WO2020093295A1 - 一种电-气互联综合能源系统的多时段潮流优化方法 - Google Patents

一种电-气互联综合能源系统的多时段潮流优化方法 Download PDF

Info

Publication number
WO2020093295A1
WO2020093295A1 PCT/CN2018/114472 CN2018114472W WO2020093295A1 WO 2020093295 A1 WO2020093295 A1 WO 2020093295A1 CN 2018114472 W CN2018114472 W CN 2018114472W WO 2020093295 A1 WO2020093295 A1 WO 2020093295A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
energy system
period
pipeline
natural gas
Prior art date
Application number
PCT/CN2018/114472
Other languages
English (en)
French (fr)
Inventor
滕贤亮
杜刚
吴仕强
陈�胜
卫志农
孙国强
臧海祥
王文学
Original Assignee
国电南瑞科技股份有限公司
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 河海大学 filed Critical 国电南瑞科技股份有限公司
Publication of WO2020093295A1 publication Critical patent/WO2020093295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to the technical field of electrical interconnection, and in particular to a multi-period power flow optimization method for an integrated electrical energy system with electrical interconnection.
  • the two-way energy flow between the power system and the natural gas system is possible.
  • the development of natural gas has transformed the power system and the natural gas system from independent to mutual coupling (gradually Developed into a strong coupling). Therefore, it is necessary to break the independent planning and operation mode of the existing energy system and construct a unified and integrated energy system with multiple heterogeneous energy interconnections.
  • the energy Internet can be understood as the deep integration of Internet thinking and technology on the basis of multiple types of energy interconnection (ie, integrated energy system). Therefore, the construction of an integrated energy system will also become an important part of China's energy Internet strategy.
  • the advantages of the integrated electricity-gas interconnected energy system are: 1) higher energy utilization efficiency and greater economic benefits; 2) promoting the large-scale development and grid connection of renewable energy; 3) Increase flexibility and energy complementarity between systems.
  • Natural gas systems have slow dynamic characteristics, so in short-time scale scheduling, line-pack storage characteristics in natural gas system pipelines need to be considered.
  • the natural gas system power flow model is essentially a nonlinear non-convex equation.
  • For non-convex optimization it is often only possible to obtain a local optimal solution, and the convergence of the solution is easily affected by the initial value.
  • the optimization of power system operation also faces the problem of non-convexity, but the DC linear power flow model has been able to replace the AC nonlinear power flow model in engineering practice, so the efficient linear power flow model in power system optimization is available.
  • the existing power flow model linearization model uses a piecewise linear method, which requires the introduction of a large number of integer variables, which greatly increases the computational complexity. If a small number of piecewise integer variables are considered, the piecewise linear accuracy is difficult to meet engineering practice requirements . Therefore, the highly efficient convex optimization natural gas system flow is particularly important.
  • the present invention provides a multi-period power flow optimization method for an integrated energy system of electric-gas interconnection.
  • the method uses second-order cone optimization to ensure the efficiency and optimality of the understanding, and adopts DCP ( difference-of-convex) method to ensure the feasibility of understanding (ie to be able to meet the strict physical constraints of natural gas systems).
  • DCP difference-of-convex
  • the multi-period power flow optimization method of the integrated electric-gas interconnected energy system of the present invention includes:
  • the power system information obtained in step (1) is: power grid topology, branch parameter information, generator parameter information, electric load information in the future period, wind power predicted value information;
  • natural gas system parameter information is: natural gas Network topology, pipeline parameter information, current pipeline line-pack storage, gas source parameter information, and gas load information in the future period.
  • the multi-period scheduling model of the integrated energy system of electricity-gas interconnection established in step (2) is specifically as follows:
  • the superscript 0 represents the benchmark operation scenario
  • the subscript t represents the time t, i, j, m, n represent the nodes in the energy system
  • the superscript max represents the upper limit
  • the superscript min represents the lower limit
  • f 0 To optimize the objective function, N G is the generator set, N g is the gas turbine set, N s is the gas source set, N W is the wind farm set, T 0 is the number of time sections, C G, i is the generator cost coefficient, C S, m is the cost coefficient of the gas source, C W, i is the cost coefficient of abandoned wind, Is the wind curtailment percentage, Contribute to the generator, For the lower and upper output limits of the generator, To abandon the wind ratio, Expected output for wind power, P L, i, t is the active load, Is the line ij active power, EN (i) is the set of nodes connected to node i, b ij is the line ij susceptance, and ⁇
  • step (3) specifically includes:
  • the superscript 0 indicates the benchmark operation scenario
  • the subscript t indicates the time t
  • the superscript max indicates the corresponding upper limit value
  • the superscript min indicates the corresponding lower limit value
  • ⁇ > T indicates the convex envelope function of the square term
  • ⁇ mn represents a square term convex envelope variable
  • ⁇ mn represents a bilinear term convex envelope variable.
  • step (5) specifically includes:
  • f 0 (x) is the optimization objective function of the multi-period scheduling model of the electric-gas interconnected integrated energy system
  • x is the state variable
  • X is the feasible region of x
  • x r is the state variable solved at the rth iteration.
  • the optimal solution s mn is a non-negative relaxation variable
  • ⁇ r is the penalty weight coefficient
  • r is the current number of iterations
  • x * is the state variable value after the end of the current iteration, These are the corresponding values in the state variable x * .
  • the present invention has significant advantages: the present invention uses second-order cone optimization to ensure the efficiency and optimality of understanding, and the DCP method to ensure the feasibility of understanding (that is, it can meet the strict requirements of natural gas systems Physical constraints).
  • FIG. 1 is a schematic flowchart of an embodiment of the present invention
  • Figure 2 is a diagram of a comprehensive energy system composed of an IEEE-39 node system and a Belgium 20-node system.
  • This embodiment provides a multi-period power flow optimization method for an integrated electric-gas interconnected energy system. As shown in FIG. 1, the method includes the following steps:
  • the power system information is: power grid topology, branch parameter information, generator parameter information, electric load information in the future period, wind power forecast value information;
  • natural gas system parameter information is: natural gas network topology, pipeline parameter information, current The pipeline's line-pack storage capacity, gas source parameter information, and gas load information in the future period.
  • superscript 0 represents the benchmark operation scenario
  • subscript t represents the time t
  • i, j, m, n represent the nodes in the energy system
  • superscript max represents the upper limit value
  • superscript min represents the lower limit value
  • f 0 To optimize the objective function, N G is the generator set, N g is the gas turbine set, N s is the gas source set, N W is the wind farm set, T 0 is the wind curtailment ratio, and C G and i are the generator cost coefficients, C S, m is the cost coefficient of the gas source, C W, i is the cost coefficient of abandoned wind, Is the wind curtailment percentage, Contribute to the generator, For the lower and upper output limits of the generator, Is the number of time sections, Expected output for wind power, P L, i, t is the active load, Is the line ij active power, EN (i) is the set of nodes connected to node i, b ij is the line ij susceptance
  • equation (1) is the multi-period optimization objective function, including the cost of non-gas-fired power generation, gas supply, and wind curtailment. It should be noted that the cost of gas supply indirectly includes the power generation cost of the gas turbine, so the power generation cost in (1) only accounts for non-gas-fired units.
  • Equations (2)-(7) are power system operation constraints. Equation (2) is the node power balance constraint, equation (3) describes the linear relationship between the line power and the phase angle difference between the first and the end nodes in the DC power flow model; equations (4) and (5) are the upper and lower constraints of the generator, respectively And climbing constraints; Equation (6) is the line transmission capacity constraint. Equations (8)-(19) are the dynamic operating constraints of the natural gas system.
  • Equation (8) is a node flow balance constraint. Equations (9) and (10) describe the nonlinear relationship between the average flow rate of the pipeline and the pressure at the node at the end of the pipeline; equation (11) indicates that the difference between the flow rate at the end and the end is equal to that in the pipeline Fluctuation of tube storage in two adjacent sections; Equation (12) indicates that the pipeline storage is proportional to the average pressure at the head and end; Equation (13) describes the linear relationship between the flow absorbed by the pressure station and the flow through the pressure station; 14) It is the pressure ratio constraint of the pressurization station; Equation (15) is the transportation capacity constraint of the pressurization station; Equations (16) and (17) are the gas supply capacity and climbing constraints; Equation (18) is the nodal pressure The lower limit constraint; Equation (19) is the lower limit constraint of the natural gas system master deposit at time T 0 .
  • equation (9) is a nonlinear non-convex equation, and the corresponding nonlinear optimization model will inevitably encounter initial value sensitivity and numerical stability Poor and other issues.
  • equation (9) can be relaxed to equation (20), and further, the standard second-order taper equation of equation (20) is shown in equation (21).
  • Equing equation (9) into the second-order cone of equation (21) can effectively avoid the numerical stability problem.
  • equation (21) may not be the same as equation (9), that is, the second-order cone relaxation may not be strict. of.
  • the present invention proposes an enhanced second-order cone-shaped natural gas power flow model.
  • the enhanced second-order cone-shaped natural gas power flow model is based on equation (21), and deeply considers equation (22).
  • equation (22) there are two points that need to be explained here: 1) The combination of formula (21) and formula (22) is strictly equivalent to formula (9); 2) Unlike formula (21), formula (22) is still non-compliant Convex.
  • the present invention further proposes to use the convex envelope (Convex envelope) method to relax the bilinear term (essentially non-convex term) in equation (22). Then the left bilinear term in equation (22) Equation (23) can be used instead, and for the non-convex term on the right in Equation (22), define Then the right part of formula (A-7) can be replaced by formula (24). Finally, using the convex envelope method, equations (23)-(25) can replace equation (22).
  • Convex envelope convex envelope
  • equations (21) and (23)-(25) constitute an enhanced second-order cone-shaped natural gas flow model.
  • the DCP method linearizes the concave part of (22) (ie h mn (x)), and then converts (22) to the following form:
  • x is the state variable
  • X is the feasible field of x
  • s mn is the non-negative relaxation variable
  • ⁇ r is the penalty weight coefficient
  • r is the number of iterations.
  • equation (28) the relaxation variable s mn is introduced to ensure the solvability of equation (28).
  • DCP iteratively solves equation (28), and gradually updates the value of x r until Gap c is sufficiently small in equation (29) (that is, the original nonlinear equation (9) is approximately true), and the iteration ends.
  • Gap c is a constraint violation indicator
  • the simulation test of the present invention is as follows.
  • FIG. 2 is an integrated energy system composed of IEEE-39 nodes and Belgium 20-node systems.
  • Table 1 shows the comparison between the optimization results of the second-order cone model and the enhanced second-order cone model. From the table, it can be seen that in the first-stage optimization, the dual gap Gap o of the enhanced second-order cone model is smaller than the second-order cone model (0.43% VS 0.91%), and the constraint violation index Gap c is smaller, indicating that the enhanced second-order cone model optimization results are more similar to the original nonlinear optimization results.
  • both the second-order cone model and the enhanced second-order cone model can recover feasible solutions in the second stage (Gap c is small enough), but the enhanced second-order cone model is closer to the original nonlinear model ( Its Gap o is smaller), so the results in Table 1 verify the effectiveness of the proposed enhanced second-order cone model.
  • Gap o is the relative error between the second-order cone model and the nonlinear model optimization target value

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种电-气互联综合能源系统的多时段潮流优化方法,该方法包括:(1)获取电-气互联综合能源系统信息;(2)根据系统信息构建电-气互联综合能源系统多时段调度模型;(3)将所述电-气互联综合能源系统多时段调度模型中的天然气管道流量与压力的非线性非凸方程转化为增强二阶锥约束形式的天然气潮流模型;(4)对转化后的电-气互联综合能源系统多时段调度模型进行求解得到最优解;(5)将所述最优解作为初值,并采用DCP方法对转化后的电-气互联综合能源系统多时段调度模型进行线性化迭代求解,直至天然气系统严格的满足潮流约束;(6)将迭代结束时的最终解作为未来时段内的最优潮流解进行输出。本发明可以有效地进行多时段潮流优化。

Description

一种电-气互联综合能源系统的多时段潮流优化方法 技术领域
本发明涉及电气互联技术领域,尤其涉及一种电-气互联综合能源系统的多时段潮流优化方法。
背景技术
鉴于燃气轮机在发电侧比重的提升以及电转气技术在电力系统中应用,使电力系统与天然气系统间的双向能量流成为可能,天然气的发展使得电力系统与天然气系统由相互独立转变为相互耦合(逐步发展为强耦合)。因此有必要打破现有能源系统间独立规划、运行的模式,并构造统一的、多种异质能源互联的综合能源系统。进一步而言,能源互联网可理解为在多类型能源互联(即综合能源系统)的基础上,互联网思维与技术的深度融入,因而综合能源系统的构建也将成为我国能源互联网战略的重要环节。相比于现有能源系统,电-气互联综合能源系统的优势在于:1)更高的能源利用效率、更大的经济利益;2)促进可再生能源的规模化开发与并网;3)增加系统间的灵活性与能源互补性。
天然气系统存在慢动态特性,因而在短时间尺度调度中,需要考虑天然气系统管道中line-pack存储特性。同时,天然气系统潮流模型本质上为非线性非凸方程,对于非凸优化而言,往往只能获取局部最优解,且解的收敛性易受到初值影响。电力系统的运行优化同样面临非凸的难题,但直流线性潮流模型在工程实践中已能够替代交流非线性潮流模型,因此电力系统优化中高效的线性潮流模型是可获取的。然而对于天然气系统,现有潮流模型线性化模型采用分段线性方法,需引入大量整数变量,极大的增加计算复杂度,若考虑少量的分段整数变量,分段线性精度难以满足工程实践要求。因而高效的凸优化形式的天然气系统潮流显得尤为重要。
发明内容
发明目的:本发明针对现有技术存在的问题,提供一种电-气互联综合能源系统的多时段潮流优化方法,方法中采用二阶锥优化保证了解的高效性与最优性,采用DCP(difference‐of‐convex)方法保证了解的可行性(即能够满足天然气系统严格的物理约束)。
技术方案:本发明所述的电-气互联综合能源系统的多时段潮流优化方法包括:
(1)分别获取电-气互联综合能源系统的电力系统信息和天然气系统信息;
(2)根据所述电力系统信息和天然气系统信息,构建电-气互联综合能源系统多时段调度模型;
(3)将所述电-气互联综合能源系统多时段调度模型中的天然气管道流量与压力的非线性非凸方程转化为增强二阶锥约束形式的天然气潮流模型;
(4)对转化后的电-气互联综合能源系统多时段调度模型进行求解得到最优解;
(5)将所述最优解作为初值,并采用DCP方法对转化后的电-气互联综合能源系统多时段调度模型进行线性化迭代求解,直至天然气系统严格的满足潮流约束;
(6)将迭代结束时的最终解作为未来时段内的最优潮流解进行输出。
进一步的,步骤(1)中获取的电力系统信息为:电网拓扑、支路参数信息,发电机参数信息,未来时段内的电负荷信息,风电的预测值信息;天然气系统的参数信息为:天然气网拓扑、管道参数信息,当前管道的line-pack存储量,气源的参数信息,未来时段内的气负荷信息。
进一步的,步骤(2)中建立的电-气互联综合能源系统多时段调度模型具体为:
Figure PCTCN2018114472-appb-000001
Figure PCTCN2018114472-appb-000002
Figure PCTCN2018114472-appb-000003
Figure PCTCN2018114472-appb-000004
Figure PCTCN2018114472-appb-000005
Figure PCTCN2018114472-appb-000006
Figure PCTCN2018114472-appb-000007
Figure PCTCN2018114472-appb-000008
Figure PCTCN2018114472-appb-000009
Figure PCTCN2018114472-appb-000010
Figure PCTCN2018114472-appb-000011
Figure PCTCN2018114472-appb-000012
Figure PCTCN2018114472-appb-000013
Figure PCTCN2018114472-appb-000014
Figure PCTCN2018114472-appb-000015
Figure PCTCN2018114472-appb-000016
Figure PCTCN2018114472-appb-000017
Figure PCTCN2018114472-appb-000018
Figure PCTCN2018114472-appb-000019
式中,上标0表示基准运行场景,下标t表示t时刻,i、j、m、n表示能源系统中的节点;上标max表示上限值,上标min表示下限值;f 0为优化目标函数,N G为发电机集合,N g为燃气轮机集合,N s为气源集合,N W为风电场集合,T 0为时间断面数,C G,i为发电机成本系数,C S,m为气源成本系数,C W,i为弃风成本系数,
Figure PCTCN2018114472-appb-000020
为弃风百分比,
Figure PCTCN2018114472-appb-000021
为发电机出力,
Figure PCTCN2018114472-appb-000022
为发电机出力下限和上限,
Figure PCTCN2018114472-appb-000023
为弃风比,
Figure PCTCN2018114472-appb-000024
为风电期望出力,P L,i,t为有功负荷,
Figure PCTCN2018114472-appb-000025
为线路i-j有功功率,EN(i)为与节点i相连节点集合,b ij为线路i-j电纳,θ为节点相角向量,
Figure PCTCN2018114472-appb-000026
为线路i-j有功功率下限和上限;
Figure PCTCN2018114472-appb-000027
为燃气轮机消耗的天然气量,η为燃气轮机组转化效率,
Figure PCTCN2018114472-appb-000028
为气源出力,F D,m,t为天然气负荷,GC(m)、GP(m)、GN(m)分别为节点m连接的加压站、燃气轮机及管道集合,
Figure PCTCN2018114472-appb-000029
为加压站k的吸收流量,
Figure PCTCN2018114472-appb-000030
为流经加压站k的流量;
Figure PCTCN2018114472-appb-000031
Figure PCTCN2018114472-appb-000032
分别为管道m-n首端、末端以及平均流量,C mn为管道m-n压降常量,π m与π n分别为节点m、n压力,
Figure PCTCN2018114472-appb-000033
分别为节点m压力下限和上限;GL mn为管道m-n的line-pack储气量,K mn为管道m-n的line-pack参数;
Figure PCTCN2018114472-appb-000034
为燃气驱动加压站耗能系数,
Figure PCTCN2018114472-appb-000035
为发电机最大有功爬坡,
Figure PCTCN2018114472-appb-000036
分别为加压站首、末端压力,
Figure PCTCN2018114472-appb-000037
Figure PCTCN2018114472-appb-000038
为加压站升压比上限和下限,
Figure PCTCN2018114472-appb-000039
为气源出力下限和上限,
Figure PCTCN2018114472-appb-000040
为气源最大爬坡,
Figure PCTCN2018114472-appb-000041
为管道m-n管道量,GL min为管道的管道量下限,GB为管道集合。
进一步的,步骤(3)具体包括:
将天然气管道流量与压力的非线性非凸方程
Figure PCTCN2018114472-appb-000042
转化为如下的增强二阶锥约束形式的天然气潮流模型:
Figure PCTCN2018114472-appb-000043
Figure PCTCN2018114472-appb-000044
Figure PCTCN2018114472-appb-000045
Figure PCTCN2018114472-appb-000046
Figure PCTCN2018114472-appb-000047
式中,上标0表示基准运行场景,下标t表示t时刻,
Figure PCTCN2018114472-appb-000048
Figure PCTCN2018114472-appb-000049
上标max表示对应上限值,上标min表示对应下限值,< > T表示平方项凸包络函数,
Figure PCTCN2018114472-appb-000050
表示双线性项凸包络函数,κ mn表示平方项凸包络变量,λ mn表示双线性项凸包络变量。
进一步的,步骤(5)具体包括:
(5.1)对所述电-气互联综合能源系统多时段调度模型进行求解得到最优解x 0
(5.2)建立凸优化问题:
Figure PCTCN2018114472-appb-000051
s.t.s mn≥0,x∈X
Figure PCTCN2018114472-appb-000052
式中,f 0(x)为电-气互联综合能源系统多时段调度模型的优化目标函数,x为状态变量,X为x的可行域,x r为第r次迭代时求解的状态变量最优解,s mn为非负松弛变量,β r为惩罚权重系数,r为当前迭代次数,
Figure PCTCN2018114472-appb-000053
Figure PCTCN2018114472-appb-000054
(5.3)将x 0作为凸优化问题的初值,进行DCP迭代求解,逐步更新x r数值,直至 天然气约束违反指标Gap c小于预设值,结束迭代。
进一步的,步骤(5.3)中天然气约束违反指标Gap c计算公式为:
Figure PCTCN2018114472-appb-000055
式中:x *为当前次迭代结束后的状态变量值,
Figure PCTCN2018114472-appb-000056
分别为状态变量x *中对应值。
有益效果:本发明与现有技术相比,其显著优点是:本发明采用二阶锥优化保证了解的高效性与最优性,采用DCP方法保证了解的可行性(即能够满足天然气系统严格的物理约束)。
附图说明
图1是本发明的一个实施例的流程示意图;
图2是IEEE‐39节点系统与比利时20节点系统构成的综合能源系统图。
具体实施方式
本实施例提供了一种电-气互联综合能源系统的多时段潮流优化方法,如图1所示,包括如下步骤:
S1、分别获取电-气互联综合能源系统的电力系统信息和天然气系统信息。
其中,电力系统信息为:电网拓扑、支路参数信息,发电机参数信息,未来时段内的电负荷信息,风电的预测值信息;天然气系统的参数信息为:天然气网拓扑、管道参数信息,当前管道的line-pack存储量,气源的参数信息,未来时段内的气负荷信息。
S2、根据所述电力系统信息和天然气系统信息,构建电-气互联综合能源系统多时段调度模型:
Figure PCTCN2018114472-appb-000057
Figure PCTCN2018114472-appb-000058
Figure PCTCN2018114472-appb-000059
Figure PCTCN2018114472-appb-000060
Figure PCTCN2018114472-appb-000061
Figure PCTCN2018114472-appb-000062
Figure PCTCN2018114472-appb-000063
Figure PCTCN2018114472-appb-000064
Figure PCTCN2018114472-appb-000065
Figure PCTCN2018114472-appb-000066
Figure PCTCN2018114472-appb-000067
Figure PCTCN2018114472-appb-000068
Figure PCTCN2018114472-appb-000069
Figure PCTCN2018114472-appb-000070
Figure PCTCN2018114472-appb-000071
Figure PCTCN2018114472-appb-000072
Figure PCTCN2018114472-appb-000073
Figure PCTCN2018114472-appb-000074
Figure PCTCN2018114472-appb-000075
式中:上标0表示基准运行场景,下标t表示t时刻,i、j、m、n表示能源系统中的节点;上标max表示上限值,上标min表示下限值;f 0为优化目标函数,N G为发电机集合,N g为燃气轮机集合,N s为气源集合,N W为风电场集合,T 0为弃风比,C G,i为发电机成本系数,C S,m为气源成本系数,C W,i为弃风成本系数,
Figure PCTCN2018114472-appb-000076
为弃风百分比,
Figure PCTCN2018114472-appb-000077
为发电机出力,
Figure PCTCN2018114472-appb-000078
为发电机出力下限和上限,
Figure PCTCN2018114472-appb-000079
为时间断面数,
Figure PCTCN2018114472-appb-000080
为风电期望出力,P L,i,t为有功负荷,
Figure PCTCN2018114472-appb-000081
为线路i-j有功功率,EN(i)为与节点i相连节点集合,b ij为线路i-j电纳,θ为节点相角向量,
Figure PCTCN2018114472-appb-000082
为线路i-j有功功率下限和上限;
Figure PCTCN2018114472-appb-000083
为燃气轮机消耗的天然气量,η为燃气轮机组转化效率,
Figure PCTCN2018114472-appb-000084
为气源出力,F D,m,t为天然气负荷,GC(m)、GP(m)、GN(m)分别为节点m连接的加压站、燃气轮机 及管道集合,
Figure PCTCN2018114472-appb-000085
为加压站k的吸收流量,
Figure PCTCN2018114472-appb-000086
为流经加压站k的流量;
Figure PCTCN2018114472-appb-000087
Figure PCTCN2018114472-appb-000088
分别为管道m-n首端、末端以及平均流量,C mn为管道m-n压降常量,π m与π n分别为节点m、n压力,
Figure PCTCN2018114472-appb-000089
分别为节点m压力下限和上限;GL mn为管道m-n的line-pack储气量,K mn为管道m-n的line-pack参数;
Figure PCTCN2018114472-appb-000090
为燃气驱动加压站耗能系数,
Figure PCTCN2018114472-appb-000091
为发电机最大有功爬坡,
Figure PCTCN2018114472-appb-000092
分别为加压站首、末端压力,
Figure PCTCN2018114472-appb-000093
Figure PCTCN2018114472-appb-000094
为加压站升压比上限和下限,
Figure PCTCN2018114472-appb-000095
为气源出力下限和上限,
Figure PCTCN2018114472-appb-000096
为气源最大爬坡,
Figure PCTCN2018114472-appb-000097
为管道m-n管道量,GL min为管道的管道量下限,GB为管道集合。
我中,式(1)为多时段优化目标函数,包括非燃气机组发电成本、供气成本以及弃风成本。需要说明的是,供气成本间接包含了燃气轮机的发电成本,因而(1)中的发电成本仅计及非燃气机组。式(2)-(7)为电力系统运行约束。式(2)为节点功率平衡约束,式(3)描述了直流潮流模型中线路功率与首末端节点相角差之间的线性关系;式(4)和式(5)分别为发电机上下限约束和爬坡约束;式(6)为线路输电容量约束。式(8)-(19)为天然气系统动态运行约束。式(8)为节点流量平衡约束,式(9)与式(10)描述了管道平均流量与管道首末端节点压力之间的非线性关系;式(11)表示首末端流量之差等于管道中相邻两断面管存波动;式(12)表示管道管存正比于首末端平均压力;式(13)描述了加压站吸收的流量与流经加压站流量之间的线性关系;式(14)为加压站升压比约束;式(15)为加压站输送容量约束;式(16)和式(17)为气源供应容量和爬坡约束;式(18)为节点压力上下限约束;式(19)为T 0时刻天然气系统总管存下限约束。
S3、将所述电-气互联综合能源系统多时段调度模型中的天然气管道流量与压力的非线性非凸方程转化为增强二阶锥约束形式的天然气潮流模型。
由式(1)-(19)构成的综合能源系统多断面运行调度模型中,式(9)为非线性非凸方程,对应的非线性优化模型难免会遇到对初值敏感、数值稳定性不佳等问题。首先式(9)可松弛为式(20),进一步的,式(20)的标准二阶锥形式如式(21)所示。
Figure PCTCN2018114472-appb-000098
Figure PCTCN2018114472-appb-000099
将式(9)松弛为式(21)二阶锥形式,可有效避免数值稳定问题,然而在最优解运行点, 式(21)未必与式(9),即二阶锥松弛未必是严格的。基于此,本发明提出一种增强二阶锥形式的天然气潮流模型。
增强二阶锥形式的天然气潮流模型在式(21)基础上,深入考虑式(22)。此处针对式(22),有两点需要说明:1)式(21)与式(22)结合与式(9)严格等价;2)不同于式(21),式(22)依然是非凸的。
Figure PCTCN2018114472-appb-000100
本发明进一步提出采用凸包络(Convex envelope)的方法松弛式(22)中的双线性项(本质非线性非凸项)。则式(22)中左侧双线性项
Figure PCTCN2018114472-appb-000101
可采用式(23)代替,而对于式(22)中右侧的非凸项,定义
Figure PCTCN2018114472-appb-000102
则式(A-7)右侧部分可采用式(24)代替。最后,采用凸包络的方法,式(23)-(25)可代替式(22)。
Figure PCTCN2018114472-appb-000103
Figure PCTCN2018114472-appb-000104
Figure PCTCN2018114472-appb-000105
至此,式(21)与式(23)-(25)构成了增强二阶锥形式的天然气潮流模型。
S4、对转化后的电-气互联综合能源系统多时段调度模型进行求解得到最优解。
S5、将所述最优解作为初值,并采用DCP方法对转化后的电-气互联综合能源系统多时段调度模型进行线性化迭代求解,直至天然气系统严格的满足潮流约束。
可以注意到,相比于二阶锥天然气潮流模型,增强二阶锥模型能够提供更为严格的最优解,然而最优解仍然未必满足式(9),即松弛非严格成立,因而本发明进一步提出采用DCP的方法恢复天然气潮流的可行解。定义:
Figure PCTCN2018114472-appb-000106
Figure PCTCN2018114472-appb-000107
则式(22)可表述为:
g mn(x)-h mn(x)≤0         (26)
基于当前的最优解x r,DCP方法线性化式(22)凹部分(即h mn(x)),则将(22)转化为如下形式:
Figure PCTCN2018114472-appb-000108
基于式(27),DCP求解如下凸优化问题:
Figure PCTCN2018114472-appb-000109
式中:x为状态变量,X为x的可行域;s mn为非负松弛变量,β r为惩罚权重系数,r为迭代次数。
式(28)中,引入松弛变量s mn可保证式(28)的可解性。DCP迭代求解式(28),逐步更新x r数值,直至式(29)中Gap c足够小(即原始非线性方程式(9)近似成立),结束迭代。
Figure PCTCN2018114472-appb-000110
式中:Gap c为约束违反指标。
S6、将迭代结束时的最终解作为未来时段内的最优潮流解进行输出。
下面对本发明进行仿真测试。
本发明测试的算例如图2所示,由IEEE-39节点和比利时20节点系统构成的综合能源系统。表1给出了二阶锥与增强二阶锥模型优化结果比较,由该表可知,在第一阶段优化中,相比于二阶锥模型,增强二阶锥模型的对偶间隙Gap o更小(0.43%VS 0.91%),且约束违反指标Gap c更小,说明增强二阶锥模型优化结果与原始非线性优化结果更相近。进一步的,基于第一阶段结果,二阶锥模型和增强二阶锥模型在第二阶段均能恢复可行解(Gap c足够小),但增强二阶锥模型与原始非线性模型更为接近(其Gap o更小),因而表1结果验证了所提增强二阶锥模型的有效性。
表1 二阶锥与增强二阶锥模型优化结果比较
Figure PCTCN2018114472-appb-000111
Figure PCTCN2018114472-appb-000112
*此处Gap o为二阶锥模型与非线性模型优化目标值之间的相对误差
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (6)

  1. 一种电-气互联综合能源系统的多时段潮流优化方法,其特征在于该方法包括:
    (1)分别获取电-气互联综合能源系统的电力系统信息和天然气系统信息;
    (2)根据所述电力系统信息和天然气系统信息,构建电-气互联综合能源系统多时段调度模型;
    (3)将所述电-气互联综合能源系统多时段调度模型中的天然气管道流量与压力的非线性非凸方程转化为增强二阶锥约束形式的天然气潮流模型;
    (4)对转化后的电-气互联综合能源系统多时段调度模型进行求解得到最优解;
    (5)将所述最优解作为初值,并采用DCP方法对转化后的电-气互联综合能源系统多时段调度模型进行线性化迭代求解,直至天然气系统严格的满足潮流约束;
    (6)将迭代结束时的最终解作为未来时段内的最优潮流解进行输出。
  2. 根据权利要求1所述的电-气互联综合能源系统的多时段潮流优化方法,其特征在于:步骤(1)中获取的
    电力系统信息为:电网拓扑、支路参数信息,发电机参数信息,未来时段内的电负荷信息,风电的预测值信息;
    天然气系统的参数信息为:天然气网拓扑、管道参数信息,当前管道的line-pack存储量,气源的参数信息,未来时段内的气负荷信息。
  3. 根据权利要求1所述的电-气互联综合能源系统的多时段潮流优化方法,其特征在于:步骤(2)中建立的电-气互联综合能源系统多时段调度模型具体为:
    Figure PCTCN2018114472-appb-100001
    Figure PCTCN2018114472-appb-100002
    Figure PCTCN2018114472-appb-100003
    Figure PCTCN2018114472-appb-100004
    Figure PCTCN2018114472-appb-100005
    Figure PCTCN2018114472-appb-100006
    Figure PCTCN2018114472-appb-100007
    Figure PCTCN2018114472-appb-100008
    Figure PCTCN2018114472-appb-100009
    Figure PCTCN2018114472-appb-100010
    Figure PCTCN2018114472-appb-100011
    Figure PCTCN2018114472-appb-100012
    Figure PCTCN2018114472-appb-100013
    Figure PCTCN2018114472-appb-100014
    Figure PCTCN2018114472-appb-100015
    Figure PCTCN2018114472-appb-100016
    Figure PCTCN2018114472-appb-100017
    Figure PCTCN2018114472-appb-100018
    Figure PCTCN2018114472-appb-100019
    式中,上标0表示基准运行场景,下标t表示t时刻,i、j、m、n表示能源系统中的节点;上标max表示上限值,上标min表示下限值;f 0为优化目标函数,N G为发电机集合,N g为燃气轮机集合,N s为气源集合,N W为风电场集合,T 0为时间断面数,C G,i为发电机成本系数,C S,m为气源成本系数,C W,i为弃风成本系数,
    Figure PCTCN2018114472-appb-100020
    为弃风百分比,
    Figure PCTCN2018114472-appb-100021
    为发电机出力,
    Figure PCTCN2018114472-appb-100022
    为发电机出力下限和上限,
    Figure PCTCN2018114472-appb-100023
    为弃风比,
    Figure PCTCN2018114472-appb-100024
    为风电期望出力,P L,i,t为有功负荷,
    Figure PCTCN2018114472-appb-100025
    为线路i-j有功功率,EN(i)为与节点i相连节点集合,b ij为线路i-j电纳,θ为节点相角向量,
    Figure PCTCN2018114472-appb-100026
    为线路i-j有功功率下限和上限;
    Figure PCTCN2018114472-appb-100027
    为燃气轮机消耗的天然气量,η为燃气轮机组转化效率,
    Figure PCTCN2018114472-appb-100028
    为气源出力,F D,m,t为天然气负荷,GC(m)、GP(m)、GN(m)分别为与节点m连接的加压站、燃气轮机及管道集合,
    Figure PCTCN2018114472-appb-100029
    为加压站k的吸收流量,
    Figure PCTCN2018114472-appb-100030
    为流经加压站k的流量;
    Figure PCTCN2018114472-appb-100031
    Figure PCTCN2018114472-appb-100032
    分别为管道m-n首端、末端以及平均流量,C mn为管道m-n压降常量,π m与π n分别为节点m、n压力,
    Figure PCTCN2018114472-appb-100033
    分别为节点m压力下限和上限;GL mn为管道m-n的line-pack储气量,K mn为管道m-n的line-pack参数;
    Figure PCTCN2018114472-appb-100034
    为燃气驱动加压站耗能系数,
    Figure PCTCN2018114472-appb-100035
    为发电机最大有功爬坡,
    Figure PCTCN2018114472-appb-100036
    分别为加压站首、末端压力,
    Figure PCTCN2018114472-appb-100037
    Figure PCTCN2018114472-appb-100038
    为加压站升压比上限和下限,
    Figure PCTCN2018114472-appb-100039
    为气源出力下限和上限,
    Figure PCTCN2018114472-appb-100040
    为气源最大爬坡,
    Figure PCTCN2018114472-appb-100041
    为管道m-n管道量,GL min为管道的管道量下限,GB为管道集合。
  4. 根据权利要求3所述的电-气互联综合能源系统的多时段潮流优化方法,其特征在于:步骤(3)具体包括:
    将天然气管道流量与压力的非线性非凸方程
    Figure PCTCN2018114472-appb-100042
    转化为如下的增强二阶锥约束形式的天然气潮流模型:
    Figure PCTCN2018114472-appb-100043
    Figure PCTCN2018114472-appb-100044
    Figure PCTCN2018114472-appb-100045
    Figure PCTCN2018114472-appb-100046
    Figure PCTCN2018114472-appb-100047
    式中,上标0表示基准运行场景,下标t表示t时刻,
    Figure PCTCN2018114472-appb-100048
    Figure PCTCN2018114472-appb-100049
    上标max表示对应上限值,上标min表示对应下限值,<> T表示平方项凸包络函数,
    Figure PCTCN2018114472-appb-100050
    表示双线性项凸包络函数,κ mn表示平方项凸包络变量,λ mn表示双线性项凸包络变量。
  5. 根据权利要求4所述的电-气互联综合能源系统的多时段潮流优化方法,其特征在于:步骤(5)具体包括:
    (5.1)对所述电-气互联综合能源系统多时段调度模型进行求解得到最优解x 0
    (5.2)建立凸优化问题:
    Figure PCTCN2018114472-appb-100051
    s.t.s mn≥0,x∈X
    Figure PCTCN2018114472-appb-100052
    式中,f 0(x)为电-气互联综合能源系统多时段调度模型的优化目标函数,x为状态变量,X为x的可行域,x r为第r次迭代时求解的状态变量最优解,s mn为非负松弛变量,β r为惩罚权重系数,r为当前迭代次数,
    Figure PCTCN2018114472-appb-100053
    Figure PCTCN2018114472-appb-100054
    (5.3)将x 0作为凸优化问题的初值,进行DCP迭代求解,逐步更新x r数值,直至天然气约束违反指标Gap c小于预设值,结束迭代。
  6. 根据权利要求5所述的电-气互联综合能源系统的多时段潮流优化方法,其特征在于:步骤(5.3)中天然气约束违反指标Gap c计算公式为:
    Figure PCTCN2018114472-appb-100055
    式中:x *为当前次迭代结束后的状态变量值,
    Figure PCTCN2018114472-appb-100056
    分别为状态变量x *中对应值。
PCT/CN2018/114472 2018-11-06 2018-11-08 一种电-气互联综合能源系统的多时段潮流优化方法 WO2020093295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811310889.8A CN109242366B (zh) 2018-11-06 2018-11-06 一种电-气互联综合能源系统的多时段潮流优化方法
CN201811310889.8 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020093295A1 true WO2020093295A1 (zh) 2020-05-14

Family

ID=65076914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114472 WO2020093295A1 (zh) 2018-11-06 2018-11-08 一种电-气互联综合能源系统的多时段潮流优化方法

Country Status (2)

Country Link
CN (1) CN109242366B (zh)
WO (1) WO2020093295A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768036A (zh) * 2020-06-29 2020-10-13 国网上海市电力公司 一种综合能源配电系统与上级电网交互运行的功率优化方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687456B (zh) * 2019-01-25 2020-07-03 燕山大学 一种电力天然气系统的调度方法及系统
CN109949001B (zh) * 2019-02-22 2021-05-07 上海市建设工程监理咨询有限公司 一种建设工程监理组织管理系统
CN110070213B (zh) * 2019-03-28 2022-05-20 广东工业大学 一种电-气综合能源系统的日前调度方法
CN110210747B (zh) * 2019-05-28 2022-07-29 河海大学 一种电热气互联能源系统灵活性调度方法
CN110210104B (zh) * 2019-05-28 2020-11-06 国电南瑞科技股份有限公司 一种多能源系统运行调度方法
CN110322051A (zh) * 2019-06-06 2019-10-11 国网浙江省电力有限公司经济技术研究院 考虑n-1安全约束的综合能源系统优化配置方法
CN110502859B (zh) * 2019-08-28 2023-04-07 南方电网科学研究院有限责任公司 用于电气耦合园区综合能源系统的多速率动态仿真方法
CN110796295B (zh) * 2019-10-15 2022-10-25 西安交通大学 一种能源互联网气网传输优化方法
CN110707705B (zh) * 2019-10-22 2023-01-17 太原理工大学 一种电-气耦合综合能源系统潮流顺序分析模型
CN111815111B (zh) * 2020-06-02 2022-05-13 天津大学 一种考虑管线风险水平的区域综合能源扩展规划方法
CN112713615B (zh) * 2020-12-23 2022-07-26 山东大学 电—气综合能源系统快速协调调度方法及系统
CN112990606B (zh) * 2021-04-25 2021-11-19 国网江西省电力有限公司电力科学研究院 一种考虑调控成本的综合能源系统自治调控方法及装置
CN113570117B (zh) * 2021-07-02 2024-02-09 浙江华云电力工程设计咨询有限公司 一种基于二阶锥松弛转化方法的电-气综合能源微网优化调度方法
CN115296345B (zh) * 2022-06-09 2023-08-22 南方电网科学研究院有限责任公司 一种燃气发电机组启停-出力-备用联合优化方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023364A (zh) * 2017-11-24 2018-05-11 天津大学 基于凸差规划的配电网分布式电源最大接入能力计算方法
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649580B (zh) * 2018-05-21 2021-09-24 武汉大学 一种基于二阶锥的交直流混合电力系统安全校正方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108023364A (zh) * 2017-11-24 2018-05-11 天津大学 基于凸差规划的配电网分布式电源最大接入能力计算方法
CN108667007A (zh) * 2018-04-16 2018-10-16 清华大学 计及电-气耦合系统约束的电压稳定裕度计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUAN, KAI ET AL.: "Coordinated Control Method for Voltage and Reactive Power of Active Distribution Network Based on Difference-of-convex Programming", PROCEEDINGS OF THE CSU-EPSA, vol. 30, no. 9, 30 September 2018 (2018-09-30), pages 109 *
ZHANG, YI'NING ET AL.: "Optimal Dispatch of Integrated Electricity- Natural Gas System Considering Demand Response and Dynamic Natural Gas Flow", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 42, no. 20, 25 October 2018 (2018-10-25), pages 1 - 8, XP055704991, ISSN: 1000-1026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111768036A (zh) * 2020-06-29 2020-10-13 国网上海市电力公司 一种综合能源配电系统与上级电网交互运行的功率优化方法
CN111768036B (zh) * 2020-06-29 2023-11-03 国网上海市电力公司 一种综合能源配电系统与上级电网交互运行的功率优化方法

Also Published As

Publication number Publication date
CN109242366B (zh) 2020-08-07
CN109242366A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020093295A1 (zh) 一种电-气互联综合能源系统的多时段潮流优化方法
Sun et al. Day-ahead optimization schedule for gas-electric integrated energy system based on second-order cone programming
CN104734155B (zh) 一种获取电‑气互联能源系统可用输电能力的方法
CN111061986B (zh) 一种多运行模式的热电综合能源系统潮流计算方法
CN109830955B (zh) 考虑柔性约束与全周期成本的电-气配网柔性规划方法
CN110070213B (zh) 一种电-气综合能源系统的日前调度方法
JP2017521034A5 (zh)
CN109583141B (zh) 一种计及电转气耦合的电-气互联系统机组组合线性模型及系统
CN108233383B (zh) 一种交直流互联电网的经济调度方法
CN109474017A (zh) 一种配电网实时分布式经济调度方法
CN107579543A (zh) 一种基于分层控制策略的孤岛微电网分布式协调控制方法
CN109818347B (zh) 一种电力系统风电消纳能力的评估方法
CN110729766A (zh) 一种多区域电-气综合能源系统分布式鲁棒优化方法
Lan et al. Distributed optimal scheduling for coupled transmission-distribution integrated electricity-gas system
CN111276976A (zh) 一种用于复杂能源互联系统极端事件的应急响应方法
CN109066695A (zh) 一种两阶段线性化电气最优能流计算方法
Man et al. State estimation for integrated energy system containing electricity, heat and gas
CN111768036A (zh) 一种综合能源配电系统与上级电网交互运行的功率优化方法
CN105356457A (zh) 一种电网事故恢复备用容量充裕度评估方法
CN112232984B (zh) 一种分布式数据中心算力与能流融合的综合能源系统优化调度方法
CN115528670A (zh) 基于多主体博弈的分布式电源及配套电网投资决策建模方法
CN109948827A (zh) 一种基于多能互补的工业用户多能流优化方法
Tang et al. Reliability evaluation of EGIES with highly nonlinear modeling of gas system components
CN107846039A (zh) 考虑风速相关性的集群风电并网建模分析方法及系统
CN113297813A (zh) 基于改进三阶牛顿迭代法的电-气能源系统潮流计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939161

Country of ref document: EP

Kind code of ref document: A1