WO2020091289A1 - 주형 및 주조 방법 - Google Patents

주형 및 주조 방법 Download PDF

Info

Publication number
WO2020091289A1
WO2020091289A1 PCT/KR2019/013911 KR2019013911W WO2020091289A1 WO 2020091289 A1 WO2020091289 A1 WO 2020091289A1 KR 2019013911 W KR2019013911 W KR 2019013911W WO 2020091289 A1 WO2020091289 A1 WO 2020091289A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
coating layer
molten
flux
cast
Prior art date
Application number
PCT/KR2019/013911
Other languages
English (en)
French (fr)
Inventor
김지준
권상흠
김종완
김종철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201980071519.XA priority Critical patent/CN112955263A/zh
Publication of WO2020091289A1 publication Critical patent/WO2020091289A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/165Controlling or regulating processes or operations for the supply of casting powder

Definitions

  • the present invention relates to a mold and casting method, and more particularly, to a mold and casting method capable of improving mold quality by preventing mold flux solidification.
  • Continuous casting equipment is a facility that continuously injects molten steel into a mold and solidifies it into a cast piece to continuously draw from the mold.
  • the mold is made of copper with good heat transfer, and coolant is circulated inside.
  • the molten steel injected into the mold is cooled by the mold and can be solidified into the cast.
  • the mold is a pair of long sides each extending in one direction and facing each other, each pair extending in a direction crossing the pair of long sides and facing each other, and a pair of long sides installed to connect a pair of long sides Includes stool plate.
  • the molten steel is solidified through a space formed by a pair of long side plates and short side plates, and cast into cast steel. At this time, a solidification shell is formed from the hot water surface of the molten steel, and as it goes downward, the solidification shell grows and thickens.
  • mold flux is introduced into the molten steel surface.
  • the mold flux flows between the inner surface of the mold and the solidification shell of the cast, and is used to control the lubrication and heat transfer rate between them.
  • the mold flux may be supercooled inside the mold to solidify from the liquid phase to the solid phase.
  • the solidified mold flux can form an irregularly shaped crystalline form on the inner surface of the mold. Accordingly, solidification of the cast is delayed from the top of the mold to the bottom by the solid mold flux, and the cast may unevenly shrink. Accordingly, cracks may occur due to duty-free cracks in the cast, and cracks may be intensified due to duty-free cracks.
  • Patent Document 1 KR10-0347605 B1
  • Patent Document 2 KR10-1766856 B1
  • the present invention provides a mold and casting method capable of improving the quality of the cast by preventing solidification of the molten mold flux between the mold's inner surface and the solidification shell of the cast.
  • the mold according to the embodiment of the present invention is a mold for solidifying molten steel, the metal body having an internal space; And a coating layer formed to surround the inner surface of the metal body, wherein the coating layer is spaced downward from a predetermined elevation level and is formed in a lower region of the inner surface.
  • the coating layer may have different thicknesses at the bottom and the top in the vertical direction.
  • the thickness of the coating layer may be thicker than the thickness of the top.
  • the thickness of the coating layer may gradually decrease from the bottom to the top.
  • the thickness of the lower end of the coating layer may be greater than 0 and 3 mm or less.
  • the difference between the height of the bath surface and the top of the coating layer may be greater than 0 and within 200 mm.
  • the coating layer may include an insulating material.
  • the insulating material may include yttria stabilized zirconia.
  • the coating layer may include an alloy.
  • the alloy may include a nickel chromium alloy.
  • the coating layer may include 5 to 100% by weight of an insulating material, and 0 to 95% by weight of an alloy with respect to the total weight of the coating layer.
  • the coating layer may have a lower thermal conductivity than the metal body.
  • Casting method the process of injecting molten steel into a mold, and supplying a mold flux to the molten surface of the molten steel; A process of casting the cast steel by solidifying the molten steel; A step of introducing a molten mold flux between the cast piece and the mold; And a step of bringing the molten mold flux into contact with the coating layer formed on the lower region of the inner surface of the mold, which is spaced downward from the height of the molten metal surface.
  • the process of contacting the molten mold flux may include controlling heat transfer between the mold and the molten mold flux using the coating layer; And a process of preventing solidification of the molten mold flux.
  • the amount of heat transfer from the molten mold flux to the inner surface of the mold decreases as it goes from the top to the bottom of the coating layer, and the coating layer provides 5 to 5 insulation materials for the total weight of the coating layer. 100% by weight, and may include 0 to 95% by weight of the alloy.
  • the present invention between the inner surface of the mold and the solidification shell of the cast, by using a coating layer formed in the lower region of the inner surface of the mold, it is possible to control the amount of heat transfer between the molten mold flux and the inner surface of the mold .
  • the amount of heat transfer from the solidification shell to the inner surface of the mold can be reduced from the top to the bottom of the coating layer. Therefore, it is possible to prevent the molten mold flux from being supercooled to solidify from the liquid phase to the solid phase. That is, it is possible to prevent the solid mold flux from being formed in an uneven thickness in the lower region of the inner surface of the cast iron.
  • the thickness of the coating layer can be reduced from the bottom to the top of the coating layer. That is, the lower end of the coating layer can be made thick and the upper end can be made thin.
  • the thickness of the coating layer it is possible to compensate for the shrinkage of the cast steel as it goes from the upper region to the lower region of the mold by changing the thickness of the coating layer. That is, the contact between the coating layer of the mold and the solidification shell of the cast can be stably maintained.
  • FIG. 1 is a schematic diagram of a casting equipment according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a mold according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a mold according to an embodiment of the present invention.
  • FIG. 4 is a view exemplarily showing the internal state of a mold when casting a cast by a casting method according to an embodiment of the present invention.
  • 5 is a view for explaining a heat transfer path between the mold and the cast when casting the cast.
  • FIG. 1 is a schematic diagram of a casting equipment according to an embodiment of the present invention.
  • the casting facility is formed in a tundish 10 for receiving and temporarily storing molten steel, a rectangular cylindrical shape in which the upper and lower parts are opened, and receiving molten steel stored in the tundish 10
  • Immersion nozzle that is connected to the lower part of the mold 20 to solidify, the tundish 10, is inserted into the upper part of the mold 20, and injects molten steel temporarily stored in the tundish 10 into the mold 20 (30), and a cooling stand (40), which is arranged in the casting direction on the lower side of the mold (20), guides the cast (S) drawn from the mold (20) in the casting direction, and cools and molds the cast (S). It includes.
  • the molten steel may be various molten steels for producing cast steel of various steel types, including, for example, carbon steel and stainless steel.
  • the molten steel accommodated in the tundish 10 is separately divided into tundish molten steel, and the molten steel injected into the mold 20 and cast into a cast steel is referred to as molten steel (M).
  • molten steel (M) the molten steel injected into the mold 20 and cast into a cast steel
  • cast steel (C, M) the molten steel accommodated in the tundish 10
  • M the molten steel
  • C, M cast steel
  • the molten steel may be solidified while passing through the inner space of the mold 20 and cast into a cast.
  • a solidification shell C may be formed from the molten surface of the molten steel M inside the mold 20.
  • the solidification shell (C) grows and thickens as it goes downward.
  • the mold flux (F) is introduced into the molten steel (M).
  • the mold flux flows between the inner surface of the mold 20 and the solidification shell C of the cast piece, and is used to control the lubrication and heat transfer rate between them.
  • the molten steel M may be controlled such that the molten steel M has a molten metal surface positioned at a predetermined molten metal height at a predetermined height inside the mold 20. For example, while measuring the height of the molten steel M by using an eddy current level meter, the amount of molten steel M is adjusted or cooled in the immersion nozzle 30 so that the measured molten metal M maintains a predetermined molten metal height. It is possible to adjust the drawing speed of the cast on the stand 40.
  • FIG. 2 is a schematic diagram of a mold according to an embodiment of the present invention.
  • 3 is a cross-sectional view of a mold according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing a cross-sectional shape of the mold by cutting the mold along the line A-A 'of Figure 2
  • the mold (20: 21, 22, 23, 24) is a mold 20 for solidifying molten steel (M), a metal body (21, 22) having an internal space, and a metal body (21) , 22) includes a coating layer 24 formed to surround the inner surface.
  • the coating layer 24 is spaced downwardly at a predetermined elevation level H 0 , and is formed in a lower region of the inner surface of the metal bodies 21 and 22.
  • the mold 20 may further include a cooling member 23.
  • the coating layer 24 may include an insulating material, and may have lower thermal conductivity than the metal bodies 21 and 22.
  • the coating layer 24 may be formed by thermal spray coating. When forming the coating layer 24, a heat insulating material can be used alone. Alternatively, when forming the coating layer 24, a heat insulating material and an alloy may be mixed and used.
  • the height of the hot water surface (H 0 ) means a predetermined height at which the hot water surface (meniscus) of the molten steel (M) is located during the casting process using the mold 20.
  • the hot water level H 0 may be determined in advance by casting conditions including, for example, steel type, casting speed, and molten steel temperature.
  • the bath surface height (H 0) On the basis of the bath surface height (H 0), separate the inner surface of the mold 20, set a higher region than the bath surface height (H 0) to the upper region of the mold 20, a lower area than the bath surface height (H 0) It is defined as the lower region of the mold 20.
  • the elevation height H 0 is defined as the interface between the upper region and the lower region of the mold 20.
  • the metal bodies 21 and 22 may solidify the molten steel M injected into the interior space.
  • the metal bodies 21 and 22 may include a pair of short side plates 21 and a pair of long side plates 22. At this time, the pair of short side plates 21 may extend in one direction, for example, in the thickness direction of the cast pieces C and M, face each other, and be spaced apart from each other in one direction.
  • the pair of long side plates 22 extend in the width direction of the other direction, for example, the cast pieces C and M, which are the directions intersecting the pair of short side plates 21, and face each other and are spaced apart from each other in the other direction. It can be installed to connect the short side plate (21).
  • the inner space of the metal bodies 21 and 22 may be defined by a pair of short side plates 21 and a pair of long side plates 22.
  • the molten steel (M) passes through the inner space of the metal bodies (21, 22) and can be cast into cast pieces (C, M).
  • the inner space of the metal bodies 21 and 22 is referred to as the inner space of the mold 20.
  • the inner surfaces of the metal bodies 21 and 22 are referred to as the inner surfaces of the mold 20.
  • the structures of the metal bodies 21 and 22 may be various in addition to the structures described above.
  • the cooling member 23 may be mounted on the outer surface of the pair of long side plates 22.
  • the cooling member 23 has a flow path therein and can receive cooling water to the flow path.
  • the metal bodies 21 and 22 made of copper may be cooled by cooling water flowing through the flow path.
  • the molten steel M passing through the inner space of the metal bodies 21 and 22 may be cooled by exchanging heat with the metal bodies 21 and 22.
  • a solidification shell (C) may be formed along the inner surface of the metal bodies (21, 22) from the molten metal (M).
  • the coagulation shell (C) may grow thicker as it goes downward.
  • the mold flux (F) may be introduced to the molten steel surface of the molten steel (M).
  • the mold flux F may be introduced between the inner surfaces of the metal bodies 21 and 22 and the solidification shells C of the cast pieces C and M.
  • the mold flux F can be used for lubrication and heat transfer rate control between the inner surfaces of the metal bodies 21 and 22 and the solidification shells C of the cast pieces C and M.
  • the coating layer 24 may be formed to surround the inner surfaces of the metal bodies 21 and 22.
  • the coating layer 24 may be formed by a spray coating method using a laser or a flame.
  • the coating layer 24 may be formed of a thermal insulation material such as a thermal spray coating method using a ceramic powder as a coating material, or may be formed of a thermal spray coating method using a powder mixed with a ceramic powder and an alloy powder as a coating material.
  • the coating layer 24 may be spaced downward from the hot surface height H 0 to be formed in a lower region of the inner surface of the metal bodies 21 and 22.
  • the coating layer 24 may control heat transfer between the inner surfaces of the metal bodies 21 and 22 and the mold flux F. Specifically, the coating layer 24 may reduce heat transfer from the mold flux F to the metal bodies 21 and 22.
  • reducing the heat transfer means that the heat transfer rate or the amount of heat transfer is reduced.
  • the initial generation of the solidification shell C may be smooth. That is, when separated from the top of the coating layer 24 downward in the bath surface height (H 0), bath surface has a height (H 0), the inner surface and the mold flux (F) of the metal body (21, 22) in the can in contact. Accordingly, the cooling of the mold flux F may be smooth, from which the molten steel M can be solidified smoothly.
  • the inner surface of the metal bodies (21, 22) and the hot water surface of the molten steel (M) can smoothly exchange heat, and the initial generation of the solidification shell (C) It can be smooth.
  • the mold surfaces F may be in contact with the inner surfaces of the metal bodies 21 and 22 through the coating layer 24.
  • the coating layer 24 has a lower thermal conductivity than the metal bodies 21 and 22.
  • the thermal conductivity of the coating layer 24 is about 1 W / mK.
  • the material of the metal bodies 21 and 22 is copper, the metal bodies 21 and 22 have a thermal conductivity of about 400 W / mK. The lower the thermal conductivity, the more difficult the heat transfer. The larger the thermal conductivity, the easier the heat transfer.
  • the coating layer 24 can reduce the heat transfer from the mold flux (F) to the metal bodies (21, 22), that is, cooling of the mold flux (F) It can slow down.
  • the coating layer 24 may control heat transfer from the mold flux F to the metal bodies 21 and 22 while contacting the mold flux F. More specifically, the coating layer 24 may lower heat transfer from the mold flux F to the metal bodies 21 and 22.
  • the heat transfer can be controlled by adjusting the thickness of the coating layer 24.
  • the coating layer 24 may have different thicknesses at the bottom and the top in the vertical direction. For example, the thicker the thickness of the coating layer 24, the slower the heat transfer rate and the smaller the heat transfer amount. On the other hand, the thinner the coating layer 24, the faster the heat transfer rate and the larger the heat transfer amount. Accordingly, by differently adjusting the thickness of the coating layer 24 in the vertical direction, for example, in the longitudinal direction of the cast pieces C and M, heat transfer can be controlled according to the height in the lower region of the inner surface of the metal bodies 21 and 22.
  • the heat transfer from the mold flux F to the metal bodies 21 and 22 is referred to as the heat transfer of the mold flux F.
  • the amount of heat transfer from the mold flux F to the metal bodies 21 and 22 is referred to as the amount of heat transfer of the mold flux F.
  • the coating layer 24 may have a lower thickness than the upper thickness. Accordingly, the coating layer 24 may further lower the heat transfer of the mold flux F at the lower end than at the upper end.
  • the coating layer 24 may gradually increase in thickness from the top to the bottom. Accordingly, the coating layer 24 may gradually decrease the heat transfer of the mold flux F gradually from the top to the bottom. That is, the heat transfer of the mold flux F may be relatively large at the top of the coating layer 24 and relatively small at the bottom of the coating layer 24.
  • the coating layer 24 may form an inclined surface at a predetermined angle with the inner surface of the metal bodies 21 and 22.
  • the cross-sectional shape of the coating layer 24 may be a right triangle or an obtuse triangle shape.
  • the coating layer 24 may have a function of controlling the heat transfer of the mold flux F and the function of compensating for shrinkage of the cast pieces C and M.
  • the temperature of the inner surfaces of the metal bodies 21 and 22 gradually decreases downward.
  • the mold flux F also decreases in temperature as it goes downward along the inner surfaces of the metal bodies 21 and 22. Therefore, gradually increasing the thickness of the coating layer 24 from the top to the bottom of the coating layer 24, it is possible to suppress the temperature drop of the mold flux (F). From this, it is possible to prevent the mold flux F from being supercooled in the lower region of the inner surface of the metal bodies 21 and 22. Accordingly, it is possible to prevent the mold flux F from solidifying and crystallizing from the liquid phase to the solid phase.
  • the thickness D b of the lower end of the coating layer 24 may be greater than 0 and 3 mm or less.
  • the thickness of the top of the coating layer 24 may be greater than zero. More specifically, the thickness of the top of the coating layer 24 may be a predetermined thickness value approaching zero.
  • the top of the coating layer 24 may be located at a height spaced downward from the hot water surface height H 0 . That is, the upper end of the coating layer 24 may be located between the hot water level H 0 and the lower end of the metal bodies 21 and 22. The lower end of the coating layer 24 may be positioned at the same height as the lower end of the inner surface of the metal bodies 21 and 22.
  • the difference between the height of the hot water surface (H 0 ) and the height (H) of the top of the coating layer 24 may be greater than 0 and within 200 mm.
  • the top height of the coating layer 24 is the hot water level (H 0 ) or higher than the hot water level (H 0 ), there is a problem that the solidification shell (C) cannot be formed smoothly.
  • the height of the top of the coating layer 24 may be 100 or less and 200 mm or less downward from the hot water surface height H 0 .
  • the closer the top height of the coating layer 24 is to the height spaced 200 mm downward from the hot water surface height H 0 the better the effect of the coating layer 24. That is, the defects of the cast pieces C and M can be effectively reduced.
  • the coating layer 24 may include an insulating material.
  • the insulating material may include ceramic.
  • the ceramic may include Yttria-stabilized zirconia (YSZ).
  • YSZ Yttria-stabilized zirconia
  • the yttria-stabilized zirconia may contain 8% by weight of Y 2 O 3 and 92% by weight of ZrO 2 based on the total weight of the yttria-stabilized zirconia.
  • the ceramic serves to control the heat transfer of the mold flux F while preventing the metal bodies 21 and 22 from directly contacting the mold flux F. Specifically, the ceramic serves to lower the heat transfer of the mold flux (F).
  • the coating layer 24 may include an alloy.
  • the alloy may include a nickel chromium alloy.
  • Nickel chromium alloy serves to protect the inner surface of the metal body (21, 22).
  • the nickel chromium alloy serves to control the ceramic content in the coating layer 24.
  • the thermal conductivity of the nickel crop alloy may be closer to the thermal conductivity of yttria-stabilized zirconia than that of copper.
  • the nickel chromium alloy in the coating layer 24 may assist yttria-stabilized zirconia to lower the heat transfer of the mold flux (F).
  • stainless steel may be used as the alloy.
  • the insulating material and the alloy may be present in a uniformly mixed state in the coating layer 24.
  • the ceramic content of the coating layer 24 can be controlled using an alloy. For example, if the alloy of the coating layer 24 is 0% by weight, the ceramic content is 100% by weight. If the alloy of the coating layer 24 is 100% by weight, the ceramic content is 0% by weight. At this time, more preferably, the coating layer 24 may contain 5 to 100% by weight of ceramics and 0 to 95% by weight of alloys based on the total weight of the coating layer 24.
  • the effect of the coating layer 24 may be rather small.
  • the coating layer 24 may be difficult to prevent the mold flux F from solidifying into a solid phase in the lower region of the inner surface of the metal bodies 21 and 22.
  • the effect of the coating layer 24 increases, thereby lowering the heat transfer of the mold flux F, thereby preventing solidification of the mold flux F, and defects in the cast pieces C and M Can be reduced.
  • the effect of the coating layer 24 that lowers the heat transfer of the mold flux F is the best when the content of ceramic, that is, yttria-stabilized zirconia is 100% by weight of the total weight of the coating layer 24.
  • the thermal conductivity of yttria-stabilized zirconia is about 1 W / mK, and the thermal conductivity of nickel-chromium alloy is about 11.6 W / mK, the thermal conductivity of yttria-stabilized zirconia is smaller, so the coating layer ( The cooling delay effect of 24) can be increased.
  • the increase in the effect of the coating layer 24 may be relatively slow as the content of the ceramic increases.
  • the mold 20 by using the coating layer 24 to suppress the mold flux (F) is cooled in the interior of the mold 20, the mold flux (F) is a liquid It can be prevented from forming an amorphous solid material on the inner surface of the mold 20 while solidifying in the solid phase.
  • the heat transfer control and lubrication between the mold and the mold 20 are smooth, so that it is possible to prevent cracks from being formed duty-free on the cast.
  • 4 is a view exemplarily showing the internal state of a mold when casting a cast by a casting method according to an embodiment of the present invention.
  • 5 is a view for explaining a heat transfer path between the mold and the cast when casting the cast by the casting method according to an embodiment of the present invention.
  • Casting method is a casting method using the above-described casting equipment and the mold 20, the molten steel (M) is injected into the mold 20, the mold flux (F :) on the molten metal (M)
  • the coating layer 24 may include ceramics and alloys. Specifically, the coating layer 24 may include 5 to 100% by weight of ceramics and 0 to 95% by weight of alloys based on the total weight of the coating layer 24. Ceramics may have less thermal conductivity than alloys. In the case of alloys such as nickel chromium alloys, the thermal conductivity is about 11.6 W / mK. On the other hand, in the case of ceramics such as yttria stabilized zirconia, the thermal conductivity is about 1 W / mK. The alloy may have a smaller thermal conductivity than the metal bodies 21 and 22 of the mold 20. The thickness (d) of the coating layer 24 may be different from the upper and lower thicknesses in the vertical direction. At this time, the bottom of the coating layer 24 may be thicker than the top. As the mold flux F, a mold flux F having a melting point of 1100 ° C. or less can be used. The mold flux F may not contain fluorine.
  • the molten steel M is injected into the mold 20.
  • the molten steel surface M may be controlled to maintain a predetermined molten metal surface height H 0 .
  • the molten steel (M) is cooled by the mold 20 and begins to solidify, so that a solidification shell (C) is generated downward along the inner surface of the mold (20) at the elevation level (H 0 ).
  • the solidification shell (C) may be thickened as it is drawn downward along the inner surface of the mold (20) and grows in the thickness direction of the cast pieces (C, M).
  • the molten steel (C, M) may be a state in which the mold flux (F) is applied to the bath surface.
  • the mold flux F may form three layers. Among them, the upper layer is a powdered mold flux (F1) layer, the middle layer is a sintered mold flux (F2) layer, and the lower layer is a molten mold flux (F3) layer.
  • F1 powdered mold flux
  • F2 sintered mold flux
  • F3 molten mold flux
  • a slag bear may be formed on the inner surface of the mold 20 near the hot water surface height H 0 .
  • the molten steel (M) is solidified inside the mold (20) to cast the cast (C, M), and the cast is continuously drawn downward.
  • the molten mold flux F3 is introduced between the solidification shell C and the mold 20.
  • the molten mold flux F3 is brought into contact with the coating layer 24 formed in the lower region of the inner surface of the mold 20 by being spaced downward from the hot water level H 0 .
  • a process of controlling heat transfer between the mold 20 and the molten mold flux F3 using the coating layer 24 and a process of preventing solidification of the molten mold flux F3 are performed.
  • the heat resistance index can be reduced by about twice or more compared to the melted mold flux. That is, the thermal resistance index varies greatly.
  • the heat transfer from the top of the coating layer 24 to the bottom decreases the amount of heat transferred from the molten mold flux (F3) to the mold 20, and decreases the heat transfer rate I can do it.
  • F3 molten mold flux
  • 5 is a view for explaining a heat transfer path between the mold and the cast when casting the cast.
  • FIG 5 (a) shows a heat transfer path from molten steel to a mold when there is no coating layer inside the mold as in the prior art.
  • a part of the flux may solidify into a solid phase.
  • the thickness and position of the flux F4 solidified in the mold is irregular, and it is difficult to accurately predict it. Accordingly, it is difficult to control heat transfer in the mold by the solidified flux F4.
  • Figure 5 (b) shows the heat transfer path inside the mold according to an embodiment of the present invention. Since the coating layer is present on the inner surface of the mold, cooling of the flux is relaxed, and the flux can maintain a liquid phase. That is, no solid flux is generated on the inner surface of the mold. Since the thickness and thermal conductivity of the coating layer are determined and do not change, heat transfer control inside the mold can be smoothed by the coating layer. That is, cooling of the solidification shell C may be smooth, and thus, defects may be prevented from being generated in the cast steel.
  • the casting process is performed using a mold according to an embodiment of the present invention.
  • stainless steel 304 was used as the molten steel.
  • the thickness of the coating layer and the location of formation of the mold were different from each other as shown in Table 1 below. Then, after the casting process was completed, surface defects of the cast steel were measured.
  • Experimental Example 6 to Experimental Example 11 may have a top thickness of approximately 0.
  • the ceramic content is the amount of yttria stabilized zirconia relative to the total weight of the coating layer.
  • the alloy content is the content of nickel chromium alloy relative to the total weight of the coating layer.
  • the defect reduction effect means the defect reduction effect of the cast steel by the coating layer. The defect reduction effect was quantified by cutting the cast into a predetermined unit length and checking the number of cracks by duty-free of the cut cast.
  • Experimental Example 1 to Experimental Example 5 shows the change in the defect reduction effect of the cast layer by the coating layer when the top height, the top thickness and the bottom thickness of the coating layer are the same, and the ceramic content and the alloy content are different.
  • Experimental Example 1 is a case where the coating layer does not contain ceramics such as yttria-stabilized zirconia, and at this time, it was confirmed that the effect of reducing the defects of the cast by the coating layer is small.
  • Experimental Example 2 and Experimental Example 3 when the coating layer contains more than 5% by weight of ceramic, it can be seen that the effect of reducing the defects of the cast by the coating layer is rapidly increased.
  • Experimental Examples 3 to 5 it can be seen that since the content of ceramic in the coating layer exceeds 5% by weight, the effect of reducing the defects of the cast by the coating layer is slowed down.
  • the optimum contents of the ceramic content and the alloy content of the coating layer according to the embodiment of the present invention can be known. That is, the coating layer is most effective when containing 100% by weight of ceramic.
  • Experimental Example 6 to Experimental Example 11 shows the change in the defect reduction effect of the cast by the coating layer when the ceramic content and the alloy content of the coating layer are the same, and the upper and lower thicknesses of the coating layer are different. Through this, it is possible to know the optimum values of the top height and the bottom thickness of the coating layer.
  • the coating layer should ease cooling of the cast in the mold, but must be spaced downward from the height of the melt so that the solidification shell can be smoothly formed at the height of the melt, and the cast must be cooled to an appropriate level when the mold exits the mold. do.
  • the coating layer may be a condition containing 100% by weight of ceramic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은, 내부 공간을 가지는 금속 바디, 및 금속 바디의 내부면을 감싸도록 형성되고, 미리 정해진 탕면 높이에서 하방으로 이격되며 내부면의 하부 영역에 형성되는 코팅층을 포함하는 주형, 및 이를 이용한 주조 방법으로서, 몰드 플럭스의 응고를 방지하여 주편 품질을 향상시킬 수 있는 주형 및 주조 방법이 제시된다.

Description

주형 및 주조 방법
본 발명은 주형 및 주조 방법에 관한 것으로서, 더욱 상세하게는 몰드 플럭스 응고를 방지하여 주편의 품질을 향상시킬 수 있는 주형 및 주조 방법에 관한 것이다.
연속 주조 설비는 주형에 용강을 연속적으로 주입하여 주편으로 응고시켜 주형으로부터 연속적으로 인발하는 설비이다.
주형은 열전달이 좋은 구리로 제조되며, 내부에 냉각수가 순환된다. 주형에 주입된 용강은 주형에 의해 냉각되며 주편으로 응고될 수 있다. 구체적으로 주형은 각각이 일 방향으로 연장되어 서로 마주보는 한 쌍의 장변판, 각각이 한 쌍의 장변판과 교차하는 방향으로 연장되어 서로 마주보며 한 쌍의 장변판을 연결하도록 설치되는 한 쌍의 단변판을 포함한다. 용강은 한 쌍의 장변판과 단변판에 의해 형성된 공간을 통과하며 응고되어 주편으로 주조된다. 이때, 용강의 탕면에서부터 응고쉘이 형성되고, 하방으로 갈수록 응고쉘이 성장하며 두꺼워진다.
주편을 주조하는 동안, 용강의 탕면에 몰드 플럭스가 투입된다. 몰드 플럭스는 주형의 내부면과 주편의 응고쉘 사이로 유입되고, 이들 간의 윤활 및 열전달 속도 제어에 사용된다.
한편, 주형의 내부에서 몰드 플럭스가 과냉각되어 액상에서 고상으로 응고될 수 있다. 이러한 경우, 응고된 몰드 플럭스가 주형의 내부면에 불규칙한 형태의 결정질을 형성할 수 있다. 이에, 고상의 몰드 플럭스에 의하여 주형의 상부에서 하부로 갈수록 주편의 응고가 지연되며 주편이 불균일하게 수축할 수 있다. 이에, 주편에 면세로 크랙이 발생할 수 있고, 면세로 크랙이 심화되어 주편 터짐이 발생할 수 있다.
본 발명의 배경이 되는 기술은 하기의 특허문헌에 게재되어 있다.
(특허문헌 1) KR10-0347605 B1
(특허문헌 2) KR10-1766856 B1
본 발명은 주형의 내부면 및 주편의 응고쉘 사이에서 용융된 몰드 플럭스의 응고를 방지하여 주편의 품질을 향상시킬 수 있는 주형 및 주조 방법을 제공한다.
본 발명의 실시 형태에 따른 주형은, 용강을 응고시키는 주형으로서, 내부 공간을 가지는 금속 바디; 및 상기 금속 바디의 내부면을 감싸도록 형성되는 코팅층;을 포함하고, 상기 코팅층은 미리 정해진 탕면 높이에서 하방으로 이격되며, 상기 내부면의 하부 영역에 형성된다.
상기 코팅층은 상하 방향으로 하단과 상단의 두께가 다를 수 있다.
상기 코팅층은 하단의 두께가 상단의 두께보다 두꺼울 수 있다.
*상기 코팅층은 하단에서 상단으로 갈수록 두께가 점진적으로 감소할 수 있다.
상기 코팅층의 하단의 두께는 0 초과 3 ㎜ 이하일 수 있다.
상기 탕면 높이와 상기 코팅층의 상단의 높이 차이는 0 초과 200 ㎜ 이내일 수 있다.
상기 코팅층은 단열 재질을 포함할 수 있다.
상기 단열 재질은 이트리아 안정화 지르코니아를 포함할 수 있다.
상기 코팅층은 합금을 포함할 수 있다.
상기 합금은 니켈 크롬 합금을 포함할 수 있다.
상기 코팅층은 상기 코팅층의 전체 중량에 대하여 단열 재질을 5 내지 100 중량% 포함하고, 합금을 0 내지 95 중량% 포함할 수 있다.
상기 코팅층은 상기 금속 바디보다 열전도도가 낮을 수 있다.
본 발명의 실시 형태에 따른 주조 방법은, 주형에 용강을 주입하고, 상기 용강의 탕면에 몰드 플럭스를 공급하는 과정; 상기 용강을 응고시켜 주편을 주조하는 과정; 상기 주편과 상기 주형 사이에 용융된 몰드 플럭스를 유입시키는 과정; 용강의 탕면 높이에서 하방으로 이격되어 상기 주형의 내부면의 하부 영역에 형성된 코팅층에 용융된 몰드 플럭스를 접촉시키는 과정;을 포함한다.
상기 용융된 몰드 플럭스를 접촉시키는 과정은, 상기 코팅층을 이용하여 상기 주형과 상기 용융된 몰드 플럭스 사이의 열전달을 제어하는 과정; 상기 용융된 몰드 플럭스의 응고를 방지하는 과정;을 포함할 수 있다.
상기 열전달을 제어하는 과정에서, 상기 코팅층의 상단에서 하단으로 갈수록 상기 용융된 몰드 플럭스에서 상기 주형의 내부면으로의 열전달량을 감소시키고, 상기 코팅층은 상기 코팅층의 전체 중량에 대해 단열 재질을 5 내지 100 중량%로 포함하고, 합금을 0 내지 95 중량% 포함할 수 있다.
본 발명의 실시 형태에 따르면, 주형의 내부면 및 주편의 응고쉘 사이에서, 주형의 내부면의 하부 영역에 형성된 코팅층을 이용하여, 용융된 몰드 플럭스와 주형의 내부면 간의 열전달량을 조절할 수 있다. 이때, 코팅층의 상단에서 하단으로 갈수록 응고쉘에서 주형의 내부면으로의 열전달량을 감소시킬 수 있다. 따라서, 용융된 몰드 플럭스가 과냉각되어 액상에서 고상으로 응고되는 것을 방지할 수 있다. 즉, 주편의 내부면의 하부 영역에 고상의 몰드 플럭스가 불균일한 두께로 형성되는 것을 방지할 수 있다. 이로부터, 응고쉘을 안정적으로 성장시킬 수 있고, 응고쉘과 주형 사이를 원활하게 윤활할 수 있고, 고상의 몰드 플럭스에 응고쉘이 눌리는 것을 방지할 수 있다. 이에, 주편의 표면 결함 예컨대 면세로 크랙 및 눌림흠이 생성되는 것을 억제 혹은 방지할 수 있다.
본 발명의 실시 형태에 따르면, 코팅층의 하단에서 상단으로 갈수록 코팅층의 두께를 감소시킬 수 있다. 즉, 코팅층의 하단을 두껍게 하고, 상단을 얇게 할 수 있다. 이에, 주형의 상부 영역에서 하부 영역으로 갈수록 주편이 수축하는 것을 코팅층의 두께 변화로 보상해줄 수 있다. 즉, 주형의 코팅층과 주편의 응고쉘의 접촉을 안정적으로 유지할 수 있다.
도 1은 본 발명의 실시 예에 따른 주조 설비의 개략도이다.
도 2는 본 발명의 실시 예에 따른 주형의 모식도이다.
도 3은 본 발명의 실시 예에 따른 주형의 단면도이다.
도 4는 본 발명의 실시 예에 따른 주조 방법으로 주편을 주조할 때의 주형의 내부 상태를 예시적으로 보여주는 도면이다.
도 5는 주편을 주조할 때의 주형과 주편 사이의 열전달 경로를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
이하, 각종 용강을 주편으로 주조하는 주조 공정을 기준으로 본 발명의 실시 예를 설명한다. 그러나 본 발명의 실시 예에 따른 주형은 각종 용융물을 다양한 방식으로 주조하는 각종 처리 공정에도 다양하게 적용될 수 있다.
도 1은 본 발명의 실시 예에 따른 주조 설비의 개략도이다.
도 1을 참조하여, 본 발명의 실시 예에 따른 주조 설비를 설명한다.
주조 설비는, 도 1에 도시된 바와 같이, 용강을 공급받아 임시 저장하는 턴디시(tundish)(10), 상하부가 개방된 사각 통체 형태로 형성되고, 턴디시(10)에 저장된 용강을 전달받아 응고시키는 주형(mold)(20), 턴디시(10)의 하부에 연결되고, 주형(20)의 상부에 삽입되며, 턴디시(10)에 임시 저장된 용강을 주형(20)으로 주입하는 침지 노즐(30), 및 주형(20)의 하측에 주조 방향으로 나열되고, 주형(20)으로부터 인발되는 주편(S)을 주조 방향으로 안내하며, 주편(S)을 냉각 및 성형하는 냉각대(40)를 포함한다.
용강은 예컨대 탄소강 및 스테인리스강을 포함하여 다양한 강종의 주편을 제조하기 위한 각종 용강일 수 있다.
이하에서는 설명의 편의를 위하여 턴디시(10) 내에 수용된 용강을 턴디시 용강으로 따로 구분하고, 주형(20)에 주입되어 주편으로 주조되는 용강을 용강(M)이라고 지칭한다. 그리고 후술하는 응고쉘(C) 및 응고쉘(C) 내의 미응고된 용강(M)을 통칭하여 주편(C, M)이라고 한다.
용강은 주형(20)의 내부 공간을 통과하면서 응고되어 주편으로 주조될 수 있다. 주형(20)의 내부의 용강(M)의 탕면에서부터 응고쉘(C)이 형성될 수 있다. 응고쉘(C)은 하방으로 갈수록 성장하며 두꺼워진다.
주편을 주조하는 동안, 용강(M)의 탕면에 몰드 플럭스(F)가 투입된다. 몰드 플럭스는 주형(20)의 내부면과 주편의 응고쉘(C) 사이로 유입되고, 이들 간의 윤활 및 열전달 속도 제어에 사용된다. 한편, 용강(M)은 주조 중에, 주형(20)의 내부에서 소정 높이로 미리 정해진 탕면 높이에 용강(M)의 탕면이 위치하도록 제어될 수 있다. 예컨대 와전류 레벨계를 이용하여 용강(M)의 탕면 높이를 측정하면서 측정된 용강(M)의 탕면 높이가 미리 정해진 탕면 높이를 유지하도록 침지 노즐(30)에서 용강(M)의 출강량을 조절하거나 냉각대(40)에서 주편의 인발 속도를 조절할 수 있다.
도 2는 본 발명의 실시 예에 따른 주형의 모식도이다. 도 3은 본 발명의 실시 예에 따른 주형의 단면도이다. 이때, 도 3은 도 2의 A-A' 선을 따라 주형을 절단하여 주형의 단면 형상을 보여주는 단면도이다.
도 2 및 도 3을 참조하여, 본 발명의 실시 예에 따른 주형(20)을 상세히 설명한다.
본 발명의 실시 예에 따른 주형(20: 21, 22, 23, 24)은 용강(M)을 응고시키는 주형(20)으로서, 내부 공간을 가지는 금속 바디(21, 22), 및 금속 바디(21, 22)의 내부면을 감싸도록 형성되는 코팅층(24)을 포함한다. 코팅층(24)은 미리 정해진 탕면 높이(H0)에서 하방으로 이격되며, 금속 바디(21, 22)의 내부면의 하부 영역에 형성된다.
이때, 주형(20)은 냉각 부재(23)를 더 포함할 수 있다. 또한, 코팅층(24)은 단열 재질을 포함할 수 있고, 금속 바디(21, 22)보다 열전도도가 낮을 수 있다. 코팅층(24)은 용사 코팅 방식으로 형성될 수 있다. 코팅층(24)을 형성할 때, 단열 재질을 단독으로 사용할 수 있다. 또는, 코팅층(24)을 형성할 때, 단열 재질과 합금을 혼합하여 사용할 수 있다.
탕면 높이(H0)는 주형(20)을 이용한 주조 공정 시 용강(M)의 탕면(meniscus)이 위치하는 소정의 높이를 의미한다. 탕면 높이(H0)는 예컨대 강종, 주조 속도 및 용강 온도를 포함하는 주조 조건에 의하여 미리 정해질 수 있다.
탕면 높이(H0)를 기준으로 주형(20)의 내부면을 구분하여, 탕면 높이(H0)보다 높은 영역을 주형(20)의 상부 영역으로 정하고, 탕면 높이(H0)보다 낮은 영역을 주형(20)의 하부 영역으로 정한다. 탕면 높이(H0)는 주형(20)의 상부 영역과 하부 영역의 계면으로 정한다.
금속 바디(21, 22)는 내부 공간으로 주입되는 용강(M)을 응고시킬 수 있다. 금속 바디(21, 22)는 한 쌍의 단변판(21), 및 한 쌍의 장변판(22)을 포함할 수 있다. 이때, 한 쌍의 단변판(21)은 각각이 일 방향 예컨대 주편(C, M)의 두께 방향으로 연장되고, 서로 마주보며, 일 방향으로 서로 이격될 수 있다.
한 쌍의 장변판(22)은 한 쌍의 단변판(21)과 교차하는 방향인 타 방향 예컨대 주편(C, M)의 폭 방향으로 연장되고, 서로 마주보며 타 방향으로 서로 이격되어 한 쌍의 단변판(21)을 연결하도록 설치될 수 있다.
한 쌍의 단변판(21) 및 한 쌍의 장변판(22)에 의해 금속 바디(21, 22)의 내부 공간이 정의될 수 있다. 용강(M)은 금속 바디(21, 22)의 내부 공간을 통과하며 주편(C, M)으로 주조될 수 있다.
한편, 금속 바디(21, 22)의 내부 공간을 주형(20)의 내부 공간이라 한다. 마찬가지로, 금속 바디(21, 22)의 내부면을 주형(20)의 내부면이라 한다.
금속 바디(21, 22)의 구조는 상술한 구조 외에도 그 구조가 다양할 수 있다.
냉각 부재(23)는 한 쌍의 장변 판(22)의 외부면에 장착될 수 있다. 냉각 부재(23)는 내부에 유로를 구비하고, 유로에 냉각수를 공급받을 수 있다. 예컨대 구리 재질의 금속 바디(21, 22)는 유로를 흐르는 냉각수에 의해 냉각될 수 있다. 금속 바디(21, 22)의 내부 공간을 통과하는 용강(M)은 금속 바디(21, 22)와 열교환을 하며 냉각될 수 있다.
용강(M)의 탕면에서부터 금속 바디(21, 22)의 내부면을 따라 응고쉘(C)이 형성될 수 있다. 응고쉘(C)은 하방으로 갈수록 성장하며 두꺼워질 수 있다. 이때, 용강(M)의 탕면에는 몰드 플럭스(F)가 투입될 수 있다.
몰드 플럭스(F)는 금속 바디(21, 22)의 내부면과 주편(C, M)의 응고쉘(C) 사이로 유입될 수 있다. 몰드 플럭스(F)는 금속 바디(21, 22)의 내부면과 주편(C, M)의 응고쉘(C) 간의 윤활 및 열전달 속도 제어에 사용될 수 있다.
금속 바디(21, 22)의 내부면을 감싸도록 코팅층(24)이 형성될 수 있다. 여기서, 코팅층(24)은 레이저 혹은 화염을 이용한 용사(溶射) 코팅 방식으로 형성될 수 있다. 구체적으로, 코팅층(24)은 단열 재질 예컨대 세라믹 분말을 코팅재로 사용한 용사 코팅 방식으로 형성되거나, 세라믹 분말 및 합금 분말을 혼합한 분말을 코팅재로 사용한 용사 코팅 방식으로 형성될 수 있다.
코팅층(24)은 탕면 높이(H0)에서 하방으로 이격되어 금속 바디(21, 22)의 내부면의 하부 영역에 형성될 수 있다. 코팅층(24)은 금속 바디(21, 22)의 내부면과 몰드 플럭스(F) 간의 열전달을 제어할 수 있다. 구체적으로, 코팅층(24)은 몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달을 저감시킬 수 있다. 여기서, 열전달을 저감시킨다는 것은 열전달 속도 혹은 열전달량을 저감시킨다는 것을 의미한다.
코팅층(24)이 탕면 높이(H0)에서 하방으로 이격됨에 따라, 응고쉘(C)의 초기 생성이 원활할 수 있다. 즉, 코팅층(24)의 상단을 탕면 높이(H0)에서 하방으로 이격시키면, 탕면 높이(H0)에서 금속 바디(21, 22)의 내부면과 몰드 플럭스(F)가 접촉할 수 있다. 이에, 몰드 플럭스(F)의 냉각이 원활할 수 있고, 이로부터, 용강(M)이 원활하게 응고될 수 있다.
즉, 탕면 높이(H0)에서, 몰드 플럭스(F)를 통하여 금속 바디(21, 22)의 내부면과 용강(M)의 탕면이 원활히 열교환할 수 있고, 응고쉘(C)의 초기 생성이 원활할 수 있다.
코팅층(24)의 상단 높이부터 하단 높이까지, 코팅층(24)을 통하여 금속 바디(21, 22)의 내부면과 몰드 플럭스(F)가 접촉할 수 있다. 코팅층(24)은 열전도도가 금속 바디(21, 22)보다 낮다.
코팅층(24)이 코팅층(24)의 전체 중량에 대하여 세라믹을 100 중량% 함유할 때, 코팅층(24)의 열전도도는 약 1 W/mK 이다. 그리고 금속 바디(21, 22)의 재질이 구리일 때, 금속 바디(21, 22)는 열전도도가 약 400 W/mK 이다. 열전도도가 낮을수록 열전달이 어렵다. 열전도도가 클수록 열전달이 쉽다.
이에, 코팅층(24)의 상단 높이부터 하단 높이까지, 코팅층(24)이 몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달을 저감시킬 수 있고, 즉, 몰드 플럭스(F)의 냉각을 둔화시킬 수 있다.
이처럼 금속 바디(21, 22)의 내부면의 하부 영역에서, 코팅층(24)은 몰드 플럭스(F)와 접촉하면서 몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달을 제어할 수 있다. 더욱 구체적으로, 코팅층(24)은 몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달을 저하시킬 수 있다.
코팅층(24)의 두께를 조절하여 열전달을 제어할 수 있다. 이를 위하여, 코팅층(24)은 상하 방향으로 하단과 상단의 두께가 다를 수 있다. 예컨대 코팅층(24)의 두께가 두꺼울수록 열전달 속도가 느리고, 열전달량이 작을 수 있다. 반면, 코팅층(24)의 두께가 얇을수록 열전달 속도를 빠르고, 열전달량이 클 수 있다. 따라서, 코팅층(24)의 두께를 상하 방향 예컨대 주편(C, M)의 길이 방향으로 다르게 조절함으로써, 금속 바디(21, 22)의 내부면의 하부 영역에서 높이에 따라 열전달을 제어할 수 있다.
몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달을 몰드 플럭스(F)의 열전달이라고 지칭한다. 몰드 플럭스(F)에서 금속 바디(21, 22)로의 열전달량을 몰드 플럭스(F)의 열전달량으로 지칭한다.
코팅층(24)은 하단의 두께가 상단의 두께보다 두꺼울 수 있다. 이에 의하여, 코팅층(24)은 상단보다 하단에서 몰드 플럭스(F)의 열전달을 더욱 저하시킬 수 있다. 코팅층(24)은 상단에서 하단으로 갈수록 두께가 점진적으로 증가할 수 있다. 이에, 코팅층(24)은 상단에서 하단으로 갈수록 몰드 플럭스(F)의 열전달을 점진적으로 크게 저하시킬 수 있다. 즉, 몰드 플럭스(F)의 열전달은 코팅층(24)의 상단에서 상대적으로 크고, 코팅층(24)의 하단에서 상대적으로 작을 수 있다.
코팅층(24)은 금속 바디(21, 22)의 내부면과 소정 각도로 경사면을 이룰 수 있다. 코팅층(24)의 단면 형상은 직각 삼각형 혹은 둔각 삼각형 형상일 수 있다.
상술한 형상에 의하여, 주형(20)의 상부 영역에서 하부 영역으로 갈수록 주편(C, M)이 수축하는 것을 코팅층(24)의 두께 변화로 보상해줄 수 있다. 이에, 코팅층(24)과 응고쉘(C)의 접촉을 안정적으로 유지할 수 있다.
즉, 코팅층(24)은 몰드 플럭스(F)의 열전달을 조절하는 기능과 주편(C, M)의 수축을 보상해주는 기능을 복합적으로 가질 수 있다.
주편(C, M)의 주조 중에, 금속 바디(21, 22)의 내부면은 하방으로 갈수록 온도가 점차 저하된다. 몰드 플럭스(F)도 금속 바디(21, 22)의 내부면을 따라 하방으로 갈수록 온도가 저하된다. 따라서, 코팅층(24)의 상단에서 하단으로 갈수록 코팅층(24)의 두께를 점진적으로 증가시키면, 몰드 플럭스(F)의 온도 저하를 억제할 수 있다. 이로부터 금속 바디(21, 22)의 내부면의 하부 영역에서 몰드 플럭스(F)가 과냉각되는 것을 막을 수 있다. 이에, 몰드 플럭스(F)가 응고되어 액상에서 고상으로 결정화하는 것을 방지할 수 있다.
코팅층(24)의 하단의 두께(Db)는 0 초과 3 ㎜ 이하일 수 있다. 코팅층(24)의 상단의 두께는 0 초과일 수 있다. 더욱 구체적으로, 코팅층(24)의 상단의 두께는 0에 근접하는 소정의 두께 값일 수 있다.
코팅층(24)의 하단의 두께(Db)는 3 ㎜에 가까울수록 효과가 좋다. 즉, 코팅층(24)의 하단의 두께(Db)가 두꺼울수록 몰드 플럭스(F)의 냉각을 억제할 수 있고, 주편(C, M)의 결함 발생을 줄일 수 있다.
코팅층(24)의 하단의 두께(Db)가 3 ㎜를 초과하면, 금속 바디(21, 22)의 내부 공간에서 주편(C, M)을 원하는 온도까지 냉각하지 못하는 문제점이 있고, 또한, 3 ㎜ 를 초과하는 코팅층(24)의 두께에 의하여 주편(C, M)에 눌림흠이 발생하는 문제점이 있다.
코팅층(24)의 상단은 탕면 높이(H0)에서 하방으로 이격된 높이에 위치할 수 있다. 즉, 코팅층(24)의 상단은 탕면 높이(H0)와 금속 바디(21, 22)의 하단 사이에 위치할 수 있다. 코팅층(24)의 하단은 금속 바디(21, 22)의 내부면의 하단과 동일 높이에 위치할 수 있다.
탕면 높이(H0)와 코팅층(24)의 상단의 높이 차이(H)는 0 초과 200 ㎜ 이내일 수 있다.
코팅층(24)의 상단 높이가 탕면 높이(H0)이거나, 탕면 높이(H0)보다 높으면, 응고쉘(C)이 원활하게 형성되지 못하는 문제점이 있다.
바람직하게는, 코팅층(24)의 상단의 높이는 탕면 높이(H0)에서 하방으로 100 이하 200 ㎜ 이내일 수 있다. 코팅층(24)의 상단 높이가 탕면 높이(H0)에서 하방으로 200 ㎜ 이격된 높이에 가까울수록 코팅층(24)의 효과가 좋다. 즉, 주편(C, M)의 결함을 효과적으로 감소시킬 수 있다.
코팅층(24)의 상단 높이가 탕면 높이(H0)로부터 하방으로 200 ㎜를 벗어나게 되면, 몰드 플럭스(F)의 열전달을 지연시키기 어렵고, 몰드 플럭스(F)의 응고를 억제하기 어렵다.
코팅층(24)은 단열 재질을 포함할 수 있다. 이때, 단열 재질은 세라믹을 포함할 수 있다. 세라믹은 이트리아 안정화 지르코니아(Yttria-stabilized zirconia, YSZ)를 포함할 수 있다. 이트리아 안정화 지르코니아는 이트리아 안정화 지르코니아의 전체 중량에 대하여 Y2O3를 8 중량% 함유하고, ZrO2를 92 중량%로 함유할 수 있다. 물론, 상술한 함량은 다양할 수 있다. 세라믹은 금속 바디(21, 22)가 몰드 플럭스(F)와 직접 접촉하는 것을 막아주면서 몰드 플럭스(F)의 열전달을 제어하는 역할을 한다. 구체적으로, 세라믹은 몰드 플럭스(F)의 열전달을 저하시키는 역할을 한다.
코팅층(24)은 합금을 포함할 수도 있다. 이때, 합금은 니켈 크롬 합금을 포함할 수 있다. 니켈 크롬 합금은 금속 바디(21, 22)의 내부면을 보호하는 역할을 한다. 니켈 크롬 합금이 단열 재질과 혼합되는 경우, 니켈 크롬 합금은 코팅층(24) 내의 세라믹 함량을 조절하는 역할을 한다. 한편, 니켈 크롭 합금의 열전도도는 구리의 열전도도보다 이트리아 안정화 지르코니아의 열전도도에 가까울 수 있다. 이에, 코팅층(24) 내의 니켈 크롬 합금은 이트리아 안정화 지르코니아가 몰드 플럭스(F)의 열전달을 저하시키는 역할을 보조할 수 있다. 합금은 니켈 크롭 합금 외에도 스테인리스강이 사용될 수도 있다. 단열 재질 및 합금은 코팅층(24) 내에 균일하게 혼합된 상태로 존재할 수 있다.
합금을 이용하여 코팅층(24)의 세라믹 함량을 조절할 수 있다. 예컨대 코팅층(24)의 합금이 0 중량% 이면, 세라믹 함량이 100 중량% 이다. 코팅층(24)의 합금이 100 중량% 이면, 세라믹 함량이 0 중량% 이다. 이때, 더욱 바람직하게는, 코팅층(24)은 코팅층(24)의 전체 중량에 대하여 세라믹을 5 내지 100 중량% 포함하고, 합금을 0 내지 95 중량% 포함할 수 있다.
코팅층(24)의 세라믹의 함량이 5 중량% 미만이면, 코팅층(24)의 효과가 다소 작을 수 있다. 예컨대 코팅층(24)이 몰드 플럭스(F)가 금속 바디(21, 22)의 내부면의 하부 영역에서 고상으로 응고되는 것을 방지하기 어려워질 수 있다. 코팅층(24)내의 세라믹의 함량이 증가할수록 코팅층(24)의 효과가 커지면서 몰드 플럭스(F)의 열전달을 저하시켜 몰드 플럭스(F)의 응고를 막을 수 있고, 주편(C, M)의 결함 발생을 줄일 수 있다.
세라믹 즉, 이트리아 안정화 지르코니아의 함량이 코팅층(24)의 전체 중량의 100 중량% 일 때 몰드 플럭스(F)의 열전달을 저하시키는 코팅층(24)의 효과가 가장 좋다. 세라믹 함량이 높아질수록 코팅층(24)의 단열 효과가 좋아지는데, 세라믹의 함량이 코팅층(24)의 전체 중량의 5 중량%에 도달할 때까지 세라믹 함량이 증가할수록 코팅층(24)의 효과가 급격하게 증가할 수 있다.
이트리아 안정화 지르코니아의 열전도도가 약 1W/mK 이고, 니켈 크롬 합금의 열전도도가 약 11.6W/mK 으로서 이트리아 안정화 지르코니아의 열전도도가 더 작기 때문에, 이트리아 안정화 지르코니아의 함량이 증가할수록 코팅층(24)의 냉각 지연 효과가 증가할 수 있다.
한편, 세라믹의 함량이 코팅층(24)의 전체 중량의 5 중량%에 도달한 이후부터, 세라믹의 함량이 증가할수록 코팅층(24)의 효과의 증가가 상대적으로 둔화될 수 있다.
상술한 바에 따르면, 본 발명의 실시 예에 따른 주형(20)은 코팅층(24)을 이용하여 주형(20)의 내부에서 몰드 플럭스(F)가 냉각되는 것을 억제하여, 몰드 플럭스(F)가 액상에서 고상으로 응고되면서 주형(20)의 내부면에 비정질의 고상 물질을 형성하는 것을 방지할 수 있다. 이에, 주형(20)을 이용한 주조 공정에서 주편과 주형(20) 사이의 열전달 제어 및 윤활이 원활하여 주편에 면세로 크랙이 형성되는 것을 방지할 수 있다.
도 4는 본 발명의 실시 예에 따른 주조 방법으로 주편을 주조할 때의 주형의 내부 상태를 예시적으로 보여주는 도면이다. 도 5는 본 발명의 실시 예에 따른 주조 방법으로 주편을 주조할 때의 주형과 주편 사이의 열전달 경로를 설명하기 위한 도면이다.
이하, 도 4 및 도 5를 참조하여, 본 발명의 실시 예에 따른 주조 방법을 설명한다.
본 발명의 실시 예에 따른 주조 방법은 상술한 주조 설비 및 주형(20)을 이용한 주조 방법으로서, 주형(20)에 용강(M)을 주입하고, 용강(M)의 탕면에 몰드 플럭스(F: F1, F2, F3)를 공급하는 과정, 용강(M)을 응고시켜 주편(C, M)을 주조하는 과정, 주편(C, M)과 주형(20) 사이에 용융된 몰드 플럭스(F3)를 유입시키는 과정, 및 용강(M)의 탕면 높이(H0)에서 하방으로 이격되어 주형(20)의 내부면의 하부 영역에 형성된 코팅층(24)에 용융된 몰드 플럭스(F3)를 접촉시키는 과정을 포함한다.
여기서, 코팅층(24)은 세라믹 및 합금을 포함할 수 있다. 구체적으로, 코팅층(24)은 코팅층(24)의 전체 중량에 대해 세라믹을 5 내지 100 중량%로 포함하고, 합금을 0 내지 95 중량% 포함할 수 있다. 세라믹은 합금보다 열전도도가 작을 수 있다. 합금 예컨대 니켈 크롬 합금의 경우, 열전도도가 약 11.6 W/mK 이다. 반면, 세라믹 예컨대 이트리아 안정화 지르코니아의 경우, 열전도도가 약 1 W/mK 이다. 합금은 주형(20)의 금속 바디(21, 22)보다 열전도도가 작을 수 있다. 코팅층(24)의 두께(d)는 상하 방향으로 상단과 하단의 두께가 다를 수 있다. 이때, 코팅층(24)의 상단 보다 하단이 두꺼울 수 있다. 몰드 플럭스(F)는 융점이 1100℃ 이하인 몰드 플럭스(F)를 사용할 수 있다. 몰드 플럭스(F)는 불소를 포함하지 않을 수 있다.
주형(20)에 용강(M)을 주입한다. 여기서, 용강(M)의 탕면은 미리 정해진 탕면 높이(H0)를 유지하도록 제어될 수 있다. 용강(M)은 주형(20)에 의해 냉각되며 응고되기 시작하여, 탕면 높이(H0)에서 주형(20)의 내부면을 따라 하방으로 응고쉘(C)이 생성된다. 응고쉘(C)은 주형(20)의 내부면을 따라 하방으로 인발되면서 주편(C, M)의 두께 방향으로 성장하며 두꺼워질 수 있다. 이때, 용강(C, M)은 탕면에 몰드 플럭스(F)가 도포된 상태일 수 있다.
도 4를 참조하면, 몰드 플럭스(F)는 3개의 층을 형성할 수 있다. 그중 상부층은 파우더상 몰드 플럭스(F1)층이고, 중간층은 소결된 몰드 플럭스(F2)층이고, 하부층은 용융된 몰드 플럭스(F3)층이다. 탕면 높이(H0) 부근에서 주형(20)의 내부면에 슬래그 베어가 형성될 수 있다.
주형(20)의 내부에서 용강(M)을 응고시켜 주편(C, M)을 주조하고, 주편을 하방으로 연속하여 인발한다. 이와 함께, 용융된 몰드 플럭스(F3)를 응고쉘(C)과 주형(20) 사이에 유입시킨다.
이후, 탕면 높이(H0)에서 하방으로 이격되어 주형(20)의 내부면의 하부 영역에 형성된 코팅층(24)에 용융된 몰드 플럭스(F3)를 접촉시킨다. 이때, 코팅층(24)을 이용하여 주형(20)과 용융된 몰드 플럭스(F3) 사이의 열전달을 제어하는 과정과 용융된 몰드 플럭스(F3)의 응고를 방지하는 과정을 수행한다.
종래에 몰드 플럭스가 응고되면, 열저항 지수가 용융된 몰드 플럭스에 비하여 약 두배 이상 감소할 수 있다. 즉, 열저항 지수가 크게 달라진다. 또한, 몰드 플럭스의 응고량 및 응고된 몰드 플럭스의 위치를 주조 중에 예측하기 어렵다. 이 때문에, 용융된 몰드 플럭스가 응고되는 경우, 주형(20) 내에서 열전달 제어가 어렵다. 이에, 주편(C, M)에 면세로 크랙이 발생할 수 있다.
반면, 본 발명의 실시 예에서는, 열전달을 제어하는 과정에서, 코팅층(24)의 상단에서 하단으로 갈수록 용융된 몰드 플럭스(F3)에서 주형(20)으로의 열전달량을 감소시키고, 열전달 속도를 감소시킬 수 있다. 이에 의하여, 주조 중에 주형(20)의 내부에서 용융된 몰드 플럭스(F3)가 고상으로 응고되는 것을 방지할 수 있다.
도 5는 주편을 주조할 때의 주형과 주편 사이의 열전달 경로를 설명하기 위한 도면이다.
도 5의 (a)는 종래와 같이 주형의 내부에 코팅층이 없는 경우의 용강에서 주형으로의 열전달 경로를 보여준다. 코팅층이 없을 때, 플럭스와 주형이 직접 접촉하므로, 플럭스의 일부가 고상으로 응고될 수 있다. 이때, 주형내에서 응고된 플럭스(F4)의 두께 및 위치가 불규칙하고, 이를 정확히 예측하기 어렵다. 이에, 응고된 플럭스(F4)에 의하여 주형 내의 열전달 제어가 어렵다.
도 5의 (b)는 본 발명의 실시 예에 따른 주형의 내부의 열전달 경로를 보여준다. 주형의 내부면에 코팅층이 존재하므로, 플럭스의 냉각이 완화되고, 플럭스가 액상을 유지할 수 있다. 즉, 주형의 내부면에 고상 플럭스가 생성되지 않는다. 코팅층은 두께와 열전도도가 정해지고, 바뀌지 않기 때문에, 주형 내부에서의 열전달 제어가 코팅층에 의해 원활할 수 있다. 즉, 응고쉘(C)의 냉각이 원활할 수 있고, 이에, 주편에서 결함이 생성되는 것을 방지할 수 있다.
실험예
본 발명의 실시 예에 따른 주형을 이용하여 주조 공정을 수행한다. 이때, 용강은 스테인리스 304강을 사용하였다. 주형에서 코팅층의 두께 및 형성 위치를 아래의 표 1과 같이 각각 다르게 하였다. 그리고 주조 공정이 종료된 후, 주편의 표면 결함을 측정하였다.
상단 높이(mm) 상단 두께(mm) 하단 두께(mm) 세라믹 함량(중량%) 합금 함량(중량%) 결함 감소 효과
실험예1 200 0.1 1.0 0 100 효과 작음
실험예2 200 0.1 1.0 2 98 효과 작음
실험예3 200 0.1 1.0 5 95 50% 감소
실험예4 200 0.1 1.0 50 50 50% 감소
실험예5 200 0.1 1.0 100 0 60% 감소
실험예6 100 ~ 0 1.0 25 75 50% 감소
실험예7 200 ~ 0 1.0 25 75 90% 감소
실험예8 200 ~ 0 2.0 25 75 100% 감소
실험예9 200 ~ 0 3.0 25 75 100% 감소
실험예10 200 ~ 0 4.0 25 75 효과 작음
실험예11 300 ~ 0 1.0 25 75 효과 작음
여기서, '~ 0' 는 상단 두께의 근사값이 0 이라는 의미이다. 즉, 실험예6 내지 실험예11은 상단 두께가 대략 0 에 가까울 수 있다. 세라믹 함량은 코팅층의 전체 중량에 대한 이트리아 안정화 지르코니아의 함량이다. 합금 함량은 코팅층의 전체 중량에 대한 니켈 크롬 합금의 함량이다. 결함 감소 효과는 코팅층에 의한 주편의 결함 감소 효과를 의미한다. 주편을 소정의 단위 길이로 절단하고, 절단된 주편의 면세로 크랙의 개수를 확인하는 방식으로 결함 감소 효과를 정량화하였다.
실험예1 내지 실험예5는 코팅층의 상단 높이, 상단 두께 및 하단 두께를 동일하게 하고, 세라믹 함량과 합금 함량을 다르게 하는 경우의 코팅층에 의한 주편의 결함 감소 효과의 변화를 보여준다.
표 1 을 보면, 실험예1은 코팅층이 세라믹 예컨대 이트리아 안정화 지르코니아를 포함하지 않은 경우로서, 이때, 코팅층에 의한 주편의 결함 감소 효과가 작은 것을 확인하였다. 실험예2 및 실험예3을 대비하면, 코팅층이 세라믹을 5 중량% 이상 포함할 때, 코팅층에 의한 주편의 결함 감소 효과가 급격히 증가함을 확인할 수 있다. 실험예3 내지 실험예5를 보면, 코팅층의 세라믹의 함량이 5 중량% 를 넘어서는 이후부터 코팅층에 의한 주편의 결함 감소 효과가 둔화됨을 확인할 수 있다. 실험예1 내지 실험예5를 통하여, 본 발명의 실시 예에 따른 코팅층의 세라믹 함량과 합금 함량의 최적 함량을 알 수 있다. 즉, 코팅층은 세라믹을 100 중량% 함유할 때 가장 효과가 좋다.
실험예6 내지 실험예11은 코팅층의 세라믹 함량과 합금 함량을 동일하게 하고, 코팅층의 상단 높이 및 하단 두께를 다르게 하는 경우의 코팅층에 의한 주편의 결함 감소 효과의 변화를 보여준다. 이를 통하여, 코팅층의 상단 높이 및 하단 두께의 최적 수치를 알 수 있다.
실험예6 및 실험예7을 보면, 코팅층의 상단 높이가 탕면 높이보다 100mm 낮은 경우보다, 코팅층의 상단 높이가 탕면 높이보다 200mm 낮을 때, 코팅층에 의한 주편의 결함 감소 효과가 크게 증가하는 것을 확인할 수 있다. 즉, 코팅층이 탕면 높이보다는 다소 낮게 위치하는 것이 더 바람직하다. 이때, 실험예7 및 실험예11을 보면, 코팅층의 상단 높이가 탕면 높이에서 200mm 보다 더 낮아지는 경우, 코팅층에 의한 주편의 결함 감소 효과가 오히려 작아짐을 확인할 수 있다
또한, 실험예7 내지 실험예10을 보면, 코팅층의 하단 두께가 증가할수록 코팅층에 의한 주편의 결함 감소 효과가 크게 증가하는 것을 확인할 수 있다. 이때, 실험예10 및 실험예11을 보면, 코팅층의 하단 두께가 3 mm 를 초과하면 코팅층에 의한 주편의 결함 감소 효과가 오히려 작아짐을 확인할 수 있다.
즉, 코팅층은 주형 내에서 주편의 냉각을 완화시키되, 탕면 높이에서 응고쉘이 원활히 형성될 수 있도록 탕면 높이에서 하측으로 이격되어야 하고, 주편이 주형을 빠져나갈 때 적절한 수준으로는 주편을 냉각시켜 줘야 한다.
이를 위한 코팅층의 최적 조건은, 상술한 실험예들을 참조하면, 탕면 높이의 하측으로 200mm 이격된 높이에 코팅층의 상단이 위치하고, 코팅층의 하단은 주형의 하단과 동일 높이로 위치하고, 코팅층의 하단의 두께가 1 내지 3 mm 이고, 코팅층이 세라믹을 100 중량% 함유하는 조건일 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 변형될 것이고, 이 같은 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (15)

  1. 용강을 응고시키는 주형으로서,
    내부 공간을 가지는 금속 바디; 및
    상기 금속 바디의 내부면을 감싸도록 형성되는 코팅층;을 포함하고,
    상기 코팅층은 미리 정해진 탕면 높이에서 하방으로 이격되며, 상기 내부면의 하부 영역에 형성되는 주형.
  2. 청구항 1에 있어서,
    상기 코팅층은 상하 방향으로 하단과 상단의 두께가 다른 주형.
  3. 청구항 2에 있어서,
    상기 코팅층은 하단의 두께가 상단의 두께보다 두꺼운 주형.
  4. 청구항 2에 있어서,
    상기 코팅층은 하단에서 상단으로 갈수록 두께가 점진적으로 감소하는 주형.
  5. 청구항 3 또는 청구항 4에 있어서,
    상기 코팅층의 하단의 두께는 0 초과 3 ㎜ 이하인 주형.
  6. 청구항 1에 있어서,
    상기 탕면 높이와 상기 코팅층의 상단의 높이 차이는 0 초과 200 ㎜ 이내인 주형.
  7. 청구항 1에 있어서,
    상기 코팅층은 단열 재질을 포함하는 주형.
  8. 청구항 7에 있어서,
    상기 단열 재질은 이트리아 안정화 지르코니아를 포함하는 주형.
  9. 청구항 1 또는 청구항 7에 있어서,
    상기 코팅층은 합금을 포함하는 주형.
  10. 청구항 9에 있어서,
    상기 합금은 니켈 크롬 합금을 포함하는 주형.
  11. 청구항 1에 있어서,
    상기 코팅층은 상기 코팅층의 전체 중량에 대하여 단열 재질을 5 내지 100 중량% 포함하고, 합금을 0 내지 95 중량% 포함하는 주형.
  12. 청구항 1에 있어서,
    상기 코팅층은 상기 금속 바디보다 열전도도가 낮은 주형.
  13. 주조 방법으로서,
    주형에 용강을 주입하고, 상기 용강의 탕면에 몰드 플럭스를 공급하는 과정;
    상기 용강을 응고시켜 주편을 주조하는 과정;
    상기 주편과 상기 주형 사이에 용융된 몰드 플럭스를 유입시키는 과정;
    용강의 탕면 높이에서 하방으로 이격되어 상기 주형의 내부면의 하부 영역에 형성된 코팅층에 용융된 몰드 플럭스를 접촉시키는 과정;을 포함하는 주조 방법.
  14. 청구항 13에 있어서,
    상기 용융된 몰드 플럭스를 접촉시키는 과정은,
    상기 코팅층을 이용하여 상기 주형과 상기 용융된 몰드 플럭스 사이의 열전달을 제어하는 과정;
    상기 용융된 몰드 플럭스의 응고를 방지하는 과정;을 포함하는 주조 방법.
  15. 청구항 14에 있어서,
    상기 열전달을 제어하는 과정에서, 상기 코팅층의 상단에서 하단으로 갈수록 상기 용융된 몰드 플럭스에서 상기 주형의 내부면으로의 열전달량을 감소시키고,
    상기 코팅층은 상기 코팅층의 전체 중량에 대해 단열 재질을 5 내지 100 중량%로 포함하고, 합금을 0 내지 95 중량% 포함하는 주조 방법.
PCT/KR2019/013911 2018-10-29 2019-10-22 주형 및 주조 방법 WO2020091289A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980071519.XA CN112955263A (zh) 2018-10-29 2019-10-22 结晶器及铸造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0129913 2018-10-29
KR1020180129913A KR102179557B1 (ko) 2018-10-29 2018-10-29 주형 및 주조 방법

Publications (1)

Publication Number Publication Date
WO2020091289A1 true WO2020091289A1 (ko) 2020-05-07

Family

ID=70463375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013911 WO2020091289A1 (ko) 2018-10-29 2019-10-22 주형 및 주조 방법

Country Status (3)

Country Link
KR (1) KR102179557B1 (ko)
CN (1) CN112955263A (ko)
WO (1) WO2020091289A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222567B2 (ko) * 1973-04-30 1977-06-18
JPH0691352A (ja) * 1992-09-11 1994-04-05 Mishima Kosan Co Ltd 連続鋳造用鋳型
US20070125511A1 (en) * 2005-11-30 2007-06-07 Hans-Gunter Wober Permanent chill mold for the continuous casting of metals
KR101443788B1 (ko) * 2012-08-09 2014-09-23 주식회사 포스코 주조용 주형
KR101742077B1 (ko) * 2015-05-04 2017-05-31 주식회사 포스코 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347605B1 (ko) 1998-12-14 2002-09-18 주식회사 포스코 고온 내마모성 용사합금을 사용한 연주몰드의 용사코팅방법
KR100749025B1 (ko) * 2006-06-22 2007-08-13 주식회사 포스코 몰드 플럭스 및 이를 이용한 연속 주조 방법
KR100749024B1 (ko) * 2006-06-22 2007-08-13 주식회사 포스코 용융 몰드 플럭스를 이용한 연속 주조 방법
CN100429020C (zh) * 2006-08-25 2008-10-29 重庆大学 一种低合金高强度钢的中厚板连铸保护渣
CN201150978Y (zh) * 2008-01-08 2008-11-19 鞍钢股份有限公司 一种中薄板坯连铸结晶器铜板镀层结构
JP5222567B2 (ja) * 2008-01-09 2013-06-26 三島光産株式会社 連続鋳造用鋳型
KR101159940B1 (ko) * 2010-01-28 2012-06-25 한닢테크(주) 연속주조용 몰드 동판 도금방법
CN103433448A (zh) * 2013-08-14 2013-12-11 东北大学 基于渣膜与气隙动态分布的连铸结晶器热流密度确定方法
KR101766856B1 (ko) 2014-10-23 2017-08-09 재단법인 포항산업과학연구원 연주설비의 몰드 및 연주설비의 몰드 코팅 방법
KR101857996B1 (ko) * 2016-09-07 2018-05-17 주식회사 포스코 표면 결함이 개선된 오스테나이트계 스테인리스강의 연속 주조 방법
CN106903281A (zh) * 2017-02-21 2017-06-30 河南蓝火激光科技有限公司 一种耐热蚀耐磨梯度涂层结晶器铜板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222567B2 (ko) * 1973-04-30 1977-06-18
JPH0691352A (ja) * 1992-09-11 1994-04-05 Mishima Kosan Co Ltd 連続鋳造用鋳型
US20070125511A1 (en) * 2005-11-30 2007-06-07 Hans-Gunter Wober Permanent chill mold for the continuous casting of metals
KR101443788B1 (ko) * 2012-08-09 2014-09-23 주식회사 포스코 주조용 주형
KR101742077B1 (ko) * 2015-05-04 2017-05-31 주식회사 포스코 몰드 플럭스 및 이를 이용한 연속 주조 방법 및 이로 제작된 주편

Also Published As

Publication number Publication date
KR102179557B1 (ko) 2020-11-16
CN112955263A (zh) 2021-06-11
KR20200048161A (ko) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2020091289A1 (ko) 주형 및 주조 방법
WO2015122602A1 (ko) 몰드 플럭스, 이를 이용한 연속주조방법 및 이를 이용하여 제조된 주편
WO2011078452A1 (ko) 충격 보증용 빔블랭크의 연속 주조 방법
FI77391C (fi) Anordning foer straenggjutning av metaller.
WO2021006476A1 (ko) 몰드 플럭스 및 이를 이용한 주조 방법
WO2017188539A1 (ko) 몰드 플럭스 및 이를 이용한 주조방법
CN1069681A (zh) 薄带连铸装置
CN115383068B (zh) 坯尾在线保温装置及方法
US4744406A (en) Horizontal continuous casting apparatus with break ring formed integral with mold
KR200159529Y1 (ko) 연속박판주 조장치에서의변폭형수직주조장치
JPH01317657A (ja) 急冷金属薄帯の製造装置
WO2020096391A1 (ko) 압하 장치
JPS6313659A (ja) 鋼塊の製造方法
JPH01202349A (ja) 連続鋳造方法
JP2000312952A (ja) 連続鋳造用浸漬ノズル
WO2019103494A1 (ko) 몰드플럭스, 강재, 및 강재 제조방법
WO2017191902A1 (ko) 금속박판 주조장치
KR20230082192A (ko) 주형 및 주형의 제조 방법
JPH01278944A (ja) 連続鋳造用加熱鋳型
JPH0475110B2 (ko)
JPH06269904A (ja) 連続鋳造方法
KR100333307B1 (ko) 내화물몰드를사용한빌렛주편제조장치
JPH02307649A (ja) 銅および銅合金の連続鋳造方法とその装置
KR20110131356A (ko) 파우더 윤활재를 사용한 연속 주조 방법
KR970003116B1 (ko) 금속의 연속주조법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878351

Country of ref document: EP

Kind code of ref document: A1