0058] 优选的, 所述球囊 10为中空的多层结构, 所述多层结构的各层内外依次层叠设 置, 且各层的厚度和材料相同。 更优选的, 所述球囊 10为中空的两层结构, 或 三层结构。 相比于单层, 多层能够进一步提高球囊的耐刺破性以及进一步减小 顺应性。 此外, 所述球囊 10具有扩张状态和压缩状态, 两种状态下, 所述球囊 1 0的直径会发生变化。 当球囊 10在充盈之后即处于扩张状态, 在扩张状态下, 所 述球囊 10的直径优选在 8mm~28mm之间, 同时所述球囊 10的长度优选在 20mm~6 Omm之间 °
[0059] 接下去, 针对上述提出的多种尼龙共混方案, 并结合实验数据和实验结果, 对 本发明的球囊 10所取得的进步作进一步地说明, 以更凸显上述实施例的特点和 特征。
[0060] 【实施例一】
[0061] 本实施例针对的球囊 10由 L25和 TR55共混后制成, 其中 L25: TR55的质量比在 9: 1~7: 3之间。 优选的, L25: TR55的质量比为 8: 2。 其中, 请参考图 2和图 3 , 该球囊 10的制备方法如下:
[0062] 步骤一: 将尼龙共混材料通过一挤出设备挤出制成中空管材, 并将所述中空管 材放入一球囊成型模具的成型腔中。 这里, 尼龙共混材料便由 L25和 TR55组成, 且所述中空管材优选为三层结构, 所述球囊成型模具的长度优选为 47.8 mm 〜 50.6mm°
[0063] 步骤二: 封闭所述中空管材的一端, 并向所述中空管材的另一端通入压力为 8at m〜 12atm的氮气; [0064] 步骤三: 加热所述中空管材至 100°C~120°C, 并在所述中空管材的两端施加 200 N~300N之间的拉力, 以 50mm/s~90mm/s的拉伸速度轴向拉伸所述中空管材 30m m~40mm, 以制得球囊的主体部分, 所述主体部分为等径的管体;
[0065] 步骤四: 再次轴向拉伸所述球囊的主体部分 3mm~7mm, 形成球囊的初始结构 , 该初始结构包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 101 ; 所述 两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分别 位于两个所述球囊锥部 102远离所述中间段 103的端部 (如图 2所示) ;
[0066] 步骤五: 加热所述球囊的初始结构至 125°C~135°C, 同时加压至 lOatm, 并定型 10s~14s , 之后通入循环冷却水冷却, 即完成球囊 10的制备。
[0067] 如图 3所示, 通过上述步骤所制得的所述球囊 10为中空的三层结构, 其各层的 厚度相同, 各层的材料亦相同。 此外, 所述球囊 10扩张后的直径为 28mm, 长度 为 40mm。 需要说明的是, 这里的直径, 指球囊 10的最大直径, 即为球囊 10的中 间段最外层的外径, 而不是球囊锥部 102与球囊导管段 101的直径; 长度则指球 囊 10的中间段与球囊锥部 102沿轴向的长度之和, 但不包括球囊导管段 101部分 的长度。
[0068] 接着按照同样的步骤, 制备对照球囊 A1、 对照球囊 B1和对照球囊 C1。 对照球 囊 A1由单一的 L25制成, 为三层结构, 其各层的厚度相同, 且总厚度与本实施例 提供的球囊 10的总厚度相同; 对照球囊 B 1由与本实施例提供的配比相同的 L25和 TR55共混后制成, 但为单层结构, 该单层结构的厚度与本实施例提供的球囊 10 的总厚度相同; 对照球囊 C1由单一的 L25制成, 且为单层结构, 该单层结构的厚 度与本实施例提供的球囊 10的总厚度相同。 对照球囊 A1、 对照球囊 B 1和对照球 囊 C1的尺寸均与本实施例提供的球囊 10的尺寸相同。 对照球囊 A1、 对照球囊 B1 和对照球囊 C1的具体制备过程与本实施例提供的制备方法类似, 请参考上述制 备方法, 此处不再赘述。
[0069] 然后, 对本实施例提供的球囊 10、 对照球囊 A1、 对照球囊 B1和对照球囊 C1分 另 IJ进行耐刺破性和顺应性的测试。
[0070] 球囊体的耐刺破力的测试方法包括:
[0071] 步骤 A1 : 将球囊置于 37°C的水浴中浸泡 2 min; [0072] 步骤 A2: 将穿刺针垂直夹持在测量仪器的夹具上;
[0073] 步骤 A3: 调整穿刺夹具的位置, 使穿刺针对准夹具上的球囊;
[0074] 步骤 A4: 将球囊在夹具中充盈至额定爆破压力;
[0075] 步骤 A5: 激活测试程序开始测试, 并从仪器上读取耐刺破力值。
[0076] 一般的, 对于耐刺破性, 通常认为在如上描述测试方法下, 刺破力值>10N为 高耐刺破性, 耐刺破性越高则越有利于保证手术的可靠性。
[0077] 球囊的顺应性的测试方法包括:
[0078] 步骤 B1 : 将球囊充盈至名义压力 Pn, 测得球囊的名义直径 Dn;
[0079] 步骤 B2: 将球囊充盈至额定爆破压力 Prbp, 测得球囊的爆破直径 Drbp;
[0080] 步骤 B3: 获取球囊的顺应性, 顺应性为:
[] Drbp— Dn
Prbp - Pn
[0081] 一般的, 对于较大尺寸的球囊 (指直径 8mm及以上的球囊) , 其顺应性会随着 球囊的直径增大而变大, 因而对低顺应性的定义也有所不同。 例如, 对于直径 为 8mm~14mm的球囊, 低顺应性定义为<0.1, 对于直径为 14mm~20mm的球囊, 低顺应性定义为<0.8, 对于直径为 20mm~28mm的球囊, 低顺应性定义为<1.5。 顺应性越小则越有利于保证手术的可靠性。
[0082] 最后, 表一提供了相关的实验数据:
[0083] 表一: 耐刺破性和顺应性对照表
[]
Figure imgf000011_0001
[0084] 由表一可知, 本实施例提供的球囊 10的耐刺破性和顺应性明显优于对照球囊 A1 、 对照球囊 B 1和对照球囊 C1。
[0085] 由于本实施例提供的球囊 10与对照球囊 A1结构尺寸均相同, 且均为三层结构, 两者仅材料不同, 本实施例提供的球囊 10采用的是 L25和 TR55的共混材料, 而对 照球囊 A1采用单一的 L25, 故而可以得出结论: 采用 L25和 TR55共混材料制得的 球囊相比单一材料制成的球囊具有较高的耐刺破性和较小的顺应性。
[0086] 此外, 由于本实施例提供的球囊 10与对照球囊 B1的材料相同, 尺寸亦相同, 两 者仅结构层数不同, 本实施例提供的球囊 10采用的是三层结构, 而对照球囊 B 1 为单层结构, 故而可得出结论: 采用三层结构的球囊相比单层结构的球囊具有 较高的耐刺破性和较小的顺应性。
[0087] 比较对照球囊 A1、 对照球囊 B1和对照球囊 C1可以得出, 不论是对将单一材料 改成 L25和 TR55的共混材料, 还是将单层结构改成三层结构, 均能提高球囊的耐 刺破性, 以及减小球囊的顺应性。
[0088] 而本实施例提供的球囊 10相比对照球囊 C1同时在材料与结构两方面都作了改进 , 实验结果表明, 同时采用 L25和 TR55的共混材料和三层结构能够较大地提高球 囊的耐刺破性, 且能够较明显地减小球囊的顺应性。
[0089] 【实施例二】
[0090] 本实施例针对的球囊 10由 L25和 TR90共混后制成, 其中 L25: TR90的质量比在 9: 1~6: 4之间。 优选的, L25: TR90的质量比为 7: 3。 具体的, 该球囊 10的制 备方法如下:
[0091] 步骤一: 将尼龙共混材料通过一挤出设备挤出制成中空管材, 并将所述中空管 材放入一球囊成型模具中。 这里, 尼龙共混材料便由 L25和 TR90组成, 且所述中 空管材优选为两层结构, 所述的球囊成型模具的长度优选为 39.5 mm ~41.5mm。
[0092] 步骤二: 封闭所述中空管材的一端, 并向所述中空管材的另一端通入压力为 9.5 atm~ 11.5 atm的氮气;
[0093] 步骤三: 加热所述中空管材至 110°C~130°C, 并在所述中空管材的两端施加 220 N~300N之间的拉力, 以 80mm/s~120mm/s的拉伸速度轴向拉伸所述中空管材 20m m~30mm, 以制得球囊的主体部分, 所述主体部分为等径的管体;
[0094] 步骤四: 再次轴向拉伸所述球囊的主体部分 5mm~10mm, 形成球囊的初始结构 , 该初始结构包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 101 ; 所述 两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分别 位于两个所述球囊锥部 102远离所述中间段 103的端部;
[0095] 步骤五: 加热所述球囊的初始结构至 140°C~150°C, 同时加压至 10atm~14atm, 并进行定型 40s~60s, 之后通入循环冷却水冷却, 即完成球囊 10的制备。
[0096] 通过上述步骤所制得的所述球囊 10为中空的两层结构, 其各层的厚度相同, 各 层的材料亦相同, 各层内外依次层叠设置。 此外, 所述球囊 10扩张后的直径为 2 6mm, 长度为 30mm。 这里球囊的直径和长度的定义, 与实施例一相同。
[0097] 接着按照同样的步骤, 制备对照球囊 A2、 对照球囊 B2和对照球囊 C2。 对照球 囊 A2由单一的 L25制成, 为两层结构, 其各层的厚度相同, 且总厚度与本实施例 提供的球囊 10的两层结构的总厚度相同; 对照球囊 B2由与本实施例提供的配比 相同的 L25和 TR90共混后制成, 但为单层结构, 该单层结构的厚度与本实施例提 供的球囊 10的两层结构的总厚度相同; 对照球囊 C2由单一的 L25制成, 且为单层 结构, 该单层结构的厚度与本实施例提供的球囊 10的两层结构的总厚度相同。 对照球囊 A2、 对照球囊 B2和对照球囊 C2的尺寸均与本实施例提供的球囊 10的尺 寸相同。 对照球囊 A2、 对照球囊 B2和对照球囊 C2的具体制备过程与本实施例提 供的制备方法类似, 请参考上述制备方法。
[0098] 然后, 对本实施例提供的球囊 10、 对照球囊 A2、 对照球囊 B2和对照球囊 C2分 别进行耐刺破性和顺应性的测试。 具体方法请参考实施例一, 此处不再赘述。
[0099] 表二提供了本实施例的相关的实验数据:
[0100] 表二: 耐刺破性和顺应性对照表
[]
Figure imgf000013_0001
[0101] 由表二可知, 本实施例提供的球囊 10的耐刺破性和顺应性明显优于对照球囊 A2 、 对照球囊 B2和对照球囊 C2。 由于本实施例提供的球囊 10与对照球囊 A2结构尺 寸均相同, 且均为两层结构, 两者仅材料不同, 本实施例提供的球囊 10采用的 是 L25和 TR90的共混材料, 而对照球囊 A2采用单一的 L25, 故而可以得出结论: 采用 L25和 TR90共混材料制得的球囊相比单一材料制成的球囊具有较高的耐刺破 性和较小的顺应性。 此外, 由于本实施例提供的球囊 10与对照球囊 B2的材料相 同, 尺寸亦相同, 两者仅结构层数不同, 本实施例提供的球囊 10采用的是两层 结构, 而对照球囊 B2为单层结构, 故而可得出结论: 采用两层结构的球囊相比 单层结构的球囊具有较高的耐刺破性和较小的顺应性。 比较对照球囊 A2、 对照 球囊 B2和对照球囊 C2可以得出, 不论是对将单一材料改成 L25和 TR90的共混材 料, 还是将单层结构改成两层结构, 均能提高球囊的耐刺破性, 以及减小球囊 的顺应性。 而本实施例提供的球囊 10相比对照球囊 C2同时在材料与结构两方面 都作了改进, 实验结果表明, 同时采用 L25和 TR90的共混材料和两层结构能够较 大地提高球囊的耐刺破性, 且能够较明显地减小球囊的顺应性。
[0102] 【实施例三】
[0103] 本实施例针对的球囊 10由 L25、 TR55和 TR90共混后制成, 其中 TR90的质量百 分比为 10%, 且 L25: TR55的质量比在 7: 2~5: 4之间。 优选的, L25: TR55: T R90的质量比为 6: 3: 1。
[0104] 具体的, 该球囊 10的制备方法如下:
[0105] 步骤一: 将尼龙共混材料通过一挤出设备挤出制成中空管材, 并将所述中空管 材放入一球囊成型模具中。 这里, 尼龙共混材料便由 L25、 TR55和 TR90组成, 且所述中空管材优选为三层结构, 所述的球囊成型模具的长度优选为 57.5 mm ~59.5mm之间。
[0106] 步骤二: 封闭所述中空管材的一端, 并向所述中空管材的另一端通入压力为 11.
5atm~13.5atm的氮气, 另一端封闭;
[0107] 步骤三: 加热所述中空管材至 100°C~120°C, 并在所述中空管材的两端施加 160 N~220N之间的拉力, 以 80mm/s~120mm/s的拉伸速度轴向拉伸所述中空管材 30m m~50mm, 以制得球囊的主体部分, 所述主体部分为等径的管体;
[0108] 步骤四: 再次轴向拉伸所述球囊的主体部分 10mm~15mm, 形成球囊的初始结 构, 该初始结构包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 101 ; 所 述两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分 别位于两个所述球囊锥部 102远离所述中间段 103的端部; [0109] 步骤五: 加热所述球囊的初始结构至 130°C~140°C, 同时加压至 l latm~15atm, 并进行定型 20s~40s, 之后通入循环冷却水冷却, 即完成球囊 10的制备。
[0110] 通过上述步骤所制得的所述球囊 10为中空的三层结构, 其各层的厚度相同, 各 层的材料亦相同, 各层内外依次层叠设置。 此外, 所述球囊 10扩张后的直径为 2 0mm, 长度为 50mm。 这里球囊的直径和长度的定义, 与实施例一相同。
[0111] 接着按照同样的步骤, 制备对照球囊 A3、 对照球囊 B3和对照球囊 C3。 对照球 囊 A3由单一的 L25制成, 为三层结构, 其各层的厚度相同, 且总厚度与本实施例 提供的球囊 10的三层结构的总厚度相同; 对照球囊 B3由与本实施例提供的配比 相同的 L25、 TR55和 TR90共混后制成, 但为单层结构, 该单层结构的厚度与本 实施例提供的球囊 10的三层结构的总厚度相同; 对照球囊 C3由单一的 L25制成, 且为单层结构, 该单层结构的厚度与本实施例提供的球囊 10的三层结构的总厚 度相同。 对照球囊 A3、 对照球囊 B3和对照球囊 C3的尺寸均与本实施例提供的球 囊 10的尺寸相同。 对照球囊 A3、 对照球囊 B3和对照球囊 C3的具体制备过程与本 实施例提供的制备方法类似, 请参考上述制备方法。
[0112] 然后, 对本实施例提供的球囊 10、 对照球囊 A3、 对照球囊 B3和对照球囊 C3分 别进行耐刺破性和顺应性的测试。 具体方法请参考实施例一, 此处不再赘述。
[0113] 表三提供了本实施例的相关的实验数据:
[0114] 表三: 耐刺破性和顺应性对照表
[] _
Figure imgf000015_0001
[0115] 由表三可知, 本实施例提供的球囊 10的耐刺破性和顺应性优于对照球囊 A3、 对 照球囊 B3和对照球囊 C3。 由于本实施例提供的球囊 10与对照球囊 A3结构尺寸均 相同, 且均为三层结构, 两者仅材料不同, 本实施例提供的球囊 10采用的是 L25 、 TR55和 TR90的共混材料, 而对照球囊 A3采用单一的 L25, 故而可以得出结论 : 采用 L25、 TR55和 TR90共混材料制得的球囊相比单一材料制成的球囊具有较 高的耐刺破性和较小的顺应性。 此外, 由于本实施例提供的球囊 10与对照球囊 B 3的材料相同, 尺寸亦相同, 两者仅结构层数不同, 本实施例提供的球囊 10采用 的是三层结构, 而对照球囊 B3为单层结构, 故而可得出结论: 采用三层结构的 球囊相比单层结构的球囊具有较高的耐刺破性和较小的顺应性。 比较对照球囊 A 3、 对照球囊 B3和对照球囊 C3可以得出, 不论是对将单一材料改成 L25、 TR55和 TR90的共混材料, 还是将单层结构改成三层结构, 均能提高球囊的耐刺破性, 以及减小球囊的顺应性。 而本实施例提供的球囊 10相比对照球囊 C3同时在材料 与结构两方面都作了改进, 实验结果表明, 同时采用 L25、 TR55和 TR90的共混 材料和三层结构能够较大地提高球囊的耐刺破性, 且能够较明显地减小球囊的 顺应性。
[0116] 【实施例四】
[0117] 本实施例针对的球囊 10由 L25和 TR90共混后制成, 其中 L25: TR90的质量比在 9: 1~7: 3之间。 优选的, L25: TR90的质量比为 8: 2。
[0118] 具体的, 该球囊 10的制备方法如下:
[0119] 步骤一: 将尼龙共混材料通过一挤出设备挤出制成中空管材, 并将所述中空管 材放入一球囊成型模具中。 这里, 尼龙共混材料便由 L25和 TR90组成, 且所述中 空管材优选为三层结构, 所述的球囊成型模具的长度优选为 59.5 mm ~61.5mm。
[0120] 步骤二: 封闭所述中空管材的一端, 并向所述中空管材的另一端通入压力为 12.
5atm~15.5atm的氮气;
[0121] 步骤三: 加热所述中空管材至 100°C~120°C, 并在所述中空管材的两端施加 160
N~220N之间的拉力, 以 80mm/s~120mm/s的拉伸速度轴向拉伸所述中空管材 50m m~70mm, 以制得球囊的主体部分, 所述主体部分为等径的管体;
[0122] 步骤四: 再次轴向拉伸所述球囊的主体部分 10mm~15mm, 形成球囊的初始结 构, 该初始结构包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 101 ; 所 述两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分 别位于两个所述球囊锥部 102远离所述中间段 103的端部;
[0123] 步骤五: 加热所述球囊的初始结构至 130°C~140°C, 同时加压至 12atm~16atm, 并进行定型 20s~40s, 之后通入循环冷却水冷却, 即完成球囊 10的制备。 [0124] 通过上述步骤所制得的所述球囊 10为中空的三层结构, 其各层的厚度相同, 各 层的材料亦相同, 各层内外依次层叠设置。 此外, 所述球囊 10扩张后的直径为 1 8mm, 长度为 60mm。 这里球囊的直径和长度的定义, 与实施例一相同。
[0125] 接着按照同样的步骤, 制备对照球囊 A4、 对照球囊 B4和对照球囊 C4。 对照球 囊 A4由单一的 L25制成, 为三层结构, 其各层的厚度相同, 且总厚度与本实施例 提供的球囊 10的三层结构的总厚度相同; 对照球囊 B4由与本实施例提供的配比 相同的 L25和 TR90共混后制成, 但为单层结构, 该单层结构的厚度与本实施例提 供的球囊 10的三层结构的总厚度相同; 对照球囊 C4由单一的 L25制成, 且为单层 结构, 该单层结构的厚度与本实施例提供的球囊 10的三层结构的总厚度相同。 对照球囊 A4、 对照球囊 B4和对照球囊 C4的尺寸均与本实施例提供的球囊 10的尺 寸相同。 对照球囊 A4、 对照球囊 B4和对照球囊 C4的具体制备过程与本实施例提 供的制备方法类似, 请参考上述制备方法。
[0126] 然后, 对本实施例提供的球囊 10、 对照球囊 A4、 对照球囊 B4和对照球囊 C4分 别进行耐刺破性和顺应性的测试。 具体方法请参考实施例一, 此处不再赘述。
[0127] 表四提供了本实施例的相关的实验数据:
[0128] 表四: 耐刺破性和顺应性对照表 口
Figure imgf000017_0001
[0129] 由表四可知, 本实施例提供的球囊 10的耐刺破性和顺应性优于对照球囊 A4、 对 照球囊 B4和对照球囊 C4。 由于本实施例提供的球囊 10与对照球囊 A4结构尺寸均 相同, 且均为三层结构, 两者仅材料不同, 本实施例提供的球囊 10采用的是 L25 和 TR90的共混材料, 而对照球囊 A4采用单一的 L25, 故而可以得出结论: 采用 L 25和 TR90共混材料制得的球囊相比单一材料制成的球囊具有较高的耐刺破性和 较小的顺应性。 此外, 由于本实施例提供的球囊 10与对照球囊 B4的材料相同, 尺寸亦相同, 两者仅结构层数不同, 本实施例提供的球囊 10采用的是三层结构 , 而对照球囊 B4为单层结构, 故而可得出结论: 采用三层结构的球囊相比单层 结构的球囊具有较高的耐刺破性和较小的顺应性。 比较对照球囊 A4、 对照球囊 B 4和对照球囊 C4可以得出, 不论是对将单一材料改成 L25和 TR90的共混材料, 还 是将单层结构改成三层结构, 均能提高球囊的耐刺破性, 以及减小球囊的顺应 性。 而本实施例提供的球囊 10相比对照球囊 C4同时在材料与结构两方面都作了 改进, 实验结果表明, 同时采用 L25和 TR90的共混材料和三层结构能够较大地提 高球囊的耐刺破性, 且能够较明显地减小球囊的顺应性。
[0130] 【实施例五】
[0131] 本实施例针对的球囊 10由 L25和 TR70共混后制成, 其中 L25: TR70的质量比在
9: 1~7: 3之间。 优选的, L25: TR70的质量比为 9: 1。
[0132] 具体的, 该球囊 10的制备方法如下:
[0133] 步骤一: 将尼龙共混材料通过一挤出设备挤出制成中空管材, 并将所述中空管 材放入一球囊成型模具中。 这里, 尼龙共混材料便由 L25和 TR70组成, 且所述中 空管材优选为三层结构, 所述的球囊成型模具的长度优选为 19.5 mm ~21.5mm。
[0134] 步骤二: 封闭所述中空管材的一端, 并向所述中空管材的另一端通入压力为 21.
5 atm~25 · 5 atm的氮气;
[0135] 步骤三: 加热所述中空管材至 100°C~120°C, 并在所述中空管材的两端施加 160 N~220N之间的拉力, 以 80mm/s~120mm/s的拉伸速度轴向拉伸所述中空管材 10m m~20mm, 以制得球囊的主体部分, 所述主体部分为等径的管体;
[0136] 步骤四: 再次轴向拉伸所述球囊的主体部分 3mm~8mm, 形成球囊的初始结构 , 该初始结构包括中间段 103、 两个球囊锥部 102以及两个球囊导管段 101 ; 所述 两个球囊锥部 102分别位于所述中间段 103的两端, 所述两个球囊导管段 101分别 位于两个所述球囊锥部 102远离所述中间段 103的端部;
[0137] 步骤五: 加热所述球囊的初始结构至 130°C~140°C, 同时加压至 22atm~26atm, 并进行定型 20s~40s, 之后通入循环冷却水冷却, 即完成球囊 10的制备。
[0138] 通过上述步骤所制得的所述球囊 10为中空的三层结构, 其各层的厚度相同, 各 层的材料亦相同, 各层内外依次层叠设置。 此外, 所述球囊 10扩张后的直径为 8 mm, 长度为 20mm。 这里球囊的直径和长度的定义, 与实施例一相同。 [0139] 接着按照同样的步骤, 制备对照球囊 A5、 对照球囊 B5和对照球囊 C5。 对照球 囊 A5由单一的 L25制成, 为三层结构, 其各层的厚度相同, 且总厚度与本实施例 提供的球囊 10的三层结构的总厚度相同; 对照球囊 B5由与本实施例提供的配比 相同的 L25和 TR70共混后制成, 但为单层结构, 该单层结构的厚度与本实施例提 供的球囊 10的三层结构的总厚度相同; 对照球囊 C5由单一的 L25制成, 且为单层 结构, 该单层结构的厚度与本实施例提供的球囊 10的三层结构的总厚度相同。 对照球囊 A5、 对照球囊 B5和对照球囊 C5的尺寸均与本实施例提供的球囊 10的尺 寸相同。 对照球囊 A5、 对照球囊 B5和对照球囊 C5的具体制备过程与本实施例提 供的制备方法类似, 请参考上述制备方法。
[0140] 然后, 对本实施例提供的球囊 10、 对照球囊 A5、 对照球囊 B5和对照球囊 C5分 别进行耐刺破性和顺应性的测试。 具体方法请参考实施例一, 此处不再赘述。
[0141] 表五提供了本实施例的相关的实验数据:
[0142] 表五: 耐刺破性和顺应性对照表
[]
Figure imgf000019_0001
[0143] 由表五可知, 本实施例提供的球囊 10的耐刺破性和顺应性优于对照球囊 A5、 对 照球囊 B5和对照球囊 C5。 由于本实施例提供的球囊 10与对照球囊 A5结构尺寸均 相同, 且均为三层结构, 两者仅材料不同, 本实施例提供的球囊 10采用的是 L25 和 TR70的共混材料, 而对照球囊 A5采用单一的 L25, 故而可以得出结论: 采用 L 25和 TR70共混材料制得的球囊相比单一材料制成的球囊具有较高的耐刺破性和 较小的顺应性。 此外, 由于本实施例提供的球囊 10与对照球囊 B5的材料相同, 尺寸亦相同, 两者仅结构层数不同, 本实施例提供的球囊 10采用的是三层结构 , 而对照球囊 B5为单层结构, 故而可得出结论: 采用三层结构的球囊相比单层 结构的球囊具有较高的耐刺破性和较小的顺应性。 比较对照球囊 A5、 对照球囊 B 5和对照球囊 C5可以得出, 不论是对将单一材料改成 L25和 TR70的共混材料, 还 是将单层结构改成三层结构, 均能提高球囊的耐刺破性, 以及减小球囊的顺应 性。 而本实施例提供的球囊 10相比对照球囊 C5同时在材料与结构两方面都作了 改进, 实验结果表明, 同时采用 L25和 TR70的共混材料和三层结构能够较大地提 高球囊的耐刺破性, 且能够较明显地减小球囊的顺应性。
[0144] 综上, 与现有技术相比, 本发明实施例提供的球囊 10的材料选由 L25以及 TR55 、 TR90和 TR70中的至少两种共混后制成, 相比于单一的尼龙材料制成的球囊, 本发明的球囊 10具有较高的耐刺破性和较小的顺应性。 并且, 本发明的球囊 10 优选为中空的多层结构, 相比于单层结构, 能够进一步提高球囊的耐刺破性以 及进一步减小顺应性。
[0145] 上述描述仅是对本发明较佳实施例的描述, 并非对本发明范围的任何限定, 本 发明领域的普通技术人员根据上述揭示内容做的任何变更、 修饰, 均属于权利 要求书的保护范围。

Claims

权利要求书
[权利要求 1] 一种球囊, 其特征在于, 所述球囊由 L25以及 TR55、 TR90和 TR70中 的至少两种共混后制成。
[权利要求 2] 根据权利要求 1所述的球囊, 其特征在于, 所述球囊由 L25和 TR55共 混后制成; 或者, 所述球囊由 L25和 TR90共混后制成; 或者, 所述球 囊由 L25、 TR55和 TR90共混后制成; 或者, 所述球囊由 L25和 TR70共 混后制成。
[权利要求 3] 根据权利要求 1所述的球囊, 其特征在于, 所述球囊由 L25和 TR55共 混后制成, 其中 L25: TR55的质量比在 9: 1~7: 3之间; 或者, 所述球囊由 L25和 TR90共混后制成, 其中 L25: TR90的质量比在 9: 1 ~6: 4之间; 或者,
所述球囊由 L25、 TR55和 TR90共混后制成, 其中 TR90的质量百分比 为 10%, 且 L25: TR55的质量比在 7: 2~5: 4之间; 或者,
所述球囊由 L25和 TR70共混后制成, 其中 L25: TR70的质量比在 9: 1 ~7: 3之间。
[权利要求 4] 根据权利要求 1所述的球囊, 其特征在于, 所述球囊由 L25和 TR55共 混后制成, 其中 L25: TR55的质量比为 8: 2; 或者,
所述球囊由 L25和 TR90共混后制成, 其中 L25: TR90的质量比为 7: 3 或 8: 2; 或者,
所述球囊由 L25、 TR55和 TR90共混后制成, 其中 L25: TR55: TR90 的质量比为 6: 3: 1 ; 或者,
所述球囊由 L25和 TR70共混后制成, 其中 L25: TR70的质量比为 9: 1
[权利要求 5] 根据权利要求 1~4中任一项所述的球囊, 其特征在于, 所述球囊为中 空的多层结构, 所述多层结构的各层内外依次层叠设置, 且各层的厚 度和材料相同。
[权利要求 6] 根据权利要求 5所述的球囊, 其特征在于, 所述多层结构为两层结构 或三层结构。
[权利要求 7] 根据权利要求 1~4中任一项所述的球囊, 其特征在于, 所述球囊具有 扩张状态和压缩状态, 所述球囊在扩张状态下的直径在 8mm~28mm 之间, 所述球囊的长度在 20mm~60mm之间。
[权利要求 8] 根据权利要求 7所述的球囊, 其特征在于, 所述球囊在扩张状态下的 直径为 8mm、 18mm、 20mm、 26mm或 28mm。
[权利要求 9] 根据权利要求 7所述的球囊, 其特征在于, 所述球囊的长度为 20mm、
30mm、 40mm、 50mm或 60mm。
[权利要求 10] 一种球囊扩张导管, 其特征在于, 包括根据权利要求 1~9中任一项所 述的球囊, 所述球囊扩张导管还包括内管和外管; 所述内管插入所述 外管, 且所述内管伸出所述外管的远端区段套设有所述球囊; 所述球 囊的远端与所述内管的远端连接, 所述球囊的近端与所述外管的远端 连接。
[权利要求 11] 一种根据权利要求 1~9中任意一项所述的球囊的制备方法, 其特征在 于, 包括:
提供由尼龙共混材料制成的中空管材;
使所述中空管材在球囊成型模具的成型腔中, 接受充氮气、 加热、 轴 向拉伸、 定型、 冷却处理, 以取得所述球囊。
[权利要求 12] 根据权利要求 11所述的球囊的制备方法, 其特征在于, 所述中空管材 通过挤出设备挤出成型。
[权利要求 13] 根据权利要求 11所述的球囊的制备方法, 其特征在于, 使所述中空管 材在球囊成型模具的成型腔中, 接受充氮气、 加热、 轴向拉伸、 定型 和冷却处理的步骤包括:
封闭所述中空管材的一端, 并向所述中空管材的另一端通入氮气; 加热所述中空管材, 并轴向拉伸所述中空管材, 以制得球囊的主体部 分;
轴向拉伸所述球囊的主体部分, 以制得球囊的初始结构, 所述初始结 构包括中间段、 两个球囊锥部以及两个球囊导管段; 所述两个球囊锥 部分别位于所述中间段的两端, 所述两个球囊导管段分别位于两个所 述球囊锥部远离所述中间段的端部;
对所述球囊的初始结构作定型和冷却处理, 即制得所述球囊。
[权利要求 14] 根据权利要求 13所述的球囊的制备方法, 其特征在于, 所述尼龙共混 材料由 L25和 TR55组成, 其中 L25: TR55的质量比在 9: 1~7: 3之间 其中, 向所述中空管材通入氮气的压力在 8atm~12atm之间, 加热所述 中空管材的温度至 100°C~120°C, 且对所述球囊的初始结构作定型和 冷却处理的步骤包括: 将所述球囊的初始结构升温、 加压至 125°C~13 5°C、 lOatm, 并定型 10s~14s, 之后通入循环冷却水冷却。
[权利要求 15] 根据权利要求 13所述的球囊的制备方法, 其特征在于, 所述尼龙共混 材料由 L25和 TR90组成, 其中 L25: TR90的质量比在 9: 1~6: 4之间 其中, 向所述中空管材通入氮气的压力在 9.5atm~15.5atm之间, 加热 所述中空管材的温度至 100°C~ 130°C, 且对所述球囊的初始结构作定 型和冷却处理的步骤包括: 将所述球囊的初始结构升温、 加压至 130 °C~150°C、 10atm~16atm, 并定型 20s~60s, 之后通入循环冷却水冷却
[权利要求 16] 根据权利要求 13所述的球囊的制备方法, 其特征在于, 所述尼龙共混 材料由 L25、 TR55和 TR90共混后制成, 其中 TR90的质量百分比为 10 % , 且 L25: TR55的质量比在 7: 2~5: 4之间;
其中, 向所述中空管材通入氮气的压力在 l l.5atm~13.5atm之间, 加热 所述中空管材的温度至 100°C~120°C, 且对所述球囊的初始结构作定 型和冷却处理的步骤包括: 将所述球囊的初始结构升温、 加压至 130 °C~140°C、 l latm~15atm, 并进行定型 20s~40s, 之后通入循环冷却水 冷却。
[权利要求 17] 根据权利要求 13所述的球囊的制备方法, 其特征在于, 所述尼龙共混 材料由 L25和 TR70组成, 其中 L25: TR70的质量比在 9: 1~7: 3之间 其中, 向所述中空管材通入氮气的压力在 21.5atm~25.5atm之间, 加热 所述中空管材的温度至 100°C~120°C, 且对所述球囊的初始结构作定 型和冷却处理的步骤包括: 将所述球囊的初始结构升温、 加压至 130 °C~140°C、 22atm~26atm, 并进行定型 20s~40s, 之后通入循环冷却水 冷却。
PCT/CN2019/115699 2018-11-05 2019-11-05 球囊扩张导管、球囊及其制备方法 WO2020094001A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19881309.9A EP3871730A4 (en) 2018-11-05 2019-11-05 EXPANSION BALLOON CATHETER, BALLOON AND PREPARATION PROCESS
KR1020217016427A KR102600243B1 (ko) 2018-11-05 2019-11-05 벌룬 팽창 카테터, 벌룬 및 그것들을 위한 준비 방법
US17/291,530 US20220016400A1 (en) 2018-11-05 2019-11-05 Balloon dilation catheter, balloon and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811317928.7 2018-11-05
CN201811317928.7A CN111202896A (zh) 2018-11-05 2018-11-05 球囊扩张导管、球囊及其制备方法

Publications (1)

Publication Number Publication Date
WO2020094001A1 true WO2020094001A1 (zh) 2020-05-14

Family

ID=70611129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115699 WO2020094001A1 (zh) 2018-11-05 2019-11-05 球囊扩张导管、球囊及其制备方法

Country Status (5)

Country Link
US (1) US20220016400A1 (zh)
EP (1) EP3871730A4 (zh)
KR (1) KR102600243B1 (zh)
CN (1) CN111202896A (zh)
WO (1) WO2020094001A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135958A (zh) * 2011-12-28 2014-11-05 波士顿科学西美德公司 用有聚合物消融元件的新消融导管调变神经的装置和方法
CN104582778A (zh) * 2012-07-05 2015-04-29 雅培心血管系统有限公司 带有双管腔整体式轴的导管
CN104955515A (zh) * 2012-11-19 2015-09-30 雅培心血管系统有限公司 用于导管的多层球囊
US20160058982A1 (en) * 2014-09-01 2016-03-03 Cook Medical Technologies Llc Shaped or textured medical balloon
CN106730252A (zh) * 2015-11-18 2017-05-31 上海微创医疗器械(集团)有限公司 球囊、球囊扩张导管及球囊的制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143983B2 (ja) * 1994-10-14 2008-09-03 チバ ホールディング インコーポレーテッド 重縮合物の分子量増加
CN1243041C (zh) * 2001-02-23 2006-02-22 Ems化学股份有限公司 由聚(甲基)丙烯酸烷基酯链段和聚酰胺链段构成的热塑性嵌段共聚物和其用途
CN101218301B (zh) * 2005-04-14 2012-11-14 阿肯马法国公司 基于热塑性弹性体的混合物
US20080175887A1 (en) * 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
CA2793832C (en) * 2010-03-25 2018-09-18 Lixiao Wang Drug releasing coatings for medical devices
EP2616129A1 (en) * 2010-09-17 2013-07-24 Abbott Cardiovascular Systems Inc. Length and diameter adjustable balloon catheter
EP2654818B1 (de) * 2010-12-21 2018-03-21 Biotronik AG Polyamid/polyvinylpyrrolidon (pa/pvp)-polymergemisch als kathetermaterial
JP5873674B2 (ja) * 2011-09-29 2016-03-01 テルモ株式会社 カテーテル用バルーンおよびバルーンカテーテル
GB2501248B (en) * 2012-04-13 2015-06-03 Cook Medical Technologies Llc High strength balloon
EP2840991B1 (en) * 2012-04-27 2019-05-15 Medtronic Ardian Luxembourg S.à.r.l. Cryotherapeutic devices for renal neuromodulation
CN102793962A (zh) * 2012-07-20 2012-11-28 易生科技(北京)有限公司 球囊扩张导管
EP2968863A2 (en) * 2013-03-15 2016-01-20 Abbott Cardiovascular Systems Inc. Length adjustable balloon catheter for multiple indications
PL2958607T3 (pl) * 2013-05-02 2016-12-30 Powłoka cewnika balonowego
US20150073468A1 (en) * 2013-06-20 2015-03-12 Covidien Lp Balloon for medical device
CN107847713A (zh) * 2015-03-31 2018-03-27 阿克拉伦特公司 具有通气路径的咽鼓管扩张球囊
EP3285820A4 (en) * 2015-04-24 2018-12-12 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
CN105599284B (zh) * 2016-01-14 2017-03-08 山东吉威医疗制品有限公司 一种可使球囊成型过程连续自动运行的设备及方法
CN105727375B (zh) * 2016-02-02 2019-08-16 乐普(北京)医疗器械股份有限公司 一种尼龙共混料及其制备方法和应用
CN107198813A (zh) * 2016-03-15 2017-09-26 上海微创医疗器械(集团)有限公司 球囊扩张导管的制备方法及球囊扩张导管
CN107469222A (zh) * 2016-06-06 2017-12-15 上海微创医疗器械(集团)有限公司 球囊导管
CN106178231A (zh) * 2016-08-03 2016-12-07 武汉福脉医疗科技有限公司 医用双层耐高压球囊及其制备方法
WO2018033920A1 (en) * 2016-08-18 2018-02-22 Angioslide Ltd. Drug delivery catheter and method of use thereof
CN108211093A (zh) * 2016-12-14 2018-06-29 先健科技(深圳)有限公司 球囊及球囊导管
CN107261301A (zh) * 2017-05-04 2017-10-20 杭州启明医疗器械有限公司 一种球囊导管及其制备方法和医疗装置
CN107400323A (zh) * 2017-08-29 2017-11-28 常熟市中联光电新材料有限责任公司 一种聚酰胺组合物/丙烯酸酯橡胶动态硫化胶及其制备方法
CN107793603A (zh) * 2017-10-17 2018-03-13 西安飞机工业(集团)有限责任公司 一种橡塑共混材料及其应用
CN107841092B (zh) * 2017-10-18 2020-03-27 常州大学 一种聚酚氧/尼龙共混塑料合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135958A (zh) * 2011-12-28 2014-11-05 波士顿科学西美德公司 用有聚合物消融元件的新消融导管调变神经的装置和方法
CN104582778A (zh) * 2012-07-05 2015-04-29 雅培心血管系统有限公司 带有双管腔整体式轴的导管
CN104955515A (zh) * 2012-11-19 2015-09-30 雅培心血管系统有限公司 用于导管的多层球囊
US20160058982A1 (en) * 2014-09-01 2016-03-03 Cook Medical Technologies Llc Shaped or textured medical balloon
CN106730252A (zh) * 2015-11-18 2017-05-31 上海微创医疗器械(集团)有限公司 球囊、球囊扩张导管及球囊的制备方法

Also Published As

Publication number Publication date
US20220016400A1 (en) 2022-01-20
KR20210084589A (ko) 2021-07-07
KR102600243B1 (ko) 2023-11-09
EP3871730A1 (en) 2021-09-01
EP3871730A4 (en) 2022-01-05
CN111202896A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
EP2644225B1 (en) Inflatable medical devices
CN103764051B (zh) 一种心包穿刺针组件
CN201744060U (zh) 阶梯型动脉球囊扩张导管
US20160136399A1 (en) Positionable Valvuloplasty Catheter
WO2014103907A1 (ja) カテーテル用バルーン、カテーテル及びカテーテル用バルーンを作製する方法
JP2003533237A (ja) 医療装置バルーン
JP2015134205A (ja) 拡張可能な腸骨シースと使用方法
CN205514708U (zh) 一种外径和硬度渐变的微导管
CN101822866A (zh) 双球囊血管扩张导管
CN106267533B (zh) 可视化精确定位前列腺扩裂导管
AU2017295675A1 (en) High-pressure dilation catheter balloon
CN101239215A (zh) 一种治疗前列腺增生症用的多腔高压水囊后尿道扩裂导管
CN106730252A (zh) 球囊、球囊扩张导管及球囊的制备方法
WO2020094001A1 (zh) 球囊扩张导管、球囊及其制备方法
CN101569772A (zh) 心血管球囊扩张导管
CN206852902U (zh) 一种脑血管微导管
CN206045158U (zh) 一种新型的球囊扩张导管
CN208959096U (zh) 一种经胸二尖瓣球囊扩张导管组件
JP4713057B2 (ja) カテーテル用バルーン及びその製造方法
CN105726075A (zh) 腹腔镜用腹膜外腔可视球囊扩张器
CN201394274Y (zh) 双球囊血管扩张导管
CN111420249A (zh) 一种耐折性血管扩张球囊导管
CN107510864A (zh) 一种防滑脱介入医学用亲水导丝及其制备方法
CN208911235U (zh) 多导丝药物球囊扩张导管
CN201350280Y (zh) 外周血管球囊扩张导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016427

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019881309

Country of ref document: EP

Effective date: 20210525