WO2020088677A1 - 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法 - Google Patents

一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法 Download PDF

Info

Publication number
WO2020088677A1
WO2020088677A1 PCT/CN2019/115149 CN2019115149W WO2020088677A1 WO 2020088677 A1 WO2020088677 A1 WO 2020088677A1 CN 2019115149 W CN2019115149 W CN 2019115149W WO 2020088677 A1 WO2020088677 A1 WO 2020088677A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solvent
crystal form
preparation
reagent
Prior art date
Application number
PCT/CN2019/115149
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
李志祥
Original Assignee
山东丹红制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东丹红制药有限公司 filed Critical 山东丹红制药有限公司
Priority to FIEP19878016.5T priority Critical patent/FI3819293T3/fi
Priority to AU2019373178A priority patent/AU2019373178B2/en
Priority to KR1020217006383A priority patent/KR102619333B1/ko
Priority to EP19878016.5A priority patent/EP3819293B1/en
Priority to CN201980050569.XA priority patent/CN112585120B/zh
Priority to ES19878016T priority patent/ES2944065T3/es
Priority to JP2021507501A priority patent/JP7089636B2/ja
Publication of WO2020088677A1 publication Critical patent/WO2020088677A1/zh
Priority to US17/179,382 priority patent/US11286239B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/48Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/26Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a salt form and a crystal form of an angiotensin II receptor 2 (AT 2 R) antagonist and a preparation method thereof, and further includes the application of the salt form and the crystal form in preparing a medicine for treating chronic pain.
  • AT 2 R angiotensin II receptor 2
  • Angiotensin II is an octapeptide substance produced by the hydrolysis of angiotensin I under the action of angiotensin-converting enzyme. It has the functions of regulating blood pressure, body fluid balance and pain perception.
  • Angiotensin receptors are G protein-coupled receptors with angiotensin as a ligand, and are an important part of the renin-angiotensin system.
  • AngII can activate angiotensin II receptor 1 (AT 1 R) and angiotensin II receptor 2 (AT 2 R).
  • AT 1 R angiotensin II receptor 1
  • AT 2 R angiotensin II receptor 2
  • AT 2 R is related to the pain mechanism in the nervous system, mainly expressed in the dorsal root ganglion and trigeminal ganglion.
  • AT 2 R Compared to normal nerves, damaged nerves and painful neuromas have higher AT 2 R expression.
  • the second messenger pathway activated by G protein-coupled receptors can sensitize ion channels in neurons. Sensitization leads to activation of ion channels and excites neurons.
  • AT 2 R antagonists have been proved to be pain relief by animal experiments and clinical experiments.
  • WO2011088504 discloses the compound EMA-401.
  • the present invention provides compounds of formula (I).
  • the present invention also provides Form A of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 3.52 ⁇ 0.20 °, 6.04 ⁇ 0.20 °, 18.21 ⁇ 0.20 °.
  • the X-ray powder diffraction pattern of Form A above has characteristic diffraction peaks at the following 2 ⁇ angles: 3.52 ⁇ 0.20 °, 6.04 ⁇ 0.20 °, 14.40 ⁇ 0.20 °, 15.11 ⁇ 0.20 °, 18.21 ⁇ 0.20 °, 18.46 ⁇ 0.20 °, 20.12 ⁇ 0.20 °, 24.13 ⁇ 0.20 °.
  • the XRPD pattern of Form A above is shown in FIG. 1.
  • the above differential scanning calorimetry curve of Form A has a starting point of an endothermic peak at 155.36 ° C ⁇ 3 ° C.
  • the DSC pattern of Form A above is shown in FIG. 2.
  • thermogravimetric analysis curve of Form A above has a weight loss of 0.1489% at 100.00 ° C ⁇ 3 ° C.
  • the TGA pattern of Form A described above is shown in FIG. 3.
  • the invention also provides a method for preparing the crystal form of compound A of formula (I), which includes:
  • the volume ratio of the mixed solvent is acetone and water is 1: 1.5-2.5.
  • the invention also provides Form B of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.08 ⁇ 0.20 °, 12.12 ⁇ 0.20 °, 18.19 ⁇ 0.20 °.
  • the invention also provides Form B of the compound of formula (I), characterized in that its X-ray powder diffraction pattern has characteristic diffraction peaks at the following 2 ⁇ angles: 6.08 ⁇ 0.20 °, 12.12 ⁇ 0.20 °, 18.19 ⁇ 0.20 °, 24.31 ⁇ 0.20 °, 30.50 ⁇ 0.20 °.
  • the X-ray powder diffraction pattern of Form B above has characteristic diffraction peaks at the following 2 ⁇ angles: 3.52 ⁇ 0.20 °, 6.08 ⁇ 0.20 °, 9.25 ⁇ 0.20 °, 12.12 ⁇ 0.20 °, 14.00 ⁇ 0.20 °, 18.19 ⁇ 0.20 °, 24.31 ⁇ 0.20 °, 30.50 ⁇ 0.20 °.
  • the XRPD pattern of the above crystalline form B is shown in FIG. 4.
  • the differential scanning calorimetry curve of Form B above has a starting point for an endothermic peak at 150.95 ° C ⁇ 3 ° C.
  • the DSC pattern of Form B is shown in FIG. 5.
  • thermogravimetric analysis curve of the above-mentioned Form B thermogravimetric analysis curve has a weight loss of 0.0558% at 120.00 ° C ⁇ 3 ° C.
  • the TGA pattern of the above B crystal form is shown in FIG. 6.
  • the present invention also provides a method for preparing the compound B crystal form of formula (I), which includes:
  • the solvent is selected from methanol, ethanol and acetonitrile
  • the solvent is a mixed solvent, and the mixed solvent is acetone and water in a volume ratio of 3: 2.
  • the invention also provides the application of the above crystal form A or crystal form B in the preparation of a medicine for treating chronic pain.
  • the invention also provides a preparation method of the compound of formula (I),
  • R 1 selects Cl, Br and I
  • Solvent F is selected from n-heptane, dichloromethane, tetrahydrofuran, cyclohexane and dioxane;
  • Reagent G is selected from silver oxide, magnesium sulfate, calcium sulfate and sodium sulfate.
  • the above preparation method includes the following steps:
  • the solvent H is selected from tetrahydrofuran, methanol and water;
  • Reagent I is selected from lithium hydroxide monohydrate and sodium hydroxide
  • Solvent J is selected from dichloromethane
  • the catalyst K is selected from N, N-dimethylformamide
  • Reagent L is selected from oxalyl chloride
  • the solvent M is selected from dichloromethane
  • Reagent N is selected from pyrazole
  • Reagent O is selected from N-methylmorpholine
  • the solvent P is selected from N, N-dimethylformamide, dimethylsulfoxide, methylene chloride and tetrahydrofuran;
  • Reagent Q is selected from tetramethylguanidine, 1,8-diazabicycloundec-7-ene, triethylamine, diisopropylethylamine and 2,6-lutidine.
  • the molar ratio of compound 1E to compound 1-0 is 1.2-5: 1.
  • the molar ratio of compound 1-4 to compound D1-1 is 1.1-1.5: 1.
  • the temperature range of the reaction system is controlled to 25 ⁇ 5 ° C.
  • the preparation of compound 1-4 includes step a and step b, step a controls the temperature range of the reaction system to 25 ⁇ 5 ° C, and when step b is fed to the reaction system, the temperature range of the reaction system is controlled to 5 ⁇ 5 °C. After the reagents are fed, control the temperature range of the reaction system to 25 ⁇ 5 °C.
  • the solvent F is selected from n-heptane
  • the volume ratio of the volume of the n-heptane to the compound 1-0 is 8.0 to 10.0: 1
  • the reagent G is selected from silver oxide and magnesium sulfate.
  • the molar ratio of silver oxide, magnesium sulfate and compound 1-0 is 1.0 to 5.0: 1.
  • reagent G is added in batches during the feeding process.
  • the solvent H is a mixture selected from tetrahydrofuran and water, the volume ratio of the tetrahydrofuran and water is 1 to 2: 1, and the reagent I is lithium hydroxide monohydrate, and the lithium hydroxide monohydrate
  • the molar ratio to compound 1-0 is 1.0 to 2.0: 1, the mass ratio of solvent J to compound 1-3 is 10: 1, the molar ratio of catalyst K to compound 1-3 is 0.002 to 0.004: 1, reagent L and The molar ratio of compound 1-3 is 1.2 ⁇ 2.0: 1, the mass ratio of solvent M and compound 1-3 is 6 ⁇ 10: 1, the molar ratio of reagent N and compound 1-3 is 1.0 ⁇ 1.5: 1, reagent O
  • the molar ratio to compound 1-3 is 1.0 ⁇ 1.5: 1, the solvent P is selected from N, N-dimethylformamide, and the mass ratio selected from N, N-dimethylformamide and compound 1-4 It is 10: 1, and the reagent Q is selected from
  • the compound of the present invention exhibits good biological activity in vitro and exhibits excellent pharmacological properties in various genera. Its crystal form is stable and its moisture absorption is weak.
  • intermediate compounds of the present invention can be prepared by various synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by the combination with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
  • rt stands for room temperature
  • THF tetrahydrofuran
  • NMP N-methylpyrrolidone
  • MeSO 3 H stands for methanesulfonic acid
  • DME ethylene glycol dimethyl ether
  • DCM stands for dichloromethane
  • Xphos stands for 2-Bicyclohexylphosphine-2'4'6'-triisopropylbiphenyl
  • EtOAc stands for ethyl acetate
  • MeOH stands for methanol
  • acetone stands for acetone
  • 2-Me-THF stands for 2-methyltetrahydrofuran
  • IPA stands for isopropyl Alcohol
  • HATU stands for 2- (7-azobenzotriazole) -N, N, N ', N'-tetramethylurea hexafluorophosphate.
  • Test method about 10 ⁇ 20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 40mA
  • Anti-scattering slit 7.10mm
  • DSC Differential Scanning Calorimeter
  • Test method Take a sample ( ⁇ 1mg) in a DSC aluminum pan for testing, and heat the sample from room temperature to 250 ° C (or 280 ° C) at a temperature rise rate of 10 ° C / min under 50mL / min N 2 conditions.
  • Thermogravimetric analysis (Thermal Gravimetric Analyzer, TGA) method of the present invention
  • Test method Take the sample (2 ⁇ 5mg) and place it in a TGA platinum pot for testing. Under 25mL / min N 2 conditions, the sample is heated from room temperature to 30 °C or 20% weight loss at a rate of 10 °C / min.
  • Test conditions Take a sample (10-15 mg) and place it in the DVS sample tray for testing.
  • Moisture classification Moisture gain * deliquescence Absorb enough water to form liquid Very hygroscopic ⁇ W% ⁇ 15%
  • Fig. 1 is the XRPD spectrum of Cu-K ⁇ radiation of the compound A crystal form of formula (I)
  • Fig. 2 is a DSC spectrum of the crystal form of compound A of formula (I);
  • Fig. 3 is a TGA spectrum of the crystalline form of compound A of formula (I);
  • the crude compound C1-3 (430.0g, 1.2mol) obtained in the above step 2 was dissolved in isopropanol (2.2g, 36.0mmol) and chloroform (4.5L), the mixture was cooled to 0 °C , 100-200 mesh silica gel (1.8kg) was added with stirring, and then sodium borohydride (201.1g, 5.3mol) was added in portions within 1.5 hours. After the temperature of the reaction liquid was raised to 15 ° C, the reaction was continuously stirred for 12 hours. After slowly adding acetic acid (210 mL), stirring was continued for 15 minutes, the reaction solution was filtered, and the filter cake was washed with dichloromethane (500 mL).
  • MS m / z: 342.1 [M + 1] + . [ ⁇ ] + 9.8.
  • Acetone (21.2L) was added to the 50L reactor, stirring was started, and then the starting materials D1-0 (2.69kg), potassium carbonate (3.48kg) and benzyl bromide (3.39kg) were added to the reactor, The reaction solution was stirred at 55 to 60 ° C for about 18 hours. The temperature of the reaction solution was lowered to 10-20 ° C, and suction filtration was performed under reduced pressure. The filter cake was washed with acetone (2L, 1.5L). The filtrate was transferred to a rotary evaporator and concentrated under reduced pressure at an external temperature of 40-45 ° C.
  • the resulting crude product was dissolved in ethyl acetate (26L), washed with 13L water twice (6.5L each time), and 13L saturated sodium chloride aqueous solution Twice (6.5L each time), the organic phase was dried with anhydrous sodium sulfate (1.5kg) and filtered. The filtrate was concentrated under reduced pressure at an external temperature of 40-45 ° C and combined with another batch for processing.
  • Step 1 Preparation of compounds 1-1 and 1-2
  • n-heptane (8.0L) to the 50L reactor, start stirring, and then start the starting materials 1-0 (1.0kg), bromocyclopentane (3.4kg), magnesium sulfate (1.0kg), oxidation Silver (2.0kg) was added to the reaction kettle, and the reaction solution was stirred at 20-30 ° C for about 19 hours. Magnesium sulfate (0.3kg) and silver oxide (0.7kg) were added. The reaction solution was continuously stirred at 20-30 ° C for 46 About hours.
  • the reaction solution was filtered under reduced pressure through silica gel (100-200 mesh, 2.0 kg) in a tabletop suction filter funnel, and the filter cake was washed with 12.0 L of dichloromethane three times, and 4.0 L of dichloromethane was added each time.
  • the filtrate was transferred to a rotary evaporator and concentrated under reduced pressure at an external temperature of 35-40 ° C to obtain a mixture of compounds 1-1 and 1-2, which was directly used in the next reaction without further purification.
  • Tetrahydrofuran (5.3L) was added to a 50L reactor, stirring was started, a mixture (1.3kg) of compounds 1-1 and 1-2 was added, and a solution of lithium hydroxide monohydrate (0.3kg) in water (2.7L) was added The reaction solution was continuously stirred at 20-30 ° C for 4 hours.
  • Add n-heptane (10.5L) to the reaction solution stir for 10 minutes, separate the liquid, adjust the pH of the aqueous phase to 3-4 with 2M aqueous hydrogen chloride solution, and extract twice with 16.0L dichloromethane, 8.0L each time.
  • the organic phase was dried over anhydrous sodium sulfate (1.0 kg), filtered, and the filtrate was concentrated under reduced pressure at an external temperature of 35-40 ° C to obtain compound 1-3.
  • dichloromethane (8.0L) to the 50L reactor, replace with nitrogen twice, start stirring, add pyrazole (0.4kg) and N-methylmorpholine (0.7kg) in sequence, cool to 0-10 ° C, nitrogen
  • pyrazole (0.4kg) and N-methylmorpholine (0.7kg) in sequence, cool to 0-10 ° C, nitrogen
  • dissolve the above crude product in dichloromethane (4.0 L) to prepare a solution, and slowly drop it into the reaction kettle. After the dropwise addition, the nitrogen was replaced once, and the reaction liquid was heated to 20-30 ° C and stirred for about 16 hours.
  • the reaction solution was washed twice with 10.0L 1M sulfuric acid aqueous solution (5.0L each time), 11.0L saturated sodium bicarbonate aqueous solution twice (5.5L each time), 7.0L water once, 8.0L saturated sodium chloride solution
  • the organic phase was dried over anhydrous sodium sulfate (0.5 kg) and filtered, and the filtrate was concentrated under reduced pressure at an external temperature of 35-40 ° C to obtain a crude product.
  • the crude product was dispersed in 7.2L of n-hexane, and the reaction liquid was heated to 65-75 ° C and stirred for 2 hours, cooled to 15-25 ° C, and stirring was continued for 16 hours. After filtration, the filter cake was washed twice with n-hexane (600.0 mL each time), and the filter cake was dried under reduced pressure at an external temperature of 20-30 ° C for 5 hours to obtain compound 1-4.
  • the reaction solution was poured into 12.0L of water, the pH was adjusted to 3 with 2M hydrochloric acid aqueous solution, and extracted twice with 24.0L of ethyl acetate (12.0L each time), and the combined organic phase was washed with 12.0L of water three times (4.0L each time) , Washed once with saturated aqueous sodium chloride solution (3.0 L), dried over anhydrous sodium sulfate (500.0 g), and filtered. The filtrate was concentrated under reduced pressure at 35-40 ° C to obtain a crude product.
  • the compound B of formula (I) 10 to 15 mg of the crystal form is placed in a DVS sample pan for testing.
  • the compound B of the formula (I) has a hygroscopic weight gain of 0.05327% at 25 ° C and 80% RH, and has almost no hygroscopicity.
  • the crystal form of compound B of formula (I) has good crystal form and chemical stability under the influence factors of high temperature, high humidity, strong light and accelerated conditions.
  • the reference ligand PD123319 and the test compound were prepared into a 750 ⁇ M stock solution with DMSO; each compound was configured into 8 concentration gradients (maximum concentration was 750 uM, 3-fold dilution), and 10 ul / well was added to the 384-well plate master.
  • the isotope [ 125 I] -Sar1-Ile8-Angiotensin II plus pure water is used to prepare a 50uCi / ml mother liquor.
  • the cell membrane overexpressing hAT2 of HEK-293 cells was prepared with 2.5 mg / ml buffer.
  • test plate is centrifuged with a centrifuge, 1200rpm, 1min
  • the microcentrifuge test plate was read with Microbeta.
  • test compound is dissolved in DMSO to prepare a 10 mmol / L stock solution.
  • DMSO methyl methoxysulfoxide
  • 980 ⁇ L of dissolution medium was added to a 2 mL screw cap glass vial.
  • 20 ⁇ L of the stock solution of each test compound and the QC sample were added to a buffer solution equivalent to the pH 7.4 kinetic detection solution.
  • the final concentrations of the test compound and DMSO solution were 200 ⁇ M and 2%, respectively. Cap of medicine bottle.
  • the theoretical value of the maximum concentration is 200 ⁇ M.
  • the mixture was rotated and shaken at a speed of 880 revolutions per minute for 24 hours at room temperature. Centrifuge the vial for 30 minutes at 13,000 rpm.
  • Using a digital pipette add 200 ⁇ L of supernatant to a 96-well plate.
  • the solubility of the test compound was determined by high performance liquid chromatography spectroscopy. The experimental results are shown in Table 5.
  • the research project is to use the specific probe substrate of each isozyme to evaluate the inhibitory effect of the test compound on human liver microsomal cytochrome P450 isozymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4).
  • the diluted working solution of the test compound is added to the incubation system containing human liver microsomes, probe substrates and auxiliary factors of the circulation system.
  • the methanol content is about 1% of the final incubation system (v / v) .
  • a control containing no test compound and containing a solvent was used as an enzyme activity control (100%).
  • the concentration of the analyte in the sample is determined by liquid chromatography-tandem mass spectrometry (LC / MS / MS).
  • the average value of the concentration of the sample (blank solvent, positive control inhibitor or test compound) is used for calculation.
  • SigmaPlot (V.11) was used for non-linear regression analysis of the average percentage activity of the test compound versus concentration.
  • the IC 50 value is calculated by a three-parameter or four-parameter inverse logarithmic equation. The experimental results are shown in Table 6.
  • the compound of formula (I) has no inhibitory effect on the five CYP isozymes, or the inhibitory effect is weak, which indicates that there is less possibility of drug-drug interaction in the human body.
  • the bidirectional permeability of the test compound in Caco-2 cells was determined, and whether the test compound was transported by efflux was tested.
  • DMSO dimethyl sulfoxide
  • a suitable internal standard (IS) is dissolved in acetonitrile (ACN) or other organic solvents as the stop solution. Specific information will be described in the research report.
  • Nadolol, metoprolol, digoxin, estrone3-sulfate potassium (E3S) and GF120918 were used as hypotonic control compounds in this study , Hypertonic control compound, P-glycoprotein (P-gp) substrate, breast cancer resistance protein (BCRP) substrate and efflux transporter inhibitors.
  • the stock solutions of these compounds are formulated with DMSO and stored at ⁇ -30 ° C and are effective for use within 6 months.
  • HBSS Hanks Balanced Salt Solution
  • HEPES (2- [4- (2-hydroxyethyl) -1-piperazine] ethanesulfonic acid
  • Caco-2 cells were cultured with MEM medium (Minimum Essential Media) under the conditions of 37 ⁇ 1 ° C, 5% CO 2 and saturated humidity. After that, the cells were seeded in Corning Transwell-96 well plates with a seeding density of 1 ⁇ 105 cells / cm 2 , and then the cells were placed in a carbon dioxide incubator for 21-28 days and used for transport experiments, every four to five days during the period Change the medium once.
  • MEM medium Minimum Essential Media
  • Compounds were administered at concentrations of 2, 10, and 100 ⁇ M, with or without 10 and GF120918 in two directions (A-B and B-A directions), with three parallels for each concentration.
  • the test concentrations of Digoxin and E3S are 10 and 5 ⁇ M, respectively, with or without 10 ⁇ M GF120918; the nadolol and metoprolol test concentrations are 2 ⁇ M, and without 10 ⁇ M GF120918, they are unidirectional (AB direction) Medicine, three control compounds are also done in three parallel.
  • the dosing solution, the receiving solution and the transport buffer were pre-incubated at 37 ° C for 30 minutes.
  • the cell layer was rinsed twice with transport buffer.
  • Add the dosing solution and the receiving solution to the corresponding cell plate well positions add 75 and 250 ⁇ L to each top and basal end well, respectively).
  • the cell plate was placed in an incubator at 37 ⁇ 1 ° C, 5% CO 2 and saturated humidity for 120 minutes.
  • Sample type Sample collection volume per well ⁇ L
  • Stop solution volume ⁇ L
  • Volume of transport buffer ⁇ L
  • the fluorescent yellow detection experiment (Lucifer Yellow Rejection Assay) is used to test the integrity of Caco-2 cells. Six cell wells were randomly selected from each cell plate, and 100 ⁇ M fluorescent yellow was added respectively. The fluorescent yellow detection experiment and the transport experiment were performed simultaneously. After incubating for 120 minutes, take a sample of fluorescent yellow and measure the relative fluorescence intensity (RFU) of the fluorescent yellow in the sample at the 425 / 528nm (excitation / emission) spectrum.
  • REU relative fluorescence intensity
  • test compound and control compounds nadolol, metoprolol, digoxin and E3S in the samples were all determined by liquid chromatography-tandem mass spectrometry (LC / MS / MS).
  • LC / MS / MS liquid chromatography-tandem mass spectrometry
  • the retention time of analytes and internal standards, chromatogram acquisition and chromatogram integration were processed with the software Analyst (AB Sciex, Framingham, Massachusetts, USA). The experimental results are shown in Table 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种血管紧张素II受体2(AT 2R)拮抗剂的盐型、晶型及其制备方法,还包括所述盐型和晶型在制备治疗慢性疼痛药物中的应用。(I)

Description

一种血管紧张素II受体2拮抗剂的盐型、晶型及其制备方法
本申请主张如下优先权:
CN201811301892.3,申请日2018.11.02。
技术领域
本发明涉及一种血管紧张素II受体2(AT 2R)拮抗剂的盐型、晶型及其制备方法,还包括所述盐型和晶型在制备治疗慢性疼痛药物中的应用。
背景技术
血管紧张素II(AngII)是由血管紧张素I在血管紧张素转化酶的作用下,水解产生的八肽物质,具有调节血压、体液平衡和痛觉感知等作用。血管紧张素受体是以血管紧张素作为配体的G蛋白偶联受体,是肾素-血管紧张素系统的重要组成部分。AngII可激活血管紧张素II受体1(AT 1R)和血管紧张素II受体2(AT 2R)。其中AT 2R在神经系统中与疼痛机制相关,主要表达在背根神经节和三叉神经节。与正常神经相比,受损神经和疼痛神经瘤具有更高的AT 2R表达。AT 2R激活后通过G蛋白偶联受体活化的第二信使通路,可致敏神经元中的离子通道。敏化作用导致离子通道活化从而使神经元兴奋。AT 2R拮抗剂已经通过动物实验、临床实验证明可用于缓解疼痛。
WO 2011088504公开了化合物EMA-401。
Figure PCTCN2019115149-appb-000001
发明内容
本发明提供式(I)化合物。
Figure PCTCN2019115149-appb-000002
本发明还提供式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.04±0.20°,18.21±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.04±0.20°,14.40±0.20°,15.11±0.20°,18.21±0.20°,18.46±0.20°,20.12±0.20°,24.13±0.20°。
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1
Figure PCTCN2019115149-appb-000003
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在155.36℃±3℃处具有吸热峰的起始点。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在100.00℃±3℃时失重达0.1489%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明还提供式(I)化合物A晶型的制备方法,包括:
Figure PCTCN2019115149-appb-000004
(a)将式(I)化合物加入混合溶剂中溶解;
(b)30~50℃下搅拌10~30小时;
(c)过滤后水洗并在30~50℃干燥15~25小时;
其中,所述混合溶剂为丙酮和水的体积比为1:1.5~2.5。
本发明还提供式(I)化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.08±0.20°,12.12±0.20°,18.19±0.20°。
本发明还提供式(I)化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.08±0.20°,12.12±0.20°,18.19±0.20°,24.31±0.20°,30.50±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.08±0.20°,9.25±0.20°,12.12±0.20°,14.00±0.20°,18.19±0.20°,24.31±0.20°,30.50±0.20°。
在本发明的一些方案中,上述B晶型的XRPD图谱如图4所示。
本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2
Figure PCTCN2019115149-appb-000005
在本发明的一些方案中,上述B晶型的差示扫描量热曲线在150.95℃±3℃处具有吸热峰的起始点。
在本发明的一些方案中,上述B晶型的DSC图谱如图5所示。
在本发明的一些方案中,上述B晶型的热重分析曲线其热重分析曲线在120.00℃±3℃时失重达0.0558%。
在本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
本发明还提供式(I)化合物B晶型的制备方法,包括:
(a)将式(I)化合物加入溶剂中使其成悬浊液;
(b)悬浊液35~45℃下搅拌30-60小时;
(c)离心后干燥8~16小时;
其中,所述溶剂选自甲醇、乙醇、乙腈;
或者所述的溶剂为混合溶剂,所述的混合溶剂为丙酮和水的体积比为3:2。
本发明还提供上述A晶型或B晶型在制备治疗慢性疼痛药物中的应用。
本发明还提供式式(I)化合物的制备方法,
Figure PCTCN2019115149-appb-000006
其包含如下步骤:
Figure PCTCN2019115149-appb-000007
其中,
R 1选择Cl,Br和I;
溶剂F选自正庚烷、二氯甲烷、四氢呋喃、环己烷和二氧六环;
试剂G选自氧化银、硫酸镁、硫酸钙和硫酸钠。
在本发明的一些方案中,上述制备方法包含如下步骤:
Figure PCTCN2019115149-appb-000008
其中,
溶剂H选自四氢呋喃、甲醇和水;
试剂I选自一水合氢氧化锂和氢氧化钠;
溶剂J选自二氯甲烷;
催化剂K选自N,N-二甲基甲酰胺;
试剂L选自草酰氯;
溶剂M选自二氯甲烷;
试剂N选自吡唑;
试剂O选自N-甲基吗啡啉;
溶剂P选自N,N-二甲基甲酰胺、二甲基亚砜、二氯甲烷和四氢呋喃;
试剂Q选自四甲基胍、1,8-二氮杂二环十一碳-7-烯、三乙胺、二异丙基乙胺和2,6-二甲基吡啶。
在本发明的一些方案中,化合物1E和化合物1-0的摩尔比为1.2~5:1。
在本发明的一些方案中,化合物1-4和化合物D1-1的摩尔比为1.1~1.5:1。
在本发明的一些方案中,上述制备方法,其中,制备化合物1-1、1-2和1-3的步骤中,控制反应体系温度范围为25±5℃。
在本发明的一些方案中,化合物1-4的制备包括步骤a和步骤b,步骤a控制反应体系温度范围为25±5℃,步骤b向反应体系中投料时,控制反应体系温度范围为5±5℃,试剂投料完毕后,控制反应体系温度范围为25±5℃。
在本发明的一些方案中,溶剂F选自正庚烷,所述正庚烷的体积和化合物1-0的质量比为8.0~10.0:1,试剂G选自氧化银、硫酸镁,所述氧化银、硫酸镁和化合物1-0的摩尔比为1.0~5.0:1。
在本发明的一些方案中,试剂G在投料过程中分批次加入。
在本发明的一些方案中,溶剂H为混合物,选自四氢呋喃和水,所述四氢呋喃和水的体积比为1~2:1,试剂I为一水合氢氧化锂,所述一水合氢氧化锂和化合物1-0的摩尔比为1.0~2.0:1,溶剂J和化合物1-3的质量比为10:1,催化剂K和化合物1-3的摩尔比为0.002~0.004:1,试剂L和化合物1-3的摩尔比为1.2~2.0:1,溶剂M和化合物1-3的质量比为6~10:1,试剂N和化合物1-3的摩尔比为1.0~1.5:1,试剂O和化合物1-3的摩尔比为1.0~1.5:1,溶剂P选自N,N-二甲基甲酰胺,所述选自N,N-二甲基甲酰胺和化合物1-4的质量比为10:1,试剂Q选自四甲基胍,所述选自四甲基胍和化合物1-4的摩尔比为1~1.2:1。
技术效果
本发明化合物在体外展现较好的生物活性,并在多种属中展现了优良的药代性质。其晶型稳定、引湿性弱。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:r.t.代表室温;THF代表四氢呋喃;NMP代表N-甲基吡咯烷酮;MeSO 3H代表甲烷磺酸;DME代表乙二醇二甲醚;DCM代表二氯甲烷;Xphos代表2-双环己基膦-2’4’6’-三异丙基联苯;EtOAc代表乙酸乙酯;MeOH代表甲醇;acetone代表丙酮;2-Me-THF代表2-甲基四氢呋喃;IPA代表异丙醇;HATU代表2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯。
化合物经手工或者
Figure PCTCN2019115149-appb-000009
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:布鲁克D8advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2019115149-appb-000010
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:3-40deg或4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到250℃(或280℃)。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Q5000热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到30℃或失重20%。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10~15mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如下:
引湿性分类 引湿增重*
潮解 吸收足量水分形成液体
极具引湿性 ΔW%≥15%
有引湿性 15%>ΔW%≥2%
略有引湿性 2%>ΔW%≥0.2%
无或几乎无引湿性 ΔW%<0.2%
*在25℃和80%RH下的引湿增重
本发明高效液相色谱(High Performance Liquid Chromatograph,HPLC)方法
详细的参数如下:
Figure PCTCN2019115149-appb-000011
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(I)化合物A晶型的DSC谱图;
图3为式(I)化合物A晶型的TGA谱图;
图4为式(I)化合物B晶型的Cu-Kα辐射XRPD谱图;
图5为式(I)化合物B晶型的DSC谱图;
图6为式(I)化合物B晶型的TGA谱图;
图7为式(I)化合物B晶型的DVS谱图。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是 对本发明的内容所做的限制。
参考例1:化合物S-A1的制备
Figure PCTCN2019115149-appb-000012
步骤1:化合物S-A1-1的制备
将氧化银(1.5g,6.6mmol)加到化合物S-扁桃酸(500.0mg,3.3mmol)和溴代环戊烷(49.0g,328.6mmol)的混合液中,然后在20-25℃条件下搅拌反应16小时。将反应液过滤,滤液真空浓缩除去溶剂得到的粗产物经硅胶层析柱(洗脱液:乙酸乙酯/石油醚0-10%)分离纯化得到化合物S-A1-1。 1H NMR(400MHz,CDCl 3):δ7.49-7.40(m,2H),7.38-7.28(m,3H),5.22-5.19(m,1H),4.88(s,1H),4.03-3.99(m,1H),1.89-1.64(m,10H),1.57-1.45(m,6H).MS m/z:311.1[M+Na] +.
步骤2:化合物S-A1的制备
将化合物S-A1-1(340.0mg,1.2mmol)溶于四氢呋喃(6.0mL)和水(3.0mL)的混合溶剂中,加入一水合氢氧化锂(283.0mg,11.8mmol),反应液在20-25℃下搅拌48小时。反应液用1N盐酸调节pH<3后,用乙酸乙酯(20mL x 3)萃取。合并后的有机相用饱和食盐水(50mL)洗涤、无水硫酸钠干燥、真空下浓缩得到的粗产物经硅胶层析柱(洗脱液:0-37.5%石油醚/乙酸乙酯)分离纯化,得到化合物S-A1。 1H NMR(400MHz,CDCl 3):δ7.45-7.34(m,5H),4.93(s,1H),4.07-4.03(m,1H),1.78-1.69(m,6H),1.62-1.48(m,2H).SFC:柱子:ChiralCel OJ-H(150mm*4.6mm,5um);流动相:A:CO 2,B:乙醇[0.05%二乙基胺];B%:5%-40%5.5min,40%3min,5%1.5min;Rt=2.321min;95.6%ee.
参考例2:化合物(-)-C1的制备
Figure PCTCN2019115149-appb-000013
步骤1:化合物C1-2的制备
氮气保护下,将化合物C1-1(200.0g,1.31mol)溶于无水乙醇(1.50L)中。15℃搅拌下依次加入无水碳酸钾(181.1g,1.31mol)和苄溴(268.9g,1.57mol),再将反应液加热至100℃继续搅拌15小时。反应液冷却到室温后,过滤,滤液在真空下浓缩后得到的油状物。用乙酸乙酯(3.0L)重新溶 解后,依次用2N氢氧化钠水溶液(500mL x 2)和饱和食盐水(600mL x 2)洗涤、无水硫酸钠干燥、过滤、真空下浓缩得到粗产物。将粗产物分散在石油醚中,搅拌1小时,过滤得到化合物C1-2。 1H NMR(400MHz,CDCl 3):δ10.25(s,1H),7.42-7.34(m,6H),7.21-7.12(m,2H),5.19(s,2H),3.96(s,3H).
步骤2:化合物C1-3的制备
氮气保护下,将化合物C1-2(220.0g,908.08mmol)、2-硝基乙酸乙酯(145.0g,1.09mol)和二乙基胺盐酸盐(149.3g,1.36mol)在无水甲苯(2.1L)中的混合溶液加热至130℃回流15小时,反应生成的水使用Deane-Stark分水器分离。反应液冷却至室温后,真空下浓缩除去甲苯。剩余物重新溶解在二氯甲烷中(500mL)后,用饱和食盐水(1000mL x 2)洗涤、无水硫酸钠干燥、过滤、真空下浓缩得到化合物C1-3,该化合物未经纯化直接用于下一步反应。
步骤3:化合物C1-4的制备
氮气保护下,将上述步骤2中得到的粗品化合物C1-3(430.0g,1.2mol)溶于异丙醇(2.2g,36.0mmol)和氯仿(4.5L)中,混合液冷却至0℃后,搅拌中加入100~200目的硅胶(1.8kg),然后在1.5小时内分批加入硼氢化钠(201.1g,5.3mol)。反应液升温至15℃后继续搅拌反应12小时。缓慢加入乙酸(210mL)后继续搅拌15分钟,过滤反应液,滤饼用二氯甲烷(500mL)洗涤。合并后的滤液在真空下浓缩后得到的剩余物经硅胶层析柱(洗脱液:6%~10%石油醚/乙酸乙酯)分离纯化,得到化合物C1-4。 1H NMR(400MHz,CDCl 3):δ7.48-7.33(m,5H),7.02-6.97(m,1H),6.94-6.90(m,1H),6.64-6.62(dd,J=1.6,7.6Hz,1H),5.33-5.30(dd,J=6.0,9.2Hz,1H),5.19-5.05(m,2H),4.15-4.10(q,J=7.2Hz,2H),3.91(s,3H),3.44-3.31(m,2H),1.16-1.12(t,J=7.2Hz,3H).
步骤4:化合物C1-5的制备
15℃下,将化合物C1-4(76.2g,212.04mmol)溶解在乙酸(700mL)中,缓慢加入锌粉(110.9g,1.70mol)并保持反应温度在60-65℃之间,加完后,继续在60℃下搅拌反应2小时。反应液冷却至室温后,过滤,滤饼用乙酸(300mL)洗涤。合并后的滤液在真空下浓缩得到的剩余物重新溶解在二氯甲烷(500mL)中,用饱和碳酸氢钠水溶液(200mL x 2)和饱和食盐水(200mL x 2)洗涤、无水硫酸钠干燥、过滤、真空下浓缩得到粗产物C1-5,该化合物未经纯化直接用于下一步。MS m/z:330.1[M+1] +.
步骤5:化合物C1的制备
15℃氮气保护下,将化合物C1-5(48.9g,149.4mmol)溶解在2N盐酸溶液(500mL)中,随后加入37%甲醛水溶液(36.4g,448.1mmol),反应液搅拌25小时。过滤,滤饼用水(100mL)洗涤、真空干燥后得到化合物C1的盐酸盐。MS m/z:342.1[M+1] +.
步骤6:化合物(-)-C1和(+)-C1的制备
化合物C1(40.0g,117.2mmol)经手性柱分离得到两个异构体(-)-C1和(+)-C1。
(-)-C1: 1H NMR(400MHz,CDCl 3):δ7.40-7.38(m,2H),7.33-7.22(m,3H),6.73-6.71(m,2H),4.93-4.92(m,2H),4.17-4.15(q,J=7.2Hz,2H),4.10-3.93(m,2H),3.79(s,3H),3.62-3.58(m,1H),3.07-3.06(m,1H),2.77-2.65(m,1H),1.21(t,J=7.2Hz,3H).MS m/z:342.1[M+1] +.[α]=-23.4.
(+)-C1: 1H NMR(400MHz,CDCl 3):δ7.43-7.40(m,2H),7.33-7.22(m,3H),6.86(s,2H),5.06-4.95(q,J=11.2Hz,2H),4.54-4.50(m,1H),4.33-4.21(m,3H),4.07-4.05(m,1H),3.88(s,3H),3.34-3.25(m,1H),3.20-3.14(m,1H),1.30-1.26(t,J=7.2Hz,3H).MS m/z:342.1[M+1] +.[α]=+9.8.
参考例3:化合物D1的制备
Figure PCTCN2019115149-appb-000014
步骤1:化合物D1-1的制备
将丙酮(21.2L)加入50L的反应釜中,启动搅拌,然后依次将起始原料D1-0(2.69kg),碳酸钾(3.48kg)和溴化苄(3.39kg)加入到反应釜中,反应液在55~60℃搅拌18小时左右。反应液降温至10~20℃,减压抽滤,滤饼用丙酮洗涤(2L,1.5L)。将滤液转入旋转蒸发仪,在外温40-45℃下减压浓缩,所得粗品溶于乙酸乙酯(26L)中,依次用13L水洗两次(每次6.5L)、13L饱和氯化钠水溶液两次(每次6.5L),有机相用无水硫酸钠(1.5kg)干燥,过滤,滤液在外温40-45℃下减压浓缩,与另一批次合并处理,所得粗品继续加入30L石油醚,在外温0-5℃下搅拌21小时,过滤,滤饼用4L石油醚洗涤两次(每次2L),所得滤饼经硅胶柱层析(洗脱剂:0-10%乙酸乙酯/石油醚)分离纯化,得到化合物D1-1。
1H NMR(400MHz,CDCl 3):δ10.25(s,1H),7.41-7.36(m,6H),7.17-7.07(m,2H),5.19(s,2H),3.95(s,3H)。
步骤2:化合物D1-3的制备
将四氢呋喃(5.0L)加入50L的反应釜中,启动搅拌,然后依次将起始原料D1-2(3.21kg)和四甲基胍(1.31kg)加入到反应釜中,降温,滴加原料A-1(2.3kg)的四氢呋喃(4.8L)溶液,并保持内温不超10℃,反应液在20~30℃搅拌16小时左右。反应液在外温35-40℃下减压浓缩,所得粗品溶于乙酸乙酯(20L)中,依次用8L10%的柠檬酸水溶液洗、10L饱和氯化钠水溶液两次(每次5L), 有机相用无水硫酸钠(1.0kg)干燥,过滤,滤液在外温35-40℃下减压浓缩,所得粗产物经硅胶柱层析(洗脱剂:0-30%乙酸乙酯/石油醚)分离纯化,得到化合物D1-3。
1H NMR(400MHz,CDCl 3):δ7.38-7.32(m,5H),7.08-7.03(m,2H),6.94-6.91(m,1H),4.98(s,2H),3.90(s,3H),3.84(s,3H),1.39(s,9H)。
步骤3:化合物D1-4的制备
将双(1,5-环辛二烯)-三氟甲磺酸铑(I)(249.20mg)和(+)-1,2-双[(2S,5S)-2,5-二乙基-1-亚磷基]苯(210.40mg)溶于甲醇(20mL)中,混合液在氮气保护下搅拌15分钟,在氩气氛围下加入到化合物D1-3(200g)的甲醇(1L)溶液中,用氩气置换三次,用氢气置换三次,反应液在氢气(50psi)氛围和20~25℃条件下搅拌18小时。减压除去有机溶剂,所得粗产物合并其他批次,通过硅胶过滤,得到化合物D1-4。
1H NMR(400MHz,CDCl 3):δ7.54-7.46(m,2H),7.41-7.35(m,3H),7.03-7.00(m,1H),6.90-6.86(m,1H),6.76-6.74(m,1H),5.35-5.32(m,1H),5.05(s,2H),4.49-4.44(m,1H),3.90(s,3H),3.62(s,3H),3.06-2.95(m,2H),1.39(s,9H)。SFC:柱子:Lux Cellulose-2(150mm*4.6mm,3um);流动相:B:异丙醇[0.05%乙基胺];B%:5%-40%5.5min,40%3min,5%1.5min;Rt=3.247min;97.8%ee.
步骤4:化合物D1-5的制备
将一水合氢氧化锂(0.76kg)溶于水(16.0L)中,滴加化合物A-4(3.69kg)的四氢呋喃(10.6L)溶液,并保持内温不超过15℃,反应液在10~20℃条件下搅拌18小时。用饱和柠檬酸水溶液调节pH至5左右,减压除去有机溶剂,所得粗产物加入到16.0L乙酸乙酯中,分液,有机相用10%的柠檬酸水溶液洗涤(8L),10%的氯化钠水溶液洗涤三次(每次6.0L),1.0kg无水硫酸钠干燥,过滤,减压除去有机溶剂,得到化合物D1-5。
1H NMR(400MHz,CDCl 3):δ7.49-7.33(m,5H),7.03-7.00(m,1H),6.90-6.86(m,1H),6.76-6.74(m,1H),5.47-5.45(m,1H),5.11(s,2H),4.49-4.44(m,1H),3.90(s,3H),3.06-2.95(m,2H),1.39(s,9H)。
步骤5:化合物D1-6的制备
将乙酸乙酯(4.0L)加入到10L三口瓶中,干冰乙醇冷却,冲入氯化氢气体(900.0g),继续加入1L乙酸乙酯稀释成4M氯化氢乙酸乙酯溶液,备用。将化合物A-5(1.5kg)溶于乙酸乙酯(10.0L)中,加入4M的氯化氢乙酸乙酯溶液,并保持内温不超过10℃,反应液在5~15℃条件下搅拌2小时。加入6.0L异丙醚,反应液在5~10℃条件下继续搅拌16小时。过滤,滤饼用异丙醚洗涤两次(每次1.2L),得到化合物D1-6。
1H NMR(400MHz,CD 3OD):δ7.49-7.44(m,2H),7.37-7.33(m,3H),7.09-7.04(m,2H),6.83-6.80(m,1H),5.19-5.07(m,2H),4.18-4.14(m,1H),3.93(s,3H),3.33-3.28(m,1H),2.90-2.84(m,1H)。
步骤6:化合物D1的制备
将化合物D1-6(2.24kg)平均分成8个批次(302.56g)游离,每个批次加入水(4.8L)中,滴加碳酸钠(53.96g)的水(302.5mL)溶液,反应液搅拌0.5小时,合并过滤后的滤饼,用水(6.2L)洗涤一次。将游离后的滤饼加入到水(22.0L)中,依次加入85%的磷酸(850.0mL)和37%的甲醛水溶液(900.0mL),反应液升温至55~65℃条件下继续搅拌16小时。滴加乙酸钠(988.7g)的水(3.0L)溶液,调节pH至3左右,过滤,滤饼用水洗涤四次(每次6.0L),用丙酮洗涤一次(12.0L),真空干燥,得到化合物D1。
1H NMR(400MHz,CD 3OD):δ7.49-7.30(m,5H),7.02-6.93(m,2H),5.04(s,2H),4.30-4.20(m,2H),3.89(s,3H),3.74-3.70(m,1H),3.54-3.48(m,1H),2.92-2.84(m,1H)。
实施例1:式(I)化合物的制备
Figure PCTCN2019115149-appb-000015
步骤1:化合物I-1的制备
将化合物(-)-C1(155.00mg,454.00μmol)和化合物S-A1(90.00mg,408.60μmol)溶于二氯甲烷(5.00mL)中,依次加入HATU(259.00mg,681.00μmol)和二异丙基乙基胺(118.00mg,912.54μmol,159.46μL),反应液在20-25℃继续搅拌16小时。反应液倒入15mL水中,分液,水相用二氯甲烷萃取3次(20mL*3),合并后的有机相用30mL饱和食盐水洗一次,无水硫酸钠干燥,真空干燥得到粗品。通过硅胶柱层析(洗脱剂:0-50%石油醚/乙酸乙酯)分离纯化,得到化合物I-1。 1H NMR(400MHz,CDCl 3)δ:7.50-7.20(m,10H),6.84(m,1H),6.66(d,J=8.0Hz,0.5H),6.43(d,J=12.0Hz,0.5H),5.50-5.48(m,0.5H),5.32(d,J=8.0Hz,1H),5.07-4.76(m,3H),4.60(d,J=16.0Hz,0.5H),4.51-4.45(m,1H),4.18-4.07(m,2H),3.84(d,J=12Hz,3H),3.66-3.61(m,0.5H),3.55-3.40(m,1H),3.17-3.11(m,0.5H),2.99-2.93(m,0.5H),2.74-2.68(m,0.5H),1.90-1.70(m,5H),1.60-1.57(m,3H),1.29-1.17(m,3H).MS m/z=544.4[M+H] +.SFC:柱子:ChiralPak AD-3(150mm*4.6mm,3μm);流动相:A:CO2,B:异丙醇[0.05%二乙基胺];B%:5%-40%5.5min,40%3min,5%1.5min;Rt=5.034min;86.3%de.
步骤2:化合物I的制备
将化合物I-1(163.00mg,299.83μmol)溶于四氢呋喃(3.00mL)中,加入氢氧化锂(72.00mg,3.01mmol)的水(1.50mL)溶液,反应液在15-20℃继续搅拌48小时。反应液中加入1M的盐酸水溶液,调节pH<4,用乙酸乙酯萃取(15mL*3),合并后的有机相用30mL饱和食盐水洗一次,无水硫酸钠干燥,减压除去有机溶剂,所得粗产物通过硅胶柱层析(洗脱剂:0-20%二氯甲烷/甲醇)分离纯化,所得化合物再次通过手性柱分离,得到化合物I。 1H NMR(400MHz,DMSO-d6):δ7.53-7.16(m,10H),7.00-6.80(m,1.5H),6.68(d,J=8.0Hz,0.5H),5.36(d,J=12.0Hz,1H),5.01-4.66(m,3H),4.41(d,J=24.0Hz,0.5 H),4.30(d,J=24Hz,0.5H),4.13-3.95(m,1H),3.79(s,3H),2.84-2.79(m,1H),2.68-2.64(m,1H),2.39-2.27(m,1H),1.80-1.38(m,8H).MS m/z:516.3[M+1]+.SFC:柱子:Chiralpak AD-3(100mm*4.6mm,3μm);流动相:B:异丙醇[0.05%二乙基胺];B%:5%-40%4.5min,40%2.5min,5%1min;Rt=4.198min;100.0%de.
实施例2.式(I)化合物的A晶型的制备:
Figure PCTCN2019115149-appb-000016
步骤1:化合物1-1和1-2的制备
将正庚烷(8.0L)加入到50L的反应釜中,启动搅拌,依次将起始原料1-0(1.0kg),溴代环戊烷(3.4kg),硫酸镁(1.0kg),氧化银(2.0kg)加入到反应釜中,反应液在20~30℃搅拌19小时左右,补加硫酸镁(0.3kg)和氧化银(0.7kg),反应液在20~30℃继续搅拌反应46小时左右。反应液经硅胶(100-200目,2.0kg)在桌面式抽滤漏斗减压抽滤,滤饼用12.0L二氯甲烷分三次洗涤,每次加二氯甲烷4.0L。将滤液转入旋转蒸发仪,在外温35-40℃下减压浓缩,得到化合物1-1和1-2的混合物,该混合物不经进一步纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3):δ7.49-7.43(m,2H),7.40-7.29(m,3H),4.95(s,1H),4.04-3.96(m,1H),3.72(s,3H),1.81-1.69(m,6H),1.58-1.46(m,2H)。
步骤2:化合物1-3的制备
将四氢呋喃(5.3L)加入到50L反应釜中,启动搅拌,将化合物1-1和1-2的混合物(1.3kg)加入,加入一水合氢氧化锂(0.3kg)的水(2.7L)溶液,反应液在20~30℃下继续搅拌4小时。向反应液中加入正庚烷(10.5L),搅拌10分钟,分液,水相用2M氯化氢水溶液调pH至3-4,用16.0L二氯甲烷萃取两次,每次8.0L,合并后的有机相用无水硫酸钠(1.0kg)干燥,过滤,滤液在外温35-40℃下减压浓缩得到化合物1-3。
1H NMR(400MHz,CDCl 3):δ7.41-7.29(m,5H),4.88(s,1H),4.00-3.94(m,1H),1.74-1.57(m,6H),1.52-1.43(m,2H)。
步骤3:化合物1-4的制备
将二氯甲烷(12.0L)加入到50L反应釜中,加入化合物1-3(1.2kg),启动搅拌,加入N,N-二甲基甲酰胺(12.0g),滴加草酰氯(1.04kg),滴加在1.5小时内完成,反应液在20~30℃搅拌1小时。将反应液在外温35-40℃下减压浓缩,得到的粗品备用。将二氯甲烷(8.0L)加入50L反应釜中,氮气置换两次,启动搅拌,依次加入吡唑(0.4kg)和N-甲基吗啡啉(0.7kg),降温至0-10℃,氮气置换一次,将上述粗品溶于二氯甲烷(4.0L)中配制成溶液,缓慢滴加入反应釜中,滴加完毕后,氮气置换一次,反应液升温至20~30℃继续搅拌16小时左右。将反应液依次用10.0L 1M硫酸水溶液洗两次(每次5.0L)、11.0L饱和碳酸氢钠水溶液洗两次(每次5.5L)、7.0L水洗一次、8.0L饱和氯化钠溶液洗一次,有机相用无水硫酸钠(0.5kg)干燥,过滤,滤液在外温35-40℃下减压浓缩得到粗品。将粗品分散于7.2L正己烷中,反应液升温至65~75℃搅拌2小时,降温至15~25℃,继续搅拌16小时。过滤,滤饼用正己烷洗涤两次(每次600.0mL),滤饼在外温20-30℃下减压干燥5小时,得到化合物1-4。
1H NMR(400MHz,CDCl 3):δ8.24(d,J=2.8Hz,1H),7.73(s,1H),7.59(d,J=6.8Hz,2H),7.41-7.27(m,3H),6.43(dd,J=1.5,2.8Hz,1H),6.36(s,1H),4.21-3.98(m,1H),1.87-1.67(m,6H),1.57-1.43(m,2H)。
步骤4:式(I)化合物的A晶型的制备
将N,N-二甲基甲酰胺(12.0L)加入到50L反应釜中,启动搅拌,依次加入化合物D-1(1220.3g)和四甲基胍(493.8g),反应液在15~25℃下搅拌1小时,将化合物1-4(1211.6g)加入到反应釜中,反应液在15~25℃继续搅拌17小时。将反应液倒入12.0L水中,用2M盐酸水溶液调pH至3,用24.0L乙酸乙酯萃取两次(每次12.0L),合并后的有机相用12.0L水洗三次(每次4.0L),饱和氯化钠水溶液(3.0L)洗一次,无水硫酸钠(500.0g)干燥,过滤,滤液在35~40℃条件下减压浓缩得到粗品。将丙酮(4.0L)、水(8.0L)和粗品依次加入到50L反应釜中,反应液35~45℃搅拌20小时,过滤,滤饼用8.0L水洗涤两次(每次4.0L),滤饼于在40℃条件下用真空干燥箱干燥21小时,得式(I)化合物的A晶型。
1H NMR(400MHz,DMSO-d6):δ12.68(brs,1H),7.48-7.30(m,10H),6.95-6.70(m,2H),5.38-5.21(m,1.5H),4.96-4.69(m,3.5H),4.42-4.32(m,1H),4.10-3.95(m,1H),3.80(s,3H),3.39-3.36(m,0.5H),3.24-3.19(m,0.5H),2.88-2.70(m,0.5H),2.48-2.42(m,0.5H),1.73-1.48(m,8H)。LCMS(ESI)m/z:516.0[M+1] +
实施例3:式(I)化合物B晶型的制备
约50mg式(I)化合物A晶型加入适量的甲醇。将样品液置于磁力搅拌器上(40℃)搅拌2天。将得到的有固体体系离心得到沉淀,溶液在室温下挥发溶剂结晶。随后放置在真空干燥箱中室温下干燥过夜,得式(I)化合物的B晶型。
约50mg式(I)化合物A晶型加入适量的乙醇。将样品液置于磁力搅拌器上(40℃)搅拌2天。 将得到的有固体体系离心得到沉淀,溶液在室温下挥发溶剂结晶。随后放置在真空干燥箱中室温下干燥过夜,得式(I)化合物的B晶型。
约50mg式(I)化合物A晶型加入适量的乙腈。将样品液置于磁力搅拌器上(40℃)搅拌2天。将得到的有固体体系离心得到沉淀,溶液在室温下挥发溶剂结晶。随后放置在真空干燥箱中室温下干燥过夜,得式(I)化合物的B晶型。
约50mg式(I)化合物A晶型加入适量的混合溶剂丙酮:水(3:2)。将样品液置于磁力搅拌器上(40℃)搅拌2天。将得到的有固体体系离心得到沉淀,溶液在室温下挥发溶剂结晶。随后放置在真空干燥箱中室温下干燥过夜,得式(I)化合物的B晶型。
1H NMR(400MHz,DMSO-d6):δ12.68(brs,1H),7.48-7.30(m,10H),6.95-6.70(m,2H),5.38-5.21(m,1.5H),4.96-4.69(m,3.5H),4.42-4.32(m,1H),4.10-3.95(m,1H),3.80(s,3H),3.39-3.36(m,0.5H),3.24-3.19(m,0.5H),2.88-2.70(m,0.5H),2.48-2.42(m,0.5H),1.73-1.48(m,8H)。
LCMS(ESI)m/z:516.0[M+1] +
实施例4:式(I)化合物B晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物B晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物B晶型的DVS谱图如图所示,△W=0.05327%。
实验结论:
式(I)化合物B晶型在25℃和80%RH下的吸湿增重为0.05327%,几乎无引湿性。
实施例5:式(I)化合物B晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物B晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及光照(总照度1.2×10 6Lux·hr/近紫外200w·hr/m 2,敞口)条件下的稳定性。
根据影响因素和加速试验条件,准确称取化合物B晶型约5mg,一式两份,置于40mL玻璃样品瓶的底部,摊成薄薄一层。分别放置在高温(60℃)、高湿(92.5%湿度,室温)、高温高湿(40℃/75%湿度、60℃/75%湿度)和光照稳定性条件下。敞口条件在在铝箔纸上扎些小孔,保证样品能与环境空气充分接触;强光照条件下放置的样品用螺纹瓶盖密封。在高温(60℃)和高湿(92.5%湿度,室温)条件下放置的样品于第5天,10天取样检测(XRPD和纯度),在高温高湿(40℃/75%湿度、60℃/75%湿度)条 件下放置的样品于第10天,1个月,2个月,3个月取样检测(XRPD和纯度),光照射条件下放置的样品于总光照度达到1.2×10 6Lux·hr时取样检测,检测结果与0天的初始检测结果进行比较,试验结果见下表3所示:
表3式(I)化合物B晶型的固体稳定性试验结果
Figure PCTCN2019115149-appb-000017
结论:式(I)化合物B晶型在影响因素高温、高湿、强光照条件以及加速条件下具有良好的晶型和化学稳定性。
实施例6:式(I)化合物的hAT2受体结合实验
试剂:
溶液与缓冲液
缓冲液
50mM Tris
100mM NaCl
5mM MgCl2
0.1%BSA
蛋白酶抑制剂混合物,不含乙二胺四乙酸-1片(Roche#11873580001)(50mL加一片)
pH 7.4
实验方法与步骤:
1.化合物的配置
参考配体PD123319和测试化合物用DMSO制备成750μM的母液;把每个化合物配置成8个浓度梯度(最高浓度为750uM,3倍稀释),并加入10ul/孔到384孔板的母版里。
SPA beads用缓冲液配置成25mg/ml的母液;
同位素[ 125I]-Sar1-Ile8-Angiotensin II加纯水配置50uCi/ml的母液。
2.膜的配置
HEK-293细胞过表达hAT2的细胞膜用缓冲液制备成2.5mg/ml。
3.具体操作
用ECHO从母板中吸入200nl的化合物到测试384板的每个孔。ZPE加入等体积的DMSO。(测试化合物在反应中的浓度将稀释250倍)。
配置50ml含有10μg/μl的磁珠、0.05μg/μl的AT2膜溶液,置于摇床上混匀。(100rpm,30min)。测试板中最终含有1.25μg/孔的hAT2膜,250μg/孔的磁珠。
用Multidrop Combi移液器把3.2的膜混合液加入到化合物测试板,每孔加入25μl。
用50uCi/ml的同位素[ 125I]-Sar1-Ile8-Angiotensin II母液用缓冲液制备成0.2nM的溶液,用Multidrop Combi移液器把0.2nM的125I加入到化合物测试板中,每孔加入25μl的体积。 125I同位素的终浓度是0.1nM。
把配置好的测试板置于摇床上,200rpm,室温过夜。
测试板用离心机离心,1200rpm,1min
将离心后的测试板用Microbeta读数。
实验结果:见表4。
表4.式(I)化合物的体外评价
化合物编号 hAT2 IC 50(nM)
EMA-401 53.2
(I) 4.1
结论:结果显示式(I)化合物与EMA-401相比具有良好的体外活性。
实施例6:式(I)化合物的动力学溶解度的测定
将待测化合物溶解在DMSO中,以制备10mmol/L的原液。用移液管(Eppendorf Research公司)将980μL溶出介质加入到2mL的螺旋盖的玻璃管形瓶中。将20μL各受试化合物的原液以及QC样品添加到相当于pH 7.4的动力学检测溶液的缓冲溶液中。受试化合物和DMSO溶液的终浓度分别是为 200μM和2%。药瓶压盖。最大浓度的理论值为200μM。室温下以每分钟880转的速度旋转摇动该混合物24小时。将小瓶离心30分钟,每分钟13000转。用数字移液管将200μL上清液加入到96-孔板中。用高效液相色谱法光谱测定的受试化合物的溶解度,实验结果见表5。
表5.式(I)化合物的动力学溶解度的测定
化合物 溶解度(μM)@pH=7.4
EMA401 191.7
(I) >200.0
结论:结果显示式(I)化合物具有良好的溶解度(在pH=7.4)。
实施例7:式(I)化合物的人肝微粒体CYP抑制实验
研究项目的是采用每个同工酶的特异性探针底物来评价待测化合物对人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)的抑制性。
混合人肝微粒体(pooled HLM,n≥50)购自Corning Inc.(Steuben,New York,USA)或者其他有资质的供应商,使用前都储存在低于-60℃冰箱。
将稀释好的系列浓度的待测化合物工作液加入到含有人肝微粒体、探针底物和循环体系的辅助因子的孵育体系中,甲醇含量约为终孵育体系的1%(v/v)。不含待测化合物而含有溶剂的对照作为酶活性对照(100%)。分析物在样品中的浓度采用液相色谱-串联质谱(LC/MS/MS)方法进行测定。使用样品(空白溶剂、阳性对照抑制剂或者待测化合物)浓度的平均值进行计算。应用SigmaPlot(V.11)对待测化合物平均百分比活性对浓度作非线性回归分析。通过三参数或四参数反曲对数方程来计算IC 50值。实验结果见表6。
表6.式(I)化合物的人肝微粒体CYP抑制实验
Figure PCTCN2019115149-appb-000018
结论:式(I)化合物对五个CYP同工酶没有抑制作用,或抑制作用均较弱,预示在人体内发生药物-药物相互作用的可能性较少。
实施例8:式(I)化合物在CACO-2细胞的双向渗透性研究
测定待测化合物在Caco-2细胞的双向渗透性,并且测试待测化合物是否被外排转运。
实验方法:
储备液的配制
将化合物溶解于二甲基亚砜(DMSO)或其他适宜的溶剂,配制成合适浓度的储备液。
合适的内标(internal standard,IS)溶解于乙腈(acetonitrile,ACN)或其它有机溶剂作为终止液,具体信息将在研究报告中描述。
纳多洛尔(nadolol)、美托洛尔(metoprolol)、地高辛(digoxin)、雌激素酮3-硫酸钾(estrone3-sulfate potassium,E3S)和GF120918在本研究中分别作为低渗对照化合物、高渗对照化合物、P-糖蛋白(P-gp)底物、乳腺癌耐药蛋白(BCRP)底物和外排转运体抑制剂。这些化合物的储备液用DMSO配制,储存于≤-30℃,6个月内使用有效。
给药液和接收液的配制
本研究使用HBSS(Hanks Balanced Salt Solution)含10mM HEPES(2-[4-(2-羟乙基)-1-哌嗪]乙磺酸)作为转运缓冲液(pH 7.40±0.05)。给药液以及接收液的配制方法见下表7。
表7.给药液及接收液的配制方法
Figure PCTCN2019115149-appb-000019
细胞培养
Caco-2细胞用MEM培养基(Minimum Essential Media)培养,培养条件为37±1℃,5%CO 2和饱和湿度。之后将细胞接种于Corning Transwell-96孔板里,接种密度为1×105细胞/cm 2,然后将细胞置于二氧化碳培养箱中培养21-28天后用于转运实验,期间每隔四到五天更换一次培养基。
转运实验
化合物给药浓度为2、10和100μM,在含有或不含10 0含GF120918的条件下双向(A-B和B-A方向)给药,每个给药浓度做三个平行。Digoxin和E3S的测试浓度分别为10和5μM,在含有或不含10μM GF120918的条件下双向给药;nadolol和metoprolol测试浓度均为2μM,在不含10μM GF120918 的条件下单向(A-B方向)给药,三个对照化合物也均做三个平行。
将给药液、接收液和转运缓冲液置于37℃预孵育30分钟。细胞层用转运缓冲液润洗两遍。将给药液和接收液分别加入到对应的细胞板孔位(每个顶端和基底端孔分别加样75和250μL)。加样后,将细胞板置于37±1℃,5%CO 2和饱和湿度的培养箱中孵育120分钟。
样品收集信息见下表8。
表8.样品收集信息
样品类型 每孔收样体积(μL) 终止液的体积(μL) 转运缓冲液的体积(μL)
A-B给药端 50 250 100
A-B接收端 150 250 0
A-B细胞裂解 50 200 150
B-A给药端 50 250 100
B-A接收端 50 250 100
B-A细胞裂解 50 200 150
T0 50 250 100
所有的化合物漩涡震荡后,于3220×g,20℃离心20分钟,转移适量体积的上清液到样品分析板,封板后化合物若不立即分析则储存于2-8℃。采用LC/MS/MS的方法进行分析,具体的化合物处理方法见研究报告。
细胞膜完整性测试
荧光黄检测实验(Lucifer Yellow Rejection Assay)用于测试Caco-2细胞的完整性。每块细胞板随机选取6个细胞孔,分别加入100μM荧光黄,荧光黄检测实验与转运实验同时进行。孵育120分钟后,取荧光黄样品,在425/528nm(激发/发射)波谱处检测样品中荧光黄的相对荧光强度(the relative fluorescence unit,RFU)。
样品分析
待测化合物和对照化合物nadolol、metoprolol、digoxin及E3S在样品中的浓度均采用液相色谱-串联质谱(LC/MS/MS)方法进行测定。分析物和内标的保留时间、色谱图采集和色谱图的积分采用软件Analyst(AB Sciex,Framingham,Massachusetts,USA)进行处理,实验结果见表9。
表9.式(I)化合物在CACO-2细胞的双向渗透性研究
化合物编号 Papp(AB)(10 -6cm/s) Papp(BA)(10 -6cm/s) 外排比
EMA-401 0.11 6.40 58.39
(I) 0.27 8.68 32.50
结论:测试结果显示相对于EMA-401,式(I)化合物的渗透性有所改善,有利于化合物的吸收。

Claims (27)

  1. 式(I)化合物的A晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.04±0.20°,18.21±0.20°。
    Figure PCTCN2019115149-appb-100001
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.04±0.20°,14.40±0.20°,15.11±0.20°,18.21±0.20°,18.46±0.20°,20.12±0.20°,24.13±0.20°。
  3. 根据权利要求2所述的A晶型,其XRPD图谱如图1所示。
  4. 根据权利要求1~3任意一项所述的A晶型,其差示扫描量热曲线在155.36℃±3℃处具有吸热峰的起始点。
  5. 根据权利要求4所述的A晶型,其DSC图谱如图2所示。
  6. 根据权利要求1~3任意一项所述的A晶型,其热重分析曲线在100.00℃±3℃时失重达0.1489%。
  7. 根据权利要求6所述的A晶型,其TGA图谱如图3所示。
  8. 式(I)化合物A晶型的制备方法,包括:
    (a)将式(I)化合物加入混合溶剂中溶解;
    (b)30~50℃下搅拌10~30小时;
    (c)过滤后在30~50℃干燥15~25小时;
    其中,所述混合溶剂为丙酮和水的体积比为1:1.5~2.5。
  9. 式(I)化合物的B晶型,其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.08±0.20°,12.12±0.20°,18.19±0.20°。
  10. 根据权利要求9所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:6.08±0.20°,12.12±0.20°,18.19±0.20°,24.31±0.20°,30.50±0.20°。
  11. 根据权利要求10所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:3.52±0.20°,6.08±0.20°,9.25±0.20°,12.12±0.20°,14.00±0.20°,18.19±0.20°,24.31±0.20°,30.50±0.20°。
  12. 根据权利要求11所述的B晶型,其XRPD图谱如图4所示。
  13. 根据权利要求9~11任意一项所述的B晶型,其差示扫描量热曲线在150.95℃±3℃处具有吸热峰的起始点。
  14. 根据权利要求13所述的B晶型,其DSC图谱如图5所示。
  15. 根据权利要求9~11任意一项所述的B晶型,其热重分析曲线在120.00℃±3℃时失重达0.0558%。
  16. 根据权利要求15所述的B晶型,其TGA图谱如图6所示。
  17. 式(I)化合物B晶型的制备方法,包括:
    (a)将式(I)化合物加入溶剂中使其成悬浊液;
    (b)悬浊液35~45℃下搅拌30-60小时;
    (c)离心后干燥8~16小时;
    其中,所述溶剂选自甲醇、乙醇、乙腈;
    或者所述的溶剂为混合溶剂,所述的混合溶剂为丙酮和水的体积比为3:2。
  18. 根据权利要求1~7所述A晶型或权利要求9~16所述B晶型在制备慢性疼痛药物中的应用。
  19. 式(I)化合物的制备方法,
    Figure PCTCN2019115149-appb-100002
    其包含如下步骤:
    Figure PCTCN2019115149-appb-100003
    其中,
    R 1选择Cl,Br和I;
    溶剂F选自正庚烷、二氯甲烷、四氢呋喃、环己烷和二氧六环;
    试剂G选自氧化银、硫酸镁、硫酸钙和硫酸钠。
  20. 根据权利要求19所述的制备方法,其包含如下步骤:
    Figure PCTCN2019115149-appb-100004
    其中,
    溶剂H选自四氢呋喃、甲醇和水;
    试剂I选自一水合氢氧化锂和氢氧化钠;
    溶剂J选自二氯甲烷;
    催化剂K选自N,N-二甲基甲酰胺;
    试剂L选自草酰氯;
    溶剂M选自二氯甲烷;
    试剂N选自吡唑;
    试剂O选自N-甲基吗啡啉;
    溶剂P选自N,N-二甲基甲酰胺、二甲基亚砜、二氯甲烷和四氢呋喃;
    试剂Q选自四甲基胍、1,8-二氮杂二环十一碳-7-烯、三乙胺、二异丙基乙胺和2,6-二甲基吡啶。
  21. 根据权力要求19或20所述的制备方法,其中,化合物1E和化合物1-0的摩尔比为1.2~5:1。
  22. 根据权力要求20所述的制备方法,其中,化合物1-4和化合物D1-1的摩尔比为1.1~1.5:1。
  23. 根据权力要求19或20所述的制备方法,其中,制备化合物1-1、1-2和1-3的步骤中,控制反应体系温度范围为25±5℃。
  24. 根据权力要求20所述的制备方法,其中,化合物1-4的制备包括步骤a和步骤b,步骤a控制反应体系温度范围为25±5℃,步骤b向反应体系中投料时,控制反应体系温度范围为5±5℃,试剂投料完毕后,控制反应体系温度范围为25±5℃。
  25. 根据权力要求19或20所述的制备方法,其中,溶剂F选自正庚烷,所述正庚烷的体积和化合物1-0的质量比为8.0~10.0:1,试剂G选自氧化银、硫酸镁,所述氧化银、硫酸镁和化合物1-0的摩尔比为1.0~5.0:1。
  26. 根据权力要求19或20所述的制备方法,其中,试剂G在投料过程中分批次加入。
  27. 根据权力要求20所述的制备方法,其中,溶剂H为混合物,选自四氢呋喃和水,所述四氢呋喃和水的体积比为1~2:1,试剂I为一水合氢氧化锂,所述一水合氢氧化锂和化合物1-0的摩尔比为1.0~2.0:1,溶剂J和化合物1-3的质量比为10:1,催化剂K和化合物1-3的摩尔比为0.002~0.004:1,试剂L和化合物1-3的摩尔比为1.2~2.0:1,溶剂M和化合物1-3的质量比为6~10:1,试剂N和化合物1-3的摩尔比为1.0~1.5:1,试剂O和化合物1-3的摩尔比为1.0~1.5:1,溶剂P选自N,N-二甲基甲酰胺,所述选自N,N-二甲基甲酰胺和化合物1-4的质量比为10:1,试剂Q选自四甲基胍,所述选自四甲基胍和化合物1-4的摩尔比为1~1.2:1。
PCT/CN2019/115149 2018-11-02 2019-11-01 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法 WO2020088677A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FIEP19878016.5T FI3819293T3 (fi) 2018-11-02 2019-11-01 Angiotensiini ii -reseptorin 2 antagonistin suolamuoto ja kiteinen muoto ja niiden valmistusmenetelmä
AU2019373178A AU2019373178B2 (en) 2018-11-02 2019-11-01 Angiotensin II receptor 2 antagonist salt form and crystalline form, and preparation method therefor
KR1020217006383A KR102619333B1 (ko) 2018-11-02 2019-11-01 안지오텐신ii 수용체2 길항제의 염 형태, 결정형 및 그 제조방법
EP19878016.5A EP3819293B1 (en) 2018-11-02 2019-11-01 Angiotensin ii receptor 2 antagonist salt form and crystalline form, and preparation method therefor
CN201980050569.XA CN112585120B (zh) 2018-11-02 2019-11-01 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法
ES19878016T ES2944065T3 (es) 2018-11-02 2019-11-01 Forma salina y forma cristalina del antagonista del receptor 2 de la angiotensina II y método de preparación del mismo
JP2021507501A JP7089636B2 (ja) 2018-11-02 2019-11-01 アンジオテンシンii2型受容体拮抗薬の塩形、結晶形及びその製造方法
US17/179,382 US11286239B2 (en) 2018-11-02 2021-02-18 Angiotensin II receptor 2 antagonist salt form and crystalline form, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811301892 2018-11-02
CN201811301892.3 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/179,382 Continuation US11286239B2 (en) 2018-11-02 2021-02-18 Angiotensin II receptor 2 antagonist salt form and crystalline form, and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2020088677A1 true WO2020088677A1 (zh) 2020-05-07

Family

ID=70461977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115149 WO2020088677A1 (zh) 2018-11-02 2019-11-01 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法

Country Status (10)

Country Link
US (1) US11286239B2 (zh)
EP (1) EP3819293B1 (zh)
JP (1) JP7089636B2 (zh)
KR (1) KR102619333B1 (zh)
CN (1) CN112585120B (zh)
AU (1) AU2019373178B2 (zh)
ES (1) ES2944065T3 (zh)
FI (1) FI3819293T3 (zh)
PT (1) PT3819293T (zh)
WO (1) WO2020088677A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088504A1 (en) 2010-01-19 2011-07-28 Spinifex Pharmaceuticals Pty Ltd Methods and compositions for improved nerve conduction velocity
WO2018224037A1 (zh) * 2017-06-09 2018-12-13 南京明德新药研发股份有限公司 作为at2r受体拮抗剂的羧酸衍生物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011088504A1 (en) 2010-01-19 2011-07-28 Spinifex Pharmaceuticals Pty Ltd Methods and compositions for improved nerve conduction velocity
CN102821765A (zh) * 2010-01-19 2012-12-12 西芬克斯医药有限公司 改良神经传导速度的方法和组合物
WO2018224037A1 (zh) * 2017-06-09 2018-12-13 南京明德新药研发股份有限公司 作为at2r受体拮抗剂的羧酸衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819293A4

Also Published As

Publication number Publication date
EP3819293B1 (en) 2023-03-29
FI3819293T3 (fi) 2023-05-03
EP3819293A4 (en) 2021-09-01
CN112585120B (zh) 2022-11-11
US20210206724A1 (en) 2021-07-08
KR20210039436A (ko) 2021-04-09
EP3819293A1 (en) 2021-05-12
CN112585120A (zh) 2021-03-30
AU2019373178A1 (en) 2021-03-04
JP2021534143A (ja) 2021-12-09
ES2944065T3 (es) 2023-06-19
KR102619333B1 (ko) 2023-12-28
JP7089636B2 (ja) 2022-06-22
PT3819293T (pt) 2023-04-19
AU2019373178B2 (en) 2022-03-24
US11286239B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CA2865585C (en) N-(5s, 6s, 9r)-5-amino-6-(2,3-difluorophenyl)-6, 7, 8, 9-tetrahydro-5h-cyclohepta [b] pyridin-9-yl-4-(2-oxo-2, 3-dihydro-1h-imidazo [4, 5-b] pyridin-1-yl) piperidine-1-carboxylate, hemisulfate salt
KR20180051523A (ko) Lsd1 저해제의 염
CN109689641B (zh) 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法
TW202128617A (zh) 三苯化合物之新穎鹽類
AU2010223555A1 (en) Substituted 3-aminoisoxazolopyridines as KCNQ2/3 modulators
WO2017071607A1 (zh) 4H-吡唑并[1,5-α]苯并咪唑类化合物晶型及其制备方法和中间体
WO2019072236A1 (zh) 一种吡啶酮化合物的晶型、盐型及其制备方法
WO2020088677A1 (zh) 一种血管紧张素ii受体2拮抗剂的盐型、晶型及其制备方法
JP6974618B2 (ja) Fgfr及びvegfr阻害剤としての化合物の塩形態、結晶形およびその製造方法
WO2019114741A1 (zh) 作为Akt抑制剂的盐型及其晶型
WO2018214958A1 (zh) Ido1抑制剂的晶型及其制备方法
CN116171156A (zh) 含嘧啶基团的三并环类化合物的盐型、晶型及其制备方法
CN108290859B (zh) 喹啉衍生物的盐型、晶型及其制备方法和中间体
WO2024002353A1 (zh) 一种含氮桥杂环衍生物的可药用盐、晶型及其制备方法
CN112105365A (zh) 某些化学实体、组合物和方法
EP3964510A1 (en) Crystal form of wee1 inhibitor compound and use thereof
US11708357B2 (en) Crystal form of pyrrolidinyl urea derivative and application thereof
WO2023246854A1 (zh) 一种硼酸酯衍生物的结晶、其制备方法及用途
WO2022206666A1 (zh) 吡咯酰胺化合物的晶型及其制备方法和用途
CN118184572A (zh) 一类新型HsClpP激动剂的制备及其在抗炎抗肿瘤中的用途
CN117616020A (zh) 一种三唑并吡啶取代的吲唑类化合物的晶型及其制备方法
CN116836116A (zh) 一种新型plk1抑制剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507501

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019878016

Country of ref document: EP

Effective date: 20210205

ENP Entry into the national phase

Ref document number: 20217006383

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019373178

Country of ref document: AU

Date of ref document: 20191101

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE