WO2020093856A1 - 多功能连续式水热氧化实验系统及其使用方法 - Google Patents

多功能连续式水热氧化实验系统及其使用方法 Download PDF

Info

Publication number
WO2020093856A1
WO2020093856A1 PCT/CN2019/111981 CN2019111981W WO2020093856A1 WO 2020093856 A1 WO2020093856 A1 WO 2020093856A1 CN 2019111981 W CN2019111981 W CN 2019111981W WO 2020093856 A1 WO2020093856 A1 WO 2020093856A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidant
gas
pipeline
reactor
liquid
Prior art date
Application number
PCT/CN2019/111981
Other languages
English (en)
French (fr)
Inventor
姜伟立
公彦猛
刘树洋
王未
操庆
吴梦非
Original Assignee
江苏省环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省环境科学研究院 filed Critical 江苏省环境科学研究院
Priority to US16/973,500 priority Critical patent/US11565956B2/en
Publication of WO2020093856A1 publication Critical patent/WO2020093856A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/727Treatment of water, waste water, or sewage by oxidation using pure oxygen or oxygen rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/14Paint wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Definitions

  • the invention belongs to hydrothermal oxidation technology, in particular to a multifunctional continuous hydrothermal oxidation experimental system and its use method.
  • Common hydrothermal oxidation test devices include batch test devices and continuous test devices. Due to the long time for heating and cooling the batch experimental device, which is far from the real industrial device, the batch experimental device is rarely used. The continuous experimental device is more conducive to the simulation of the reaction process, but the common continuous hydrothermal oxidation reaction device only focuses on the realization of the hydrothermal oxidation process.
  • the experimental system has a single function and is often limited to the temperature, flow, pressure, and catalyst. Control, there is no experimental system that can fully meet the needs of oxidant screening, analysis of oxygen concentration of incoming and outgoing gases, multiple streams of water, and research on multiple indicators such as corrosion, temperature, flow, pressure, catalyst, etc. in the reaction process. Make the experimental system closer to the real industrial processing state.
  • Corrosion is an important factor restricting the use of hydrothermal oxidation industry. Corrosion of reactors and pipe fittings is also affected by different materials, water quality and reaction conditions. Therefore, it is particularly important to carry out corrosion experiments in the early stage of industrial design.
  • a common hydrothermal oxidation corrosion experiment is to add the experimental materials into the main reactor and take them out after the reaction to detect the corrosion. Although this method is simple and convenient, it ignores the simulation of the erosion angle and pressure, which greatly limits the reference value of the wet oxidation corrosion experiment.
  • the present invention provides a multi-functional continuous hydrothermal oxidation experiment system, which can perform wet oxidation and supercritical water oxidation, and can effectively achieve oxidant comparison, oxidant usage analysis, and flow The function of corrosion experiment simulation in the state.
  • the invention also provides a method for using the above system.
  • a multifunctional continuous hydrothermal oxidation experiment system includes a reactor, an oxidant pipeline and a material pipeline are connected in parallel to the reactor inlet;
  • the oxidizer pipeline includes parallel gas oxidant delivery A pipe and a liquid oxidant delivery pipe, wherein the gas oxidant delivery pipe includes a parallel air oxidant delivery pipe and an oxygen delivery pipe;
  • the oxidant pipe and the material pipe are serially connected with a heat exchange device and a preheating device, and the oxidant pipe and
  • the material pipeline is connected to the inner tube of the heat exchange device, and the reactor outlet is connected to the corrosion experiment device, the outer tube of the heat exchange device, the cooling device, and the gas-liquid separation device in sequence through the pipeline;
  • the cooling device and the gas-liquid separation device are connected in series A pressure valve and a sampling valve;
  • the gas outlet of the gas-liquid separation device is connected in series with an oxygen concentration analyzer, a gas flow meter and a tail gas collection device;
  • the liquid outlet of the gas-liquid separation device is
  • a pneumatic booster and a gas mass flow meter are serially connected in series on the gas oxidant delivery pipe, and an electric booster and an oxygen bottle that introduce air in parallel to the inlet of the pneumatic booster are used as the air delivery pipe and the oxygen delivery, respectively tube.
  • a liquid storage tank and a pump are connected in series on the liquid oxidant delivery tube and the material delivery tube in sequence.
  • the reactor has water inlet from the bottom and water outlet from the top; the oxidant and materials enter the inside of the reactor through a perforated tube, and a catalyst bearing device is provided inside the reactor; the heating device outside the reactor is a tube furnace.
  • the corrosion experiment device is a detachable mechanism, which is composed of an upper and a lower cover and a middle cylindrical tube, and the plate to be tested is fixed in the middle cylindrical tube and is set at 0-90 ° to the water flow direction, so as to achieve a different angle to the water flow The simulation of the corrosion of the plate.
  • the upper and lower covers and the middle cylindrical tube of the corrosion experiment device are sealed by threads, and the middle cylindrical tube can be replaced.
  • the upper and lower covers are made of nickel-based alloy, and the middle cylindrical tube can be of a specified material according to the needs of corrosion experiments.
  • the cooling device is a cold shower.
  • a temperature indicator is provided in the reactor, the reactor inlet pipe, the reactor outlet pipe, and the preheating device.
  • Corresponding valves and pressure detectors are provided on the corresponding pipelines of the system.
  • the multifunctional continuous hydrothermal oxidation experiment system described in this application includes a reactor, an oxidant pipeline and a material pipeline are connected in parallel to the reactor inlet, and the oxidizer pipeline includes a heat exchanger I and a preheating device I.
  • the outlet of the inner tube of the heat exchanger I communicates with the inlet of the preheating device I.
  • the inlet of the inner tube of the heat exchanger I is paralleled with a gas oxidant delivery tube and a liquid oxidant delivery tube, wherein the gas oxidant delivery tube includes a parallel air oxidant Conveying pipe and oxygen conveying pipe;
  • the material pipeline includes a heat exchanger II and a preheating device II, the inner tube outlet of the heat exchanger II communicates with the inlet of the preheating device II, and the inner tube inlet of the heat exchanger II communicates
  • the material conveying pipe; the outlet of the preheating device I and the outlet of the preheating device II are combined and connected to the inlet of the reactor; the reactor is wrapped with a heating device; the outlet of the reactor is connected to the corrosion experiment device through pipes in turn, Heat exchanger I outer tube, heat exchanger II outer tube, cooling device and gas-liquid separation device.
  • a pneumatic booster and a gas mass flow meter are serially connected in series on the gas oxidant delivery pipe, and an electric booster and an oxygen bottle that introduce air in parallel to the inlet of the pneumatic booster are used as the air delivery pipe and the oxygen delivery, respectively tube.
  • a liquid storage tank I and a pump I are connected in series on the liquid oxidant delivery pipe; a liquid storage tank II and a pump II are connected in series on the material delivery pipe.
  • the system is provided with a shut-off valve at the outlet of the electric booster and the outlet of the oxygen cylinder, a regulating valve at the outlet of the start-up booster, a shut-off valve at the outlet of the mass gas flowmeter, and a outlet at the pump I and pump II
  • a shut-off valve at the outlet of the electric booster and the outlet of the oxygen cylinder a regulating valve at the outlet of the start-up booster, a shut-off valve at the outlet of the mass gas flowmeter, and a outlet at the pump I and pump II
  • There are one-way valves respectively, at the bottom end of the heat exchange device I and the heat exchange device II are respectively provided with an exhaust cut-off valve, an exhaust cut-off valve at the bottom end of the reactor, and a back pressure valve at the outlet of the cooling device.
  • a sampling valve is provided between the back pressure valve and the gas-liquid separation device.
  • the method for using the multifunctional continuous hydrothermal oxidation experiment system of the present invention includes the following steps:
  • step (2) when the air oxidant delivery pipe or the oxygen delivery pipe is selected to be opened, the liquid oxidant and the liquid to be treated can be mixed and introduced from the material pipeline to realize the simultaneous presence of the gas-liquid oxidant into the reaction.
  • the liquid oxidant is hydrogen peroxide, potassium nitrate or sodium nitrate solution.
  • the system of the invention is provided with an air pipeline, an oxygen pipeline, a liquid oxidant pipeline and a material pipeline in parallel, wherein the liquid storage tank on the liquid oxidizer pipeline and the material pipeline can be used as a liquid oxidant storage tank or a waste water tank or a cleaning liquid tank according to actual needs It can realize the comparison of the oxidation performance of different types of gas oxidants or liquid oxidants in the process of continuous hydrothermal oxidation; at the same time, the feed rate of gas oxidants or liquid oxidants can be accurately adjusted.
  • the outlet of the reactor of the invention is provided with a special detachable corrosion experiment device, which can simulate the material corrosion experiment at different angles with the water flow direction under the flow state.
  • the system is equipped with a heat exchange device, a preheating device and a tube furnace, which can effectively recover the thermal energy of the reaction effluent and ensure that the temperature of the wastewater at the front, middle and end of the reactor is maintained at the set temperature.
  • FIG. 1 is a schematic structural diagram of a multifunctional continuous hydrothermal oxidation experiment system of the present invention
  • Figure 2 is a schematic diagram of the longitudinal section of the reactor
  • Fig. 3 is a top view and corresponding longitudinal cross-sectional schematic diagram of the corrosion test device and the internal plate to be tested, wherein Fig. 3-1 is a schematic diagram of the plate and the water flow in a parallel state, and Fig. 3-2 is a schematic diagram of the plate and the water flow at 30 °. -3 shows the state where the plate and the water flow are at 45 ° in the opposite direction, and Fig. 3-4 shows the state where the plate and the water flow are at 60 °.
  • a multifunctional continuous hydrothermal oxidation experiment system includes a reactor 12, and an inlet of the reactor 12 is connected with an oxidant pipeline and a material pipeline in parallel;
  • the oxidant pipeline includes a parallel gas oxidant delivery pipe and Liquid oxidant delivery pipe, in which gas oxidant delivery pipe includes parallel air oxidant delivery pipe and oxygen delivery pipe;
  • oxidant pipeline and material pipeline are connected in series with heat exchange device and preheating device, oxidant pipeline and material pipeline communicate heat exchange
  • the inner tube of the device, the outlet of the reactor 12 are connected to the corrosion experiment device 14, the outer tube of the heat exchange device, the cooling device 16 and the gas-liquid separation device 17 in sequence through the pipeline;
  • the cooling device 16 and the gas-liquid separation device 17 are connected in series with a back pressure valve V10 and Sampling valve V11;
  • the gas outlet of the gas-liquid separation device 17 is connected in series with an oxygen concentration analyzer 18, a gas flow meter 19, and a tail gas collection device 20;
  • the gas oxidant delivery tube is serially connected with a pneumatic booster 2 and a gas mass flow meter 3, and the electric booster 1 and the oxygen bottle that introduce air in parallel at the inlet of the pneumatic booster 2 are used as the air delivery tube and the oxygen delivery tube, respectively .
  • the test device shown in Fig. 1 includes a gas oxidant pipeline, a liquid oxidant pipeline and a material pipeline.
  • the liquid oxidant delivery pipe is connected with a liquid storage tank I4, a pump I5, a heat exchange device I6, and a preheating device in series I7, a liquid storage tank II8, a pump II9, a heat exchange device II10, and a preheating device II11 are connected in series on the material conveying pipe.
  • the outlets of the inner tubes of the preheating device I7 and the preheating device II11 are connected to the inlet of the reactor 12
  • the water enters from the bottom and the water exits from the top.
  • the oxidant and materials enter the inside of the reactor through a perforated tube.
  • the corrosion experiment device 14 is a detachable mechanism, which is composed of an upper and a lower cover and a middle cylindrical tube 1401.
  • the plate 1402 to be tested is fixed in the middle cylindrical tube 1401, and is set at 0-90 ° to the direction of water flow to achieve Simulation of plate corrosion at different angles.
  • the upper and lower covers of the corrosion experiment device and the middle cylindrical tube 1401 are sealed with threads, and the middle cylindrical tube 1401 can be replaced.
  • the upper and lower covers are made of nickel-based alloy, and the middle cylindrical tube 1401 can be a specified material according to the needs of the corrosion experiment.
  • the corrosion test device is provided with a bushing for fixing the angle of the plate 1402 to be tested.
  • the inside of the corrosion experiment device 14 is provided with a sleeve 1403 to fix the plate 1402 to be tested.
  • the sleeve 1403 is specifically an elastic material sleeve with the same inner diameter as the middle cylindrical tube 1401 of the reactor as shown in FIG. tube.
  • the cooling device 16 is a cold shower.
  • the multifunctional continuous hydrothermal oxidation experiment system shown includes an electric booster 1, a pneumatic booster 2, a gas mass flow meter 3, a liquid storage tank I4, a pump I5, and a heat exchange device I6 , Preheating device I7, storage tank II8, pump II9, heat exchange device II10, preheating device II11, reactor 12, tube furnace 13, corrosion experiment device 14, temperature display 15, cooling device 16, gas-liquid separator 17. Oxygen concentration analyzer 18, gas flow meter 19, tail gas collection device 20, and effluent collection device 21.
  • cut-off valves V1 and V2 at the outlet of the electric booster 1 and the outlet of the oxygen bottle, a regulating valve V3 at the outlet of the pneumatic booster 2 and a cut-off valve V4 at the outlet of the mass gas flow meter 3, and at the pump I5 and One-way valves V5 and V7 are respectively provided at the outlet of the pump II9, evacuation shut-off valves V6 and V8 are provided at the bottom end of the heat exchange device I6 and II10, and an evacuation shut-off valve V9 is provided at the bottom end of the reactor 12, A back pressure valve V10 is provided at the outlet of the cold shower of the cooling device 16, and a sampling valve V11 is provided between the back pressure valve V10 and the gas-liquid separation device 17.
  • the inlet of the pneumatic supercharger 2 is divided into two shares: one is air, and the air is boosted by the electric supercharger 1 and then enters the pneumatic supercharger 2 through the cut-off valve V1; the other is the oxygen cylinder directly through the cut-off valve V2 It is connected to the pneumatic booster 2 and starts when the pneumatic booster 2 detects intake air.
  • the electric supercharger 1 is a low-pressure supercharger with a pressure of 0.4 to 0.8 MPa
  • the pneumatic supercharger 2 is a high-pressure supercharger with a pressure range of 8 to 30 MPa. As shown in FIG.
  • the reactor 12 is made of a corrosion-resistant material, such as a nickel-based alloy 625, a catalyst carrying device 1201 made of a nickel-based alloy material is provided inside the reactor, and a perforated tube 1202 is provided at the bottom of the reactor.
  • a corrosion-resistant material such as a nickel-based alloy 625
  • a catalyst carrying device 1201 made of a nickel-based alloy material is provided inside the reactor
  • a perforated tube 1202 is provided at the bottom of the reactor.
  • the materials and oxidant enter the reactor from the bottom through the reactor inlet pipe 1203.
  • the outside of the reactor is wrapped by a tube furnace 13 whose shape matches the reactor.
  • the tube furnace 13 is divided into two petals, which are spliced together by a hinge and a latch.
  • the outlet of the electric supercharger 1 is connected to the inlet of the pneumatic supercharger 2 with a shut-off valve V1 in the middle, and the outlet of the pneumatic supercharger 2 is connected to the inlet of the gas mass flow meter 3 with a regulating valve V3 in the middle;
  • the treatment liquid is stored in the storage tank I4, the outlet of the storage tank I4 is connected to the inlet of the pump I5, the outlet of the gas mass flow meter 3 and the pump I5 are connected by a four-way valve, and a one-way valve is provided between the four-way valve and the pump I5 V5 and pressure detector, gas mass flow meter 3 outlet and pump I5 are connected to the inner tube inlet of the heat exchange device I6 through a four-way valve, the inner tube outlet of the heat exchange device I6 and the inlet of the preheating device I7; the liquid to be treated is stored In the storage tank II 8, the outlet of the storage tank II 8 is connected to the inlet of the pump II 9, the outlet of the pump II 9 is
  • the method for using the multifunctional continuous hydrothermal oxidation experimental system described in Embodiment 1 includes the following steps:
  • the liquid oxidant in use includes hydrogen peroxide, potassium nitrate, sodium nitrate solution and the like.
  • step (2) when the air oxidant delivery pipe or the oxygen delivery pipe is selected to be opened, the liquid oxidant and the liquid to be treated can be mixed and introduced from the material pipeline to realize the simultaneous presence of the gas-liquid oxidant and the reaction.
  • the temperature of the preheating device II is 450 ° C
  • the temperature of the tube furnace is set at 450 ° C
  • the temperature of the preheating device I is 450 ° C
  • the pressure of the back pressure valve is adjusted to 25 MPa, and other operations are the same as in case 1.
  • the solution storage tank I and the solution storage tank II are filled with clean water, and the material pump I and the material pump II are turned on, and the water inlet rate of the material pump I and the material pump II is adjusted to 50 mL / min.
  • Turn on the preheater I and preheater II set the temperature of the preheater I and preheater II to 250 °C, after the V11 has water, close V11, adjust the back pressure valve pressure to 8MPa, and open the tube wrapped in the reactor Furnace, tube furnace temperature is set at 250 °C.
  • Case 5 Treatment of methanol solution at a temperature of 250 ° C, 8 MPa, and wet oxidation with air as oxidant.
  • the catalyst is CuO / TiO 2 — ⁇ Al 2 O 3 :
  • Case 6 In the process of treating methanol solution at a temperature of 250 °C, 8MPa, and using air as an oxidant to catalyze wet oxidation, explore the corrosion performance of 316 stainless steel pressure pipe:
  • Case 7 In the process of treating methanol solution at a temperature of 250 ° C, 8MPa, and using air as an oxidant to catalyze wet oxidation, explore the corrosion performance of 316 stainless steel non-pressured plates in the same direction as the water flow:
  • the middle cylindrical tube of the corrosion experiment device is set to a nickel-based alloy tube with a length of less than 80mm and an inner diameter of 70mm, and a 316 stainless steel plate with a length of less than 80mm and a width of less than 70mm is placed inside.
  • the subsequent operations are as in case 1.
  • Case 8 In the process of treating methanol solution at a temperature of 250 ° C and 8 MPa, using air as an oxidant to catalyze wet oxidation, explore the corrosion performance of 316 stainless steel non-pressure plate and water flow at 30 °:
  • a 316 stainless steel plate with a length of 100 mm and a width of 36 mm is set inside the corrosion experiment device, and the upper and lower covers are tightened. The rest is the same as in Case 7.
  • Case 9 In the process of treating methanol solution at a temperature of 250 ° C and 8 MPa, using air as an oxidant to catalyze wet oxidation, explore the corrosion performance of 316 stainless steel non-pressured plate at 45 ° to the water flow direction:
  • a 316 stainless steel plate with a length of 85mm and a width of 36mm is set inside the corrosion experiment device.
  • a polished outer diameter slightly less than 70mm, a pipe wall thickness of 5mm, and a length of 20mm are placed on the top. Tighten the upper and lower covers. The rest is the same as Case 7.
  • Case 10 In the process of treating methanol solution at a temperature of 250 ° C and 8 MPa, using air as an oxidant to catalyze wet oxidation, explore the corrosion performance of 316 stainless steel non-pressure plate at 45 ° to the water flow direction:
  • a 316 stainless steel plate with a length of 67mm and a width of 36mm is set inside the corrosion experiment device.
  • a polished outer diameter slightly less than 70mm, a pipe wall thickness of 5mm, and a length of 50mm are placed on the top. Tighten the upper and lower covers. The rest is the same as Case 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种多功能连续式水热氧化实验系统,包括反应器(12),反应器(12)入口并联有氧化剂管路和物料管路;氧化剂管路包括并联的气体氧化剂输送管和液体氧化剂输送管,其中气体氧化剂输送管包括并联的空气氧化剂输送管和氧气输送管;氧化剂管路和物料管路上依次串联有换热装置和预热装置,氧化剂管路和物料管路连通换热装置的内管,反应器(12)出口通过管道依次连通腐蚀实验装置(14)、换热装置外管、冷却装置(16)和气液分离装置(17)。还公开了一种多功能连续式水热氧化实验系统的使用方法,根据反应条件不同,可以进行各种反应物料的湿式氧化及超临界水氧化实验研究。

Description

多功能连续式水热氧化实验系统及其使用方法 技术领域
本发明属于水热氧化技术,特别是涉及一种多功能连续式水热氧化实验系统及其使用方法。
背景技术
近几十年来,水热氧化技术得到了快速的发展,已经被广泛应用于化工、农药、印染等行业产生的高浓度有毒、有害废水的处理。根据反应过程中反应器内所处状态的不同,存在湿式氧化反应和超临界水氧化反应等状态。针对不同水质的废水,为获取水质最佳处理条件、氧化剂选择、反应机理、产物分析等都需要对废水进行实验研究,为工业化装置的设计提供基础数据和理论依据。
常见的水热氧化实验装置包括间歇式试验装置和连续式试验装置。因间歇式实验装置加热及降温的耗时长、与真实工业化装置相差甚远,所以极少采用间歇式实验装置。连续式实验装置更利于对反应过程的模拟,但常见的连续式水热氧化反应装置仅注重于水热氧化过程的实现,实验系统功能较单一,常局限于对温度、流量、压力、催化剂的控制,还没有一种实验系统能够充分满足对氧化剂筛选、进出气氧浓度分析、多股进水的需求,并对反应过程腐蚀、温度、流量、压力、催化剂等多项指标进行研究的需求,使实验系统更接近于真实工业处理状态。
腐蚀是限制水热氧化工业运用的一个重要因素,反应器及管道配件的腐蚀受材质、水质及反应条件的不同也各有差异,所以在工业设计前期进行腐蚀实验显得尤为重要。常见水热氧化腐蚀实验是将实验材料投加进主反应器,待反应结束后取出来检测腐蚀情况。此方法虽然简单便利,忽略了对冲刷角度、承压等性质的模拟,极大地限制了湿式氧化腐蚀实验的参考价值。
发明内容
发明目的:本发明为了克服上述技术问题的不足,提供了一种多功能连续式水热氧化实验系统,可进行湿式氧化和超临界水氧化,可有效实现氧化剂比选、氧化剂使用量分析、流动状态下腐蚀实验模拟的功能。本发明还提供了上述系统的使用方法。
技术方案:本发明所述的一种多功能连续式水热氧化实验系统,包括反应器,所述反应器入口并联有氧化剂管路和物料管路;所述氧化剂管路包括并联的气体氧化剂输送 管和液体氧化剂输送管,其中气体氧化剂输送管包括并联的空气氧化剂输送管和氧气输送管;所述氧化剂管路和物料管路上依次串联有换热装置和预热装置,所述氧化剂管路和物料管路连通换热装置的内管,所述反应器出口通过管道依次连通腐蚀实验装置、换热装置外管、冷却装置和气液分离装置;所述冷却装置和气液分离装置之间串联有背压阀和取样阀;所述气液分离装置的气体出口依次串联氧浓度分析仪、气体流量计和尾气收集装置;所述气液分离装置的液体出口连接出水收集装置。
进一步的,所述气体氧化剂输送管上依次串联有气动增压机和气体质量流量计,所述气动增压机入口并联导入空气的电动增压机和氧气瓶,分别作为空气输送管和氧气输送管。
所述液体氧化剂输送管和物料输送管上均依次串联有储液槽和泵。
所述反应器从底部进水、上部出水;所述氧化剂和物料通过布孔管的方式进入反应器内部,反应器内部设有催化剂承载装置;所述反应器外的加热装置为管式炉。
进一步的,所述腐蚀实验装置为可拆卸机构,通过上下盖和中间圆柱管构成,所述待试验板材固定在中间圆柱管内,与水流方向呈0-90°设置,实现对与水流呈不同角度的板材腐蚀情况的模拟。
其中,所述腐蚀实验装置的上下盖和中间圆柱管通过螺纹密封,中间圆柱管可以更换。上下盖由镍基合金制成,中间圆柱管根据腐蚀实验需要可以为指定材质。腐蚀试验装置内部设有套管,用于实现待试验板材的角度固定。
所述冷却装置为冷淋器。根据常规水热氧化装置设计可知,所述反应器内、反应器入口管道、反应器出口管道、预热装置内均设有温度显示器。所述系统的相应的管路上设置有对应的阀门以及压力检测仪。
更具体的,本申请所述多功能连续式水热氧化实验系统,包括反应器,所述反应器入口并联氧化剂管路和物料管路,所述氧化剂管路包括换热器Ⅰ和预热装置Ⅰ,所述换热器Ⅰ内管出口与预热装置Ⅰ入口连通,所述换热器Ⅰ内管入口并联有气体氧化剂输送管和液体氧化剂输送管,其中气体氧化剂输送管包括并联的空气氧化剂输送管和氧气输送管;所述物料管路包括换热器Ⅱ和预热装置Ⅱ,所述换热器Ⅱ内管出口与预热装置Ⅱ入口连通,所述换热器Ⅱ内管入口连通物料输送管;所述预热装置Ⅰ出口和所述预热装 置Ⅱ出口合并后连接至反应器入口;所述反应器外包裹有加热装置;所述反应器出口通过管道依次连通腐蚀实验装置、换热器Ⅰ外管、换热器Ⅱ外管、冷却装置和气液分离装置。
进一步的,所述气体氧化剂输送管上依次串联有气动增压机和气体质量流量计,所述气动增压机入口并联导入空气的电动增压机和氧气瓶,分别作为空气输送管和氧气输送管。
所述液体氧化剂输送管上依次串联有储液槽Ⅰ和泵Ⅰ;所述物料输送管上依次串联有储液槽Ⅱ和泵Ⅱ。
进一步的,该系统在电动增压机出口和氧气瓶出口分别设有截止阀,在启动增压机出口设有调节阀,在质量气体流量计出口设有截止阀,在泵Ⅰ和泵Ⅱ出口分别设有单向阀,在换热装置Ⅰ和换热装置Ⅱ底端分别设有排空截止阀,在反应器底端设有排空截止阀,在冷却装置出口设有背压阀,在背压阀和气液分离装置之间设有取样阀。
本发明所述多功能连续式水热氧化实验系统的使用方法,包括以下步骤:
(1)调试和开启物料管路:关闭换热装置之前的氧化剂管路,调节背压阀压力为0Mpa,开启物料管路导入清水,待取样阀有出水后将其关闭,通过背压阀调节物料管路压力为实验压力,开启反应器,导入待处理溶液;
(2)开启氧化剂管路:根据实验氧化剂的种类,选择开启空气氧化剂输送管、氧气输送管或液体氧化剂输送管,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开取样阀,连续取样进行检测;
(3)反应结束后,从物料管路和液体氧化剂管路导入清水,关闭预热装置和反应器,待反应器内温度低于100℃时,将背压阀压力调为0MPa,待温度降至70℃以下时,打开气体氧化剂管路,打开取样阀,待取样阀出水为清水后,停止导入清水,待取样阀无出水后,继续气体吹吸一段时间后关闭气体氧化剂管路,待反应器冷却至室温,打开反应器和腐蚀试验装置,去除内部催化剂和腐蚀板材。
优选的,步骤(2)中,当选择开启空气氧化剂输送管或氧气输送管时,可以将液体氧化剂与待处理液体混合后从物料管路导入,实现气液氧化剂同时存在进入反应。
所述液体氧化剂为双氧水、硝酸钾或硝酸钠溶液。
有益效果:本发明系统并联设有空气管道、氧气管道、液体氧化剂管道和物料管道,其中液体氧化剂管道和物料管道上的储液槽可以根据实际需求作为液态氧化剂储存槽或废水槽或清洗液槽,可实现不同种类气体氧化剂或液体氧化剂在连续式水热氧化过程中的氧化性能的比较;同时,可以准确调控气体氧化剂或液体氧化剂的的进料速度。本发明反应器出口设有专门的可拆卸的腐蚀实验装置,可以模拟流动状态下与水流方向呈不同角度的材料腐蚀实验。气体增压机出口设有气体质量流量计,在尾气收集装置前段设有氧浓度分析仪和气体流量计,可以准确计算水热氧化过程中氧的消耗情况,同时监测系统尾气中氧的浓度,作为安全控制,防止发生爆炸危险。系统设有换热装置和预热装置和管式炉,可以在有效回收反应出水热能的同时,确保废水在进入反应器前段、中间、末端温度维持在设定温度。
附图说明
图1为本发明多功能连续式水热氧化实验系统的结构示意图;
图2为反应器纵截面示意图;
图3为腐蚀试验装置和内部待试验板材放置的俯视图和对应的纵截面示意图,其中图3-1为板材与水流平行状态示意,图3-2为板材与水流呈30°状态示意,图3-3为板材与水流反向呈45°状态示意,图3-4为板材与水流方向呈60°状态示意。
具体实施方式
下面结合具体实施例对本申请作出详细说明。
实施例1
如图1所示的一种多功能连续式水热氧化实验系统,包括反应器12,所述反应器12入口并联有氧化剂管路和物料管路;氧化剂管路包括并联的气体氧化剂输送管和液体氧化剂输送管,其中气体氧化剂输送管包括并联的空气氧化剂输送管和氧气输送管;氧化剂管路和物料管路上依次串联有换热装置和预热装置,氧化剂管路和物料管路连通换热装置的内管,反应器12出口通过管道依次连通腐蚀实验装置14、换热装置外管、冷却装置16和气液分离装置17;冷却装置16和气液分离装置17之间串联有背压阀V10和取样阀V11;气液分离装置17的气体出口依次串联氧浓度分析仪18、气体流量计19和尾气收集装置20;气液分离装置17的液体出口连接出水收集装置21。其中, 气体氧化剂输送管上依次串联有气动增压机2和气体质量流量计3,气动增压机2入口并联导入空气的电动增压机1和氧气瓶,分别作为空气输送管和氧气输送管。
如图1所示的试验装置分别包括一条气体氧化剂管路、一条液体氧化剂管路和一条物料管路,液体氧化剂输送管上串联有储液槽Ⅰ4、泵Ⅰ5、换热装置Ⅰ6、预热装置Ⅰ7,物料输送管上串联有储液槽Ⅱ8、泵Ⅱ9、换热装置Ⅱ10、预热装置Ⅱ11,预热装置Ⅰ7和预热装置Ⅱ11的内管出口均连接至反应器12入口,反应器12从底部进水、上部出水,氧化剂和物料通过布孔管的方式进入反应器内部,反应器内部设有催化剂承载装置;反应器外的加热装置为管式炉13。如图3所示,腐蚀实验装置14为可拆卸机构,通过上下盖和中间圆柱管1401构成,待试验板材1402固定在中间圆柱管1401内,与水流方向呈0-90°设置,实现对与水流呈不同角度的板材腐蚀情况的模拟。其中,所述腐蚀实验装置的上下盖和中间圆柱管1401通过螺纹密封,中间圆柱管1401可以更换。上下盖由镍基合金制成,中间圆柱管1401根据腐蚀实验需要可以为指定材质。腐蚀试验装置内部设有套管,用于实现待试验板材1402的角度固定。如图3所示,腐蚀实验装置14内部通过设置套管1403实现待试验板材1402的固定,套管1403具体为如图3所示的一种与反应器中间圆柱管1401内径一样的弹性材料套管。冷却装置16为冷淋器。
具体的,结合图1,所示多功能连续式水热氧化实验系统,包括电动增压机1、气动增压机2、气体质量流量计3、储液槽Ⅰ4、泵Ⅰ5、换热装置Ⅰ6、预热装置Ⅰ7、储液槽Ⅱ8、泵Ⅱ9、换热装置Ⅱ10、预热装置Ⅱ11、反应器12、管式炉13、腐蚀实验装置14、温度显示器15、冷却装置16、气液分离器17、氧浓度分析仪18、气体流量计19、尾气收集装置20、出水收集装置21。在电动增压机1出口和氧气瓶出口分别设有截止阀V1、V2,在气动增压机2出口设有调节阀V3,在质量气体流量计3出口设有截止阀V4,在泵Ⅰ5和泵Ⅱ9出口分别设有单向阀V5、V7,在换热装置Ⅰ6和换热装置Ⅱ10底端分别设有排空截止阀V6、V8,在反应器12底端设有排空截止阀V9,在冷却装置16冷淋器出口设有背压阀V10,在背压阀V10和气液分离装置17之间设有取样阀V11。
其中,气动增压机2入口分为两股:一股为空气,空气通过电动增压机1增压后通过截止阀V1进入气动增压机2;另一股为氧气瓶直接通过截止阀V2和气动增压机2连接,当气动增压机2检测到进气时启动。所述的电动增压机1为低压增压机,压力为0.4~0.8MPa,气动增压机2为高压增压机,压力范围为8~30MPa。如图2所示,反应 器12使用耐腐蚀材料制成,如镍基合金625,在反应器内部设有由镍基合金材料制备的催化剂承载装置1201,反应器底部设有布孔管1202,采用微孔布气,物料和氧化剂通过反应器进液管1203从底部进入反应器。反应器外部被外形和反应器匹配的管式炉13包裹,管式炉13分为两瓣,通过铰链和锁扣拼接在一起。
具体的,各处设备具体连接方式如下:
电动增压机1的出口和气动增压机2的入口连接,中间设有截止阀V1,气动增压机2出口和气体质量流量计3入口连接,中间设有调节阀V3;液体氧化剂或待处理液储存在储液槽Ⅰ4中,储液槽Ⅰ4出口和泵Ⅰ5入口连接,气体质量流量计3出口和泵Ⅰ5通过四通阀连接,在四通阀和泵Ⅰ5之间设有单向阀V5和压力检测仪,气体质量流量计3出口和泵Ⅰ5通过四通阀连接后和换热装置Ⅰ6内管入口连接,换热装置Ⅰ6内管出口和预热装置Ⅰ7入口连接;待处理液储存在储液槽Ⅱ8中,储液槽Ⅱ8出口和泵Ⅱ9入口连接,泵Ⅱ9出口和换热装置Ⅱ10内管入口连接,在泵Ⅱ9和换热装置Ⅱ10之间设有单向阀V7和压力检测仪,换热装置Ⅱ10内管出口和预热装置Ⅱ11入口连接;预热装置Ⅰ7内管出口和预热装置Ⅱ11内管出口交汇后和反应器12入口连接;反应器12出口和腐蚀实验装置14入口连接,腐蚀实验装置14出口和换热装置Ⅰ6外管入口连接,换热器Ⅰ6外管出口和换热装置Ⅱ10外管入口连接,换热装置Ⅱ10外管出口和冷却装置16入口连接,冷却装置16出口和气液分离器17入口连接,在冷却装置16和气液分离器17之间设有背压阀V10和压力检测仪,在背压阀V10和气液分离器17之间通过三通连接取样管,取样管上设有截止阀V11;气液分离器17气相出口和氧浓度分析仪18入口连接,氧浓度分析仪18出口和气体流量计19入口连接,气体流量计19出口和尾气收集装置20连接,气液分离器17液相出口和出水收集装置21连接。
实施例2
实施例1所述多功能连续式水热氧化实验系统的使用方法,包括以下步骤:
(1)调试和开启物料管路:先关闭V1、V2、V3、V4、V5、V6、V8、V9,开启V7、V11,调节背压阀V10压力为0Mpa。首先溶液储槽Ⅱ中装载清水,开启物料泵Ⅱ,开启预热装置Ⅱ,待V11有出水后,关闭V11,调节背压阀V10压力到实验压力,开启反应器包裹的管式炉,将溶液储槽Ⅱ中溶液置换成待处理溶液。
(2)开启氧化剂管路:若氧化为气体:打开V1、V3、V4,开启电动增压机、气动增 压机、预热装置Ⅰ、预热装置Ⅱ,调整进气流量,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开V11,连续取样进行检测。若为液体氧化剂:将溶液储槽Ⅰ内装载液体氧化剂,开启物料泵Ⅰ,预热装置Ⅰ、预热装置Ⅱ,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开V11,连续取样进行检测。
(3)反应结束后,将溶液储槽Ⅰ、溶液储槽Ⅱ置换成清水,开启物料泵Ⅰ、物料泵Ⅱ,关闭预热装置Ⅰ、预热装置Ⅱ、管式炉,待反应器内温度低于100℃时,将背压阀压力调为0MPa,待温度降至70℃以下时,打开电动增加机、气动增压机,打开V11,待V11处出水为清水后10分钟,关闭物料泵Ⅰ、物料泵Ⅱ,待V11无出水同,继续空如空气吹吸10分钟,关闭电动增加机、气动增压机,等反应器冷却至室温时,打开反应器和腐蚀试验装置,去除内部催化剂和腐蚀板材。其中,使用中的液态氧化剂包括双氧水、硝酸钾、硝酸钠溶液等。并且,步骤(2)中,在选择开启空气氧化剂输送管或氧气输送管时,可以将液体氧化剂与待处理液体混合后从物料管路导入,实现气液氧化剂同时存在进入反应。
实施例1所述实验系统的具体应用。
案例1:在温度为250℃、8MPa,以空气为氧化剂湿式氧化条件下处理甲醇溶液:
先关闭V1、V2、V3、V4、V5、V6、V8、V9,开启V7、V11,调节背压阀V10压力为0Mpa。首先溶液储槽Ⅱ中装载清水,开启物料泵Ⅱ,调节物料泵Ⅱ进水速率为5mL/min。开启预热装置Ⅱ,设置预热装置Ⅱ的温度为250℃,待V11有出水后,关闭V11,调节背压阀V10压力为8MPa,开启反应器包裹的管式炉,管式炉温度设定250℃。将溶液储槽Ⅱ中溶液置换成甲醇溶液,进水15分钟后调节物料泵Ⅱ进水速率为8mL/min,打开V1、V3、V4,开启电动增压机、气动增压机、预热装置Ⅰ、预热装置Ⅱ温度为250℃,调整进气流量使理论氧化系数为1.1~1.3,当反应稳定后,记录气体流量计19和氧浓度分析仪18读数,打开V11,连续取样进行检测。
反应结束后,将溶液储槽Ⅰ、溶液储槽Ⅱ置换成清水,开启物料泵Ⅰ、物料泵Ⅱ,关闭预热装置Ⅰ、预热装置Ⅱ、管式炉,待反应器内温度低于100℃时,将背压阀压力调为0MPa,待温度降至70℃以下时,打开电动增加机、气动增压机,打开V11,待V11处出水为清水后10分钟,关闭物料泵Ⅰ、物料泵Ⅱ,待V11无出水同,继续空如空气吹吸10分钟,关闭电动增加机、气动增压机,等反应器冷却至室温时,打开反应 器和腐蚀试验装置,去除内部催化剂和腐蚀板材。
案例2:在温度450℃、25MPa,以空气为氧化剂超临界水氧化条件下处理甲醇溶液:
将预热装置Ⅱ的温度为450℃、管式炉温度设定450℃、预热装置Ⅰ温度为450℃,调节背压阀压力为25MPa,其他操作同案例1。
案例3:在温度为250℃、8MPa,以氧气为氧化剂湿式氧化条件下处理甲醇溶液:
先关闭V1、V2、V3、V4、V5、V6、V8、V9,开启V7、V11,调节背压阀V10压力为0Mpa。首先溶液储槽Ⅱ中装载清水,开启物料泵Ⅱ,调节物料泵Ⅱ进水速率为100mL/min。开启预热装置Ⅱ,设置预热装置Ⅱ的温度为250℃,待V11有出水后,关闭V11,调节背压阀压力为8MPa,开启反应器包裹的管式炉,管式炉温度设定250℃。将溶液储槽Ⅱ中溶液置换成甲醇溶液,进水15分钟后调节物料泵Ⅱ进水速率为30mL/min,打开V2、V3、V4,开启气动增压机、预热装置Ⅰ,预热装置Ⅰ温度为250℃,调整进气流量使理论氧化系数为1.1~1.3,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开V11,连续取样进行检测。
案例4:在温度为250℃、8MPa,以双氧水为氧化剂湿式氧化条件下处理甲醇溶液:
先关闭V1、V2、V3、V4、V5、V6、V8、V9,开启V5、V7、V11,调节背压阀V10压力为0Mpa。首先溶液储槽Ⅰ、溶液储槽Ⅱ中装载清水,开启物料泵Ⅰ、物料泵Ⅱ,调节物料泵Ⅰ、物料泵Ⅱ进水速率为50mL/min。开启预热器Ⅰ、预热装置Ⅱ,设置预热器Ⅰ、预热装置Ⅱ的温度为250℃,待V11有出水后,关闭V11,调节背压阀压力为8MPa,开启反应器包裹的管式炉,管式炉温度设定250℃。将溶液储槽Ⅰ中溶液置换成30%的双氧水,将溶液储槽Ⅱ中溶液置换成甲醇溶液,进水15分钟后调节物料泵Ⅰ速率为10mL/min、物料泵Ⅱ进水速率为15mL/min,开启预热装置Ⅰ和预热器Ⅱ,预热装置Ⅰ、预热器Ⅱ温度为250℃,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开V11,连续取样进行检测。
案例5:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液,催化剂为CuO/TiO 2—γAl 2O 3
打开反应外包裹的管式炉,在反应器内部催化剂承载装置内装载CuO/TiO 2—γ Al 2O 3催化剂,其后步骤如案例1。
案例6:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液过程中,探索316不锈钢承压管腐蚀性能:
将腐蚀反应装置中间圆柱管置换成316不锈钢承压管,其余实验步骤同案例1。
案例7:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液过程中,探索316不锈钢非承压板材与水流方向相同的腐蚀性能:
将腐蚀实验装置中间圆柱管设置成一根长度小于80mm,内径为70mm的镍基合金管,内放置一根长度小于80mm,宽度小于70mm的316不锈钢板材。其后操作如案例1。
案例8:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液过程中,探索316不锈钢非承压板材与水流30°时的腐蚀性能:
在腐蚀实验装置内部设置一根长度为100mm,宽度为36mm的316不锈钢材质板材,拧紧上下盖,其余与案例7相同。
案例9:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液过程中,探索316不锈钢非承压板材与水流方向呈45°时的腐蚀性能:
在腐蚀实验装置内部设置一根长度为85mm,宽度为36mm的316不锈钢材质板材,上方放置一个经打磨后外径略小于70mm,管壁厚度为5mm,长度为20mm的套管,拧紧上下盖,其余与案例7相同。
案例10:在温度为250℃、8MPa,以空气为氧化剂催化湿式氧化条件下处理甲醇溶液过程中,探索316不锈钢非承压板材与水流方向呈45°时的腐蚀性能:
在腐蚀实验装置内部设置一根长度为67mm,宽度为36mm的316不锈钢材质板材,上方放置一个经打磨后外径略小于70mm,管壁厚度为5mm,长度为50mm的套管,拧紧上下盖,其余与案例7相同。

Claims (9)

  1. 一种多功能连续式水热氧化实验系统,其特征在于:
    包括反应器,所述反应器入口并联有氧化剂管路和物料管路;
    所述氧化剂管路包括并联的气体氧化剂输送管和液体氧化剂输送管,其中气体氧化剂输送管包括并联的空气氧化剂输送管和氧气输送管;
    所述氧化剂管路和物料管路上依次串联有换热装置和预热装置,所述氧化剂管路和物料管路连通换热装置的内管,所述反应器出口通过管道依次连通腐蚀实验装置、换热装置外管、冷却装置和气液分离装置;
    所述冷却装置和气液分离装置之间串联有背压阀和取样阀;
    所述气液分离装置的气体出口依次串联氧浓度分析仪、气体流量计和尾气收集装置;所述气液分离装置的液体出口连接出水收集装置。
  2. 根据权利要求1所述的多功能连续式水热氧化实验系统,其特征在于,所述气体氧化剂输送管上依次串联有气动增压机和气体质量流量计,所述气动增压机入口并联导入空气的电动增压机和氧气瓶,分别作为空气输送管和氧气输送管。
  3. 根据权利要求1所述的多功能连续式水热氧化实验系统,其特征在于,所述液体氧化剂输送管和物料输送管上均依次串联有储液槽和泵。
  4. 根据权利要求1所述的多功能连续式水热氧化实验系统,其特征在于,所述反应器从底部进水、上部出水;所述氧化剂和物料通过布孔管的方式进入反应器内部,反应器内部设有催化剂承载装置;所述反应器外的加热装置为管式炉。
  5. 根据权利要求1所述的多功能连续式水热氧化实验系统,其特征在于,所述腐蚀实验装置为可拆卸机构,通过上下盖和中间圆柱管构成,所述待试验板材固定在中间圆柱管内,与水流方向呈0-90°设置,实现对与水流呈不同角度的板材腐蚀情况的模拟。
  6. 根据权利要求1所述的多功能连续式水热氧化实验系统,其特征在于,所述冷却装置为冷淋器。
  7. 权利要求1-6中任一所述多功能连续式水热氧化实验系统的使用方法,其特征在于,包括以下步骤:
    (1)调试和开启物料管路:关闭换热装置之前的氧化剂管路,调节背压阀压力为0Mpa,开启物料管路导入清水,待取样阀有出水后将其关闭,通过背压阀调节物料管路压力为实验压力,开启反应器,导入待处理溶液;
    (2)开启氧化剂管路:根据实验氧化剂的种类,选择开启空气氧化剂输送管、氧气输送管或液体氧化剂输送管,当反应稳定后,记录气体流量计和氧浓度分析仪读数,打开取样阀,连续取样进行检测;
    (3)反应结束后,从物料管路和液体氧化剂管路导入清水,关闭预热装置和反应器,待反应器内温度低于100℃时,将背压阀压力调为0MPa,待温度降至70℃以下时,打开气体氧化剂管路,打开取样阀,待取样阀出水为清水后,停止导入清水,待取样阀无出水后,继续气体吹吸一段时间后关闭气体氧化剂管路,待反应器冷却至室温,打开反应器和腐蚀试验装置,去除内部催化剂和腐蚀板材。
  8. 根据权利要求7所述的多功能连续式水热氧化实验系统的使用方法,其特征在于,步骤(2)中,当选择开启空气氧化剂输送管或氧气输送管时,可以将液体氧化剂与待处理液体混合后从物料管路导入,实现气液氧化剂同时存在进入反应。
  9. 根据权利要求7所述的多功能连续式水热氧化实验系统的使用方法,其特征在于,所述液体氧化剂为双氧水、硝酸钾或硝酸钠溶液。
PCT/CN2019/111981 2018-11-09 2019-10-18 多功能连续式水热氧化实验系统及其使用方法 WO2020093856A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,500 US11565956B2 (en) 2018-11-09 2019-10-18 Multifunctional continuous hydrothermal oxidation experiment system and use method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811330537.9 2018-11-09
CN201811330537.9A CN109231421B (zh) 2018-11-09 2018-11-09 多功能连续式水热氧化实验系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2020093856A1 true WO2020093856A1 (zh) 2020-05-14

Family

ID=65077718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111981 WO2020093856A1 (zh) 2018-11-09 2019-10-18 多功能连续式水热氧化实验系统及其使用方法

Country Status (3)

Country Link
US (1) US11565956B2 (zh)
CN (1) CN109231421B (zh)
WO (1) WO2020093856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295605A (zh) * 2021-05-21 2021-08-24 中国石油化工股份有限公司 一种模拟烟灰腐蚀或烟气腐蚀的实验装置及实验方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231421B (zh) * 2018-11-09 2024-01-26 江苏省环境科学研究院 多功能连续式水热氧化实验系统及其使用方法
WO2021231073A1 (en) * 2020-05-12 2021-11-18 University Of Washington Apparatus and method for measurement of halogens in samples
CN112320920A (zh) * 2020-10-22 2021-02-05 中国科学院上海应用物理研究所 一种有机废液的超临界水氧化处理系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437798A (en) * 1993-02-02 1995-08-01 Sulzer Chemtech Ag Purification of salt-charged waste water by wet oxidation under super-critical conditions
JP2000202470A (ja) * 1999-01-12 2000-07-25 Daikin Ind Ltd 超臨界水酸化処理装置
CN103771549A (zh) * 2014-01-25 2014-05-07 西安交通大学 一种多功能的超临界水技术实验系统
CN104445574A (zh) * 2014-12-05 2015-03-25 内蒙古天一环境技术有限公司 一种新型分体撬装式超临界水氧化反应系统
CN104709998A (zh) * 2015-03-23 2015-06-17 内蒙古天一环境技术有限公司 一种超临界水氧化小型反应系统及其控制方法
CN109231421A (zh) * 2018-11-09 2019-01-18 江苏省环境科学研究院 多功能连续式水热氧化实验系统及其使用方法
CN209178066U (zh) * 2018-11-09 2019-07-30 江苏省环境科学研究院 多功能连续式水热氧化实验系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2255443B1 (es) * 2004-12-03 2007-07-01 Universidad De Cadiz Sistema y procedimiento para la oxidacion hidrotermica de residuos organicos insolubles en agua.
CN204251405U (zh) * 2014-12-05 2015-04-08 内蒙古天一环境技术有限公司 一种新型超临界水氧化综合处理系统
JP2017006856A (ja) * 2015-06-22 2017-01-12 株式会社リコー 流体処理装置
CN205643262U (zh) * 2016-05-25 2016-10-12 平湖石化有限责任公司 一种气液分离采样装置
CN106082426B (zh) * 2016-08-10 2019-03-22 广州中国科学院先进技术研究所 以h2o2作为氧化剂的超临界水氧化系统和工艺
CN106380021A (zh) * 2016-11-23 2017-02-08 江苏省环境科学研究院 一种高浓度有机废水的湿式氧化处理系统及方法
CN107238566B (zh) * 2017-05-09 2020-09-08 常州大学 模拟管道外腐蚀的实验装置
CN108455719A (zh) * 2018-03-16 2018-08-28 河北合佳医药科技集团股份有限公司 高浓度有机废水湿式氧化处理系统及处理方法
CN108383335B (zh) * 2018-05-08 2023-09-19 江苏省环境科学研究院 高浓度有机废水处理系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437798A (en) * 1993-02-02 1995-08-01 Sulzer Chemtech Ag Purification of salt-charged waste water by wet oxidation under super-critical conditions
JP2000202470A (ja) * 1999-01-12 2000-07-25 Daikin Ind Ltd 超臨界水酸化処理装置
CN103771549A (zh) * 2014-01-25 2014-05-07 西安交通大学 一种多功能的超临界水技术实验系统
CN104445574A (zh) * 2014-12-05 2015-03-25 内蒙古天一环境技术有限公司 一种新型分体撬装式超临界水氧化反应系统
CN104709998A (zh) * 2015-03-23 2015-06-17 内蒙古天一环境技术有限公司 一种超临界水氧化小型反应系统及其控制方法
CN109231421A (zh) * 2018-11-09 2019-01-18 江苏省环境科学研究院 多功能连续式水热氧化实验系统及其使用方法
CN209178066U (zh) * 2018-11-09 2019-07-30 江苏省环境科学研究院 多功能连续式水热氧化实验系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295605A (zh) * 2021-05-21 2021-08-24 中国石油化工股份有限公司 一种模拟烟灰腐蚀或烟气腐蚀的实验装置及实验方法

Also Published As

Publication number Publication date
US20210269337A1 (en) 2021-09-02
US11565956B2 (en) 2023-01-31
CN109231421A (zh) 2019-01-18
CN109231421B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2020093856A1 (zh) 多功能连续式水热氧化实验系统及其使用方法
CN104709998B (zh) 一种超临界水氧化小型反应系统及其控制方法
CN109320014B (zh) 一种基于超临界水氧化反应含氮有机物分级处理系统及方法
CN103771549B (zh) 一种多功能的超临界水技术实验系统
WO2023246668A1 (zh) 一种具有氨气预加热功能的氨分解反应器
CN108996868B (zh) 用于提高超临界水氧化系统运行可靠性的方法及系统
JPH01145302A (ja) 水素の精製方法および装置
CN109851187B (zh) 一种以导热油为换热介质的污泥超临界水氧化系统及污泥处理方法
CN109305709A (zh) 一种用于超临界水氧化系统的蒸氨再沸器及其加工方法和使用方法
CN209178066U (zh) 多功能连续式水热氧化实验系统
CN202453218U (zh) 氯硅烷取样系统
CN107349788A (zh) 一种用于核纯级硝酸铀酰溶液的浓缩方法
CN207689445U (zh) 一种scr脱硝催化剂全尺寸性能检测评价装置
CN102589924A (zh) 氯硅烷取样系统
CN206772953U (zh) 一种工业锅炉水质硬度监测装置
CN109912006B (zh) 一种管簇式超临界水氧化反应器
CN214122219U (zh) 一种移动式在线硅表、磷表的检验装置
CN108821419A (zh) 一种用于处理高浓度有机废液的超临界水氧化反应器
CN111624235A (zh) 一种流动式高温高压溶解度在线测定装置及其测定方法
CN210885288U (zh) 一种氢油加注系统
CN209537186U (zh) 一种用于裘革加工废弃物的超临界水氧化系统
CN220265335U (zh) 一种盐水浓缩控制系统
CN217330820U (zh) 熔盐冷却器排污安全取样及水回收系统
CN2892837Y (zh) 高浓度工业废水处理系统
CN110865144A (zh) 一种高温气冷堆陶瓷堆内构件热老化试验平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882951

Country of ref document: EP

Kind code of ref document: A1