WO2020093921A1 - 一种微振动传感器及其制备方法 - Google Patents
一种微振动传感器及其制备方法 Download PDFInfo
- Publication number
- WO2020093921A1 WO2020093921A1 PCT/CN2019/114585 CN2019114585W WO2020093921A1 WO 2020093921 A1 WO2020093921 A1 WO 2020093921A1 CN 2019114585 W CN2019114585 W CN 2019114585W WO 2020093921 A1 WO2020093921 A1 WO 2020093921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro
- vibration sensor
- preparing
- sensor according
- thin film
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 51
- 239000010409 thin film Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 5
- 238000000576 coating method Methods 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 239000003822 epoxy resin Substances 0.000 claims description 12
- 229920000647 polyepoxide Polymers 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 5
- 239000007772 electrode material Substances 0.000 claims description 5
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 5
- 238000004806 packaging method and process Methods 0.000 claims description 5
- 229920001296 polysiloxane Polymers 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 238000001723 curing Methods 0.000 description 24
- 238000010586 diagram Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- -1 polydimethylsiloxane Polymers 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229940070527 tourmaline Drugs 0.000 description 1
- 229910052613 tourmaline Inorganic materials 0.000 description 1
- 239000011032 tourmaline Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H11/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
- G01H11/06—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
- G01H11/08—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/067—Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/07—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
- H10N30/072—Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
Definitions
- the present disclosure relates to the field of sensors, and in particular, to a micro-vibration sensor and a preparation method thereof.
- the micro vibration in the ultra-precision machining process has a great influence on the surface quality of the micron / nano workpieces.
- the vibration sensor in the prior art performs high-precision micro-vibration test analysis on the precision / ultra-precision machining environment, its measurement The precision is low.
- the technical problem to be solved by the present disclosure is to provide a micro-vibration sensor and a preparation method for the above-mentioned defects of the prior art, aiming to solve the problem of low measurement accuracy of the vibration sensor in the prior art.
- a preparation method of a micro-vibration sensor which includes the following steps:
- the piezoelectric thin film element is formed by connecting electrodes on both sides of the piezoelectric thin film and packaging.
- the piezoelectric film is made of one or more of polyvinylidene fluoride, zinc oxide, PbTiO 3 piezoelectric materials, piezoelectric crystals, or piezoelectric ceramics.
- the electrode is deposited, evaporated, sputtered, or brushed on the piezoelectric film.
- the electrode material is one or more of copper, silver, titanium, gold, aluminum, indium tin oxide, graphene, or graphite.
- the first curing material uses one or more of epoxy resin, polydimethylsiloxane, or ultraviolet curing adhesive.
- the second curing material uses one or more of epoxy resin, silicone, or ultraviolet curing adhesive.
- the thickness of the metal sheet is 20-200 ⁇ m.
- the step of removing the metal sheet specifically includes: removing the aluminum sheet using a ferric chloride solution.
- the thickness of the first cured layer is 20-200 ⁇ m.
- a crack is formed on the second cured layer.
- a tip stress field is formed at the crack tip.
- the piezoelectric thin film element is located in a tip stress field.
- the crack tip forms a circular arc shape.
- micro-vibration sensor wherein the micro-vibration sensor is manufactured as described above.
- FIG. 1 is a flowchart of a method for manufacturing a micro vibration sensor in the present disclosure.
- FIG. 2 is a schematic diagram of the structure of the metal sheet and the first cured layer of the present disclosure.
- FIG. 3 is a schematic diagram of the structure of the first cured layer and the piezoelectric thin film element of the present disclosure.
- FIG. 4 is a schematic diagram of the structure of the metal sheet and the second cured layer of the present disclosure.
- FIG. 5 is a schematic diagram of the structure of the crack in the present disclosure.
- FIG. 6 is a schematic diagram of the structure of the micro vibration sensor in the present disclosure.
- FIG. 7 is a graph of test results of the micro vibration sensor of the present disclosure and Comparative Example 1 and Comparative Example 2.
- FIG. 7 is a graph of test results of the micro vibration sensor of the present disclosure and Comparative Example 1 and Comparative Example 2.
- the present disclosure provides a preferred embodiment of a method for preparing a micro-vibration sensor.
- a method for preparing a micro-vibration sensor includes the following steps:
- Step S100 coating a first cured material on the metal sheet 10, and curing the first cured material into a first cured layer 20 (as shown in FIG. 2).
- step S200 the piezoelectric thin film element 30 is attached to the edge of the first cured layer 20 (as shown in FIG. 3).
- Step S300 Put the side of the first cured layer 20 to which the piezoelectric thin film element 30 is attached vertically into the second cured material, and cure the second cured material to the second cured layer 40 (as shown in FIG. 4).
- Step S400 the metal sheet 10 is removed to obtain a micro vibration sensor (as shown in FIG. 5).
- a crack 41 is formed on the second cured layer 40, and a tip stress field 42 is formed at the tip of the crack 41.
- the piezoelectric thin film element 30 is located in the tip stress field 42.
- the preparation method of the micro-vibration sensor provided by the present disclosure because the piezoelectric thin film element 30 is disposed at the tip of the crack 41, and when the micro-vibration is used, the stress in the crack 41 at the tip 41 of the crack 41 is sharply amplified by the force deformation of the crack 41, and the stress The signal is efficiently converted into an electrical signal, which has the characteristics of low detection limit and high accuracy.
- the thickness of the metal sheet 10 in the step S100 is the same as the width of the crack 41, and the thickness of the metal sheet 10 may be set to 20-200 ⁇ m.
- the length of the metal sheet 10 matches the length of the crack 41, and the width of the metal sheet 10 matches the height of the crack 41.
- the length of the metal sheet 10 can be set as needed, for example, set to 1000 ⁇ m-10000 ⁇ m, preferably set to 5000 ⁇ m.
- the width of the metal sheet 10 can also be set as needed, for example, set to 200 ⁇ m-2000 ⁇ m, preferably set to 1000 ⁇ m.
- the metal sheet 10 may be an aluminum sheet, a copper sheet, an iron sheet, etc. Of course, the metal sheet 10 may be replaced with other materials as long as it is easy to remove.
- the periphery of the metal sheet 10 is in an arc shape, that is, the four sides of the metal sheet 10 are in an arc shape. Of course, preferably, the side of the wide side of the metal sheet 10 is in an arc shape.
- the crack 41 is formed, the crack The tip of the 41 is formed into an arc shape, and the tip of the arc-shaped crack 41 is not easily torn, which is beneficial to increase the service life of the crack 41.
- the arc is a semicircle, and the radius of curvature of the tip of the crack 41 is half of the thickness of the metal sheet 10.
- the first curing material in step S100 may use one or more of epoxy resin, siloxane or ultraviolet curing adhesive; the epoxy resin may use epoxy resin For AB glue and silicone, polydimethylsiloxane can be used.
- the curing method of the first curing material can be determined according to the first curing material. For example, when epoxy resin is used, a heating method can be used. For convenience of attaching the piezoelectric thin film element 30 to the first curing layer 20, the Heat at 30-50 ° C for 1-5 hours to improve the adhesion of epoxy resin. Of course, when the first curing material uses ultraviolet curing glue, it can be cured by ultraviolet irradiation. In order to facilitate the attachment of the piezoelectric thin film element 30 on the first curing layer 20, there is no need to completely cure the first curing material, only the liquid state The first cured material is cured to a certain degree of adhesion.
- the thickness of the first cured layer 20 is 20-200 ⁇ m.
- the thickness of the first cured layer 20 is related to the distance between the tip of the crack 41 and the piezoelectric thin film element 30. In order to stress the piezoelectric thin film element 30 at the tip of the crack 41 In the field 42, the thickness of the first cured layer 20 is set as needed. Preferably, the thickness of the first cured layer 20 is 100 ⁇ m.
- the piezoelectric thin film element 30 in the step S200 is formed by connecting electrodes 32 on both sides of the piezoelectric thin film 31 and then packaging.
- the piezoelectric film 31 is made of one or more of polyvinylidene fluoride, zinc oxide, PbTiO 3 series piezoelectric material, piezoelectric crystal, or piezoelectric ceramic.
- Common piezoelectric crystals include: sphalerite, cristobalite, tourmaline, red zincite, GaAs, barium titanate and its derived structure crystals, KH 2 PO 4 , NaKC 4 H 4 O 6 ⁇ 4H 2 O ( Luoxi salt), sugar, etc.
- piezoelectric ceramics include the barium titanate system, the lead zirconate titanate binary system, and the third type of ABO 3 added to the binary system (A represents a divalent metal ion, B represents a tetravalent metal ion or several ions combined Positive tetravalent) compounds, such as: Pb (Mn 1/3 Nb 2/3 ) O 3 and Pb (Co 1/3 Nb 2/3 ) O 3 ternary system. If the fourth or more compounds are added to the ternary system, a quaternary or multi-component piezoelectric ceramic can be formed.
- meta-niobate piezoelectric ceramics such as potassium sodium niobate (Na 0.5 ⁇ K 0.5 ⁇ NbO 3 ) and barium strontium meta niobate (Ba x ⁇ Sr 1-x ⁇ Nb 2 O 5 ) Wait, they do not contain toxic lead, which is beneficial to environmental protection.
- the electrode 32 is deposited on the piezoelectric film 31 by depositing, vapor-depositing, sputtering or brushing electrode material.
- the electrode material is one or more of copper, silver, titanium, gold, aluminum, indium tin oxide, graphene, or graphite.
- the packaging method is PET film packaging.
- the packaged piezoelectric thin film element 30 has a long shape.
- the piezoelectric thin film element 30 is attached to the edge of the first cured layer 20, specifically, it is pasted along the wide side of the first cured layer 20 (here, the length and width of the first cured layer 20 are consistent with the length and width of the metal sheet 10) .
- the length of the piezoelectric film 31 is smaller than the width of the first cured layer 20, and the length of the piezoelectric film element 30 (including the length of the piezoelectric film 31 and the length of the electrode 32) is larger than the width of the first cured layer 20, which facilitates the convexity of the electrode 32
- the second cured layer 40 is connected to the subsequent circuit.
- the piezoelectric thin film element 30 is attached to the edge of the first cured layer 20.
- the piezoelectric thin film element 30 is not entirely attached to the first cured layer 20, but is partially attached to the first cured layer 20, and partially protruded Outside the first cured layer 20, the piezoelectric thin film element 30 is located in the middle of the stress field 42, and the strain in the stress field 42 is severe, which is convenient for improving the accuracy of the piezoelectric thin film element 30.
- the first cured material may be coated on both sides of the metal sheet 10, and the piezoelectric thin film elements 30 are separately attached, and the measurement may be performed by the two piezoelectric thin film elements 30, to further improve the accuracy of detection.
- step S300 specifically includes: placing the wide side of the first cured layer 20 vertically into the second cured material.
- the second cured material may be loaded with a Petri dish, specifically, Styrene petri dish.
- the piezoelectric thin film element 30 is placed at the center of the culture dish, that is, one wide side of the first cured layer 20 is placed at the center of the culture dish, and the other wide side is placed at the edge of the culture dish. After curing, the piezoelectric thin film element 30 is located in the center of the second cured layer 40.
- the second curing material is one or more of epoxy resin, silicone, or ultraviolet curing adhesive.
- the second curing material may be the same as the first curing material, or may be different from the first curing material.
- the first The second cured material may be the same as the first cured material.
- the thickness of the second cured material is not greater than the width of the first cured material.
- the thickness of the second cured material is consistent with the width of the first cured material.
- the curing of the second cured material into the second cured layer 40 can also be determined according to the first cured material. For example, when epoxy resin is used, it can be heated, and it can be heated at 30-50 ° C for 15-30 hours to make The first cured material and the second cured material are completely cured.
- the metal sheet 10 may be an aluminum sheet.
- the step of removing the metal sheet 10 specifically includes: removing the aluminum sheet using a ferric chloride solution.
- the ferric chloride solution is a ferric chloride solution with a concentration of 5 mol / L.
- the purpose is to completely etch away the aluminum sheet fixed in the epoxy resin to form a crack 41.
- the mold is removed from the polystyrene petri dish and cut to obtain a micro-vibration sensor (as shown in FIG. 6).
- the cut here can be cut into a certain shape as needed.
- Comparative Example 1 is different from the above preferred embodiment of the preparation method of the micro-vibration sensor, in step S200, the piezoelectric thin film element 30 is pasted on the first cured layer 20 by changing the pasting position of the piezoelectric thin film element 30 Central.
- the difference from the preferred embodiment of the method for preparing the micro vibration sensor is that the metal sheet 10 is not used, and the crack 41 is not formed.
- the micro vibration sensor of the preferred embodiment of the preparation method of the micro vibration sensor of the present disclosure can detect an electrical signal (as shown in the test voltage line A shown in FIG. 7).
- the electrical signal cannot be detected (as shown in the test voltage line B and the test voltage line C shown in FIG. 7).
- a micro-vibration sensor according to an embodiment of the present disclosure is manufactured by using the above-mentioned preparation method of the micro-vibration sensor, as described above.
- a micro-vibration sensor and a preparation method thereof include the following steps: coating a first cured material on a metal sheet, and curing the first cured material into a first cured layer; Attach the piezoelectric thin film element to the edge of the first cured layer; put the side of the first cured layer past the piezoelectric thin film element vertically into the second cured material, and cure the second cured material to the second cured layer; remove Metal sheet to get micro vibration sensor. Because the piezoelectric thin film element is placed at the crack tip and the micro vibration is used, the stress deformation of the crack causes the stress in the crack tip to sharply amplify, which effectively converts the stress signal into an electrical signal, with low detection limit and high accuracy specialty.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种微振动传感器及其制备方法,该方法包括以下步骤:在金属片(10)上涂覆第一固化材料,并将第一固化材料固化成第一固化层(20)(S100);将压电薄膜元件(30)贴在第一固化层(20)的边缘(S200);将第一固化层(20)贴有压电薄膜元件(30)的一边竖直放入第二固化材料中,并将第二固化材料固化第二固化层(40)(S300);去除金属片(10),得到微振动传感器(S400)。由于将压电薄膜元件(30)设置在裂纹(41)的尖端处,因此在微振动时,裂纹(41)受力变形导致裂纹(41)尖端应力场(42)内应力急剧放大,将应力信号高效地转化为电信号,具有精确度高的特点。
Description
本公开涉及传感器领域,尤其涉及的是一种微振动传感器及其制备方法。
超精密加工过程中微小的振动对微米级/纳米级的工件表面质量的影响是极大的,现有技术中的振动传感器对精密/超精密加工环境进行高精度微振动测试分析时,其测量精度较低。
因此,现有技术还有待于改进和发展。
发明内容
本公开要解决的技术问题在于,针对现有技术的上述缺陷,提供一种微振动传感器及其制备方法,旨在解决现有技术中振动传感器测量精度较低的问题。
本公开解决技术问题所采用的技术方案如下:
一种微振动传感器的制备方法,其中,包括以下步骤:
在金属片上涂覆第一固化材料,并将第一固化材料固化成第一固化层;
将压电薄膜元件贴在第一固化层的边缘;
将第一固化层贴有压电薄膜元件的一边竖直放入第二固化材料中,并将第二固化材料固化第二固化层;
去除金属片,得到微振动传感器。
所述的微振动传感器的制备方法,其中,所述压电薄膜元件通过将压电薄膜两侧分别连接电极后封装而成。
所述的微振动传感器的制备方法,其中,所述压电薄膜采用聚偏氟乙烯、氧化锌、PbTiO
3系压电材料、压电晶体或压电陶瓷中的一种或多种制成。
所述的微振动传感器的制备方法,其中,所述电极通过将电极材料沉积、蒸镀、溅 镀或刷涂在所述压电薄膜上。
所述的微振动传感器的制备方法,其中,所述电极材料采用铜、银、钛、金、铝、铟锡氧化物、石墨烯或石墨中的一种或多种。
所述的微振动传感器的制备方法,其中,所述第一固化材料采用环氧树脂、聚二甲基硅氧烷或紫外固化胶中的一种或多种。
所述的微振动传感器的制备方法,其中,所述第二固化材料采用环氧树脂、硅氧烷或紫外固化胶中的一种或多种。
所述的微振动传感器的制备方法,其中,所述金属片的厚度为20-200μm。
所述的微振动传感器的制备方法,其中,所述金属片为铝片,所述去除金属片步骤具体为:采用氯化铁溶液去除铝片。
所述的微振动传感器的制备方法,其中,所述第一固化层的厚度为20-200μm。
所述的微振动传感器的制备方法,其中,所述微振动传感器中,所述第二固化层上形成裂纹。
所述的微振动传感器的制备方法,其中,所述裂纹尖端处形成尖端应力场。
所述的微振动传感器的制备方法,其中,所述压电薄膜元件位于尖端应力场中。
所述的微振动传感器的制备方法,其中,所述裂纹尖端形成圆弧形。
一种微振动传感器,其中,采用如上述所述的微振动传感器的制备方法制成。
有益效果:由于将压电薄膜元件设置在裂纹尖端处,并利用微振动时,裂纹受力变形导致裂纹尖端应力场内应力急剧放大,将应力信号高效的转化为电信号,具有检测限低,精确度高的特点。
图1是本公开中微振动传感器的制备方法的流程图。
图2是本公开金属片和第一固化层的结构示意图。
图3是本公开第一固化层和压电薄膜元件的结构示意图。
图4是本公开金属片和第二固化层的结构示意图。
图5是本公开中裂纹的结构示意图。
图6是本公开中微振动传感器的结构示意图。
图7是本公开微振动传感器和对比实施例一、对比实施例二的测试结果图。
为使本公开的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例1
请同时参阅图1-图7,本公开提供了一种微振动传感器的制备方法的较佳实施例。
如图1所示,一种微振动传感器的制备方法包括以下步骤:
步骤S100、在金属片10上涂覆第一固化材料,并将第一固化材料固化成第一固化层20(如图2所示)。
步骤S200、将压电薄膜元件30贴在第一固化层20的边缘(如图3所示)。
步骤S300、将第一固化层20贴有压电薄膜元件30的一边竖直放入第二固化材料中,并将第二固化材料固化第二固化层40(如图4所示)。
步骤S400、去除金属片10,得到微振动传感器(如图5所示)。
值得说明的是,在去除金属片10后,第二固化层40上形成裂纹41,在裂纹41尖端处形成尖端应力场42,当然,压电薄膜元件30位于尖端应力场42中。当微振动信号作用在传感器上时,裂纹41受力变形导致裂纹41尖端应力场42内应力急剧放大,位于尖端应力场42内的压电薄膜元件30将应力信号高效的转化为电信号,通过电极32将压电信号输出到后续的电路进行进一步的处理。
本公开提供的微振动传感器的制备方法,由于将压电薄膜元件30设置在裂纹41尖端处,并利用微振动时,裂纹41受力变形导致裂纹41尖端应力场42内应力急剧放大,将应力信号高效的转化为电信号,具有检测限低,精确度高的特点。
在本公开的一个较佳实施例中,所述步骤S100中的金属片10的厚度与裂纹41的 宽度一致,金属片10的厚度可以设置为20-200μm。金属片10的长度与裂纹41的长度一致,金属片10的宽度与裂纹41的高度一致。金属片10的长度可以根据需要设置,例如,设置成1000μm-10000μm,较佳地,设置成5000μm。金属片10的宽度也可以根据需要设置,例如,设置成200μm-2000μm,较佳地,设置成1000μm。
金属片10可以采用铝片、铜片或铁片等,当然金属片10可以采用其它材质代替,只要便于去除即可。金属片10的四周呈圆弧状,即金属片10的四个侧面呈圆弧状,当然,较佳的是,金属片10的宽边的侧面为圆弧状,在形成裂纹41时,裂纹41尖端形成圆弧形,圆弧形的裂纹41尖端不容易被撕裂,有利于提高裂纹41的使用寿命。较佳的,圆弧为半圆,裂纹41尖端的曲率半径为金属片10厚度的一半。
在本公开的一个较佳实施例中,所述步骤S100中的第一固化材料可以采用环氧树脂、硅氧烷或紫外固化胶中的一种或多种;环氧树脂可以采用环氧树脂AB胶水,硅氧烷可以采用聚二甲基硅氧烷。
第一固化材料的固化方式可以根据第一固化材料来确定,例如,当采用环氧树脂时,可以采用加热的方式,为了方便将压电薄膜元件30贴在第一固化层20上,可以在30-50℃下加热1-5小时以提高环氧树脂的粘附性。当然,第一固化材料采用紫外固化胶时,可以采用紫外照射的方式固化,为了便于将压电薄膜元件30贴在第一固化层20上,无需将第一固化材料完全固化,只需要将液态的第一固化材料固化到具有一定的粘附性。
所述第一固化层20的厚度为20-200μm,第一固化层20的厚度关系到裂纹41尖端与压电薄膜元件30之间的距离,为了使压电薄膜元件30位于裂纹41尖端的应力场42中,根据需要设置第一固化层20的厚度。较佳的,第一固化层20的厚度为100μm。
在本公开的一个较佳实施例中,所述步骤S200中的压电薄膜元件30通过将压电薄膜31两侧分别连接电极32后封装而成。
具体地,所述压电薄膜31采用聚偏氟乙烯、氧化锌、PbTiO
3系压电材料、压电晶体或压电陶瓷中的一种或多种制成。常见的压电晶体还有:闪锌矿、方硼石、电气石、红锌矿、GaAs、钛酸钡及其衍生结构晶体、KH
2PO
4、NaKC
4H
4O
6·4H
2O(罗息盐)、食糖等。常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO
3(A表 示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn
1/3Nb
2/3)O
3和Pb(Co
1/3Nb
2/3)O
3等组成的三元系。如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na
0.5·K
0.5·NbO
3)和偏铌酸锶钡(Ba
x·Sr
1-x·Nb
2O
5)等,它们不含有毒的铅,对环境保护有利。
所述电极32通过将电极材料沉积、蒸镀、溅镀或刷涂在所述压电薄膜31上。所述电极材料采用铜、银、钛、金、铝、铟锡氧化物、石墨烯或石墨中的一种或多种。封装方式采用PET膜封装。
封装好的压电薄膜元件30呈长条形。在将压电薄膜元件30贴在第一固化层20的边缘时,具体是沿第一固化层20的宽边粘贴(这里第一固化层20的长宽与金属片10的长宽一致)上。压电薄膜31的长度小于第一固化层20的宽度,而压电薄膜元件30的长度(包含压电薄膜31的长度和电极32的长度)大于第一固化层20的宽度,便于电极32凸出与第二固化层40而与后续的电路连接。
将压电薄膜元件30贴在第一固化层20的边缘,压电薄膜元件30并不是全部贴在第一固化层20上的,而是部分贴在第一固化层20上,部分凸出于第一固化层20之外,这样压电薄膜元件30位于应力场42的中间位置,由于处于应力场42中的应变较剧烈,便于提高压电薄膜元件30的精度。当然可以在金属片10的两侧均涂覆第一固化材料,并分别贴压电薄膜元件30,可以通过两个压电薄膜元件30进行测量,进一步提高检测的准确性。
在本公开的一个较佳实施例中,步骤S300具体为:将第一固化层20的宽边竖直放入第二固化材料中,第二固化材料可以采用培养皿装载,具体地,采用聚苯乙烯培养皿。将压电薄膜元件30置于培养皿的中心位置,也就是说将第一固化层20的一个宽边置于培养皿的中心位置,而另一个宽边置于培养皿的边缘。固化后,压电薄膜元件30就位于第二固化层40的中心。
第二固化材料采用环氧树脂、硅氧烷或紫外固化胶中的一种或多种,第二固化材料可以与第一固化材料相同,也可以与第一固化材料不同,较佳的,第二固化材料可以与 第一固化材料相同。第二固化材料的厚度不大于第一固化材料的宽度,较佳的,第二固化材料的厚度与第一固化材料的宽度一致。
第二固化材料固化成第二固化层40也可以根据第一固化材料来确定,例如,当采用环氧树脂时,可以采用加热的方式,可以在30-50℃下加热15-30小时以使第一固化材料和第二固化材料完全固化。
在本公开的一个较佳实施例中,在步骤S400中金属片10可以采用铝片,所述去除金属片10步骤具体为:采用氯化铁溶液去除铝片。
具体地,氯化铁溶液为浓度为5mol/L的氯化铁溶液。目的是将固定在环氧树脂中铝片全部腐蚀掉从而形成裂纹41。在去除铝片后,从聚苯乙烯培养皿中脱模,并进行剪裁,就可以得到微振动传感器(如图6所示)。这里的剪裁可以根据需要剪裁成一定形状。
对比实施例一,与上述微振动传感器的制备方法的较佳实施例不同的是,在步骤S200中通过改变压电薄膜元件30粘贴位置,将压电薄膜元件30贴在第一固化层20的中部。
对比实施例二,与上述微振动传感器的制备方法的较佳实施例不同的是不采用金属片10,则不形成裂纹41。
在机械振动激励下,本公开微振动传感器的制备方法的较佳实施例的微振动传感器可以检测到电信号(如图7所示的测试电压线A所示),而对比实施例一和对比实施例二无法检测到电信号(如图7所示的测试电压线B和测试电压线C所示)。
实施例2
本公开还提供了一种微振动传感器的较佳实施例:
本公开实施例所述一种微振动传感器,采用如上述所述的微振动传感器的制备方法制成,具体如上所述。
综上所述,本公开所提供的一种微振动传感器及其制备方法,所述方法包括以下步骤:在金属片上涂覆第一固化材料,并将第一固化材料固化成第一固化层;将压电薄膜元件贴在第一固化层的边缘;将第一固化层贴有压电薄膜元件的一边竖直放入第二固化 材料中,并将第二固化材料固化第二固化层;去除金属片,得到微振动传感器。由于将压电薄膜元件设置在裂纹尖端处,并利用微振动时,裂纹受力变形导致裂纹尖端应力场内应力急剧放大,将应力信号高效的转化为电信号,具有检测限低,精确度高的特点。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。
Claims (15)
- 一种微振动传感器的制备方法,其特征在于,包括以下步骤:在金属片上涂覆第一固化材料,并将第一固化材料固化成第一固化层;将压电薄膜元件贴在第一固化层的边缘;将第一固化层贴有压电薄膜元件的一边竖直放入第二固化材料中,并将第二固化材料固化第二固化层;去除金属片,得到微振动传感器。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述压电薄膜元件通过将压电薄膜两侧分别连接电极后封装而成。
- 根据权利要求2所述的微振动传感器的制备方法,其特征在于,所述压电薄膜采用聚偏氟乙烯、氧化锌、PbTiO 3系压电材料、压电晶体或压电陶瓷中的一种或多种制成。
- 根据权利要求2所述的微振动传感器的制备方法,其特征在于,所述电极通过将电极材料沉积、蒸镀、溅镀或刷涂在所述压电薄膜上。
- 根据权利要求4所述的微振动传感器的制备方法,其特征在于,所述电极材料采用铜、银、钛、金、铝、铟锡氧化物、石墨烯或石墨中的一种或多种。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述第一固化材料采用环氧树脂、硅氧烷或紫外固化胶中的一种或多种。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述第二固化材料采用环氧树脂、硅氧烷或紫外固化胶中的一种或多种。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述金属片的厚度为20-200μm。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述金属片为铝片,所述去除金属片步骤具体为:采用氯化铁溶液去除铝片。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述第一固化层的厚度为20-200μm。
- 根据权利要求1所述的微振动传感器的制备方法,其特征在于,所述微振动传感器中,所述第二固化层上形成裂纹。
- 根据权利要求11所述的微振动传感器的制备方法,其特征在于,所述裂纹尖端处形成尖端应力场。
- 根据权利要求12所述的微振动传感器的制备方法,其特征在于,所述压电薄膜元件位于尖端应力场中。
- 根据权利要求12所述的微振动传感器的制备方法,其特征在于,所述裂纹尖端形成圆弧形。
- 一种微振动传感器,其特征在于,采用如权利要求1-14任意一项所述的微振动传感器的制备方法制成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/771,190 US11456409B2 (en) | 2018-11-08 | 2019-10-31 | Micro-vibration sensor and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811326680.0 | 2018-11-08 | ||
CN201811326680.0A CN109341843B (zh) | 2018-11-08 | 2018-11-08 | 一种微振动传感器及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020093921A1 true WO2020093921A1 (zh) | 2020-05-14 |
Family
ID=65314180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/114585 WO2020093921A1 (zh) | 2018-11-08 | 2019-10-31 | 一种微振动传感器及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11456409B2 (zh) |
CN (1) | CN109341843B (zh) |
WO (1) | WO2020093921A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109341843B (zh) * | 2018-11-08 | 2020-03-06 | 吉林大学 | 一种微振动传感器及其制备方法 |
CN113497177B (zh) * | 2020-03-20 | 2023-04-07 | 电子科技大学 | 一种基于pvdf薄膜的柔性振动传感器及其制备方法 |
CN114923605B (zh) * | 2022-04-26 | 2023-08-25 | 苏州大学 | 一种微悬臂梁传感器及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999819A (en) * | 1990-04-18 | 1991-03-12 | The Pennsylvania Research Corporation | Transformed stress direction acoustic transducer |
CN104523231A (zh) * | 2014-12-24 | 2015-04-22 | 上海集成电路研发中心有限公司 | 柔性压力传感件、传感器及其制造方法 |
CN204924795U (zh) * | 2015-08-26 | 2015-12-30 | 中国特种设备检测研究院 | 一种裂纹尖端应变场传感器 |
CN105612588A (zh) * | 2013-12-03 | 2016-05-25 | 多次元能源系统研究集团 | 一种具有裂纹的导电薄膜的高灵敏度传感器及其制作方法 |
CN107202538A (zh) * | 2017-06-21 | 2017-09-26 | 吉林大学 | 一种裂纹应变式仿生传感器的可控制造方法 |
CN108444377A (zh) * | 2018-03-18 | 2018-08-24 | 吉林大学 | 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法 |
CN109341843A (zh) * | 2018-11-08 | 2019-02-15 | 吉林大学 | 一种微振动传感器及其制备方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812624B1 (en) * | 1999-07-20 | 2004-11-02 | Sri International | Electroactive polymers |
US6771007B2 (en) * | 2002-04-17 | 2004-08-03 | The Boeing Company | Vibration induced perpetual energy resource |
US6858970B2 (en) * | 2002-10-21 | 2005-02-22 | The Boeing Company | Multi-frequency piezoelectric energy harvester |
JP4766831B2 (ja) * | 2002-11-26 | 2011-09-07 | 株式会社村田製作所 | 電子部品の製造方法 |
US20040233174A1 (en) * | 2003-05-19 | 2004-11-25 | Robrecht Michael J. | Vibration sensing touch input device |
EP1740318A2 (en) * | 2004-04-21 | 2007-01-10 | Symyx Technologies, Inc. | Flexural resonator sensing device and method |
CN101577850B (zh) * | 2009-06-15 | 2012-05-23 | 复旦大学附属眼耳鼻喉科医院 | 植入式压电陶瓷传声器及其制备方法 |
US8661634B2 (en) * | 2009-07-06 | 2014-03-04 | KAIST (Korea Advanced Institute of Science and Technology | Method of manufacturing a flexible piezoelectric device |
WO2011142850A2 (en) * | 2010-01-22 | 2011-11-17 | The Regents Of The University Of California | Etchant-free methods of producing a gap between two layers, and devices produced thereby |
KR101187991B1 (ko) * | 2010-02-23 | 2012-10-04 | 삼성전기주식회사 | 잉크젯 프린트 헤드 및 잉크젯 프린트 헤드 제조방법 |
CN101844130A (zh) * | 2010-05-14 | 2010-09-29 | 中国科学技术大学 | 阵列式硅微超声换能器及其制造方法 |
JP2013214954A (ja) * | 2012-03-07 | 2013-10-17 | Taiyo Yuden Co Ltd | 共振子、周波数フィルタ、デュプレクサ、電子機器及び共振子の製造方法 |
CN103674225B (zh) * | 2013-11-25 | 2016-03-02 | 北京航空航天大学 | 一种局部极化压电薄膜传感器 |
CN103682080B (zh) * | 2013-11-25 | 2016-06-01 | 北京航空航天大学 | 一种局部极化压电薄膜传感器的制备方法 |
EP4071589A1 (en) * | 2013-12-12 | 2022-10-12 | QUALCOMM Incorporated | Micromechanical ultrasonic transducers and display |
CA2950919A1 (en) * | 2014-07-08 | 2016-01-14 | Qualcomm Incorporated | Piezoelectric ultrasonic transducer and process |
CN205537940U (zh) * | 2016-01-28 | 2016-08-31 | 华中科技大学 | 一种用于结构健康监测的新型压电传感器 |
US11502067B2 (en) * | 2018-07-26 | 2022-11-15 | Advanced Semiconductor Engineering, Inc. | Package structure and method for manufacturing the same |
US10911021B2 (en) * | 2019-06-27 | 2021-02-02 | Resonant Inc. | Transversely-excited film bulk acoustic resonator with lateral etch stop |
CN112039461B (zh) * | 2019-07-19 | 2024-04-16 | 中芯集成电路(宁波)有限公司 | 体声波谐振器的制造方法 |
-
2018
- 2018-11-08 CN CN201811326680.0A patent/CN109341843B/zh active Active
-
2019
- 2019-10-31 WO PCT/CN2019/114585 patent/WO2020093921A1/zh active Application Filing
- 2019-10-31 US US16/771,190 patent/US11456409B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4999819A (en) * | 1990-04-18 | 1991-03-12 | The Pennsylvania Research Corporation | Transformed stress direction acoustic transducer |
CN105612588A (zh) * | 2013-12-03 | 2016-05-25 | 多次元能源系统研究集团 | 一种具有裂纹的导电薄膜的高灵敏度传感器及其制作方法 |
CN104523231A (zh) * | 2014-12-24 | 2015-04-22 | 上海集成电路研发中心有限公司 | 柔性压力传感件、传感器及其制造方法 |
CN204924795U (zh) * | 2015-08-26 | 2015-12-30 | 中国特种设备检测研究院 | 一种裂纹尖端应变场传感器 |
CN107202538A (zh) * | 2017-06-21 | 2017-09-26 | 吉林大学 | 一种裂纹应变式仿生传感器的可控制造方法 |
CN108444377A (zh) * | 2018-03-18 | 2018-08-24 | 吉林大学 | 基于规则微米裂纹阵列结构柔性应变传感器及其制备方法 |
CN109341843A (zh) * | 2018-11-08 | 2019-02-15 | 吉林大学 | 一种微振动传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109341843B (zh) | 2020-03-06 |
CN109341843A (zh) | 2019-02-15 |
US20210175411A1 (en) | 2021-06-10 |
US11456409B2 (en) | 2022-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020093921A1 (zh) | 一种微振动传感器及其制备方法 | |
Qi et al. | Piezoelectric ribbons printed onto rubber for flexible energy conversion | |
US9702698B2 (en) | Angular velocity sensor and manufacturing method therefor | |
JP4904656B2 (ja) | 薄膜圧電体素子およびその製造方法 | |
CN109449280B (zh) | 一种微机电换能器及其制备方法 | |
JP6049895B2 (ja) | 磁電センサ及び該センサの製造方法 | |
JPS63190391A (ja) | 金―ゲルマニウム接着層を用いた圧電型検出素子の製造方法 | |
CN102175363A (zh) | 用离子束溅射硅薄膜制作的压力应变器件及方法 | |
JPH0758270B2 (ja) | 感湿素子の製造方法 | |
Kobayashi et al. | Ultra-thin piezoelectric strain sensor 5× 5 array integrated on flexible printed circuit for structural health monitoring by 2D dynamic strain sensing | |
JP2014182086A (ja) | 温度センサ | |
KR20160054832A (ko) | 유연소재가 적용된 압전 박막소자의 제작 방법 및 이를 이용한 압전 박막소자 | |
JP5100915B2 (ja) | Pzt膜を備えたセンサ素子の製造方法 | |
JP5476213B2 (ja) | 圧電素子の製造方法 | |
Ræder et al. | Taking piezoelectric microsystems from the laboratory to production | |
JP2015099864A (ja) | 薄膜圧電アクチュエータの製造方法 | |
US2901644A (en) | Electromechanical device and method of making same | |
Dufay et al. | New process for transferring PZT thin film onto polymer substrate | |
EP3012879B1 (en) | Manufacturing method for electrodes of a piezoelectric element | |
US9404938B2 (en) | Acceleration sensor | |
JPH10260090A (ja) | 膜構造物用歪みセンサー | |
JPH10257785A (ja) | センサー機能を有するアクチュエータ | |
JPS62187248A (ja) | 薄膜aeセンサ− | |
CN201926529U (zh) | 用离子束溅射硅薄膜制作的压力应变器件 | |
JPH11132873A (ja) | 圧電検出器及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19881436 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19881436 Country of ref document: EP Kind code of ref document: A1 |